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1 Computing the dimension of invariant subspace

Let G be an arbitrary Lie group and {Vi,1≤ i≤ n}, be a set of n arbitrary representations of
G. We are interested in computing the dimension, dinv, of the invariant subspace of the tensor
product given by V1⊗ . . .⊗Vn. This can be computed by evaluating the integral

dinv =
∮

T
dµG

n

∏
i=1

χ
Vi
G , (1.1)

where, T ⊆ G is the maximal torus of G, dµG is the Haar measure and χ
Vi
G denotes the Weyl

character of Vi. More explicitly, let W be the Weyl group of G, ∆ be the root system of G and
∆+ be the set of positive roots, then∮

T
dµG =

1
(2πi)r

1
|W |

∮
|z1|=1

. . .
∮
|zr|=1

dz1

z1
. . .

dzr

zr
∏
α∈∆

(1− zα) , (1.2)

zα :=
r

∏
l=1

zαl
l (1.3)

where αl denotes the l-th component of the root vector α (in the Dynkin basis) . Similarly,
the character χ

Vi
G can be defined by

χ
Vi
G = ∑

λ∈Vi

zλ , (1.4)

zλ :=
r

∏
l=1

zλl
l , (1.5)
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where λ is a weight of Vi and λl denotes its l-th component. For example, the character of
the fundamental irreducible representation of SU(N) with the highest weight [1,0, . . . ,0] is
given by:

χ
[1,0,...,0]
SU(N)

= z1 +
N−1

∑
k=2

zk

zk−1
+

1
zN−1

. (1.6)

Similarly, the adjoint representation of SU(N) has highest weight [1,0, . . . ,0,1] with its char-
acter being given by

χ
[1,0,...,0,1]
SU(N)

= (N−1)+ ∑
α∈∆

zα . (1.7)

Before bringing this section to a close, let us point out that from a computational point
of view it turns out to be much more efficient to use a slightly different definition of the Haar
measure [1], given by∮

T
dµG =

1
(2πi)r

∮
|z1|=1

. . .
∮
|zr|=1

dz1

z1
. . .

dzr

zr
∏

α∈∆+

(1− zα) . (1.8)

In the above definition, we restrict to the set of positive roots only. This removes the need to
normalize by the order of the Weyl group in our previous definition. The measure given in
(1.8) can be further simplified by observing that an application of the Weyl character formula
to the trivial 1-dimensional representation implies that

∏
α∈∆+

(1− zα) = ∑
w∈W

sgn(w)zw(ρ)−ρ , (1.9)

where ρ is the Weyl vector defined by

ρ :=
1
2 ∑

α∈∆+

α . (1.10)

Simplifying (1.8) by substituting (1.9) leads to a further reduction in the number of compu-
tations that need to be performed to evaluate (1.1).

2 n-th tensor power of the adjoint representation of SU(2)

Let us now apply the above method to compute the dimension, dinv
SU(2)(n), of the invariant

subspace of the n-th tensor power of the adjoint representation of SU(2).
Following the discussion in the previous section, it is easy to see that

dµSU(2) =
1

2πi
dz
z
(1− z2) , (2.1)
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χ
adj.
SU(2) = z2 +1+ z−2 , (2.2)

which implies that

dinv
SU(2)(n) =

1
2πi

∮
T

dµSU(2)
(
χ

adj.
SU(2)

)n
, (2.3)

=
1

2πi

∮
|z|=1

dz
z
(1− z2)(1+ z2 + z−2)n . (2.4)

Applying the residue theorem to the above integral we see that the dimension of the invariant
subspace is given by

dinv
SU(2)(n) = the z-independent term in the expansion of (1+ z2 + z−2)n

− the coefficient of z−2 in the expansion of (1+ z2 + z−2)n . (2.5)

This implies

dinv
SU(2)(n) = ∑

r=0,2,...,n

(
n
r

)(
r

r/2

)
− ∑

r=1,3,...,n

(
n
r

)(
r

(r−1)/2

)
. (2.6)

The first few explicit terms in this series are: 0,1,1,3,6,15,36,91,232,603,1585,4213, . . .,
which matches exactly with the sequence of the so called “Motzkin sums” i.e. A005043 on
oeis.org. This observation has also been made in various forms in the comments on the afore
mentioned online page, by David Callan, Andrew V. Sutherland and Samson Black.

“Motzkin sums” are known to obey the following recursion relation:

a(n+1) =
n

n+2
(
2a(n)+3a(n−1)

)
. (2.7)

Let us now prove that the sequence of numbers given by the integral in (2.4) indeed satisfies
the recursion relation given by (2.7). In order to proceed let us define a generating function
given as follows

fSU(2)(x) =
∞

∑
n=0

dinv
SU(2)(n)x

n (2.8)

=
∞

∑
n=0

1
2πi

∮
|z|=1

dz
z
(1− z2)(1+ z2 + z−2)nxn , (2.9)

=
1

2πi

∮
|z|=1

dz
z

1− z2

1− (1+ z2 + z−2)x
, (2.10)

where we will assume that x is sufficiently small for the series to converge. In order to eval-
uate fSU(2)(x) as defined in (2.10) it is somewhat easier to change the variable of integration
from z to y = z2. The generating function is then given by

fSU(2)(x) =
∮
|y|=1

dy
y

1− y
1− (1+ y+ y−1)x

. (2.11)
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The integrand in the RHS of (2.11) has simple poles at

y =

√
−3x2−2x+1− x+1

2x
, and (2.12)

y = −
√
−3x2−2x+1+ x−1

2x
. (2.13)

For x << 1, only the pole at −
√
−3x2−2x+1+x−1

2x lies within the unit circle and hence con-
tributes to the contour integral in (2.11). Upon evaluating the residue at this pole we therefore
find that

fSU(2)(x) =
−1+3x+

√
1−2x−3x2

2x
√

1−2x−3x2
. (2.14)

Given the closed form expression (2.14) for fSU(2)(x) it is straightforward to show by direct
substitution that fSU(2)(x) satisfies the following differential equation:

(x−2x2−3x3) f ′SU(2)(x)+(1−3x2) fSU(2)(x)−1 = 0 , (2.15)

where f ′SU(2)(x) denotes the derivative of fSU(2)(x) with respect to x. Upon substituting the
series expansion (2.8) of fSU(2)(x) in (2.15) we then arrive at the recursion relation in (2.7).

3 n-th tensor power of the adjoint representation of SU(3)

In this section we will compute the dimension, dinv
SU(3)(n), of the invariant subspace of the

n-th tensor power of the adjoint representation of SU(3). In the process, we will give a
prescription to decompose dinv

SU(3)(n) into exactly 4 parts and obtain the recurrence relations
satisfied by each of those parts. This will be the main result of this paper.

Using (1.8) and (1.9), we can write

dµSU(3) =
dz1

z1

dz2

z2

(
1+ z3

1−
z2

1
z2
−

z2
2

z1
− z2

1z2
2 + z3

2

)
. (3.1)

Also, the character of the adjoint representation of SU(3) is

χ
adj.
SU(3) = 2+

z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1
. (3.2)

We therefore see that dinv
SU(3)(n) can be obtained by evaluating the integral

dinv
SU(3)(n) =

∮
|z1|=1

∮
|z2|=1

dz1

z1

dz2

z2

(
1+ z3

1−
z2

1
z2
−

z2
2

z1
− z2

1z2
2 + z3

2

)
×
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(
2+

z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1

)n

. (3.3)

Notice, that the Z2 outer-automorphism symmetry of the su(3) algebra implies that both
dµSU(3) and χ

adj.
SU(3), and therefore the integral in (3.3), are invariant under z1↔ z2. Using this

exchange symmetry and applying the residue theorem to the integral in (3.3), we therefore
surmise that dinv

SU(3)(n) can written as

dinv
SU(3)(n) = a1(n)−2a2(n)+2a3(n)−a4(n) , (3.4)

where, a1(n), a2(n), a3(n) and a4(n) are defined as follows

a1(n) := the constant term in
(

2+
z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1

)n

, (3.5)

a2(n) := the coefficient of z1z−2
2 in

(
2+

z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1

)n

, (3.6)

a3(n) := the coefficient of z−3
1 in

(
2+

z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1

)n

, (3.7)

a4(n) := the coefficient of z−2
1 z−2

2 in
(

2+
z1

z2
2
+

1
z1z2

+
z2

1
z2

+
z2

z2
1
+ z1z2 +

z2
2

z1

)n

. (3.8)

While, it is straightforward to explicitly write ai(n), i = 1,2,3,4 in terms of appropriate bino-
mial coefficients, these expressions are rather complicated. Instead, we will suffice ourselves
with listing the first few numbers appearing in the corresponding series and then proceed to
obtain the recurrence relations describing them.

Recursion relation for a1(n): The first 10 values in this series are:1, 2, 10, 56, 346, 2252,
15184, 104960, 739162, 5280932, 38165260. Turns out this matches with the first 10 values
in the sequence of Franel numbers [2, 3] i.e. the sequence A000172 on oeis.org. As was
shown by Franel, this sequence satisfies a recursion relation given as

a(n+1) =
2+7n+7n2

(n+1)2 a(n)+
8n2

(n+1)2 a(n−1) . (3.9)

Let us now prove that a1(n) as defined in (3.5) indeed satisfies Franel’s recursion relation
as given in (3.9). As was the case in previous section, we will do so by defining a generating
function for a1(n) and showing that it satisfies an appropriate differential equation. Without
further ado, let us define the following generating function:

fSU(3),a1(x) =
∞

∑
n=0

a1(n)xn (3.10)
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=
∞

∑
n=0

1
(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2
(χ

adj.
SU(3))

nxn , (3.11)

=
1

(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2

1

1−χ
adj.
SU(3)x

, (3.12)

where χ
adj.
SU(3) is defined in (3.2). It is slightly simpler to analyze the above contour integrals

by changing the integration variables to y1 = z2
1/z2,y2 = z2

2/z1. fSU(3),a1(x) is then given by
the following contour integral

fSU(3),a1(x) =
1

(2πi)2

∮
|y2|=1

∮
|y1|=1

dy1

y1

dy2

y2

1
1− (2+ y1 +

1
y1
+ y2 +

1
y2
+ y1y2 +

1
y1y2

)x
.

(3.13)

Let us integrate with respect to y1 first. The simple poles in the y1-plane are present at

y1 =
−x+ y2−2xy2− xy2

2−
√

x2−2xy2 + y2
2−4xy2

2−2x2y2
2−2xy3

2 + x2y4
2

2
(
xy2 + xy2

2
) ,and

(3.14)

y1 =
−x+ y2−2xy2− xy2

2 +
√

x2−2xy2 + y2
2−4xy2

2−2x2y2
2−2xy3

2 + x2y4
2

2
(
xy2 + xy2

2
) . (3.15)

For x << 1, only the pole at −x+y2−2xy2−xy2
2−
√

x2−2xy2+y2
2−4xy2

2−2x2y2
2−2xy3

2+x2y4
2

2(xy2+xy2
2)

lies withing the

unit circle. Computing the residue at this point then gives

fSU(3),a1(x) =
1

2πi

∮
|y2|=1

dy2√
x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2

. (3.16)

The integrand above has 4 branch-points which in this case can be grouped into two pairs
such that the product of the branch-points in any pair is 1. It therefore follows, the two of
the branch points are inside the unit circle and two are outside. We will choose to connect
the branch points inside the unit circle via a branch-cut. The other two branch points can be
connected by another branch-cut that lies completely outside the unit circle. If one thinks
of y1 as the coordinate on P1 then the branch-points outside the unit circle can be connected
by a branch-cut that also passes through the point at infinity. This is shown in figure 1. We
therefore see that fSU(3),a1(x) as given in (3.16) can be thought of as a period of the elliptic
fibration given by

w2 = x2y4
2−2xy3

2 +
(
−2x2−4x+1

)
y2

2−2xy2 + x2 , (3.17)
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Figure 1: Contour for the integrals in section 3. The branch-points are marked by⊗ with the
wavy lines being the branch cuts connecting them.

with x being the coordinate on the base. It follows that fSU(3),a1(x) satisfies the corresponding
Picard-Fuchs differential equation. This is given by

x(x+1)(8x−1) f (2)SU(3),a1
(x)+(24x2 +14x−1) f (1)SU(3),a1

(x)+2(4x+1) fSU(3),a1(x) = 0 ,

(3.18)

where f (n)SU(3),a1
(x) denotes the n-th derivative of fSU(3),a1(x) with respect to x. That this

is indeed the case can be established in a straightforward manner by the usual brute-force
approach, for e.g. as described in [4]. Substituting the series expansion (3.10) in (3.18) then
gives the recursion relation (3.9), thus proving that a1(n) is indeed given by Franel numbers.

Recursion relation for a2(n): Let us now consider the first 10 values of a2(n) which are:
0, 1, 6, 39, 260, 1780, 12432, 88207, 633768, 4600566, 33680900. Unfortunately, there is
no sequence in the oeis.org database that matches this. However, inspired by the recurrence
relation (3.9) satisfied by a1(n), we expect that a2(n) will also satisfy an analogous recurrence
relation. A little bit of trial an error reveals that this indeed seems to be the case, with the
recurrence relation we seek being given by

a(n+1) =
(1+n)

(
8+30n+49n2 +21n3)

n(2+n)2(1+3n)
a(n)+

8n(1+n)(4+3n)
(2+n)2(1+3n)

a(n−1) . (3.19)

As before, we prove this by considering the generating function

fSU(3),a2(x) =
∞

∑
n=0

a2(n)xn (3.20)

=
∞

∑
n=0

1
(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2

z2
2

z1
(χ

adj.
SU(3))

nxn , (3.21)

=
1

(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2

z−1
1 z2

2

1−χ
adj.
SU(3)x

. (3.22)
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Upon, changing the integration variables to y1 = z2
1/z2,y2 = z2

2/z1 and integrating with re-
spect to y1, we find that fSU(3),a2(x) is given by the following contour integral:

fSU(3),a2(x) =
1

2πi

∮
|y2|=1

dy2
y2√

x2−2xy2 + y2
2−4xy2

2−2x2y2
2−2xy3

2 + x2y4
2

. (3.23)

Once again, the branch-cuts are as shown in figure 1. The recurrence relation in (3.19) can
be shown to follow straightforwardly, if fSU(3),a2(x) satisfies the differential equation:(

−24x6−21x5 +3x4
)

f (4)SU(3),a2
(x)+

(
−296x5−196x4 +19x3

)
f (3)SU(3),a2

(x)+(
−968x4−436x3 +19x2) f (2)SU(3),a2

(x)+
(
−848x3−208x2−2x

)
f (1)SU(3),a2

(x)+(
−112x2−8x+2

)
fSU(3),a2(x) = 0 .

(3.24)

Substituting fSU(3),a2(x) from (3.23) in the LHS of the above equation gives

L.H.S of (3.24) =
1

2πi

∮
|y2|=1

dy2
g2(y2,x)

(x2−2xy2 + y2
2−4xy2

2−2x2y2
2−2xy3

2 + x2y4
2)

9/2
,

(3.25)

where g2(x) is a degree-16 polynomial in y2 given by

g2(y2,x) =(24x7−24x8)(y16
2 + y2

2)+(−112x8−152x7−40x6)(y15
2 + y3

2)+

(−264x8−1896x7 +1056x6−90x5)(y14
2 + y4

2)+

(−96x8−6384x7 +2736x6−1344x5 +282x4)(y13
2 + y5

2)+

(936x8−9432x7 +1344x6−658x5 +484x4−268x3)(y12
2 + y6

2)+

(1392x8−3048x7−5784x6 +5520x5 +1248x4−300x3 +108x2)(y11
2 + y7

2)+

(−648x8 +11304x7−19296x6 +8748x5−
324x4−1188x3 +324x2−18x)(y10

2 + y8
2)+

(−2368x8 +19168x7−27616x6 +7648x5−
2740x4−2312x3 +320x2−44x+2)y9

2 . (3.26)

It is easy to show that the 1-form appearing in RHS of (3.25) is exact, being given by the
following exterior derivative:

g2(y2,x)
(x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2)
9/2

=

– 8 –



∂y2

h2(y2,x)
(x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2)
7/2(1+ x)

, (3.27)

where h2(y2,x) is a degree-14 polynomial in y2 being given by

h2(x) =−2
(
x8 +2x7)y14

2 +2x5 (19x2 +14x−12
)

y13
2 +

2
(

7x8 +56x7 +43x6 +6x5 +40x4
)

y12
2 −

2
(

32x7−110x6−71x5 +43x4 +49x3
)

y11
2 −

2
(

21x8 +170x7−349x6−202x5 +211x4 +49x3−27x2
)

y10
2 −

14
(

3x7−84x6−30x5 +17x4−16x3−13x2 + x
)

y9
2+

2
(

35x8 +208x7 +274x6−218x5 +11x4 +56x3 +65x2−17x+1
)

y8
2+

2
(

72x7−436x6−568x5 +151x4−147x3 +25x2−10x
)

y7
2−

2
(

35x8 +134x7 +690x6 +466x5−339x4 +119x3−24x2
)

y6
2−

2
(

55x7 +346x6 +310x5−219x4 +28x3
)

y5
2+

2
(

21x8 +56x7 +3x6−164x5 +29x4
)

y4
2+

2
(

24x7 +70x6−31x5
)

y3
2−

14x6 (x2 +2x−3
)

y2
2−

14x7y1
2+

2x8 . (3.28)

Since the branch-cuts of h2(y2,x)/(x2−2xy2+y2
2−4xy2

2−2x2y2
2−2xy3

2+x2y4
2)

7/2(1+x) do
not intersect the integration contour, it therefore follows that the RHS of (3.25) evaluates to
zero by Stokes’ theorem. We therefore see that the generating function fSU(3),a2(x) satisfies
the differential equation in (3.24). By substituting the series expansion given in (3.20), it can
then be shown that a2(n) is given by the recursion relation in (3.19).

Recursion relation for a3(n): Similarly, the first 10 values of a3(n) are: 0, 0, 2, 18, 144,
1100, 8280, 62034, 464576, 3484296, 26190900. As was the case for a2(n), we could not
find any entry for a related sequence in the oeis.org database. Nonetheless, empirically, we
found that a3(n) satisfies the recursion relation given by

a(n+1) =
(1+n)2 (−2+7n+7n2)

n(−6+n+4n2 +n3)
a(n)+

8n(1+n)2

−6+n+4n2 +n3 a(n−1) . (3.29)

– 9 –
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The proof that the above recursion relation is correct follows along the same lines as in the
previous three cases i.e consider the generating function for this sequence and prove that it
satisfies an appropriate differential equation. The generating function is now given by

fSU(3),a3(x) =
∞

∑
n=0

a3(n)xn (3.30)

=
∞

∑
n=0

1
(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2
z3

1(χ
adj.
SU(3))

nxn , (3.31)

=
1

(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2

z3
1

1−χ
adj.
SU(3)x

. (3.32)

Changing the integration variables to y1 = z2
1/z2,y2 = z2

2/z1 and integrating with respect to
y2, we find that fSU(3),a3(x) is given by the following contour integral:

fSU(3),a3(x) =−
1

2πi

∮
|y1|=1

dy1×

y1

(
x− y1 +2xy1 + xy2

1 +
√

x2−2xy1 + y2
1−4xy2

1−2x2y2
1−2xy3

1 + x2y4
1

)
2x(1+ y1)

√
x2−2xy1 + y2

1−4xy2
1−2x2y2

1−2xy3
1 + x2y4

1

.

(3.33)

The above integral has a simple pole at y1 = −1. We will therefore have to slightly deform
our integration contour to either include or exclude this pole. While it is important to know
which way to deform the contour for purposes of computing the generating function exactly,
our purpose here is to only establish the recursion relation for a3(n). As we will see shortly,
this will not get affected by how we deform the contour.

For the recursion relation in (3.29) to be true, it is sufficient to show that the generating
function fSU(3),a3(x) satisfies the following 4-th order differential equation:(

−8x6−7x5 + x4
)

f (4)SU(3),a3
(x)+

(
−96x5−63x4 +6x3

)
f (3)SU(3),a3

(x)+(
−304x4−131x3 +2x2) f (2)SU(3),a3

(x)+
(
−256x3−50x2−4x

)
f (1)SU(3),a3

(x)+(
−32x2 +2x+4

)
fSU(3),a3(x) = 0 . (3.34)

Substituting for fSU(3),a3(x) from (3.33) in the LHS of (3.34), we find that

L.H.S of (3.34) =
1

2πi

∮
|y1|=1

dy1
g3(y1,x)

(x2−2xy1 + y2
1−4xy2

1−2x2y2
1−2xy3

1 + x2y4
1)

9/2
,

(3.35)
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where g3(y1,x) is an degree-16 polynomial in y1 given by

g3(y1,x) =24x8(y16
1 + y3

1)+24x2
(

5x6 +11x5−5x4
)
(y15

1 + y4
1)+

24x2
(

6x6 +45x5−36x4 +15x3
)
(y14

1 + y5
1)+

24x2
(
−10x6 +97x5−43x4 +34x3−15x2

)
(y13

1 + y6
1)

24x2
(
−29x6 +119x5 +82x4 +24x3−26x2 +5x

)
(y12

1 + y7
1)

24x2
(
−9x6−18x5 +207x4−90x3−36x2 +18x

)
(y11

1 + y8
1)

24x2
(

36x6−254x5 +179x4−287x3−83x2 +17x−2
)
(y10

1 + y9
1) (3.36)

One can check that the 1-form appearing in (3.35) is exact i.e.

g3(y1,x)
(x2−2xy1 + y2

1−4xy2
1−2x2y2

1−2xy3
1 + x2y4

1)
9/2

=

∂y1

h3(y1,x)
(x2−2xy1 + y2

1−4xy2
1−2x2y2

1−2xy3
1 + x2y4

1)
7/2

, (3.37)

with h3(y1,x) being a degree-14 polynomial in y1:

h3(y1,x) =−6x6y14
1 −6

(
4x6−7x5

)
y13

1 −6
(

3x6−2x5 +11x4
)

y12
1 +

6
(

8x6−46x5−18x4 +5x3
)

y11
1 +42

(
2x6−10x5 +5x4 +4x3

)
y10

1 −

12
(

8x5−48x4−19x3 +2x2
)

y9
1−

6
(

14x6−38x5−59x4−20x3 +8x2
)

y8
1−

6
(

8x6−46x5 +10x4−13x3 +4x2
)

y7
1+

6
(

3x6 +30x5−19x4 +8x3
)

y6
1 +6

(
4x6 +9x5−4x4

)
y5

1 +6x6y4
1 . (3.38)

We can therefore infer that since the contour of integration does not cross the branch-cuts
of h3(y1,x)/(x2−2xy1 + y2

1−4xy2
1−2x2y2

1−2xy3
1 + x2y4

1)
7/2, thus integration over the RHS

of (3.37) will evaluate to zero, thereby showing that fSU(3),a3(x) satisfies the differential
equation in (3.34). The recursion relation in (3.29) then follows by substituting the series
expansion (3.30).

In order to tie up loose ends, recall that we had earlier claimed that for purposes of
obtaining the recursion relation (3.29), it does not matter how we deform the contour of
integration in (3.33). This is because the results so obtained differ from each other by the
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residue of the integrand appearing in (3.33). One can check that this is 1/x. Moreover, 1/x
satisfies the differential equation in (3.34). Thus whether we include the pole at y1 = −1
or not inside the contour of integration, either way the generating function will satisfy the
same differential equation and therefore the coefficients of its series expansion will satisfy
the same recursion relation. We see that the our choice of the deformed contour only changes
the coefficient of the x−1 term in the series expansion of the generating function which in any
case is inconsequential, the coefficients of interest for us being coefficient of xn, ∀n≥ 0.

Recursion relation for a4(n): Finally, we look at a4(n). The fist 10 numbers in this series
are: 0, 0, 1, 12, 106, 860, 6735, 51912, 397180, 3029112, 23078100. These too don’t seem
to be present in the oeis.org database. However, we found that the for all 0≤ n≤ 100, a4(n)
satisfies the recurrence relation

a(n+1) =
(1+n)

(
36+116n+91n2 +21n3)

(3+n)2 (−6+n+3n2)
a(n)

+
8n2(1+n)

(
−2+7n+3n2)

(3+n)2 (6−7n−2n2 +3n3)
a(n−1) . (3.39)

As has been the case so far, in order to prove this, it will be sufficient to show that the cor-
responding generating function satisfies an appropriate differential equation. The generating
function for a4(n) is

fSU(3),a4(x) =
∞

∑
n=0

a4(n)xn

=
∞

∑
n=0

1
(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2
z2

1z2
2(χ

adj
SU(3))

nxn

=
1

(2πi)2

∮
|z2|=1

∮
|z1|=1

dz1

z1

dz2

z2

z2
1z2

2

1−χ
adj
SU(3)x

. (3.40)

Changing the integration variables to y1 = z2
1/z2, y2 = z2

2/z1 and integrating with respect to
y1, we find that fSU(3),a4(x) is given by the following contour integral:

fSU(3),a4(x) =
1

2πi

∮
|y2|=1

dy2

[xy2
2 +(2x−1)y2 + x

2x2 (y2 +1)2 +

x2y4
2 +
(
2x2−4x+1

)
y2

2 + x2 +2(x−1)xy3
2 +2(x−1)xy2

2x2 (y2 +1)2
√

x2y4
2 +(−2x2−4x+1)y2

2 + x2−2xy3
2−2xy2

]
(3.41)

There is double pole at y2 =−1 with the corresponding residue being−1/x2. Thus our choice
of deforming the contour to include or exclude the pole will only change the coefficient of x−2
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term in series expansion of the generating function. Since the coefficient of xn ,∀n ≥ 0 are
unaffected, the choice of deformed contour will not matter to us, as long as −1/x2 satisfies
the same differential equation that governs the generating function. We, therefore, deform
the contour of integration to exclude the pole at y2 =−1.

For the recursion relation (3.39) to be true, it is sufficient to show that the generating
function fSU(3),a4(x) satisfies the following 5-th order differential equation:

(3x5−21x6−24x7) f (5)SU(3),a4
(x)+(31x4−301x5−440x6) f (4)SU(3),a4

(x)+

(55x3−1166x4−2400x5) f (3)SU(3),a4
(x)+(−38x2−1182x3−4384x4) f (2)SU(3),a4

(x)+

(22x−36x2−2176x3) f (1)SU(3),a4
(x)+(32+36x−128x2) fSU(3),a4(x) = 0.

(3.42)

Substituting fSU(3),a4(x) from (3.41) in the LHS of (3.42), we find that

L.H.S of (3.42) =
1

2πi

∮
|y2|=1

dy2

[ g4(y2,x)
(x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2)
11/2
− 6

x

]
,

(3.43)

where g4(y2,x) is a degree-22 polynomial in y2 given by

g4(y2,x) =−6x10(1+ y22
2 )+66x9(y2 + y21

2 )+(54x10 +132x9−330x8)(y2
2 + y20

2 )

+(−396x9−1188x8 +990x7)(y3
2 + y19

2 )+(−978x10 +1956x9−1206x8 +4752x7−1980x6)(y4
2 + y18

2 )

+(−1536x10 +20826x9 +18192x8 +4308x7−11088x6 +2772x5)(y5
2 + y17

2 )

+(4290x10 +45072x9 +71940x8−54024x7−10596x6 +16632x5−2772x4)(y6
2 + y16

2 )

+(9216x10−6672x9 +114864x8−178176x7 +27336x6 +28152x5−16632x4 +1980x3)(y7
2 + y15

2 )

+(−7452x10−148272x9 +108060x8−150984x7 +108228x6

+32304x5−40584x4 +11088x3−990x2)(y8
2 + y14

2 )

+(−23040x10−156060x9 +22512x8 +102828x7 +122064x6

+29772x5−58632x4 +28716x3−4752x2 +330x)(y9
2 + y13

2 )

+(4092x10 +101112x9−178464x8 +255552x7−85668x6

−37224x5−79332x4 +44352x3−10098x2 +1188x−66)(y10
2 + y12

2 )

+(30720x10 +284472x9−308760x8 +250692x7−256656x6

−97968x5−94848x4 +49488x3−12672x2 +1716x−132+
6
x
)y11

2 . (3.44)

One can check that the 1-form in (3.43) is exact i.e.

g4(y2,x)
(x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2)
11/2

=
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∂y2

h4(y2,x)
(1+ x)2(x2−2xy2 + y2

2−4xy2
2−2x2y2

2−2xy3
2 + x2y4

2)
9/2

(3.45)

where h4(y2,x) being a degree-19 polynomial in y2 given by:

h4(y2,x) = (8x11−16x10−8x9)+(−78x10 +132x9 +66x8)y2

+(−72x11 +702x9−324x8−234x7)y2
2 +(482x10 +352x9−3070x8 +12x7 +456x6)y3

2

+(288x11 +432x10−2592x9−5364x8 +5760x7 +1260x6−504x5)y4
2

+(−1344x10−2796x9 +4116x8 +18552x7−3648x6−2268x5 +252x4)y5
2

+(−672x11−1936x10 +6040x9 +25096x8 +27180x7−20100x6−3280x5 +1428x4 +84x3)y6
2

+(2112x10 +12684x9 +27732x8 +12408x7−45564x6 +1128x5 +5616x4 +324x3−216x2)y7
2

+(1008x11 +4368x10−768x9−10284x8−31488x7−72516x6

+9276x5 +10212x4−852x3−972x2 +144x)y8
2

+(−1804x10−23060x9−49620x8−59612x7−69196x6

+27444x5 +14116x4−3520x3−1902x2 +520x−46)y9
2

+(−1008x11−5904x10−18828x9−35592x8−38580x7−32808x6

+54696x5 +24240x4−3360x3−2628x2 +798x−96+
6
x
)y10

2

+(468x10 +12348x9 +12204x8−12924x7−30204x6

+45108x5 +29268x4 +576x3−2790x2 +648x−54)y11
2

+(672x11 +4880x10 +25024x9 +34628x8 +608x7−50420x6

−1748x5 +16180x4 +3524x3−1836x2 +216x)y12
2

+(528x10 +5340x9 +18084x8 +19464x7−26556x6−20616x5 +1296x4 +2772x3−504x2)y13
2

+(−288x11−2352x10−9960x9−5352x8 +19548x7 +6012x6−7392x5−2268x4 +756x3)y14
2

+(−496x10−5660x9−9788x8 +2968x7 +6608x6 +756x5−756x4)y15
2

+(72x11 +576x10 +360x9−2916x8−2304x7 +252x6 +504x5)y16
2

+(138x10 +672x9 +282x8−324x7−216x6)y17
2

+(−8x11−48x10 +30x9 +108x8 +54x7)y18
2 +(−6x10−12x9−6x8)y19

2 . (3.46)

Since the second term of (3.43) given by −6/x, does not contribute to the integral, we can
conclude that the RHS of (3.43) is zero. Then the generating function fSU(3),a4(x) satisfies
the differential equation in (3.42), thereby proving the recursion relation (3.39) for a4(n) .

Coming back to the question of our choice of the deformed contour, one can easily check
that−1/x2 .i.e. the residue of integrand in the RHS of (3.41) satisfies the differential equation
(3.42) thereby confirming that the choice of the deformed contour will be inconsequential for
our purposes.
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n SU(2) SU(3) SU(4) SU(5) SU(6) SU(7) SU(∞)

2 1 1 1 1 1 1 1

3 1 2 2 2 2 2 2

4 3 8 9 9 9 9 9

5 6 32 43 44 44 44 44

6 15 145 245 264 265 265 265

7 36 702 1557 1824 1853 1854 1854

8 91 3598 10829 14210 14791 14832 14833

Table 1: Dimension of the invariant subspace in the n-th tensor power of the adjoint rep-
resentation of SU(N) Lie groups. Notice that the dimensions given in the shaded part stay
constant along the rows.

4 Discussion: n-th tensor power of the adjoint representation of SU(N)

At this point it is natural to wonder if similar recursion relations can also also be established
for the dimension of the invariant subspace in the n-th tensor power of the adjoint represen-
tation of SU(N), for general N. A more conservative goal would be to establish an analogous
system of recursion relations for N = 4. This is work in progress.

Alternatively, the dimension of the invariant subspace in the n-th power of the SU(N)

adjoint representation is given by the number of distinct ways to distribute n matrices Ti,1≤
i ≤ n into different groups and take traces over their products with the condition Ti = 0 ,∀i,
which accounts for the fact that Ti is an arbitrary generator of SU(N). Additionally, one also
has to take into consideration that TrTi1 . . .Tir ,r > N is not an independent tensor and can be
written as a linear combination of TrTi1 . . .Tis ,∀s≤N. These relations, proliferate as n and N
become large thereby making the counting-process a highly computationally intensive task.
As a corollary, it follows that for n≤N, the invariant subspace in the n-th power of the adjoint
representation is independent of N and is known to be equal to the number of derangements
of a set of size n [5]. This is can also be confirmed through explicit computations for some
low values of n and N. The corresponding results are shown in table 1.
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