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AN UNEXPECTED MEETING BETWEEN THE P?-SET AND
THE CUBIC-TRIANGULAR NUMBERS

A. DEBBACHE AND S. BOUROUBI*

ABSTRACT. A set of m positive integers {x1,...,Tn} is called a PP-set
of size m if the product of any three elements in the set increased by one
is a cube integer. A Pj-set S is said to be extendible if there exists an
integer y ¢ S such that S U {y} still a Pi-set. Now, let consider the
Diophantine equation u(u + 1)/2 = v* whose integer solutions produce
what we called cubic-triangular numbers. The purpose of this paper is to
prove simultaneously that the P}-set {1,2,13} is non-extendible and n = 1
is the unique cubic-triangular number by showing that the two problems
meet on the Diophantine equation 2z — y® = 1 that we solve using p-adic
analysis.

1. INTRODUCTION

A set of m positif integers {z1,...,2,} is called a Diophatine m-tuple or a
D(1)-m-tuple, if the product of any two elements in the set increased by one
is a perfect square, i.e., x;2; +1 = u?j, where u;; € N*, for 1 <i < j < m.
Diophantus of Alexandria was the first to look for such sets. He found a set
of four positive rational numbers with the above property {%6, %, 117, 11%5}.
However, Fermat was the first to give {1,3,8,120} as an example of a Dio-
phantine quadruple. For a detailed history on Diophantine m-tuples and its
results, we refer the reader to Dujella’s webpage [3]. Throughout the following

we consider in a similar way what we have called a P}-set.

2. DEFINITIONS

Definition 1. A P}-set of size m is a set S = {1, ...,2,,} of distinct positive
integers, such that x;x;x) +1is a cube for 1 <7 < j <k < m.

Definition 2. A Pp-set S is said to be extendible if there exists an integer
y & S such that S U {y} is a P-set.
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Definition 3. A triangular number is a figurate number that can be rep-
resented in the form of an equilateral triangle of points, where the first row
contains a single element and each subsequent row contains one more element
than the previous one. Let T}, denotes the n'” triangular number, then T, is
equal to the sum of the n natural numbers from 1 to n, whose initial values
are listed as the sequence A000217 in [1].

Tn:n(n—l—l) _(n+1 ’
2 2

n
where ( k:> is a binomial coefficient.

Definition 4. A cubic-triangular number is a positive integer that is simulta-
neously cubic and triangular. Such a number must satisfy T}, = m3 for some
positive integers n and m, so

1
nn+1) m3. (2.1)
2
3. SoME CLAIMS

Claim 1. The triple {a —1l,a+1,a* +a® + 1} is an infinite family of Py-set
for any positive integers a > 2.

Proof. Thanks to the identity 2® = (z — 1)(z? + 2 + 1) + 1, it is enough to
substitute = by a? to get,

a®—1=(a—1)(a+1)(a* +a®+1).
(]

Claim 2. The triple {a,b,a’b? + 3ab + 3} form an infinite family of P-set
for any positive integers a and b, such that 1 < a < b.

Proof. The result follows thanks to the identity :
(ab+ 1) — 1 = ab(a®b® + 3ab + 3).
O

Remark 1. The triple {1,2,13} is a Pp-set, it belongs to the family in Claim 2,
fora=1and b =2.

4. MAIN RESULTS

Theorem 3. Any P}-set is finite.
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Proof. Let S = {x1,72,23,...,7m} be a Pl-set. Suppose that S U {y} still a
Pl?’-set, then by setting

a4 =TmIm—1,
b= 2y,Tm_2,
C=Tm—-1Tm-2,
we get an elliptic curve
(ay + 1) (by + 1) (cy + 1) = 3,
which has only finitely many integral solutions [4]. O

In the following, we will restrict our attention to equation (4.1), for which
we present a proof for it’s uniqueness integer solution, by using p-adic analysis
tools.

223 —y® = 1. (4.1)

We first briefly remind Hensel’s Lemma and Strassman’s Theorem [2].

Lemma 1. (HENSEL) Let P (X) € Zy, [ X], a monic polynomial. Suppose that
x € Ly, satisfied:

(1) P(x) =0 (mod p),
d
(2) - (P(s)) £ 0 (mod p).
So, there is a unique y € Zy, such as P (y) =0 and y =z (mod p).

Theorem 4. (STRASSMAN) Let K be a complete field for the non-archimedean
norm ||.||, A its ring of integers, and let

+oo
g(x)=> g™
n=0

Suppose that g, — 0 (so g(x) converges in A), but with g, not all zeros,
there is at most a finite number of elements b of A such that g (b) = 0. More
precisely, there is at most M elements b of A, such that

lgn |l = mazllgnll, lgnll < llgnll,¥n > M.

Lemma 2. Let b € Qp,|bl, < 272 and o], < p~t (p #2). So, there is a
series @y (X) = Y v X", with v, € Qp, o, — 0, such that @, (r) = (14 b)",

n>0
Vr e Z.
By application of these results, we may show

Theorem 5. The unique positive integer solution of Equation (4.1) is (1,1).
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Proof. Let (a,b) be a solution of Equation (4.1). As N(Z%a —b) = 2a% — b3,
so 25a — b is an algebraic unit, especially 8 = 6; = 25 — 1. For convenience,
on all the rest of the paper we will work with the field K = Q(f). Note A, the
integer ring of K and U its group of units. We have

2=(0+1)>
Hence
0% +36>+30—1=0.
Let f(X) = X3+3X2+3X —1 be the irreducible polynomial of . According
to Dirichlet’s unit theorem U = G x Z"+*~1 where G is the root group of the
unit of A, r is the number of real zeros of f, and 2s is the number of complex
zeros of f. Here, r = s =1, soU = G x Z. Let a be a root of the unit of A,
then the dimension of the field Q(«) divides the dimension of the field K, so
it is a divisor of 3. Since Q(«a) # K, we have Q(a) = Q and A = Z, where
A is the ring of the units of Q(«). However, the only invertible elements of Z
are +1 and —1, hence U = {£u"/n € Z}. Let u > 1 be the fundamental unit,
pe'? and pe=" its conjugates. We have
N(u) =ux pe? x pe™ =1.

It follows

u=p
In addition
discz(u) = (u—pe®)?(u—pe=)2(pe®® — pe=9)% = —4(p® + p~> —2c0s0)?sin’0.
For ¢ = cosf, let us set g(z) = (1 — ¢?)(z — 2¢)? — 2. Then we get

g(z) <4(1—¢),
or even
(1—cH(x —2¢)? <2? +4(1 - &2).
Replacing z by p® + p~3, we obtain
1=AP*+p 2 =20 <ud +u3 +6.

This involves that

|discz(u)] < 4(u® +u=3 + 6).

Therefore

d d
3 6 — a3 Z
u>4 6—u >4 7,
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where d = |discg(u)].
The discriminant of f equals -108, then u? > 20. Hence
u > 2,7144.
Since #~1 ~ 3,8473, and u? > 7,3680, we get u = 0. We therefore have
U={£0"/neZ}.
Moreover, 25a — b = (a—b)+ (2% —1)a = (a—b)+ab. Since N(2%a -b) =1,
we have (a — b) + afl € U, i.e., there exists n € Z such that
(a—0b)+ab =+0". (4.2)
If we take for instance (a — b) + af = 6", then we get
(a —b) + ab; =67, pour i =1,2,3,

where 0; = 0, 0, and 05 = 6 are the three zeros of f. We have obviously

1 1 1 1 1 1
700 70 F8s) (61— 02)(01—05) (62— 01)(0z —0s) (63— =)
and '

o 0 6 _ 0, . b, N 6,

f(01)  f(62)  f(03) (61 —062)(61 —6s) (62— 61)(02 —03) (65— 91()4(113) — 6s)

If we multiply (4.3) by a — b and (4.4) by a, we find ‘

(a—b)+a91 (a—0b)+aby (a—0b)+abs _ o7 n 0y n 9:? —0
f(61) f(62) f0s)  f6)  fl(b2) (3

So, solving the equation 223 — y? = 1, is like finding the zeros of the sequence
(¢cn)nez defined by:
o7 . 0y n 03

(01 —02)(6h —03) (02— 01)(62—03) (03— 01)(03 — 0-)

Now, let us work locally in Q,,. For this purpose, we are looking for an adequate
prime number p that allows us to apply Hensel’s Lemma in ordre to find two
zeros of f o and B € Q,, the third one is then given by v + 3 4+ v = —3.
Since f(3) =2 x 31 = 0 (mod 31), f(6) = 11 x 31 = 0 (mod 31), f'(3) =
48 # 0 (mod 31) and f'(6) = 147 # 0 (mod 31), then according to Hensel’s
Lemma, there exist a unique a and § in Zg1, where o = 34 and § = 37, hence

v = —T4. According to Fermat’s little theorem, we have o®® = 1 (mod 31).
Thus o =1 + a. Since

a0 = 3430 = 838 (mod 317%).

Cp =

Then
a =837 (mod 31%).

=0,

=0.



6 A. DEBBACHE AND S. BOUROUBI*

Similarly,
B30 =1 (mod 31).
Thus
830 — 1 4+,
Since
B30 = 3730 = 869 (mod 31%).
Then

b = 868 (mod 31%).

Likewise, 7v° =1 (mod 31). Thus
730 =1+4c
Since
730 = 7430 = 94 (mod 312).

Then

¢ =93 (mod 317).
In the rest of the proof we will need the following table:

r | " (mod 31%) | B” (mod 31%) | 4" (mod 31?)
1 34 37 —74
30 838 869 94

In addition, we have

c _ o o30)s g 30s v 30\s
R vy oy R 7 g ey S AR gy evpmey A )
_ 70/‘ aS ’BT— s —’YT CS
gy A B 7 e g Sl ey ey A CR

= ¢ (mod 31), for 1 <r < 30.
The calculations show that ¢, # 0 for r # 1,30. Since, ¢, 4305 = ¢ (mod 31),
we get
cri30s # 0,Vs € N, for r # 1, 30.
Let’s say for r = 1,30 and s € Qsq,
o s p g
Up(s) = —————(1+a)’+——— —_—
O = e me-n" T B -0 -a
To demonstrate the result, it is enough to work only with u; and wugg. Since

laly; <3171, |bl5; <3171 and |e|3; < 3171, we deduce from Lemma 2 that u,
is a function that we can develop as a series:

T

(14b)5+ (14c)®.

)\O,r + )\1,7’3 + )\2,7’32 + -
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We have
Aoy =0, forr=1,30, A;,Z0 (mod 312) , for 7 > 2, r unspecified,

and

B a?” 57” ,77’ 9
S T [y R R F) M SRR R
for r = 1, 30.

According to Strassman’s theorem, the functions u,(s), r = 1,30, have at
most one root. As they have at least one root, they have therefore exactly one
root. From Equation (4.2), we have #° = 1 implies a = 0 and b = —1, which
is impossible, and 6 = § implies a = b = 1.

This completes the proof. O
Corollary 1. The P}-set {1,2,13} is nonestendible.

Proof. Suppose there exists an integer d > 13 such that the quadruple {1, 2,13, d}
is a Pp-set. Then the following system of equations has an integral solution
(u,v,w) € N3:

2d + 1 = u?,
(S) 4 13d +1 =3,
26d + 1 = w3.
The system (.5) yields
20% —w® = 1. (4.5)

From Theorem 5, the unique positive integer solution of Equation (4.5) is
(v,w) = (1, 1), which is impossible in (S).

This completes the proof. O

Corollary 2. The unicity of positive integer solution of Equation (4.1) implies
the unicity of a cubic-triangular number.

Proof. Let n be a cubic-triangular number. Since n and n + 1 are coprime
then according to Equation (2.1), there exists x and y two positive integers
such that m = zy, n = y> and n+1 = 223, which implies Equation (4.1), that
has from Theorem 5, (z,y) = (1,1) as unique positive integer solution. Thus,
n = 1 is the unique cubic-triangular number. O

Remark 2. As we can see, the resolution of Equation (4.1) meets the two
problems mentioned above that seem to be a priori different.



8 A. DEBBACHE AND S. BOUROUBI*

5. CONCLUSION

The interest of this work is twofold. Firstly, we showed an unexpected link
between two problems, which were a priori distinct. Secondly, we presented
a proof for the uniqueness of the positive integer solution of the Diophantine
equation 223 — y? = 1, using p-adic analysis tools.
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