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Abstract. Every generic linear functional f on a convex poly-
tope P orients the edges of the graph of P . In this directed graph
one can define a notion of f -arborescence and f -monotone path on
P . Additionally, a natural notion of adjacency between pairs of
f -monotone paths gives us the so called flip graph of f -monotone
paths. These concepts are of importance in geometric combina-
torics and optimization.
We investigate the extreme values of the number of f -arborescences,
the number of f -monotone paths, and the diameter of the flip
graph of f -monotone paths where P ranges over all convex poly-
topes of given dimension and number of vertices and f ranges over
all generic linear functionals on P .

1. Introduction and results

Consider a d-dimensional convex polytope P in Euclidean space Rd

and a generic linear functional f on P , meaning a linear functional on
Rd which is nonconstant on every edge of P . This paper investigates ex-
tremal enumerative problems about f -arborescences and f -monotone
paths on P . We first introduce briefly these notions and refer to Sec-
tion 2 for more information.

The functional f , which we think of as an objective function, in-
duces an orientation on the graph of P which orients every edge in the
direction of increasing objective value. Such orientations of polytope
graphs are called LP-admissible; they are of great importance in the
study of the simplex method for linear optimization (see [11, 16] and
the references given there). The resulting directed graph, consisting of
all vertices and oriented edges of P and denoted by ω(P, f), is acyclic
and has a unique source and a unique sink on every face of P . An
f -monotone path on P is any directed path in ω(P, f) having as initial
and terminal vertex the unique source, say vmin, and the unique sink,
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say vmax, of ω(P, f) on P , respectively. An f -arborescence is any (nec-
essarily acyclic) spanning subgraph A of the directed graph ω(P, f)
such that for every vertex v of P there exists a unique directed path
in A with initial vertex v and terminal vertex vmax. As explained in
the sequel, f -arborescences and f -monotone paths are important no-
tions in geometric combinatorics and optimization. When the context
is clear, we simply refer to them as arborescences and monotone paths.

The set of all f -monotone paths on P can be given a natural graph
structure as follows. We say that two f -monotone paths on P differ
by a polygon flip (also called polygon move, or simply flip) across a 2-
dimensional face F if they agree on all edges not lying on F but follow
the two different f -monotone paths on F , from the unique source to
the unique sink of ω(P, f) on F . The graph of f -monotone paths (also
called flip graph) on P is denoted by G(P, f) and is defined as the
simple (undirected) graph which has nodes all f -monotone paths on P
and as edges all unordered pairs of such paths which differ by a polygon
flip across a 2-dimensional face of P . The graph G(P, f) is connected;
its higher connectivity was studied in [3], where it was shown that
G(P, f) is 2-connected for every polytope P of dimension d ≥ 3 and
(d− 1)-connected for every simple polytope P of dimension d.

The main questions addressed in this paper ask to determine:

• the minimum and maximum number of f -arborescences on P ,
• the minimum and maximum number of f -monotone paths on
P , and
• the minimum and maximum diameter of the graph G(P, f),

where P ranges over all convex polytopes of given dimension and num-
ber of vertices and f ranges over all generic linear functionals on P .
We will also consider these (or similar) questions when P is restricted
to the important class of simple polytopes.

There are good reasons, from both a theoretical and an applied per-
spective, to study these problems. One motivation comes from the
connection of f -arborescences and f -monotone paths to the behavior
of the simplex method [21]. The simplex method produces a partial f -
monotone path, traversing ω(P, f) from an initial vertex to the optimal
one. The simplex method has to make decisions to choose the improv-
ing arcs via a pivot rule. It is an open problem to find the longest
possible simplex method paths and little is known about bounds (see
[9] and references therein). Clearly, the lengths of f -monotone paths
are of great interest, as they bound the number of steps in the simplex
algorithm. A pivot rule gives a mapping from the set of instances of
the algorithm to the set of f -arborescences of ω(P, f). Two pivot rules
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are equivalent if they always produce the same f -arborescence. There-
fore, given P and f , there are only finitely many equivalence classes of
pivot rules and counting f -arborescences is a proxy for the problem of
counting pivot rules.

Another motivation comes from enumerative and polyhedral com-
binatorics, especially from the theory of fiber polytopes [7]. The flip
graph of f -monotone paths on P contains a well behaved subgraph,
namely that induced on the set of coherent f -monotone paths (these
are the monotone paths which come from the shadow vertex pivot rule
[10]). This subgraph is isomorphic to the graph of a convex poly-
tope of dimension d− 1, where d = dim(P ), which is a fiber polytope
known as monotone path polytope [7, Section 5] [6]. Monotone paths,
monotone path polytopes and flip graphs of polytopes of combinato-
rial interest often have elegant combinatorial interpretations. For ex-
ample, the monotone path polytope of a cube is a permutohedron [7,
Example 5.4], while the flip graph of the latter encodes reduced de-
compositions of a certain permutation and the braid relations among
them [8, Section 2.4]. More generally, monotone paths on zonotopes
[4, 20] correspond to certain galleries of chambers in a central hyper-
plane arrangement and the problem to estimate the diameter of the
flip graph in this important special case has been intensely studied in
[12, 20]. The diameter of flip graphs of fiber polytopes has also been
studied in [18, 19]. Moreover, certain zonotopes are in fact monotone
path polytopes coming from projecting cyclic polytopes [2, Section 3],
or polytopes which look like piles of cubes [1]. Monotone path poly-
topes are also related to fractional power series solutions of algebraic
equations [14]. The combinatorial properties of f -monotone paths and
flip graphs have thus been studied in comparison to those of coherent
f -monotone paths, but also because of their own independent interest.

A special role in our results is played by a distinguished member
X(n) of the family of stacked 3-dimensional simplicial polytopes with
n vertices. As it turns out, this polytope maximizes the number of both
f -arborescences and f -monotone paths, and possibly the diameter of
the flip graph too, in this dimension. We refer to Section 2.1 for a dis-
cussion of stacked polytopes and the precise definition of X(n), which
we always consider endowed with the specific LP-allowable orientation
given there. We will typically denote by n (and sometimes by n + 1)
and m the number of vertices and facets of P , respectively. Let us also
denote by

• τ(P, f) the number of f -arborescences on P ,
• µ(P, f) the number of f -monotone paths on P ,



4 C.A. ATHANASIADIS, J.A. DE LOERA, AND Z. ZHANG

• diam(G) the diameter of the graph G = G(P, f).

Our first two main results provide a fairly complete description of
tight bounds for the numbers of f -arborescences and f -monotone paths
and the diameter of the graph of f -monotone paths on a 3-dimensional
polytope with given number of vertices. The upper bound for the num-
ber of f -monotone paths involves the sequence of Tribonacci numbers
(sequence A000073 in [22]), defined by the recurrence T0 = T1 = 1,
T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

Theorem 1.1. For n ≥ 4,

2(n− 1) ≤ τ(P, f) ≤ 2 · 3n−3(1) ⌈n
2

⌉
+ 2 ≤ µ(P, f) ≤ Tn−1(2)

for every 3-dimensional polytope P with n vertices and every generic
linear functional f on P . The upper bound is achieved by the stacked
polytope X(n) in both situations.

The lower bound of (1) can be achieved by pyramids and that of (2) by
prisms, when n is even, and by wedges of polygons over a vertex, when n
is odd. In particular, prisms minimize the number of f -monotone paths
over all simple 3-dimensional polytopes with given number of vertices.
Moreover,

τ(P, f) = 3 · 2(n−2)/2 = 3 · 2m−3

for every 3-dimensional simple polytope P with n vertices and m facets.

Theorem 1.2. For every n ≥ 4,

(3) d(n− 2)2

4
e ≤ max diamG(P, f) ≤ (n− 2)bn− 1

2
c,

where P ranges over all 3-dimensional polytopes with n vertices and f
ranges over all generic linear functionals on P .

Our results are substantially weaker in dimensions d ≥ 4, where the
upper bounds for the number of f -arborescences and the number of f -
monotone paths are almost trivial, and leave plenty of room for further
research.

Theorem 1.3. (a) For n > d ≥ 4,

τ(P, f) ≤ (n− 1)!

µ(P, f) ≤ 2n−2

for every d-dimensional polytope P with n vertices and every
generic linear functional f on P . These bounds are achieved by
any 2-neighborly d-dimensional polytope with n vertices.
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(b) For m > d ≥ 4,

d · ((d− 1)!)m−d ≤ τ(P, f) ≤
d∏
i=1

ihi(m,d)

for every simple d-dimensional polytope P with m facets and
every generic linear functional f on P , where (hi(m, d))0≤i≤d
is the h-vector of the d-dimensional cyclic polytope with m ver-
tices. The lower and upper bounds are achieved by the polar du-
als of stacked simplicial polytopes and the polar duals of neigh-
borly simplicial polytopes, respectively, of dimension d with m
vertices.

The proofs of the results on f -arborescences, given in Section 3,
rely on the fact that τ(P, f) is equal to the product of the outdegrees
of the vertices of the directed graph ω(P, f) other than the sink (see
Proposition 3.1). This has the curious consequence that τ(P, f) is in-
dependent of f for every simple polytope P . The proofs of the results
on f -monotone paths and the diameter of flip graphs, given in Sec-
tions 4 and 5, respectively, use ideas from [3, Section 4] [6], reviewed
in Section 2.2, to construct G(P, f) as an inverse limit in the category
of graphs and simplicial maps. Section 2 contains preliminary mate-
rial on polytopes, needed to understand the main results and their
proofs, defines the stacked polytope X(n) and proves a combinatorial
lemma about its diameter (Lemma 2.1) which implies the lower bound
in Theorem 1.2. Section 6 concludes with comments about the missing
bounds and related open problems.

2. Preliminaries

This section reviews basic background and terminology on convex
polytopes and monotone paths and discusses a few constructions and a
preliminary result (Lemma 2.1) which will be useful in the sequel. We
use the notation [n] := {1, 2, . . . , n} for any positive integer n and refer
the reader to the book [23] for any undefined concepts and terminology.

2.1. Some special polytopes. Special classes of polytopes play an
important role in this paper, since they are optimal solutions of the
extremal problems considered. Recall that a polytope is called sim-
plicial if all its proper faces are simplices. The simple polytopes are
the polar duals of simplicial polytopes. A convenient way to encode
the numbers of faces of each dimension of a simple or simplicial d-
dimensional polytope P is provided by the h-vector, denoted as h(P ) =
(h0(P ), h1(P ), . . . , hd(P )); see pages 8, 59 and 248 of [23] for details and
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more information. The h-vector of a simple polytope P has nonnegative
integer coordinates which afford an elegant combinatorial interpreta-
tion: hk(P ) equals the number of vertices of P of outdegree k in the
directed graph ω(P, f), discussed in the introduction, for every generic
linear functional f on P (see Sections 3.4 and 8.3 and Exercise 8.10 in
[23]); in particular, the multiset of such outdegrees is independent of
f .

A polytope is called 2-neighborly if every pair of vertices is con-
nected by an edge. A d-dimensional simplicial polytope is called neigh-
borly if any bd/2c or fewer of its vertices form the vertex set of a face.
Neighborly polytopes other than simplices (cyclic polytopes being dis-
tinguished representatives) exist in dimensions four and higher. Their
significance comes from the fact that they maximize the entries of the
h-vector among all polytopes with given dimension and number of ver-
tices (see pages 15-16, and 254-257 of [23]); in particular, they maximize
the numbers of faces of each dimension among such polytopes.

Figure 1. Example of the polytope X(10)

A stacked polytope is any simplicial polytope which can be obtained
from a simplex by repeatedly glueing other simplices of the same di-
mension along common facets, so as to preserve convexity at each step.
Equivalently, the boundary complex of a stacked polytope can be ob-
tained combinatorially from that of a simplex by successive stellar sub-
divisions on facets. The h-vector of any stacked polytope P of dimen-
sion d with n vertices has the simple form h(P ) = (1, n−d, ..., n−d, 1)
(see [15]). A fundamental result of Barnette [5] states that among all
simplicial polytopes with given dimension and number of vertices, the
stacked polytopes have the fewest possible faces of each dimension.
Moreover, as a consequence of the generalized lower bound theorem,
stacked polytopes minimize the entries of the h-vector among all such
polytopes (see [13, 17]).
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Many different combinatorial types of stacked polytopes are possi-
ble. For each n ≥ 4, we will consider a 3-dimensional stacked poly-
tope of special type with n vertices, denoted by X(n). This polytope
comes together with a linear functional f which linearly orders its ver-
tices as f(v1) < f(v2) < · · · < f(vn). The associated triangulation
comprises of all faces of the simplices with vertex sets {v1, v2, v3, v4},
{v2, v3, v4, v5}, . . . , {vn−3, vn−2, vn−1, vn}, so the dual graph of this tri-
angulation is a path (these dual graphs for general stacked polytopes
are trees). The regularity of this triangulation easily implies that such
polytope X(n) and linear functional f exist for every n ≥ 4. Figure 1
shows an example with n = 10.

A crucial property of X(n) is that the directed graph ω(X(n), f) has
as arcs the pairs (vi, vj) for i, j ∈ {1, 2, . . . , n} with j ∈ {i+1, i+2, i+3}.
The following combinatorial lemma establishes the lower bound for the
diameter of flip graphs, claimed in Theorem 1.2.

Lemma 2.1. The diameter of the graph of f -monotone paths on X(n)
is bounded below by d(n− 2)2/4e for every n ≥ 4.

Proof. Let G be the graph of f -monotone paths on X(n). Denoting
f -monotone paths as sequences of vertices, we set

γ =


(v1, v3, v5, . . . , vn−1, vn), if n ≡ 0 (mod 2)

(v1, v2, v4, . . . , vn−3, vn−1, vn), if n ≡ 1 (mod 4)

(v1, v3, v5, . . . , vn−2, vn), if n ≡ 3 (mod 4)

and δ = (v1, v2, v3, . . . , vn). We claim that γ and δ are at a distance of
d(n− 2)2/4e apart in G. Clearly, the lemma follows from the claim.

We only consider the case that n is even, the other two cases be-
ing similar. By passing to the complement of the set of vertices ap-
pearing on an f -monotone path on X(n), such paths correspond bi-
jectively to the subsets of {v2, v3, . . . , vn−1} containing no three con-
secutive elements vk−1, vk, vk+1. The subset which corresponds to γ,
for instance, is {v2, v4, . . . , vn−2} and the one which corresponds to δ
is the empty set. The 2-dimensional faces of X(n) have vertex sets
{v1, v2, v3}, {vn−2, vn−1, vn} and {vk−1, vk, vk+2} and {vk−1, vk+1, vk+2}
for 2 ≤ k ≤ n − 2. From these facts it follows that polygon flips on
f -monotone paths on X(n) correspond to the following operations on
the corresponding subsets:

• removal of v2 or vn−1, if present,
• inclusion of v2, if absent and not both v3 and v4 are present,
• inclusion of vn−1, if absent and not both vn−2 and vn−3 are

present,
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• removal or inclusion of one of vk, vk+1, if the other is present
but vk−1 and vk+2 are absent.

To reach the empty set from {v2, v4, . . . , vn−2} with these operations
one needs to remove each of v2, v4, . . . , vn−2. A careful consideration
shows that at least one flip is needed to remove v2, at least three more
flips are needed to remove vn−2, at least five more flips are needed to
remove v4, and so on. For example, to remove vn−2 in at most three
steps one needs to first include vn−1, then remove vn−2 and finally
remove vn−1 and to remove v4 in at most five steps one needs to first
include v3, then remove v4, include v2, remove v3 and finally remove v2
(in particular, v4 cannot be removed before v2, vn−4 cannot be removed
before vn−2, and so on). This yields a distance of 1+3+5+· · ·+(n−3) =
(n− 2)2/4 between γ and δ in G. �

Remark 2.2. Perhaps it is instructive to visualize the process of flip-
ping γ to δ, described in the previous proof. The two f -monotone paths
are shown on Figure 2 for n = 10 and the sequence of 2-dimensional
faces (recording only vertex indices, for simplicity) across which the
flips occur could be {1, 2, 3}, {7, 9, 10}, {7, 8, 10}, {8, 9, 10}, {2, 3, 5},
{2, 4, 5}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3}, {5, 7, 8}, {5, 6, 8}, {6, 8, 9}, {6, 7, 9},
{7, 9, 10}, {7, 8, 10} and {8, 9, 10}. �

Figure 2. Two monotone paths on X(10)

Finally, we consider prisms and wedges of polygons. Given a (d−1)-
dimensional polytope Q, the prism over Q is the d-dimensional poly-
tope defined as the Cartesian product Q× [0, 1]. The wedge of Q over a
face F of Q is the d-dimensional polytope W obtained combinatorially
from the prism Q× [0, 1] by collapsing the face F × [0, 1] to F ×0. Note
that Q becomes a facet of W and that if F is a facet and Q is simple,
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then so is W . We will apply the wedge construction in the special cases
that Q is a polygon and F is one of its vertices or edges.

F

F
2

F
1

Figure 3. The wedge of a pentagon over an edge

2.2. The graph of f-monotone paths. Let P be a d-dimensional
polytope and f be a generic linear functional on P . We will assume
that f does not take the same value on any two distinct vertices of P .

To investigate the graph of f -monotone paths on P , we will de-
scribe another way to construct it from simpler graphs, arising in the
fibers of the restriction of the projection map f on P . The technical
device needed, which we now review, is the inverse limit in the cate-
gory of graphs and simplicial maps. This concept was introduced in
[3, Section 4] (with motivation coming from [6]) to study the higher
connectivity of G(P, f); it leads to various more general graphs of par-
tial f -monotone paths on P , a useful notion which allows for inductive
arguments.

Let us linearly order the vertices v0, v1, . . . , vn of P so that f(v0) <
f(v1) < · · · < f(vn). We recall that for every interior point t of the
interval f(P ), the fiber P (t) := f−1(t) ∩ P of the map f : P → R is
a (d − 1)-dimensional polytope and thus it has a well defined graph.
Setting ti = f(vi) for 0 ≤ i ≤ n, we may thus consider the graph Gi of
P (ti) for 0 ≤ i ≤ n and the graph Gi,i+1 of P (t) for some ti < t < ti+1,
for 0 ≤ i ≤ n − 1 (the precise value of t being irrelevant because, by
construction, the other choices of t in the same interval give a normally
equivalent fiber P (t)); see Figure 4 for an example. Considering these
graphs as one-dimensional simplicial complexes, we have a diagram

(4)

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps for which αi : Gi−1,i → Gi and βi :
Gi,i+1 → Gi result from the degeneration of the fiber P (t) when t ap-
proaches ti, with ti−1 < t < ti or ti < t < ti+1, respectively (recall that
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a simplicial map of one-dimensional simplicial complexes maps vertices
to vertices and either maps edges linearly onto edges, or contracts them
to vertices; in particular, such a map is determined by its images on
vertices).

The inverse limit G of this diagram is defined as follows. The nodes
are the sequences

(v0,1, v1,2, . . . , vn−1,n),

where vi−1,i is a vertex of Gi−1,i for every i ∈ [n] and αi(vi−1,i) =
βi(vi,i+1) for every i ∈ [n−1]. Two such sequences (u0,1, u1,2, . . . , un−1,n)
and (v0,1, v1,2, . . . , vn−1,n) are adjacent nodes in G if there exists a
nonempty interval I ⊆ [n] such that:

• ui−1,i and vi−1,i are adjacent in Gi−1,i for i ∈ I,
• ui−1,i = vi−1,i for i ∈ [n]rI, and
• the edges {ui−1,i, vi−1,i} and {ui,i+1, vi,i+1} are mapped homeo-

morphically onto the same edge of Gi by αi and βi, respectively,
whenever i, i+ 1 ∈ I.

This construction associates an inverse limit graph to any diagram
of graphs and simplicial maps (4). As explained in [3, Section 4] (see
[3, Proposition 4.1]), the graph G is isomorphic to G(P, f) when the
diagram comes from a polytope P and linear functional f , as just
described. The inverse limit of a subdiagram of (7) of the form

Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · · β`−1←− G`−1,`

α`−→ G`
β`←− G`,`+1,

considered in Sections 4 and 5, has nodes which can be viewed as
partial f -monotone paths on P , starting at the fiber P (t) with tk−1 <
t < tk and ending at P (t′) with t` < t′ < t`+1, and adjacency given
by a suitable extension of the notion of polygon flip, presented in the
introduction.

3. On the number of arborescences

As explained in the introduction, we are interested in counting f -
arborescences on a polytope P , meaning oriented trees in the directed
graph ω(P, f) which are rooted at the unique sink vmax. Recall that
τ(P, f) denotes the number of f -arborescences on P . The following
statement provides an explicit product formula for this number.

Proposition 3.1. Given a d-dimensional polytope P and generic linear
functional f , let outf (v) denote the outdegree of the vertex v of P in
the directed graph ω(P, f). Then,

τ(P, f) =
∏

v 6=vmax

outf (v),
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Figure 4. A combinatorial cube and some of its fibers

where the product ranges over all vertices of P other than the sink vmax.
In particular, if P is simple, then

τ(P, f) =
d∏
i=1

ihi(P )

is independent of f .

Proof. Since ω(P, f) is acyclic, an f -arborescence is uniquely deter-
mined by a choice of edge coming out of v for every vertex v of ω(P, f)
other than the sink vmax. Since there are exactly outf (v) choices for
every such v, the proof of the first formula follows. The second for-
mula follows from the first and the combinatorial interpretation of the
h-vector of a simple polytope P , mentioned in Section 2.1. �

Remark 3.2. Since every edge of ω(P, f) has a unique initial vertex,
the sum of the outdegrees outf (v) of the vertices of P in the directed
graph ω(P, f) is equal to the number of edges of P .

Corollary 3.3. For m > d ≥ 4, the maximum number of f -arborescences
over all simple d-dimensional polytopes with m facets is achieved by the
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polar duals of neighborly polytopes and is given by the formula

max τ(P, f) =
d∏
i=1

ihi(m,d),

where (hi(m, d))0≤i≤d is the h-vector of the d-dimensional cyclic poly-
tope with m vertices. Similarly, the minimum number of f -arborescences
in this situation is achieved by the polar duals of stacked polytopes and
is given by the formula

min τ(P, f) = d · ((d− 1)!)m−d .

For 3-dimensional simple polytopes P with m facets, τ(P, f) = 3 ·2m−3.
Proof. The case d ≥ 4 follows from the last sentence of Proposition 3.1,
the upper and lower bound theorems for the h-vector of a simplicial
polytope, discussed in Section 2.1, and the formula for the h-vector
of a d-dimensional stacked simplicial polytope with m vertices given
there. The case d = 3 follows again from the second formula of Propo-
sition 3.1, since h0(P ) = h3(P ) = 1 and h1(P ) = h2(P ) = m − 3 for
every 3-dimensional simple polytope P with m facets. �

The following two statements apply to general polytopes. Combined
with Corollary 3.3, they imply the results about f -arborescences stated
in the introduction.

Theorem 3.4. For n > d ≥ 3, the maximum number of f -arborescences
over all d-dimensional polytopes with n vertices is achieved by the
stacked polytope X(n) for d = 3 and by any 2-neighborly polytope for
d ≥ 4. This number is equal to 2 · 3n−3 and (n − 1)! in the two cases,
respectively.

Proof. Let us order the vertices v1, v2, . . . , vn of the d-dimensional poly-
tope P so that f(v1) ≤ f(v2) ≤ · · · ≤ f(vn), where vn = vmax. Then,
arcs of the directed graph ω(P, f) can only by pairs (vi, vj) with i < j
and hence outf (vi) ≤ n− i for every i ∈ [n]. Thus, in view of Proposi-
tion 3.1, we get

τ(P, f) =
n−1∏
i=1

outf (vi) ≤
n−1∏
i=1

(n− i) = (n− 1)!

and equality holds if and only if P is 2-neighborly.
Since no such polytopes other than simplices exist in dimension d =

3, this case has to be treated separately. Setting di = outf (vi) for
i ∈ [n−1], we have positive integers d1, d2, . . . , dn−1 such that dn−1 = 1
and dn−2 ∈ {1, 2}. Since P can have no more than 3n − 6 edges, we
have d1 + d2 + · · ·+ dn−1 ≤ 3n− 6 by Remark 3.2. It is an elementary
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fact that, under these assumptions, the product τ(P, f) = d1d2 · · · dn−1
is maximized when dn−1 = 1, dn−2 = 2 and di = 3 for every i ∈ [n− 3].
Exactly that happens for the stacked polytope X(n) and the proof
follows. �

Theorem 3.5. For all n ≥ 4, the minimum number of f -arborescences
over all 3-dimensional polytopes with n vertices is equal to 2(n − 1).
This is achieved by any pyramid P and any generic linear functional f
which takes its minimum value on P at the apex.

Proof. As a simple application of Proposition 3.1, we have τ(P, f) =
2(n − 1) for every pyramid P over an (n − 1)-gon and every generic
functional f which takes its minimum value on P at the apex.

We now consider any 3-dimensional polytope P with n vertices and
any generic functional f on P . We need to show that τ(P, f) ≥ 2(n−1).
We may linearly order the vertices v1, v2, . . . , vn of P in the order of
decreasing outdegree in the directed graph ω(P, f) and denote by k
the number of those vertices which have outdegree larger than one.
Then, k ≥ 2 and the respective outdegrees d1, d2, . . . , dn of v1, v2, . . . , vn
satisfy d1, d2, . . . , dk ≥ 2, dn = 0 and di = 1 for every other value of i.
Letting D1, D2, . . . , Dn be the degrees of v1, v2, . . . , vn in the undirected
graph of P , respectively, we have τ(P, f) = d1d2 · · · dk and

2 ·
n∑
i=1

di =
n∑
i=1

Di

by Remark 3.2. Clearly, Di = di for one value of i ∈ {1, 2, . . . , k} (the
one corresponding to the source vertex), Di ≥ di + 1 for every other
such value and Di ≥ 3 for all k < i ≤ n. These considerations result
in the inequality d1 + d2 + · · · + dk ≥ n + 1 and thus, it remains to
show that d1d2 · · · dk ≥ 2(n− 1) for every k ≥ 2 and all d1, d2, . . . , dk ∈
{2, 3, . . . , n−1} summing at least to n+1. Indeed, from the inequality
ab > (a − 1)(b + 1) for integers a ≤ b, applied repeatedly when b is
the largest of d1, d2, . . . , dk and a is any other number from these larger
than 2, we get

d1d2 · · · dk ≥ (d1 + d2 + · · ·+ dk − 2k + 2) · 2k−1 ≥ (n− 2k + 3) · 2k−1.
Applying repeatedly the fact that 2m ≥ m+ 2 for m ≥ 2, we conclude
that d1d2 · · · dk ≥ 2(n− 1) and the proof follows. �

More generally, for any d ≥ 3, the (d − 2)-fold pyramid P over an
(n−d+2)-gon has n vertices and dimension d. Moreover, if f is chosen
so that every cone vertex has smaller objective value than any of the
vertices of the (n− d+ 2)-gon, then the number of f -arborescences on
P is equal to 2(n− 1)(n− 2) · · · (n− d+ 2).
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Question 3.6. What is the minimum number of f -arborescences over
all d-dimensional polytopes with n vertices, for d ≥ 4? Does it equal
2(n− 1)(n− 2) · · · (n− d+ 2) for all n > d ≥ 4?

4. On the number of monotone paths

This section investigates the smallest and largest possible number
of f -monotone paths on polytopes. For notational convenience, we let
v0, v1, . . . , vn be the vertices of a polytope P , linearly ordered so that
f(v0) < f(v1) < · · · < f(vn), as in Section 2.2. We recall that µ(P, f)
denotes the number of f -monotone paths on P and that we refer to
general directed paths in ω(P, f) as partial f -monotone paths, i.e., they
may start or end at vertices other than vmin or vmax.

The following formula is the key to most results in this section.

Lemma 4.1. The number of f -monotone paths on P can be expressed
as

µ(P, f) = 1 +
n−1∑
k=0

(dk − 1)µk(P, f),

where dk = outf (vk) is the oudegree of vk in ω(P, f) and µk(P, f) stands
for the number of partial f -monotone paths on P with initial vertex v0
and terminal vertex vk.

Proof. Let P (t) = f−1(t) ∩ P be the fibers of the map f : P → R, as
in Section 2.2, and ti = f(vi) for 0 ≤ i ≤ n. For 0 ≤ k ≤ n − 1 let
Hk(P, f) be the set of partial f -monotone paths on P having initial
vertex v0 and ending in the fiber P (t) with tk < t < tk+1. Formally,
these are essentially the nodes of the inverse limit of the part

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · αk−→ Gk
βk←− Gk,k+1

of the diagram (4). Let ηk(P, f) be the number of these partial f -
monotone paths. We claim that

(5) ηk(P, f)− ηk−1(P, f) = (dk − 1)µk(P, f)

for every k ∈ [n− 1]. Since η0(P, f) = outf (v0) = d0 and µ0(P, f) = 1,
this implies that

ηk(P, f) = 1 +
k∑
i=0

(di − 1)µi(P, f)

for 0 ≤ k ≤ n − 1. Since ηn−1(P, f) = µn(P, f) = µ(P, f), the desired
formula follows as the special case k = n− 1 of this equation.

To verify (5), let ϕk : Hk(P, f) → Hk−1(P, f) be the natural map
obtained by restriction of diagrams. More intuitively, ϕk(γ) is obtained
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from γ ∈ Hk(P, f) by removing its last edge. Paths in Hk−1(P, f) and
Hk(P, f) either pass through vertex vk or not, depending on whether
or not their last edge maps to vk under the map αk or βk, respectively.
Clearly, for every δ ∈ Hk−1(P, f) which passes through vk there are ex-
actly dk paths γ ∈ Hk(P, f) such that ϕk(γ) = δ, obtained by choosing
an edge of ω(P, f) coming out of vk and attaching it to δ, while for
every δ ∈ Hk−1(P, f) which does not pass through vk there is a unique
path γ ∈ Hk(P, f) such that ϕk(γ) = δ. These observations imply
directly Equation (5) and the proof follows. �

Recall that the Tribonacci sequence (Tn) is defined by the recurrence
relation T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

Theorem 4.2. The maximum number of f -monotone paths over all 3-
dimensional polytopes with n+ 1 vertices is equal to the nth Tribonacci
number Tn for every n ≥ 3. This is achieved by the stacked polytope
X(n).

Proof. We proceed by induction on n. The result holds for n = 3,
since there are exactly T3 = 4 monotone paths on any 3-dimensional
simplex. We assume that it holds for integers less than n and consider
a 3-dimensional polytope P with n + 1 vertices v0, v1, . . . , vn, linearly
ordered as in the beginning of this section by a generic functional f .

We wish to apply Lemma 4.1. Since partial f -monotone paths on
P with initial vertex v0 and terminal vertex vk are f -monotone paths
on the convex hull of v0, v1, . . . , vk, we have µk(P, f) ≤ Tk for k ∈
{3, 4, . . . , n − 1} by the induction hypothesis. Since this bound holds
trivially for k ∈ {0, 1, 2} as well, from Lemma 4.1 we get

µ(P, f) ≤ 1 +
n−1∑
k=0

(dk − 1)Tk.

To bound the right-hand side, we note that

dn−k + dn−k+1 + · · ·+ dn−1 ≤ 3k − 3

for k ∈ {2, 3, . . . , n − 1}, since dn−k + dn−k+1 + · · · + dn−1 is equal to
the number of edges of P connecting vertices vn−k, vn−k+1, . . . , vn and
hence to the number of edges of a planar simple graph with k + 1
vertices. From these inequalities and the trivial one dn−1 ≤ 1, and
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setting T−1 := 0, we get

n−1∑
k=0

dkTk =
n∑
k=1

(dn−1 + dn−2 + · · ·+ dn−k)(Tn−k − Tn−k−1)

≤ (Tn−1 − Tn−2) + (3k − 3)
n∑
k=2

(Tn−k − Tn−k−1)

= Tn−1 + 2Tn−2 + 3Tn−3 + 3Tn−4 + · · ·+ 3T0

=
n∑
k=1

Tk,

where the last equality comes from summing the recurrence Tk = Tk−1+
Tk−2 + Tk−3 for k ∈ [n]. We conclude that

µ(P, f) ≤ 1 +
n−1∑
k=0

(dk − 1)Tk = 1 +
n−1∑
k=0

dkTk −
n−1∑
k=0

Tk ≤ Tn.

This completes the induction.
Finally, it is straightforward to verify that the number of f -monotone

paths on X(n+ 1) satisfies the Tribonacci recurrence (or alternatively,
that all inequalities hold as equalities in the previous argument) and is
thus equal to Tn for every n. �

Remark 4.3. The number of f -monotone paths on a polytope P with
n+ 1 vertices is no larger than the number of subsets of its vertex set
containing the source and the sink and hence at most 2n−1. Equality
holds exactly when P is 2-neighborly, meaning that the 1-skeleton of P
is the complete graph on n+ 1 vertices, since then every such subset is
the vertex set of an f -monotone path on P . As a result, the maximum
number of f -monotone paths over all d-dimensional polytopes with
n+ 1 vertices is equal to 2n−1 for all n ≥ d ≥ 4. �

The following statement completes the proof of the results about the
number of f -monotone paths, stated in the introduction.

Theorem 4.4. The minimum number of f -monotone paths over all
3-dimensional polytopes with n vertices is equal to dn/2e + 2. This is
achieved by prisms, when n is even, and by wedges of polygons over a
vertex, when n is odd.

In particular, prisms minimize the number of f -monotone paths over
all simple polytopes of dimension three with given number of vertices.
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Proof. Applying Lemma 4.1 and noting that µk(P, f) ≥ 1 for every k,
we get

µ(P, f) ≥ 1 +
n−2∑
k=0

(dk − 1) =
n−2∑
k=0

dk − n+ 2.

Since
∑n−2

k=0 dk is equal to the number of edges of P (see Remark 3.2),
which is bounded below by d3n/2e, it follows that µ(P, f) ≥ dn/2e+2.
It is straightforward to verify that prisms achieve the minimum when
n is even and wedges of polygons over a vertex (obtained from prisms
by identifyng two vertices at different levels which are connected by an
edge) achieve the minimum when n is odd. �

The lower bound for the number of f -monotone paths in any dimen-
sion, given in the following statement, is not expected to be tight.

Proposition 4.5. The number of f -monotone paths on any polytope
of dimension d with n vertices is bounded below by ddn/2e − n+ 2.

Proof. Once again, this follows from the inequality
∑n−2

k=0 dk ≥ ddn/2e
and Lemma 4.1. �

We end this section with a conjecture for the maximum number
of monotone paths on simple 3-dimensional polytopes. The proposed
maximum can be achieved by wedges of polygons over an edge for
which all vertices lie on a monotone path. We recall that the Fibonacci
sequence (Fn) is defined by the recurrence F1 = F2 = 1 and Fn =
Fn−1 + Fn−2 for n ≥ 2.

Conjecture 4.6. We have µ(P, f) ≤ Fn+2 + 1 for every simple 3-
dimensional polytope P with 2n vertices.

The argument in the proof of Theorem 4.2 yields the following weaker
result. Let (an) be the sequence of numbers defined by the recurrence
relation a0 = a1 = 1, a2 = 2, a3 = 4 and an = an−1 + an−2 for n ≥ 4.

Proposition 4.7. We have µ(P, f) ≤ an for every 3-dimensional sim-
ple polytope P with n + 1 vertices and every generic linear functional
f on P .

Proof. We mimick the proof of Theorem 4.2. For the inductive step,
since P is simple, we have d0 = 3, d1, d2, . . . , dn−2 ≤ 2 and dn−1 = 1
and compute that

µ(P, f) ≤ 1 +
n−1∑
k=0

dkak −
n−1∑
k=0

ak ≤ 1 + an−2 + an−3 + . . .+ a1 + 2a0

≤ an−1 + an−2 = an,
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Figure 5. An example of a polytope on 8 vertices con-
jectured to be the maximizer of the number of monotone
paths among simple polytopes.

since an−1 = 1 + an−3 + · · ·+ a1 + 2a0. �

5. On the diameter of monotone path graphs

The main goal of this section is to prove Theorem 1.2.
The lower bound of (3) for the maximum diameter follows from

Lemma 2.1. The upper bound will be deduced from the following
result. Clearly, given a polytope P and a generic linear functional f ,
every f -monotone path on P meets each of the fibers f−1(t)∩P , where
t ∈ f(P ), in a unique point. For f -monotone paths γ and γ′ on P ,
let us denote by ν(γ, γ′) the number of connected components of the
set of values t ∈ f(P ) for which γ and γ′ disagree on f−1(t) ∩ P . For
example, for the two monotone paths, say γ and γ′, shown on Figure 2
we have ν(γ, γ′) = 4. Note that ν(γ, γ′) = 0⇔ γ = γ′.

Theorem 5.1. Let P be a 3-dimensional polytope and f be a generic
linear functional on P . The distance between any two f -monotone
paths γ and γ′ in the graph G = G(P, f) satisfies

(6) dG(γ, γ′) ≤ ν(γ, γ′)

2
· f2(P ),

where f2(P ) is the number of 2-dimensional faces of P .

We will first state a technical result (see Proposition 5.2) which con-
structs a walk in G(P, f) between two monotone paths γ and γ′ with
the required properties from walks on the fibers, assuming that the lat-
ter satisfy certain necessary compatibility conditions. To allow for all
possible ways that γ and γ′ may intersect each other, we consider the
following general situation. Let F be a connected polygonal complex in
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Rd having vertices v0, v1, . . . , vn and f : Rd → R be a linear functional
such that f(v0) < f(v1) < · · · < f(vn). The graph of f -monotone
paths on F , denoted by G(F , f), having initial vertex v0 and terminal
vertex vn, can be defined with adjacency given by polygon flips just as
in the special case in which F is the 2-skeleton of a convex polytope
(see Section 2.2). Alternatively, and in order to relate it to the graphs
of the fibers of f , we may view G(F , f) as the inverse limit associated
to a diagram

(7)

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps. This is defined as in Section 2.2 provided
the fiber f−1(t) ∩ P is replaced with f−1(t) ∩ ‖F‖, where ‖F‖ is the
polyhedron (union of faces) of F . Thus, the Gi and Gi,i+1 are graphs
of (one-dimensional) fibers f−1(t)∩ ‖F‖ and the αi and βi are natural
degeneration maps.

Given an f -monotone path γ on F and i ∈ [n], let us denote by
πi(γ) the node of Gi−1,i in which the union of the edges of γ intersects
the corresponding fiber f−1(t)∩ ‖F‖. Then, πi : G(F , f)→ Gi−1,i is a
simplicial map. Given a walk P in a graph G, thought of as a sequence
of edges, and a simplicial map ϕ : G → H of graphs, let us denote by
ϕ(P) the walk in H which is formed by the images of the edges of P
under ϕ, disregarding those edges of P which are contracted to a node
by ϕ.

Proposition 5.2. Let γ and δ be f -monotone paths on F . Suppose that
for every i ∈ [n] there exists a walk Pi in Gi−1,i with initial node πi(γ)
and terminal node πi(δ) which traverses each edge in Gi−1,i exactly
once, so that

(8) αi(Pi) = βi(Pi+1)

for every i ∈ [n−1]. Then, there exists a walk P in G(F , f) with initial
node γ and terminal node δ which traverses each 2-dimensional face of
F exactly once, such that πi(P) = Pi for every i ∈ [n].

We first illustrate the proposition with an important special case and
then use it to prove Theorem 5.1.

Example 5.3. To motivate the proof of Theorem 5.1, consider the
special case in which the monotone paths γ and γ′ do not have com-
mon vertices, other than those on which f attains its minimum and
maximum value on P . Then, ν(γ, γ′) = 1 and the edges of γ and
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γ′ form a simple cycle C which divides the boundary of P into two
closed balls, say B+ and B−, having common boundary C. Let F+

and F− be the two subcomplexes of the boundary complex of P which
correspond to these balls. We wish to show that for each ε ∈ {+,−},
there exists a walk in G(P, f) joining γ and γ′ which traverses each
2-dimensional face of F ε exactly once. This would imply the desired
bound for dG(γ, γ′). Such a walk must traverse every edge of each fiber
f−1(t)∩Bε exactly once and thus induce walks on these fibers with the
same property.

Let us consider the diagram (7) for the polygonal complex F ε. Clearly,
the fiber f−1(t) ∩ ∂P is the boundary of a polygon for every interior
point t of the interval f(P ), where ∂P denotes the boundary of P .
Since, by the f -monotonicity of γ and γ′, this fiber intersects the cycle
C, which is the boundary of the ball Bε, in exactly two points, its
intersection with Bε must be homeomorphic to a line segment. Thus,
all graphs appearing in the diagram (7) for F ε are path graphs, where
Gi−1,i has endpoints πi(γ) and πi(γ

′) for every i ∈ [n]. As a result, there
are unique walks Pi, as in the statement of Proposition 5.2, where con-
dition (8) holds by the degeneration of fibers. Thus, Proposition 5.2
implies the existence of a walk in G(F ε, f) with initial node γ and
terminal node γ′ which traverses each 2-dimensional face of F ε exactly
once. �

Proof of Theorem 5.1. We first observe that it suffices to prove the
special case ν(γ, γ′) = 1. Indeed, given f -monotone paths γ and γ′ on
P and setting ν = ν(γ, γ′), it is straightforward to define f -monotone
paths γ = γ0, γ1, . . . , γν = γ′ on P satisfying ν(γi−1, γi) = 1 for every
i ∈ [ν − 1]. Then, the triangle inequality and the special case imply
that

dG(γ, γ′) ≤
ν∑
i=1

dG(γi−1, γi) ≤ ν · f2(P )

2
,

as claimed by (6).
So let γ, γ′ be f -monotone paths on P such that ν(γ, γ′) = 1. Let

u and v be their unique common vertices, satisfying f(u) < f(v), for
which γ and γ′ disagree on each fiber f−1(t) ∩ P with f(u) < t < f(v)
and agree on the other fibers; in the special case of Example 5.3, u and
v are the unique vertices vmin and vmax on which f attains its minimum
and maximum value on P , respectively. As in that special case, the
edges of γ and γ′ joining u and v form a simple cycle C which divides the
2-dimensional sphere ∂P into two closed 2-dimensional balls B+ and
B− having common boundary C. Moreover, the f -monotonicity of γ
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and γ′ implies that for each ε ∈ {+,−} and every interior point t of the
interval f(Bε), the fiber f−1(t)∩Bε is homeomorphic to a line segment
or a circle. We wish to apply Proposition 5.2 to the subcomplex F ε of
the boundary complex of P which corresponds to Bε.

We claim that there exist unique walks Pi satisfying the assumptions
of the proposition. Indeed, according to our previous discussion, every
graph Gi−1,i appearing in the diagram (7) for F ε is either a path graph,
with endpoints πi(γ) and πi(γ

′), or a cycle. As a result, there exists
a unique walk Pi in Gi−1,i with initial node πi(γ) and terminal node
πi(γ

′) which traverses each edge in Gi−1,i exactly once, if the latter is
a path graph, and exactly two such walks, corresponding to the two
possible orientations of Gi−1,i, if the latter is a cycle. There are the
following cases, illustrated in Example 5.4, to consider:

Case 1: The relative interior of Bε contains neither vmin nor vmax.
Then, all the Gi−1,i are path graphs and conditions (8) hold by de-
generation of fibers, as in the special case u = vmin and v = vmax of
Example 5.3.
Case 2: The relative interior of Bε contains exactly one of vmin and
vmax, say vmin. Then, the Gi−1,i associated to fibers f−1(t) ∩ Bε with
t < f(u) are cycles and all others are path graphs which degenerate
to cycles as the value of f approaches f(u). Clearly, the cycles can be
uniquely oriented, so that the resulting walks Pi satisfy conditions (8).
Case 3: The relative interior of Bε contains both vmin and vmax. Then,
the Gi−1,i associated to fibers f−1(t) ∩ Bε with f(u) < t < f(v) are
path graphs and the rest are cycles which can be uniquely oriented, so
that the resulting walks Pi satisfy conditions (8).

Thus, Proposition 5.2 applies in all cases and we may conclude that
dG(γ, γ′) ≤ f2(F ε) for each ε ∈ {+,−}. Hence,

dG(γ, γ′) ≤ f2(F+) + f2(F−)

2
= f2(P )/2

and the proof follows. �

Example 5.4. Let P = X(10) be the stacked polytope shown in Fig-
ure 1. The following two situations illustrate the three cases within the
proof of Theorem 5.1.

(a) Consider the f -monotone paths on P

γ = (v1, v3, v6, v9, v10),

γ′ = (v1, v3, v5, v8, v9, v10),

presented as sequences of vertices. Then, the cycle C has edges with
vertex sets {v3, v5}, {v5, v8}, {v8, v9}, {v6, v9} and {v3, v6}, and one
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of the F ε consists of the faces of the facets of P with vertex sets
{v3, v5, v6}, {v5, v6, v8} and {v6, v8, v9} and falls in the first case of the
proof, while the other consists of the faces of the remaining thirteen
facets of P and falls in the third case. Three flips are needed to reach
γ′ from γ across F ε in the former case, and thirteen flips in the latter.
(b) Consider also the f -monotone paths

γ = (v1, v3, v6, v9, v10),

γ′′ = (v1, v3, v4, v5, v8, v9, v10).

Now C has six edges with vertex sets {v3, v4}, {v4, v5}, {v5, v8}, {v8, v9},
{v6, v9} and {v3, v6}, and one of the F ε consists of the faces of the facets
of P with vertex sets {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v5},
{v2, v4, v5}, {v3, v5, v6}, {v5, v6, v8} and {v6, v8, v9}, while the other con-
sists of the faces of the remaining eight facets of P . Both fall in the
second case of the proof. The fibers f−1(t) ∩ Bε are path graphs for
f(v3) < t < f(v9) in either case, and cycles for t ≤ f(v3) or t ≥ f(v9)
in the two cases, respectively. �

Proof of Theorem 1.2. As we have already mentioned, the lower bound
of (3) follows from Lemma 2.1. The upper bound follows from Theo-
rem 5.1 and the obvious inequalities ν(γ, γ′) ≤ b(n−1)/2c and f2(P ) ≤
2n− 4. �

Question 5.5. What is the exact value of the maximum diameter in
Theorem 1.2? In particular, is it equal to the lower bound given there
for every n?

Proof of Proposition 5.2. Consider indices 0 < k ≤ m ≤ ` < n and
denote by K and L the graphs of partial f -monotone paths on F which
arise as inverse limits of the subdiagrams

(9) Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · · αm−1−→ Gm−1

βm−1←− Gm−1,m

and

(10) Gm,m+1
αm+1−→ Gm+1

βm+1←− · · · β`−1←− G`−1,`
α`−→ G`

β`←− G`,`+1

of (7), respectively. Let us call polygon any 2-dimensional face of F
which intersects the fiber f−1(t) ∩ ‖F‖ for some tk−1 < t < tm in
the case of (9) and any 2-dimensional face of F which intersects the
fiber f−1(t) ∩ ‖F‖ for some tm < t < t`+1 in the case of (10). Thus,
the polygons are exactly the 2-dimensional faces of F in the case of
the entire diagram (7) and are in one-to-one correspondence with the
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edges of Gm−1,m in the special case k = m of (9). Define similarly the
graph H of partial f -monotone paths on F and its polygons from the
subdiagram

(11)

Gk−1,k
αk−→ · · · βm−1←− Gm−1,m

αm−→ Gm
βm←− Gm,m+1

αm+1−→ · · · β`←− G`,`+1

of (7) and note that there are natural restriction maps πK : G(F , f)→
K, πL : G(F , f)→ L and πH : G(F , f)→ H.

Assuming that there exist a walk Q in K with initial node πK(γ) and
terminal node πK(δ) which traverses each polygon of (9) exactly once
and a walk R in L with initial node πL(γ) and terminal node πL(δ)
which traverses each polygon of (10) exactly once, such that πi(Q) = Pi
for k ≤ i ≤ m and πi(R) = Pi for m < i ≤ ` + 1, we claim that there
exists a walk P in H with initial node πH(γ) and terminal node πH(δ)
which traverses each polygon of (11) exactly once, such that πi(P) = Pi
for k ≤ i ≤ ` + 1. The proposition then follows by applying the claim
several times, for instance when k = 1 and m = `, for m ∈ [n− 1].

To prove the claim, we only need to patch Q and R along the walk
αm(Pm) = βm(Pm+1) in Gm. Any two nodes ζ of K and η of L pro-
duce by concatenation a node ζ ∗ η of H, provided that the terminal
edge of ζ and the initial edge of η have equal images under αm and
βm, respectively. Let ζ0, ζ1, . . . , ζq be the successive nodes of Q and
η0, η1, . . . , ηr be the successive nodes ofR. By our assumptions, we have
ζ0 ∗ η0 = πK(γ) ∗ πL(γ) = πH(γ) and ζq ∗ ηr = πK(δ) ∗ πL(δ) = πH(δ).
We define P to have nodes of the form ζi ∗ ηj, starting with ζ0 ∗ η0, so
that the node immediately following ζi ∗ ηj is

(12)


ζi+1 ∗ ηj, if well defined,

ζi ∗ ηj+1, if well defined but ζi+1 ∗ ηj is not,

ζi+1 ∗ ηj+1, otherwise.

We leave to the reader to verify that, because αm(Pm) = βm(Pm+1),
this is a well defined walk in H with initial node ζ0 ∗ η0 = πH(γ) and
terminal node ζq ∗ηr = πH(δ). By construction, we have πi(P) = πi(Q)
for k ≤ i ≤ m and πi(P) = πi(R) for m < i ≤ ` + 1, and hence
πi(P) = Pi for k ≤ i ≤ ` + 1. Finally, we note that P traverses
the polygons traversed by Q or R which do not intersect the fiber
f−1(tm)∩‖F‖ by steps which move ζi ∗ ηj to the first two paths shown
in (12), respectively, each exactly once by our assumptions on Q and
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R, and the 2-dimensional faces of F which intersect f−1(tm)∩ ‖F‖ by
steps which move ζi ∗ ηj to the third path shown in (12), each exactly
once by our assumptions on Pm and Pm+1, and that these are precisely
the polygons of (11). �

6. Conclusions

The following tables summarize our results on monotone paths and
arborescences and indicate the problems which remain open.

We have no reason to doubt that Question 3.6 on the minimum
number of f -arborescences in dimensions d ≥ 4 and Question 5.5 on
the maximum diameter of flip graphs in dimension 3 have positive
answers. For the minimum diameter of flip graphs, we expect that the
diameter of G(P, f) is bounded below by the integral part of half the
number of facets for every 3-dimensional polytope P . In particular, we
expect that the following conjecture is true.

Conjecture 6.1. The minimum diameter of G(P, f), when P ranges
over all 3-dimensional polytopes with n vertices and f ranges over all
generic linear functionals on P , is equal to b(n+ 5)/4c for every n ≥ 4.
This can be achieved by simple polytopes for every even n.

# of arborescences all polytopes simple polytopes

d = 3
upper bound Theorem 3.4

Corollary 3.3
lower bound Theorem 3.5

d ≥ 4
upper bound Theorem 3.4 Corollary 3.3
lower bound Question 3.6 Corollary 3.3

Table 1. Summary for f -arborescences

# of monotone paths all polytopes simple polytopes

d = 3
upper bound Theorem 4.2 Conjecture 4.6, Proposition 4.7
lower bound Theorem 4.4

d ≥ 4
upper bound Remark 4.3 open
lower bound Proposition 4.5

Table 2. Summary for f -monotone paths
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diameter of flip graph all polytopes simple polytopes

d = 3
upper bound Theorem 1.2, Question 5.5 open
lower bound Conjecture 6.1

d ≥ 4
upper bound open open
lower bound open open

Table 3. Summary for the diameter of flip graphs

The outdegrees of the vertices of ω(P, f) play an important role in the
proofs of Theorems 1.1 and 1.3. It seems a very interesting problem
to characterize, or at least obtain significant information about, the
possible multisets of these outdegrees when P ranges over all polytopes
of given dimension and number of vertices and f ranges over all generic
linear functionals on P . Finally, it would be interesting to address the
questions raised in this paper for coherent f -monotone paths as well.
Their number typically grows much slower than the total number of
f -monotone paths [2].
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