AN UNEXPECTED MEETING BETWEEN THE P_1^3 -SET AND THE CUBIC-TRIANGULAR NUMBERS

A. DEBBACHE AND S. BOUROUBI*

ABSTRACT. A set of m positive integers $\{x_1, \ldots, x_m\}$ is called a P_1^3 -set of size m if the product of any three elements in the set increased by one is a cube integer. A P_1^3 -set S is said to be extendible if there exists an integer $y \notin S$ such that $S \cup \{y\}$ still a P_1^3 -set. Now, let consider the Diophantine equation $u(u + 1)/2 = v^3$ whose integer solutions produce what we called cubic-triangular numbers. The purpose of this paper is to prove simultaneously that the P_1^3 -set $\{1, 2, 13\}$ is non-extendible and n = 1is the unique cubic-triangular number by showing that the two problems meet on the Diophantine equation $2x^3 - y^3 = 1$ that we solve using p-adic analysis.

1. INTRODUCTION

A set of *m* positif integers $\{x_1, \ldots, x_m\}$ is called a Diophatine *m*-tuple or a D(1)-*m*-tuple, if the product of any two elements in the set increased by one is a perfect square, i.e., $x_i x_j + 1 = u_{ij}^2$, where $u_{ij} \in \mathbb{N}^*$, for $1 \leq i < j \leq m$. Diophantus of Alexandria was the first to look for such sets. He found a set of four positive rational numbers with the above property $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\}$. However, Fermat was the first to give $\{1, 3, 8, 120\}$ as an example of a Diophantine quadruple. For a detailed history on Diophantine *m*-tuples and its results, we refer the reader to Dujella's webpage [3]. Throughout the following we consider in a similar way what we have called a P_1^3 -set.

2. Definitions

Definition 1. A P_1^3 -set of size m is a set $S = \{x_1, \ldots, x_m\}$ of distinct positive integers, such that $x_i x_j x_k + 1$ is a cube for $1 \le i < j < k \le m$.

Definition 2. A P_1^3 -set S is said to be extendible if there exists an integer $y \notin S$ such that $S \cup \{y\}$ is a P_1^3 -set.

²⁰¹⁰ Mathematics Subject Classification. 11D45, 11D09.

Key words and phrases. P_1^3 -set, cubic-triangular number, Diophantine equation.

^{*} Corresponding author.

Definition 3. A triangular number is a figurate number that can be represented in the form of an equilateral triangle of points, where the first row contains a single element and each subsequent row contains one more element than the previous one. Let T_n denotes the n^{th} triangular number, then T_n is equal to the sum of the *n* natural numbers from 1 to *n*, whose initial values are listed as the sequence A000217 in [1].

$$T_n = \frac{n(n+1)}{2} = \binom{n+1}{2},$$

where $\binom{n}{k}$ is a binomial coefficient.

Definition 4. A cubic-triangular number is a positive integer that is simultaneously cubic and triangular. Such a number must satisfy $T_n = m^3$ for some positive integers n and m, so

$$\frac{n(n+1)}{2} = m^3. (2.1)$$

3. Some Claims

Claim 1. The triple $\{a - 1, a + 1, a^4 + a^2 + 1\}$ is an infinite family of P_1^3 -set for any positive integers $a \ge 2$.

Proof. Thanks to the identity $x^3 = (x - 1)(x^2 + x + 1) + 1$, it is enough to substitute x by a^2 to get,

$$a^{6} - 1 = (a - 1)(a + 1)(a^{4} + a^{2} + 1).$$

Claim 2. The triple $\{a, b, a^2b^2 + 3ab + 3\}$ form an infinite family of P_1^3 -set for any positive integers a and b, such that $1 \le a < b$.

Proof. The result follows thanks to the identity :

$$(ab+1)^3 - 1 = ab(a^2b^2 + 3ab + 3).$$

Remark 1. The triple $\{1, 2, 13\}$ is a P_1^3 -set, it belongs to the family in Claim 2, for a = 1 and b = 2.

4. Main Results

Theorem 3. Any P_1^3 -set is finite.

Proof. Let $S = \{x_1, x_2, x_3, \dots, x_m\}$ be a P_1^3 -set. Suppose that $S \cup \{y\}$ still a P_1^3 -set, then by setting

$$\begin{cases} a = x_m x_{m-1}, \\ b = x_m x_{m-2}, \\ c = x_{m-1} x_{m-2}. \end{cases}$$

we get an elliptic curve

$$(ay+1)(by+1)(cy+1) = t^3,$$

which has only finitely many integral solutions [4].

In the following, we will restrict our attention to equation (4.1), for which we present a proof for it's uniqueness integer solution, by using *p*-adic analysis tools.

$$2x^3 - y^3 = 1. (4.1)$$

We first briefly remind Hensel's Lemma and Strassman's Theorem [2].

Lemma 1. (HENSEL) Let $P(X) \in \mathbb{Z}_p[X]$, a monic polynomial. Suppose that $x \in \mathbb{Z}_p$, satisfied:

(1) $P(x) \equiv 0 \pmod{p}$, (2) $\frac{d}{dx}(P(x)) \not\equiv 0 \pmod{p}$.

So, there is a unique $y \in \mathbb{Z}_p$ such as P(y) = 0 and $y \equiv x \pmod{p}$.

Theorem 4. (STRASSMAN) Let \mathbb{K} be a complete field for the non-archimedean norm $\|.\|$, \mathcal{A} its ring of integers, and let

$$g\left(x\right) = \sum_{n=0}^{+\infty} g_n x^n.$$

Suppose that $g_n \to 0$ (so g(x) converges in \mathcal{A}), but with g_n not all zeros, there is at most a finite number of elements b of \mathcal{A} such that g(b) = 0. More precisely, there is at most M elements b of \mathcal{A} , such that

$$||g_N|| = \max_n ||g_n||, ||g_n|| < ||g_N||, \forall n > M.$$

Lemma 2. Let $b \in \mathbb{Q}_p$, $|b|_2 \leq 2^{-2}$ and $|b|_p \leq p^{-1}$ $(p \neq 2)$. So, there is a series $\Phi_b(X) = \sum_{n\geq 0} \gamma_n X^n$, with $\gamma_n \in \mathbb{Q}_p$, $\gamma_n \to 0$, such that $\Phi_b(r) = (1+b)^r$, $\forall r \in \mathbb{Z}$.

By application of these results, we may show

Theorem 5. The unique positive integer solution of Equation (4.1) is (1,1).

Proof. Let (a, b) be a solution of Equation (4.1). As $N(2^{\frac{1}{3}}a - b) = 2a^3 - b^3$, so $2^{\frac{1}{3}}a - b$ is an algebraic unit, especially $\theta = \theta_1 = 2^{\frac{1}{3}} - 1$. For convenience, on all the rest of the paper we will work with the field $\mathbb{K} = \mathbb{Q}(\theta)$. Note \mathcal{A} , the integer ring of \mathbb{K} and \mathcal{U} its group of units. We have

$$2 = (\theta + 1)^3$$

Hence

$$\theta^3 + 3\theta^2 + 3\theta - 1 = 0.$$

Let $f(X) = X^3 + 3X^2 + 3X - 1$ be the irreducible polynomial of θ . According to Dirichlet's unit theorem $\mathcal{U} = G \times \mathbb{Z}^{r+s-1}$, where G is the root group of the unit of \mathcal{A} , r is the number of real zeros of f, and 2s is the number of complex zeros of f. Here, r = s = 1, so $\mathcal{U} = G \times \mathbb{Z}$. Let α be a root of the unit of \mathcal{A} , then the dimension of the field $\mathbb{Q}(\alpha)$ divides the dimension of the field \mathbb{K} , so it is a divisor of 3. Since $\mathbb{Q}(\alpha) \neq \mathbb{K}$, we have $\mathbb{Q}(\alpha) = \mathbb{Q}$ and $A = \mathbb{Z}$, where A is the ring of the units of $\mathbb{Q}(\alpha)$. However, the only invertible elements of \mathbb{Z} are +1 and -1, hence $\mathcal{U} = \{\pm u^n / n \in \mathbb{Z}\}$. Let u > 1 be the fundamental unit, $\rho e^{i\theta}$ and $\rho e^{-i\theta}$ its conjugates. We have

$$N(u) = u \times \rho e^{i\theta} \times \rho e^{-i\theta} = 1.$$

It follows

$$u = \rho^{-2}$$

In addition

$$disc_{\mathbb{Z}}(u) = (u - \rho e^{i\theta})^2 (u - \rho e^{-i\theta})^2 (\rho e^{i\theta} - \rho e^{-i\theta})^2 = -4(\rho^3 + \rho^{-3} - 2\cos\theta)^2 sin^2\theta.$$

For $c = \cos\theta$, let us set $g(x) = (1 - c^2)(x - 2c)^2 - x^2$. Then we get
 $g(x) \le 4(1 - c^2),$

or even

$$(1 - c^2)(x - 2c)^2 \le x^2 + 4(1 - c^2).$$

Replacing x by $\rho^3 + \rho^{-3}$, we obtain

$$(1-c^2)(\rho^3+\rho^{-3}-2c)^2 < u^3+u^{-3}+6.$$

This involves that

$$|disc_{\mathbb{Z}}(u)| < 4(u^3 + u^{-3} + 6).$$

Therefore

$$u^3 > \frac{d}{4} - 6 - u^{-3} > \frac{d}{4} - 7,$$

where $d = |disc_{\mathbb{Z}}(u)|$.

The discriminant of f equals -108, then $u^3 > 20$. Hence

Since $\theta^{-1} \simeq 3,8473$, and $u^2 > 7,3680$, we get $u = \theta^{-1}$. We therefore have

$$\mathcal{U} = \{ \pm \theta^n / n \in \mathbb{Z} \}.$$

Moreover, $2^{\frac{1}{3}}a - b = (a - b) + (2^{\frac{1}{3}} - 1)a = (a - b) + a\theta$. Since $N(2^{\frac{1}{3}}a - b) = 1$, we have $(a - b) + a\theta \in \mathcal{U}$, i.e., there exists $n \in \mathbb{Z}$ such that

$$(a-b) + a\theta = \pm \theta^n. \tag{4.2}$$

If we take for instance $(a - b) + a\theta = \theta^n$, then we get

$$(a-b) + a\theta_i = \theta_i^n$$
, pour $i = 1, 2, 3,$

where $\theta_1 = \theta$, θ_2 and $\theta_3 = \overline{\theta_2}$ are the three zeros of f. We have obviously

$$\frac{1}{f'(\theta_1)} + \frac{1}{f'(\theta_2)} + \frac{1}{f'(\theta_3)} = \frac{1}{(\theta_1 - \theta_2)(\theta_1 - \theta_3)} + \frac{1}{(\theta_2 - \theta_1)(\theta_2 - \theta_3)} + \frac{1}{(\theta_3 - \theta_1)(\theta_3 - \theta_2)} = 0.$$
(4.3)

and

$$\frac{\theta_1}{f'(\theta_1)} + \frac{\theta_2}{f'(\theta_2)} + \frac{\theta_3}{f'(\theta_3)} = \frac{\theta_1}{(\theta_1 - \theta_2)(\theta_1 - \theta_3)} + \frac{\theta_2}{(\theta_2 - \theta_1)(\theta_2 - \theta_3)} + \frac{\theta_3}{(\theta_3 - \theta_1)(\theta_3 - \theta_2)} = 0.$$
(4.4)

If we multiply (4.3) by a - b and (4.4) by a, we find

$$\frac{(a-b)+a\theta_1}{f'(\theta_1)} + \frac{(a-b)+a\theta_2}{f'(\theta_2)} + \frac{(a-b)+a\theta_3}{f'(\theta_3)} = \frac{\theta_1^n}{f'(\theta_1)} + \frac{\theta_2^n}{f'(\theta_2)} + \frac{\theta_3^n}{f'(\theta_3)} = 0.$$

So, solving the equation $2x^3 - y^3 = 1$, is like finding the zeros of the sequence $(c_n)_{n \in \mathbb{Z}}$ defined by:

$$c_n = \frac{\theta_1^n}{(\theta_1 - \theta_2)(\theta_1 - \theta_3)} + \frac{\theta_2^n}{(\theta_2 - \theta_1)(\theta_2 - \theta_3)} + \frac{\theta_3^n}{(\theta_3 - \theta_1)(\theta_3 - \theta_2)}$$

Now, let us work locally in \mathbb{Q}_p . For this purpose, we are looking for an adequate prime number p that allows us to apply Hensel's Lemma in ordre to find two zeros of $f \alpha$ and $\beta \in \mathbb{Q}_p$, the third one is then given by $\alpha + \beta + \gamma = -3$. Since $f(3) = 2 \times 31 \equiv 0 \pmod{31}$, $f(6) = 11 \times 31 \equiv 0 \pmod{31}$, f'(3) = $48 \neq 0 \pmod{31}$ and $f'(6) = 147 \neq 0 \pmod{31}$, then according to Hensel's Lemma, there exist a unique α and β in \mathbb{Z}_{31} , where $\alpha = 34$ and $\beta = 37$, hence $\gamma = -74$. According to Fermat's little theorem, we have $\alpha^{30} \equiv 1 \pmod{31}$. Thus $\alpha^{30} = 1 + a$. Since

$$\alpha^{30} = 34^{30} \equiv 838 \pmod{31^2}$$

Then

$$a \equiv 837 \pmod{31^2}$$

Similarly,

$$\beta^{30} \equiv 1 \pmod{31}.$$

Thus

$$\beta^{30} = 1 + b$$

Since

$$\beta^{30} = 37^{30} \equiv 869 \ (mod \ 31^2).$$

Then

$$b \equiv 868 \pmod{31^2}$$
.

Likewise, $\gamma^{30} \equiv 1 \pmod{31}$. Thus

$$\gamma^{30} = 1 + c.$$

Since

$$\gamma^{30}=74^{30}\equiv 94\ (mod\ 31^2).$$

Then

$$c \equiv 93 \pmod{31^2}.$$

In the rest of the proof we will need the following table:

r	$\alpha^r \pmod{31^2}$	$\beta^r \pmod{31^2}$	$\gamma^r \pmod{31^2}$
1	34	37	-74
30	838	869	94

In addition, we have

$$c_{r+30s} = \frac{\alpha^r}{(\alpha-\beta)(\alpha-\beta)} (\alpha^{30})^s + \frac{\beta^r}{(\beta-\alpha)(\beta-\gamma)} (\beta^{30})^s + \frac{\gamma^r}{(\gamma-\beta)(\gamma-\alpha)} (\gamma^{30})^s$$
$$= \frac{\alpha^r}{(\alpha-\beta)(\alpha-\beta)} (1+a)^s + \frac{\beta^r}{(\beta-\alpha)(\beta-\gamma)} (1+b)^s + \frac{\gamma^r}{(\gamma-\beta)(\gamma-\alpha)} (1+c)^s$$
$$\equiv c_r \pmod{31}, \text{ for } 1 \le r \le 30.$$

The calculations show that $c_r \neq 0$ for $r \neq 1, 30$. Since, $c_{r+30s} \equiv c_r \pmod{31}$, we get

$$c_{r+30s} \neq 0, \forall s \in \mathbb{N}, \text{ for } r \neq 1, 30.$$

Let's say for r = 1, 30 and $s \in \mathbb{Q}_{31}$,

$$u_r(s) = \frac{\alpha^r}{(\alpha - \beta)(\alpha - \beta)} (1 + a)^s + \frac{\beta^r}{(\beta - \alpha)(\beta - \gamma)} (1 + b)^s + \frac{\gamma^r}{(\gamma - \beta)(\gamma - \alpha)} (1 + c)^s.$$

To demonstrate the result, it is enough to work only with u_1 and u_{30} . Since $|a|_{31} \leq 31^{-1}, |b|_{31} \leq 31^{-1}$ and $|c|_{31} \leq 31^{-1}$, we deduce from Lemma 2 that u_r is a function that we can develop as a series:

$$\lambda_{0,r} + \lambda_{1,r}s + \lambda_{2,r}s^2 + \cdots$$

6

We have

$$\lambda_{0,r} = 0$$
, for $r = 1, 30$, $\lambda_{j,r} \not\equiv 0 \pmod{31^2}$, for $j \ge 2$, r unspecified,

and

$$\lambda_{1,r} = \frac{\alpha^r}{(\alpha - \beta)(\alpha - \gamma)}a + \frac{\beta^r}{(\beta - \alpha)(\beta - \gamma)}b + \frac{\gamma^r}{(\gamma - \beta)(\gamma - \alpha)}c \neq 0 \pmod{31^2},$$

for $r = 1, 30$.

According to Strassman's theorem, the functions $u_r(s)$, r = 1, 30, have at most one root. As they have at least one root, they have therefore exactly one root. From Equation (4.2), we have $\theta^0 = 1$ implies a = 0 and b = -1, which is impossible, and $\theta^1 = \theta$ implies a = b = 1.

This completes the proof.

Corollary 1. The P_1^3 -set $\{1, 2, 13\}$ is nonextendible.

Proof. Suppose there exists an integer d > 13 such that the quadruple $\{1, 2, 13, d\}$ is a P_1^3 -set. Then the following system of equations has an integral solution $(u, v, w) \in \mathbb{N}^3$:

$$(S) \begin{cases} 2d+1 = u^3, \\ 13d+1 = v^3, \\ 26d+1 = w^3. \end{cases}$$

The system (S) yields

$$2v^3 - w^3 = 1. (4.5)$$

From Theorem 5, the unique positive integer solution of Equation (4.5) is (v, w) = (1, 1), which is impossible in (S).

This completes the proof.

Corollary 2. The unicity of positive integer solution of Equation (4.1) implies the unicity of a cubic-triangular number.

Proof. Let n be a cubic-triangular number. Since n and n + 1 are coprime then according to Equation (2.1), there exists x and y two positive integers such that m = xy, $n = y^3$ and $n + 1 = 2x^3$, which implies Equation (4.1), that has from Theorem 5, (x, y) = (1, 1) as unique positive integer solution. Thus, n = 1 is the unique cubic-triangular number.

Remark 2. As we can see, the resolution of Equation (4.1) meets the two problems mentioned above that seem to be a priori different.

A. DEBBACHE AND S. BOUROUBI*

5. Conclusion

The interest of this work is twofold. Firstly, we showed an unexpected link between two problems, which were a priori distinct. Secondly, we presented a proof for the uniqueness of the positive integer solution of the Diophantine equation $2x^3 - y^3 = 1$, using *p*-adic analysis tools.

References

- [1] "The on-line encyclopedia of integer sequences (oeis)." [Online]. Available: https://oeis.org/
- [2] J. W. S. Cassels, *Lectures on elliptic curves*, 1st ed., ser. London Mathematical Society student texts 24. Cambridge University Press, 1991.
- [3] A. Dujella. [Online]. Available: https://web.math.pmf.unizg.hr/~duje/dtuples.html
- [4] R. T. T. N. Shorey, *Exponential diophantine equations*, ser. Cambridge Tracts in Mathematics. CUP, 1986.

USTHB UNIVERSITY, FACULTY OF MATHEMATICS, LATN LABORATORY, P.O. BOX 32, EL ALIA 16111, BAB-EZZOUAR, ALGIERS, ALGERIA, *E-mail address*: a_debbache2003@yahoo.fr

USTHB UNIVERSITY, FACULTY OF MATHEMATICS, L'IFORCE LABORATORY, P.O. BOX 32, EL ALIA 16111, BAB-EZZOUAR, ALGIERS, ALGERIA,

Current address: Other Institution, Some Other Department, P. O. Box 0002, 12347 City, Other Country

E-mail address: sbouroubi@usthb.dz or bouroubis@gmail.com