AN UNEXPECTED MEETING BETWEEN THE P_{1}^{3}-SET AND THE CUBIC-TRIANGULAR NUMBERS

A. DEBBACHE AND S. BOUROUBI*

Abstract

A set of m positive integers $\left\{x_{1}, \ldots, x_{m}\right\}$ is called a P_{1}^{3}-set of size m if the product of any three elements in the set increased by one is a cube integer. A P_{1}^{3}-set S is said to be extendible if there exists an integer $y \notin S$ such that $S \cup\{y\}$ still a P_{1}^{3}-set. Now, let consider the Diophantine equation $u(u+1) / 2=v^{3}$ whose integer solutions produce what we called cubic-triangular numbers. The purpose of this paper is to prove simultaneously that the P_{1}^{3}-set $\{1,2,13\}$ is non-extendible and $n=1$ is the unique cubic-triangular number by showing that the two problems meet on the Diophantine equation $2 x^{3}-y^{3}=1$ that we solve using p-adic analysis.

1. Introduction

A set of m positif integers $\left\{x_{1}, \ldots, x_{m}\right\}$ is called a Diophatine m-tuple or a $D(1)$-m-tuple, if the product of any two elements in the set increased by one is a perfect square, i.e., $x_{i} x_{j}+1=u_{i j}^{2}$, where $u_{i j} \in \mathbb{N}^{*}$, for $1 \leq i<j \leq m$. Diophantus of Alexandria was the first to look for such sets. He found a set of four positive rational numbers with the above property $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}$. However, Fermat was the first to give $\{1,3,8,120\}$ as an example of a Diophantine quadruple. For a detailed history on Diophantine m-tuples and its results, we refer the reader to Dujella's webpage [3]. Throughout the following we consider in a similar way what we have called a P_{1}^{3}-set.

2. Definitions

Definition 1. A P_{1}^{3}-set of size m is a set $S=\left\{x_{1}, \ldots, x_{m}\right\}$ of distinct positive integers, such that $x_{i} x_{j} x_{k}+1$ is a cube for $1 \leq i<j<k \leq m$.

Definition 2. A P_{1}^{3}-set S is said to be extendible if there exists an integer $y \notin S$ such that $S \cup\{y\}$ is a P_{1}^{3}-set.

[^0]Definition 3. A triangular number is a figurate number that can be represented in the form of an equilateral triangle of points, where the first row contains a single element and each subsequent row contains one more element than the previous one. Let T_{n} denotes the $n^{\text {th }}$ triangular number, then T_{n} is equal to the sum of the n natural numbers from 1 to n, whose initial values are listed as the sequence A000217 in [1].

$$
T_{n}=\frac{n(n+1)}{2}=\binom{n+1}{2},
$$

where $\binom{n}{k}$ is a binomial coefficient.
Definition 4. A cubic-triangular number is a positive integer that is simultaneously cubic and triangular. Such a number must satisfy $T_{n}=m^{3}$ for some positive integers n and m, so

$$
\begin{equation*}
\frac{n(n+1)}{2}=m^{3} . \tag{2.1}
\end{equation*}
$$

3. Some Claims

Claim 1. The triple $\left\{a-1, a+1, a^{4}+a^{2}+1\right\}$ is an infinite family of P_{1}^{3}-set for any positive integers $a \geq 2$.

Proof. Thanks to the identity $x^{3}=(x-1)\left(x^{2}+x+1\right)+1$, it is enough to substitute x by a^{2} to get,

$$
a^{6}-1=(a-1)(a+1)\left(a^{4}+a^{2}+1\right) .
$$

Claim 2. The triple $\left\{a, b, a^{2} b^{2}+3 a b+3\right\}$ form an infinite family of P_{1}^{3}-set for any positive integers a and b, such that $1 \leq a<b$.

Proof. The result follows thanks to the identity :

$$
(a b+1)^{3}-1=a b\left(a^{2} b^{2}+3 a b+3\right) .
$$

Remark 1. The triple $\{1,2,13\}$ is a P_{1}^{3}-set, it belongs to the family in Claim 2, for $a=1$ and $b=2$.

4. Main Results

Theorem 3. Any P_{1}^{3}-set is finite.

Proof. Let $S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\}$ be a P_{1}^{3}-set. Suppose that $S \cup\{y\}$ still a P_{1}^{3}-set, then by setting

$$
\left\{\begin{array}{l}
a=x_{m} x_{m-1} \\
b=x_{m} x_{m-2} \\
c=x_{m-1} x_{m-2}
\end{array}\right.
$$

we get an elliptic curve

$$
(a y+1)(b y+1)(c y+1)=t^{3}
$$

which has only finitely many integral solutions [4].
In the following, we will restrict our attention to equation (4.1), for which we present a proof for it's uniqueness integer solution, by using p-adic analysis tools.

$$
\begin{equation*}
2 x^{3}-y^{3}=1 \tag{4.1}
\end{equation*}
$$

We first briefly remind Hensel's Lemma and Strassman's Theorem [2].
Lemma 1. (HENSEL) Let $P(X) \in \mathbb{Z}_{p}[X]$, a monic polynomial. Suppose that $x \in \mathbb{Z}_{p}$, satisfied:
(1) $P(x) \equiv 0(\bmod p)$,
(2) $\frac{d}{d x}(P(x)) \not \equiv 0(\bmod p)$.

So, there is a unique $y \in \mathbb{Z}_{p}$ such as $P(y)=0$ and $y \equiv x(\bmod p)$.
Theorem 4. (Strassman) Let \mathbb{K} be a complete field for the non-archimedean norm $\|\|,. \mathcal{A}$ its ring of integers, and let

$$
g(x)=\sum_{n=0}^{+\infty} g_{n} x^{n}
$$

Suppose that $g_{n} \rightarrow 0($ so $g(x)$ converges in $\mathcal{A})$, but with g_{n} not all zeros, there is at most a finite number of elements b of \mathcal{A} such that $g(b)=0$. More precisely, there is at most M elements b of \mathcal{A}, such that

$$
\left\|g_{N}\right\|=\max _{n}\left\|g_{n}\right\|, \quad\left\|g_{n}\right\|<\left\|g_{N}\right\|, \forall n>M
$$

Lemma 2. Let $b \in \mathbb{Q}_{p},|b|_{2} \leq 2^{-2}$ and $|b|_{p} \leq p^{-1}(p \neq 2)$. So, there is a series $\Phi_{b}(X)=\sum_{n \geq 0} \gamma_{n} X^{n}$, with $\gamma_{n} \in \mathbb{Q}_{p}, \gamma_{n} \rightarrow 0$, such that $\Phi_{b}(r)=(1+b)^{r}$, $\forall r \in \mathbb{Z}$.

By application of these results, we may show
Theorem 5. The unique positive integer solution of Equation (4.1) is (1,1).

Proof. Let (a, b) be a solution of Equation (4.1). As $N\left(2^{\frac{1}{3}} a-b\right)=2 a^{3}-b^{3}$, so $2^{\frac{1}{3}} a-b$ is an algebraic unit, especially $\theta=\theta_{1}=2^{\frac{1}{3}}-1$. For convenience, on all the rest of the paper we will work with the field $\mathbb{K}=\mathbb{Q}(\theta)$. Note \mathcal{A}, the integer ring of \mathbb{K} and \mathcal{U} its group of units. We have

$$
2=(\theta+1)^{3} .
$$

Hence

$$
\theta^{3}+3 \theta^{2}+3 \theta-1=0 .
$$

Let $f(X)=X^{3}+3 X^{2}+3 X-1$ be the irreducible polynomial of θ. According to Dirichlet's unit theorem $\mathcal{U}=G \times \mathbb{Z}^{r+s-1}$, where G is the root group of the unit of \mathcal{A}, r is the number of real zeros of f, and $2 s$ is the number of complex zeros of f. Here, $r=s=1$, so $\mathcal{U}=G \times \mathbb{Z}$. Let α be a root of the unit of \mathcal{A}, then the dimension of the field $\mathbb{Q}(\alpha)$ divides the dimension of the field \mathbb{K}, so it is a divisor of 3 . Since $\mathbb{Q}(\alpha) \neq \mathbb{K}$, we have $\mathbb{Q}(\alpha)=\mathbb{Q}$ and $A=\mathbb{Z}$, where A is the ring of the units of $\mathbb{Q}(\alpha)$. However, the only invertible elements of \mathbb{Z} are +1 and -1 , hence $\mathcal{U}=\left\{ \pm u^{n} / n \in \mathbb{Z}\right\}$. Let $u>1$ be the fundamental unit, $\rho e^{i \theta}$ and $\rho e^{-i \theta}$ its conjugates. We have

$$
N(u)=u \times \rho e^{i \theta} \times \rho e^{-i \theta}=1
$$

It follows

$$
u=\rho^{-2} .
$$

In addition

$$
\operatorname{disc}_{\mathbb{Z}}(u)=\left(u-\rho e^{i \theta}\right)^{2}\left(u-\rho e^{-i \theta}\right)^{2}\left(\rho e^{i \theta}-\rho e^{-i \theta}\right)^{2}=-4\left(\rho^{3}+\rho^{-3}-2 \cos \theta\right)^{2} \sin ^{2} \theta .
$$

For $c=\cos \theta$, let us set $g(x)=\left(1-c^{2}\right)(x-2 c)^{2}-x^{2}$. Then we get

$$
g(x) \leq 4\left(1-c^{2}\right),
$$

or even

$$
\left(1-c^{2}\right)(x-2 c)^{2} \leq x^{2}+4\left(1-c^{2}\right)
$$

Replacing x by $\rho^{3}+\rho^{-3}$, we obtain

$$
\left(1-c^{2}\right)\left(\rho^{3}+\rho^{-3}-2 c\right)^{2}<u^{3}+u^{-3}+6
$$

This involves that

$$
\left|d i s c_{\mathbb{Z}}(u)\right|<4\left(u^{3}+u^{-3}+6\right) .
$$

Therefore

$$
u^{3}>\frac{d}{4}-6-u^{-3}>\frac{d}{4}-7,
$$

where $d=\left|\operatorname{disc}_{\mathbb{Z}}(u)\right|$.
The discriminant of f equals -108 , then $u^{3}>20$. Hence

$$
u>2,7144
$$

Since $\theta^{-1} \simeq 3,8473$, and $u^{2}>7,3680$, we get $u=\theta^{-1}$. We therefore have

$$
\mathcal{U}=\left\{ \pm \theta^{n} / n \in \mathbb{Z}\right\}
$$

Moreover, $2^{\frac{1}{3}} a-b=(a-b)+\left(2^{\frac{1}{3}}-1\right) a=(a-b)+a \theta$. Since $N\left(2^{\frac{1}{3}} a-b\right)=1$, we have $(a-b)+a \theta \in \mathcal{U}$, i.e., there exists $n \in \mathbb{Z}$ such that

$$
\begin{equation*}
(a-b)+a \theta= \pm \theta^{n} \tag{4.2}
\end{equation*}
$$

If we take for instance $(a-b)+a \theta=\theta^{n}$, then we get

$$
(a-b)+a \theta_{i}=\theta_{i}^{n}, \text { pour } i=1,2,3
$$

where $\theta_{1}=\theta, \theta_{2}$ and $\theta_{3}=\overline{\theta_{2}}$ are the three zeros of f. We have obviously
$\frac{1}{f^{\prime}\left(\theta_{1}\right)}+\frac{1}{f^{\prime}\left(\theta_{2}\right)}+\frac{1}{f^{\prime}\left(\theta_{3}\right)}=\frac{1}{\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)}+\frac{1}{\left(\theta_{2}-\theta_{1}\right)\left(\theta_{2}-\theta_{3}\right)}+\frac{1}{\left(\theta_{3}-\theta_{1}\right)\left(\theta_{3}-\theta_{2}\right)}=0$,
and
$\frac{\theta_{1}}{f^{\prime}\left(\theta_{1}\right)}+\frac{\theta_{2}}{f^{\prime}\left(\theta_{2}\right)}+\frac{\theta_{3}}{f^{\prime}\left(\theta_{3}\right)}=\frac{\theta_{1}}{\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)}+\frac{\theta_{2}}{\left(\theta_{2}-\theta_{1}\right)\left(\theta_{2}-\theta_{3}\right)}+\frac{\theta_{3}}{\left(\theta_{3}-\theta_{1}\right)\left(\theta_{3}-\theta_{2}\right)}=0$.
If we multiply (4.3) by $a-b$ and (4.4) by a, we find
$\frac{(a-b)+a \theta_{1}}{f^{\prime}\left(\theta_{1}\right)}+\frac{(a-b)+a \theta_{2}}{f^{\prime}\left(\theta_{2}\right)}+\frac{(a-b)+a \theta_{3}}{f^{\prime}\left(\theta_{3}\right)}=\frac{\theta_{1}^{n}}{f^{\prime}\left(\theta_{1}\right)}+\frac{\theta_{2}^{n}}{f^{\prime}\left(\theta_{2}\right)}+\frac{\theta_{3}^{n}}{f^{\prime}\left(\theta_{3}\right)}=0$.
So, solving the equation $2 x^{3}-y^{3}=1$, is like finding the zeros of the sequence $\left(c_{n}\right)_{n \in \mathbb{Z}}$ defined by:

$$
c_{n}=\frac{\theta_{1}^{n}}{\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)}+\frac{\theta_{2}^{n}}{\left(\theta_{2}-\theta_{1}\right)\left(\theta_{2}-\theta_{3}\right)}+\frac{\theta_{3}^{n}}{\left(\theta_{3}-\theta_{1}\right)\left(\theta_{3}-\theta_{2}\right)} .
$$

Now, let us work locally in \mathbb{Q}_{p}. For this purpose, we are looking for an adequate prime number p that allows us to apply Hensel's Lemma in ordre to find two zeros of $f \alpha$ and $\beta \in \mathbb{Q}_{p}$, the third one is then given by $\alpha+\beta+\gamma=-3$. Since $f(3)=2 \times 31 \equiv 0(\bmod 31), f(6)=11 \times 31 \equiv 0(\bmod 31), f^{\prime}(3)=$ $48 \not \equiv 0(\bmod 31)$ and $f^{\prime}(6)=147 \not \equiv 0(\bmod 31)$, then according to Hensel's Lemma, there exist a unique α and β in \mathbb{Z}_{31}, where $\alpha=34$ and $\beta=37$, hence $\gamma=-74$. According to Fermat's little theorem, we have $\alpha^{30} \equiv 1(\bmod 31)$. Thus $\alpha^{30}=1+a$. Since

$$
\alpha^{30}=34^{30} \equiv 838\left(\bmod 31^{2}\right) .
$$

Then

$$
a \equiv 837\left(\bmod 31^{2}\right) .
$$

Similarly,

$$
\beta^{30} \equiv 1(\bmod 31)
$$

Thus

$$
\beta^{30}=1+b
$$

Since

$$
\beta^{30}=37^{30} \equiv 869\left(\bmod 31^{2}\right)
$$

Then

$$
b \equiv 868\left(\bmod 31^{2}\right)
$$

Likewise, $\gamma^{30} \equiv 1(\bmod 31)$. Thus

$$
\gamma^{30}=1+c
$$

Since

$$
\gamma^{30}=74^{30} \equiv 94\left(\bmod 31^{2}\right)
$$

Then

$$
c \equiv 93\left(\bmod 31^{2}\right)
$$

In the rest of the proof we will need the following table:

r	$\alpha^{r}\left(\bmod 31^{2}\right)$	$\beta^{r}\left(\bmod 31^{2}\right)$	$\gamma^{r}\left(\bmod 31^{2}\right)$
1	34	37	-74
30	838	869	94

In addition, we have

$$
\begin{aligned}
c_{r+30 s} & =\frac{\alpha^{r}}{(\alpha-\beta)(\alpha-\beta)}\left(\alpha^{30}\right)^{s}+\frac{\beta^{r}}{(\beta-\alpha)(\beta-\gamma)}\left(\beta^{30}\right)^{s}+\frac{\gamma^{r}}{(\gamma-\beta)(\gamma-\alpha)}\left(\gamma^{30}\right)^{s} \\
& =\frac{\alpha^{r}}{(\alpha-\beta)(\alpha-\beta)}(1+a)^{s}+\frac{\beta^{r}}{(\beta-\alpha)(\beta-\gamma)}(1+b)^{s}+\frac{\gamma^{r}}{(\gamma-\beta)(\gamma-\alpha)}(1+c)^{s} \\
& \equiv c_{r}(\bmod 31), \text { for } 1 \leq r \leq 30
\end{aligned}
$$

The calculations show that $c_{r} \neq 0$ for $r \neq 1,30$. Since, $c_{r+30 s} \equiv c_{r}(\bmod 31)$, we get

$$
c_{r+30 s} \neq 0, \forall s \in \mathbb{N}, \text { for } r \neq 1,30
$$

Let's say for $r=1,30$ and $s \in \mathbb{Q}_{31}$,
$u_{r}(s)=\frac{\alpha^{r}}{(\alpha-\beta)(\alpha-\beta)}(1+a)^{s}+\frac{\beta^{r}}{(\beta-\alpha)(\beta-\gamma)}(1+b)^{s}+\frac{\gamma^{r}}{(\gamma-\beta)(\gamma-\alpha)}(1+c)^{s}$.
To demonstrate the result, it is enough to work only with u_{1} and u_{30}. Since $|a|_{31} \leq 31^{-1},|b|_{31} \leq 31^{-1}$ and $|c|_{31} \leq 31^{-1}$, we deduce from Lemma 2 that u_{r} is a function that we can develop as a series:

$$
\lambda_{0, r}+\lambda_{1, r} s+\lambda_{2, r} s^{2}+\cdots
$$

We have

$$
\lambda_{0, r}=0, \text { for } r=1,30, \quad \lambda_{j, r} \not \equiv 0\left(\bmod 31^{2}\right), \text { for } j \geq 2, \quad r \text { unspecified, }
$$

and
$\lambda_{1, r}=\frac{\alpha^{r}}{(\alpha-\beta)(\alpha-\gamma)} a+\frac{\beta^{r}}{(\beta-\alpha)(\beta-\gamma)} b+\frac{\gamma^{r}}{(\gamma-\beta)(\gamma-\alpha)} c \not \equiv 0\left(\bmod 31^{2}\right)$,
for $r=1,30$.
According to Strassman's theorem, the functions $u_{r}(s), r=1,30$, have at most one root. As they have at least one root, they have therefore exactly one root. From Equation (4.2), we have $\theta^{0}=1$ implies $a=0$ and $b=-1$, which is impossible, and $\theta^{1}=\theta$ implies $a=b=1$.

This completes the proof.
Corollary 1. The P_{1}^{3}-set $\{1,2,13\}$ is nonextendible.
Proof. Suppose there exists an integer $d>13$ such that the quadruple $\{1,2,13, d\}$ is a P_{1}^{3}-set. Then the following system of equations has an integral solution $(u, v, w) \in \mathbb{N}^{3}:$

$$
(S)\left\{\begin{array}{l}
2 d+1=u^{3}, \\
13 d+1=v^{3}, \\
26 d+1=w^{3}
\end{array}\right.
$$

The system (S) yields

$$
\begin{equation*}
2 v^{3}-w^{3}=1 . \tag{4.5}
\end{equation*}
$$

From Theorem 5, the unique positive integer solution of Equation (4.5) is $(v, w)=(1,1)$, which is impossible in (S).
This completes the proof.
Corollary 2. The unicity of positive integer solution of Equation (4.1) implies the unicity of a cubic-triangular number.

Proof. Let n be a cubic-triangular number. Since n and $n+1$ are coprime then according to Equation (2.1), there exists x and y two positive integers such that $m=x y, n=y^{3}$ and $n+1=2 x^{3}$, which implies Equation (4.1), that has from Theorem $5,(x, y)=(1,1)$ as unique positive integer solution. Thus, $n=1$ is the unique cubic-triangular number.

Remark 2. As we can see, the resolution of Equation (4.1) meets the two problems mentioned above that seem to be a priori different.

5. Conclusion

The interest of this work is twofold. Firstly, we showed an unexpected link between two problems, which were a priori distinct. Secondly, we presented a proof for the uniqueness of the positive integer solution of the Diophantine equation $2 x^{3}-y^{3}=1$, using p-adic analysis tools.

References

[1] "The on-line encyclopedia of integer sequences (oeis)." [Online]. Available: https: //oeis.org/
[2] J. W. S. Cassels, Lectures on elliptic curves, 1st ed., ser. London Mathematical Society student texts 24. Cambridge University Press, 1991.
[3] A. Dujella. [Online]. Available: https://web.math.pmf.unizg.hr/~duje/dtuples.html
[4] R. T. T. N. Shorey, Exponential diophantine equations, ser. Cambridge Tracts in Mathematics. CUP, 1986.

USTHB University, Faculty of Mathematics, LatN Laboratory, P.O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria,

E-mail address: a_debbache2003@yahoo.fr
USTHB University, Faculty of Mathematics, L'IFORCE Laboratory, P.O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria,

Current address: Other Institution, Some Other Department, P. O. Box 0002, 12347 City, Other Country

E-mail address: sbouroubi@usthb.dz or bouroubis@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11D45, 11D09.
 Key words and phrases. P_{1}^{3}-set, cubic-triangular number, Diophantine equation.

 * Corresponding author.

