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CLASSIFICATION OF HIGHER WIDE SUBCATEGORIES FOR HIGHER

AUSLANDER ALGEBRAS OF TYPE A

MARTIN HERSCHEND AND PETER JØRGENSEN

Abstract. A subcategory W of an abelian category is called wide if it is closed under kernels,
cokernels, and extensions. Wide subcategories are of interest in representation theory because of
their links to other homological and combinatorial objects, established among others by Ingalls–
Thomas and Marks–Šťov́ıček.

If d > 1 is an integer, then Jasso introduced the notion of d-abelian categories, where kernels,
cokernels, and extensions have been replaced by longer complexes. Wide subcategories can be
generalised to this situation.

Important examples of d-abelian categories arise as the d-cluster tilting subcategories Mn,d

of modA
d−1
n , where A

d−1
n is a higher Auslander algebra of type A in the sense of Iyama. This

paper gives a combinatorial description of the wide subcategories of Mn,d in terms of what we
call non-interlacing collections.
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1. Introduction

There has recently been considerable interest in wide subcategories of abelian categories, which
are full subcategories closed under kernels, cokernels, and extensions. It was shown in [IT, thm.
1.1] that in the category of finite dimensional representations of a finite, acyclic quiver Q, wide
subcategories have strong links to other objects from homological algebra. For instance, there
is a bijection between wide subcategories and torsion classes. If Q is of extended Dynkin type,
then there are also links to combinatorial objects, such as a bijection to the noncrossing partitions
associated with Q. The bijection between wide subcategories and torsion classes was extended to
a large class of module categories over finite dimensional algebras in [MS, cor. 3.11].

For an integer d > 1, the notion of d-abelian categories was introduced in [J] as an analogue
of abelian categories from the point of view of higher dimensional Auslander-Reiten theory. In
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a d-abelian category, kernels, cokernels and extensions are replaced by longer complexes, see [J,
def. 3.1]. The prototypical example of a d-abelian category is a d-cluster tilting subcategory of
the module category of a finite dimensional algebra. Algebras of global dimension d admitting d-
cluster tilting subcategories with finitely many indecomposables are called d-representation finite
[IO] and have been extensively studied as a source of d-abelian categories. One of the features of a
d-representation finite algebra is that its module category has a unique d-cluster tilting subcategory.

An algebra is 1-representation finite if and only if it is representation finite and hereditary. So
if Q is a Dynkin quiver, then the path algebra of Q is 1-representation finite. For d > 1, the first
known d-representation finite algebras are the higher Auslander algebras of type A introduced by
Iyama in [I2]. They are constructed recursively starting from path algebras of Dynkin type A with
linear orientation. Then for each d, one takes the algebras obtained for d− 1 and passes to their
corresponding higher Auslander algebras. The structure of the corresponding d-abelian categories
was described in detail in [OT]. Recently, higher Auslander algebras of type A have been used in
[DJL] as a tool to study partially wrapped Fukaya categories of symmetric products of the unit
disc with finitely many stops.

The notion of wide subcategories was generalised to d-abelian categories in [HJV, def. 2.11].
A general theory of such wide subcategories was developed in [HJV], and some simple examples
were worked out in [HJV, sec. 7]. In this paper we use the theory of [HJV] and [OT] to describe
combinatorially all wide subcategories of the d-abelian categories which arise from higher Auslander
algebras of type A.

The main result is Theorem 3.1, and the description is in terms of what we call non-interlacing
collections. It has as a special case the bijection in [IT, thm. 1.1] between classic wide subcategories
and non-crossing partitions in Dynkin type A.

The d-cluster tilting subcategory M of the module category of a d-representation finite algebra
also gives rise to a d-cluster tilting subcategory C of its bounded derived category. The category
C has the structure of a (d + 2)-angulated category in the sense of [GKO], and there is a strong
interplay between the d-abelian structure of M and the (d+2)-angulated structure of C . In certain
situations this can even be used to study (d + 2)-angulated categories in a more general setting
(see for instance [JJ]).

In [B] it is shown that for a hereditary algebra A there is a bijection between classic wide sub-
categories of the module category of A and wide subcategories of its bounded derived category.
This was generalised in [F] to the setting described above, i.e., there is a bijection between the wide
subcategories of M and the wide subcategories of C . In particular, this can be applied to higher
Auslander algebras of type A. In other words, combining our results with [F] we obtain a classi-
fication of wide subcategories of the (d + 2)-angulated categories associated to higher Auslander
algebras of type A.

2. Preliminaries

2.1. Conventions. Let K be a field. All categories and functors are assumed to be K-linear. In
all contexts we denote the K-dual HomK(−,K) by D.

Let M be a category and M,N ∈ M . A diagramM ↔ · · · ↔ N , where ↔ represents a non-zero
morphism in either direction is called a walk from M to N . We call a category connected if any
two non-zero objects are connected by a walk.

Let M be an additive category. By an additive subcategory W ⊆ M we mean a full subcategory
closed under direct sums and summands. For a collection of objects C in M we denote by add C
the smallest additive subcategory of M containing C.

We call M Krull-Schmidt if each object decomposes into a direct sum of finitely many inde-
composable objects and each indecomposable object has local endomorphism algebra. For such a
category we denote by RadM its Jacobson radical, i.e.,

RadM (M,N) = {f ∈ M (M,N) | 1M − g ◦ f is invertible for all g ∈ M (N,M)}.
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The square of the Jacobson radical is

Rad2M (M,N) = {f ◦ g | f ∈ RadM (U,N), g ∈ RadM (M,U) for some U ∈ M }.

Next assume that M is skeletally small, Hom-finite and M (M,M)/RadM (M,M) = K for
all indecomposable M ∈ M . We then define the quiver Q of M as follows. As vertices Q0

choose a set of representatives of the isomorphism classes of indecomposable objects in M . For
M,N ∈ Q0 we choose as arrows form M to N a subset of RadM (M,N), that gives a K-basis of

RadM (M,N)/Rad2M (M,N).
By an algebra we mean a finite dimensional K-algebra. For an algebra A we denote the category

of finitely generated right A-modules by modA. By A-module we always mean an object in
modA. We use the terminology of quivers, quiver representations, and path algebras following the
conventions in [ASS].

Let W be an additive subcategory of modA. By a W -resolution of M ∈ modA we mean an
exact sequence

0 → Wm → · · · → W0 → M → 0,

where m > 0 and Wi ∈ W .

2.2. d-abelian categories and wide subcategories. In this section we introduce some basic
results for d-abelian categories. We mainly rely on [J], in which d-abelian categories were first
introduced. We then recall the notion of a wide subcategory of a d-abelian category following
[HJV].

Definition 2.1. Let M be an additive category and

E : Md+1
f
→ Md → · · · → M1

g
→ M0

a sequence in M .

(1) We call

Md+1
f
→ Md → · · · → M1

a d-kernel of g if

0 → M (M,Md+1)
f◦−
→ M (M,Md) → · · · → M (M,M0)

is exact for all M ∈ M .
(2) We call

Md → · · · → M1
g
→ M0

a d-cokernel of f if

0 → M (M0,M)
−◦g
→ M (M,M1) → · · · → M (M,Md)

is exact for all M ∈ M .
(3) If both (1) and (2) are satisfied we call E a d-exact sequence (or a d-extension of M0 by

Md+1).
(4) We say that M is d-abelian if it is idempotent split, every morphism admits a d-kernel

and d-cokernel, and every monomorphism f respectively epimorphism g fits into a d-exact
sequence of the form E.

There is a natural equivalence relation on d-extensions introduced in [J], which we now recall.

Definition 2.2. Let M be a d-abelian category. We call two d-extensions

E : X → Ed → · · · → E1 → Y

and

E
′ : X → E′

d → · · · → E′
1 → Y
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equivalent if there is a commutative diagram

X // Ed
//

��

· · · // E1
//

��

Y

X // E′
d

// · · · // E′
1

// Y

It follows from [J, Proposition 4.10] that this indeed does define an equivalence relation.

Next we introduce the notion of wide subcategories.

Definition 2.3. Let M be a d-abelian category. We call an additive subcategory W ⊆ M wide
if the following conditions hold.

(1) Every morphism f : M → N in W admits a d-kernel and d-cokernel in M with terms in
W .

(2) Every d-extension
E : X → Ed → · · · → E1 → Y

in M with X,Y ∈ W is equivalent to a d-extension

E : X → E′
d → · · · → E′

1 → Y

with E′
i ∈ W for all 1 6 i 6 d.

For a class of objects C in M we denote the smallest wide subcategory of M containing C by
wide C.

A difference between abelian and d-abelian categories is that d-kernels and d-cokernels are not
unique up to isomorphism. Similarly, equivalent d-extensions may be non-isomorphic. However,
it is shown in [J] that uniqueness holds if we replace isomorphism of complexes by homotopy
equivalence.

Next we consider the case when M is a Krull-Schmidt category. We start by showing that
representatives of d-kernels, d-cokernels and d-extensions can be chosen in a certain minimal way
that is unique.

Proposition 2.4. Let M be a d-abelian Krull-Schmidt category and X,Y ∈ M .

(1) Let f ∈ M (X,Y ). Then there is a d-kernel

Kd
kd→ · · ·

k2→ K1 → X

of f such that ki ∈ RadM (Ki,Ki−1) for all 2 6 i 6 d. Moreover, this d-kernel appears as a
direct summand (in the category of M -complexes) of any other d-kernel of f .

(2) Let f ∈ M (X,Y ). Then there is a d-cokernel

Y → Cd
cd→ · · ·

c2→ C1

of f such that ci ∈ RadM (Ci, Ci−1) for all 2 6 i 6 d. Moreover, this d-cokernel appears as a
direct summand (in the category of M -complexes) of any other d-cokernel of f .

(3) In every equivalence class of d-extensions of Y by X there is a representative

E : X → Ed
ed→ · · ·

e2→ E1 → Y

such that ei ∈ RadM (Ei, Ei−1) for all 2 6 i 6 d. Moreover, E is a direct summand (in the
category of M -complexes) of every other equivalent d-extension.

Proof. (1) Let

Kd
kd→ · · ·

k2→ K1
k1→ X

be a d-kernel of f such that the number of indecomposable direct summands of
⊕d

i=1 Ki is minimal.

If ki is not a radical morphism for some 2 6 i 6 d, then we may write Ki = U ⊕ K̃i and
Ki−1 = U ⊕ K̃i−1 such that ki = 1U ⊕ k̃i for some k̃i : K̃i → K̃i−1 where U is indecomposable.
It follows that replacing ki : Ki → Ki−1 in the d-kernel by k′i : K ′

i → K ′
i−1, gives a d-kernel
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with smaller total number of indecomposable direct summands in its terms, which contradicts
minimality.

Next let

K ′
d

k′

d→ · · ·
k′

2→ K ′
1

k′

1→ X

be another d-kernel of f . Using the defining property of d-kernels we obtain the commutative
diagrams

Kd

ad

��

kd // Kd−1

kd−1 //

ad−1

��

· · ·
k2 // K1

k1 //

a1

��

X

K ′
d

k′

d

// K ′
d−1

k′

d−1

// · · ·
k′

2

// K ′
1

k′

1

// X

and

K ′
d

bd

��

k′

d // K ′
d−1

k′

d−1 //

bd−1

��

· · ·
k′

2 // K ′
1

k′

1 //

b1

��

X

Kd
kd

// Kd−1
kd−1

// · · ·
k2

// K1
k1

// X.

Now consider ci = 1Ki
− bi ◦ ai ∈ M (Ki,Ki). Using the property of d-kernels we find morphisms

hi in the diagram below

Kd

cd

��

kd // Kd−1

kd−1 //

cd−1

��hd−1||②②
②②
②②
②②

· · ·

hd−2||②②
②②
②②
②②
②

k2 // K1
k1 //

c1

��h1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

X

0

��
Kd

kd

// Kd−1
kd−1

// · · ·
k2

// K1
k1

// X

such that










c1 = k2 ◦ h1,

ci = ki+1 ◦ hi + hi−1 ◦ ki, 2 6 i 6 d− 1,

cd = hd−1 ◦ kd.

In particular, ci ∈ RadM (Ki,Ki) and so bi ◦ ai = 1Ki
− ci is an isomorphism. Hence we may write

1Ki
= ((bi ◦ ai)

−1bi) ◦ ai. The claim follows as M has split idempotents.
(2) This is dual to (1).
(3) Existence of E follows in the same way as in (1). Now let

E
′ : X

e′d+1

→ E′
d

e′d→ · · ·
e′2→ E′

1

e′1→ Y

be an equivalent d-extension. Then there is a commutative diagram

X
ed+1 // Ed

ed //

ad

��

· · ·
e2 // E1

e1 //

a1

��

Y

X
e′d+1

// E′
d

e′d

// · · ·
e′2

// E′
1

e′1

// Y.

By [J, Proposition 4.10], there is also a commutative diagram

X
e′d+1 // E′

d

e′d //

bd

��

· · ·
e′2 // E′

1

e′1 //

b1

��

Y

X
ed+1

// Ed ed
// · · ·

e2
// E1 e1

// Y.
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As in (1) we proceed to show that ci = 1Ei
− bi ◦ ai ∈ RadM (Ei, Ei) by constructing a diagram

X

0

��

ed+1 // Ed

ed //

hd~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

cd

��

· · ·
e2 //

hd−1}}④④
④④
④④
④④

E1
e1 //

h1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
c1

��

Y

0

��
X

ed+1

// Ed ed
// · · ·

e2
// E1 e1

// Y

such that










c1 = e2 ◦ h1,

ci = ei+1 ◦ hi + hi−1 ◦ ei, 2 6 i 6 d,

0 = hd ◦ ed+1.

By the defining property of d-cokernels, the last condition implies that hd factors through ed and
so is a radical morphism. Hence ci ∈ RadM (Ei, Ei) for all 1 6 i 6 d and the claim follows as in
(1). �

Definition 2.5. We call the d-kernels, d-cokernels and d-extensions appearing in Proposition 2.4
minimal. By the Krull-Schmidt property it follows immediately that they are unique up to iso-
morphism.

A consequence of Proposition 2.4 is the following characterisation of wide subcategories.

Corollary 2.6. Let M be a d-abelian Krull-Schmidt category and W ⊆ M a full subcategory closed
under direct sums and direct summands. Then W is wide if and only if the following conditions
hold.

(1) For any morphism f : M → N in W , the terms of its minimal d-kernel and d-cokernel in
M lie in W .

(2) For any X,Y ∈ W , every minimal d-extension of Y by X in M has terms in W .

The following result about d-kernels will be useful to compute wide subcategories.

Proposition 2.7. Let M be a d-abelian Krull-Schmidt category, M ∈ M indecomposable and

Kd → · · · → K1
k
→ M be a d-kernel of a non-zero morphism M

f
→ N . If U ∈ M is indecomposable

and there exists g ∈ M (U,M) \ Rad2M (U,M) such that f ◦ g = 0, then U appears as a summand
in K1.

Proof. Assume that U does not appear as a summand in K1. Since f ◦ g = 0 we may write
g = k ◦ h for some h ∈ M (U,K1) = RadM (U,K1). Since f is non-zero and M is indecomposable,
k ∈ RadM (K1,M) and so g ∈ Rad2M (U,M), which is a contradiction. �

2.3. Wide subcategories of d-cluster tilting subcategories. Let A be a finite dimensional
algebra and modA the category of finitely generated right A-modules. We recall the the definition
of d-cluster tilting from [I2] (see also [HJV, Section 2])

Definition 2.8. Let M be a functorially finite subcategory of modA. We say that M is d-cluster
tilting if

M = {X ∈ modA | ExtiA(X,M) = 0 for all M ∈ M , 1 6 i 6 d− 1}

= {X ∈ modA | ExtiA(M,X) = 0 for all M ∈ M , 1 6 i 6 d− 1}.

As mentioned in the introduction it is shown in [J] that any d-cluster tilting subcategory M is
d-abelian. Moreover, the following characterisation of d-kernels, d-cokernels and d-exact sequences
in M holds.

Proposition 2.9. Let M ⊆ modA be d-cluster tilting. Then M is d-abelian. Let

Md+1
f
→ Md → · · · → M1

g
→ M0

be a sequence in M .
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(1) The sequence Md+1 → Md → · · · → M1 is a d-kernel of g if and only if

0 → Md+1 → Md → · · · → M1 → M0

is exact in modA.
(2) The sequence Md → · · · → M1 → M0 is a d-cokernel of f if and only if

Md+1 → Md → · · · → M1 → M0 → 0

it is exact in modA.
(3) The sequence Md+1 → Md → · · · → M1 → M0 is d-exact if and only if

0 → Md+1 → Md → · · · → M1 → M0 → 0

is exact in modA.
(4) Let X,Y ∈ M . There is a bijection from the set of equivalence classes of d-extensions of

Y by X in M to ExtdA(Y,X) that sends the equivalence class of a d-extension

0 → X → Ed → · · · → E1 → Y → 0

to its Yoneda-class

[0 → X → Ed → · · · → E1 → Y → 0].

Proof. The fact that M is d-abelian is shown in [J, Theorem 3.16].
The statements (1), (2), (3) are well-known and easily shown using the fact that ExtiA(M,M ′) =

0 for all M,M ′ ∈ M and 1 6 i 6 d.
Statement (4) follows from [I1, Proposition A.1]. �

It will be convenient to construct wide subcategories from several smaller wide subcategories.
For this purpose the following result is useful.

Proposition 2.10. Let M ⊆ modA be d-cluster tilting and W1,W2 ⊆ M wide subcategories. If

HomA(X1, X2) = HomA(X2, X1) = ExtdA(X1, X2) = ExtdA(X2, X1) = 0

for all X1 ∈ W1, X2 ∈ W2. Then add{W1,W2} ⊆ M is wide.

Proof. Let X,Y ∈ add{W1,W2}. Then we may write X = X1 ⊕ X2 and Y = Y1 ⊕ Y2 for some
X1, Y1 ∈ W1 and X2, Y2 ∈ W2

Let f : X → Y be a morphism. By assumption we may write f = f1⊕f2 for some f1 : X1 → Y1

and f2 : X2 → Y2. Since W1 and W2 are wide there are d-kernels respectively d-cokernels of f1 and
f2 with terms in add{W1,W2}. Taking their direct sums gives a d-kernel respectively d-cokernel of
f .

Next consider the natural map

ExtdA(Y1, X1)⊕ ExtdA(Y2, X2) → ExtdA(Y,X)

defined by the biadditivity of ExtdA. It maps ([E1], [E2]) to [E1 ⊕ E2] and is bijective since

ExtdA(Y1, X2) = ExtdA(Y2, X1) = 0. Hence, by Proposition 2.9, any d-extension of Y by X is
equivalent to E1 ⊕ E2 for some d-extensions E1 in W1 and E2 in W2. �

To compute wide subcategories of d-cluster tilting subcategories, we will apply the following
result.

Theorem 2.11. [HJV, Theorem B] Let A be a finite dimensional algebra and M a d-cluster tilting
subcategory of modA. Let W ⊆ M be an additive subcategory. Let P ∈ W be a module and set
B = EndA(P ), so that P becomes a B-A-bimodule. Assume the following:

(1) As an A-module P has finite projective dimension.

(2) ExtiA(P, P ) = 0 for all i > 1.
(3) Each W ∈ W admits an addP -resolution

0 → Pm → · · · → P0 → W → 0, Pi ∈ addP.

(4) HomA(P,W ) ⊆ modB is d-cluster tilting.
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Then W is a wide subcategory of M and there is an equivalence of categories

−⊗B P : HomA(P,W ) → W .

2.4. Higher Auslander algebras of type A. Next we introduce a description of the higher
Auslander algebras of type A by quivers and relations. Our notation differs slightly from the one
in [OT].

We begin by introducing some combinatorial data that is needed to make our definitions.

Definition 2.12. Throughout we fix two integers n and d with n > 1 and d > 0.

(1) Set Nn,d := {1, . . . , n+ d}.

(2) Set Vn,d := {(x0, x1, . . . , xd) ∈ Nd+1
n,d | x0 < x1 < · · · < xd}.

(3) For each k ∈ Nn,d, define the partial functions

σ+
k : Vn,d → Vn,d and σ−

k : Vn,d → Vn,d

by σ±
k (x) = y, where

yi =

{

xi ± 1 if i = k,

xi if i 6= k,

whenever such y ∈ Vn,d exists.
(4) Define the relations 4 and 2 on Vn,d by

x4 y if and only if x0 6 y0 < x1 6 y1 < · · · < xd 6 yd,

and

x2 y if and only if x0 < y0 6 x1 < y1 6 · · · 6 xd < yd.

(5) Let x, y ∈ Vn,d. We say that x and y interlace in case x4 y, y4 x, x2 y or y2x hold.
(6) Let X ,Y ⊆ Vn,d. We say that X and Y interlace in case there are x ∈ X and y ∈ Y such that

x and y interlace.
(7) For S ⊆ Nn,d we let XS be the set of all x ∈ Vn,d such that xi ∈ S for all i. We say that

S, S′ ⊆ Nn,d interlace in case XS and XS′ interlace.
(8) For x ∈ Vn,d we set Sx = {x0, . . . xn+d} ⊆ Nn,d. Note in particular that XSx

= {x}.

Next define a quiver Qn,d with vertices Vn,d and arrows αx
k : x → σ+

k (x), for all k ∈ Nn,d and

x ∈ Vn,d such that σ+
k (x) is defined.

Let k, l ∈ Nn,d be two distinct elements and x ∈ Vn,d be such that y ∈ Vn,d, where

yi =

{

xi ± 1 if i ∈ {k, l},

xi if i 6∈ {k, l},

We introduce a relation ρxkl from x to y defined by

ρxkl =















αx
kα

σ
+

k
(x)

l − αx
l α

σ
+

l
(x)

k if both σ+
k (x) and σ+

l (x) are defined,

αx
kα

σ
+

k
(x)

l if σ+
k (x) is defined but σ+

l (x) is undefined,

αx
l α

σ
+

l
(x)

k if σ+
l (x) is defined but σ+

k (x) is undefined,

and let In,d be the ideal in KQn,d generated by all ρxkl.
The algebra Ad

n = (KQn,d/In,d)
op is called a higher Auslander algebra of type A. Note that

if d = 0, then Ad
n is just a path algebra of Dynkin type An, which strictly should not be called

a higher Auslander algebra. We include it so that for d > 0 we may say that Ad
n is the higher

Auslander algebra of Ad−1
n . To explain why this is so we define an indecomposable Ad−1

n -module
Mx for each x ∈ Vn,d. As a representation Mx assigns the vector space K to all vertices y ∈ Vn,d−1

such that xi 6 yi < xi+1 for all 0 6 i 6 d − 1. To all other vertices Mx assigns the zero vector
space. Moreover, all arrows K → K act as the identity, while other arrows (by necessity) act as
zero.
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Example 2.13. Let us consider n = 4 and d = 2. Then the quiver Q4,1 is

12

13

14

15

23

24

25

34

35

45

??⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧

��❄
❄❄

❄❄

��❄
❄❄

❄❄

��❄
❄❄

❄❄

??⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧

��❄
❄❄

❄❄

��❄
❄❄

❄❄

??⑧⑧⑧⑧⑧ ��❄
❄❄

❄❄

The modules M246 and M136 are given as representations of (Q4,1)op as follows

M246 :

0

0

0

0

0

K

K

K

K

0

0

��⑧⑧
⑧⑧
⑧

0

��⑧⑧
⑧⑧
⑧

0

��⑧⑧
⑧⑧
⑧

0
__❄❄❄❄❄

0
__❄❄❄❄❄

0
__❄❄❄❄❄

0

��⑧⑧
⑧⑧
⑧

1

��⑧⑧
⑧⑧
⑧

1
__❄❄❄❄❄

1
__❄❄❄❄❄

1

��⑧⑧
⑧⑧
⑧ 0

__❄❄❄❄❄

M136 :

0

K

K

K

K

K

K

0

0

0

0

��⑧⑧
⑧⑧
⑧

1

��⑧⑧
⑧⑧
⑧

1

��⑧⑧
⑧⑧
⑧

1
__❄❄❄❄❄

1
__❄❄❄❄❄

1
__❄❄❄❄❄

1

��⑧⑧
⑧⑧
⑧

1

��⑧⑧
⑧⑧
⑧

0
__❄❄❄❄❄

0
__❄❄❄❄❄

0

��⑧⑧
⑧⑧
⑧ 0

__❄❄❄❄❄

Theorem 2.14. [I2][OT, Section 3] Let n and d be positive integers. Then Ad−1
n has global

dimension d and admits a unique basic d-cluster tilting module

M =
⊕

x∈Vn,d

Mx.

Moreover, End
A

d−1
n

(M) is isomorphic to An,d.

We let Mn,d = add{M}, where M is the d-cluster tilting module in Theorem 2.14. Then Mn,d

is d-abelian. Our aim is to classify the wide subcategories of Mn,d.
The isomorphism from An,d to End

A
d−1
n

(M) comes from realising the quiver of Mn,d as Qn,d.
We illustrate this in one example.

Example 2.15. Consider the case n = 4 and d = 2. Below is the quiver of M4,2 (i.e, Q4,2).

M123

M124

M125

M126

M134

M135

M136

M145

M146

M156

M234

M235

M236

M245

M246

M256

M345

M346

M356

M456

::ttt

::ttt

::ttt

$$❏❏
❏

$$❏❏
❏

$$❏❏
❏

::ttt

::ttt

$$❏❏
❏

$$❏❏
❏

::ttt $$❏❏
❏

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

::ttt

::ttt

$$❏❏
❏

$$❏❏
❏

::ttt $$❏❏
❏

��✎✎
✎✎
✎✎
✎
✎✎
✎✎

��✎✎
✎✎
✎✎
✎
✎✎
✎✎

��✎✎
✎✎
✎✎
✎
✎✎
✎✎

::ttt $$❏❏
❏

��✎✎
✎
✎✎
✎✎
✎✎
✎✎
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Note in particular, that there is a path from M136 to M246, the modules appearing in Example 2.13.
Considering the relations defining A4,2, this path should correspond to a nonzero morphism φ :
M136 → M246. Indeed, such a φ is easy to find. As a morphism of representations we may define
it by φ24 = φ25 = 1K and φij = 0 for all other indices ij. Compare this with the fact that
(1, 3, 6)4(2, 4, 6).

As in the above example, there is in general an obvious bijection between the indecomposables

in Mn,d and Qn,d
0 . Moreover, morphisms corresponding to the arrows in Qn,d

0 are easy to write
down. In fact morphisms and extensions between indecomposables in Mn,d have been computed
in [OT]. Here we recall some of their results rewritten in our notation.

Theorem 2.16. [OT, Theorem 3.6]

(1) Let x ∈ Vn,d−1 and x′ = (1, x0 + 1, . . . , xd−1 + 1) ∈ Vn,d. Then exA
d−1
n = Mx′ .

(2) Let y ∈ Vn,d−1 and y′ = (y0, . . . , yd−1, n+ d) ∈ Vn,d. Then D(Ad−1
n ey) = My′ .

(3) For x, y ∈ Vn,d we have

dimK Hom
A

d−1
n

(Mx,My) =

{

1 if x4 y,

0 else.

(4) For x, y ∈ Vn,d we have

dimK Extd
A

d−1
n

(My,Mx) =

{

1 if x2 y,

0 else.

Note that in particular Theorem 2.16(3) implies that End
A

d−1
n

(Mx) = K, which verifies that
Mx is indeed indecomposable.

By Theorem 2.16(3) we find that if x4 y, then any path from x to y in Qn,d gives a basis of
Hom

A
d−1
n

(Mx,My). Similarly, Theorem 2.16(4) can be made more explicit.

Theorem 2.17. [OT, Theorem 3.8] If x2 y, then there is an exact sequence

Exy : 0 → Mx → Ed → · · ·E1 → My → 0,

where Ek =
⊕

z Mz, taken over all z ∈ Vn,d such that zi ∈ {xi, yi} for all i and

|{i | zi = xi}| = k.

Note that x2 y implies xi 6= yi for all i, and so |{i | zi = xi}| = k may be replaced with

|{i | zi = yi}| = d− k + 1

in the above condition. Moreover, we may deduce the following result which is useful for computing
wide subcategories

Proposition 2.18. If x2 y, then Mz ∈ wide{Mx,My} for any z ∈ Vn,d that satisfies zi ∈ {xi, yi}
for all i.

Proof. Each module Mz satisfying zi ∈ {xi, yi} for all i, appears as a summand in exactly one
term of Exy. Hence the morphisms in Exy are all radical morphisms. The claim now follows from
Corollary 2.6 and Proposition 2.9. �

Corollary 2.19. Let x ∈ Vn,d and s ∈ Nn,d such that s < x0. Then there is an exact sequence

0 → Mxd → · · · → Mx0 → Mx → 0

where xi = (s, x0, . . . xi−1, xi+1, . . . xd) ∈ Vn,d. In particular, if s = 1, this is the minimal projective
resolution of Mx.

Proof. The sequence is precisely Exdx from Theorem 2.17. If s = 1, then each Mxi is projective
by Theorem 2.16(1). �
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3. Wide subcategories

3.1. Main result. In this section we classify wide subcategories of Mn,d. We start by introducing
the basic building blocks for such subcategories. Let S ⊆ Nn,d and recall the subset XS ⊆ Vn,d

from Definition 2.12(7). We set

WS = add{Mx | x ∈ XS} ⊆ Mn,d.

Since Sx = {x} (see Definition 2.12(8)), we have in particular that WSx
= add{Mx}.

Note that WS is non-zero if and only if |S| > d + 1. In that case we call S admissible. In the
interest of brevity a set of admissible subsets of Nn,d is called a collection. A collection is called
non-interlacing if it has no two distinct members that interlace. With this terminology we are now
ready to state the main result of our paper.

Theorem 3.1. Let n and d be positive integers. Then there is a bijection

{non-interlacing collections of subsets of Nn,d} → {wide subcategories of Mn,d}

that sends a collection Σ to add{WS | S ∈ Σ}.

Remark 3.2. Note that by Theorem 2.16, two admissible subsets S, S′ ⊆ Nn,d interlace if and
only if there are Mx ∈ WS and Mx′ ∈ WS′ such that one of the following conditions hold:

Hom
A

d−1
n

(Mx,Mx′) 6= 0, Extd
A

d−1
n

(Mx,Mx′) 6= 0,

Hom
A

d−1
n

(Mx′ ,Mx) 6= 0, Extd
A

d−1
n

(Mx′ ,Mx) 6= 0.

In the remaining sections we will prove Theorem 3.1.

3.2. Injectivity. In this section we show that the map in Theorem 3.1 is well-defined and injective.
We begin by showing that categories of the form WS are wide.

Proposition 3.3. Let S ⊆ Nn,d be admissible. Then

(1) The subcategory WS ⊆ Mn,d is wide.
(2) Let n′ = |S| − d and ι : Nn′,d → S be the unique order preserving bijection. Then there is an

equivalence from Mn′,d to WS sending Mx′ to Mι(x′), where ι(x′) = (ι(x′
0), . . . , ι(x

′
d)).

(3) In particular, the terms of d-kernels, d-cokernels and d-extensions can be computed for WS as
in Mn′,d using ι.

Proof. We apply Theorem 2.11. Let s = minS. Set

P =
⊕

x∈XS, x0=s

Mx.

Since Ad−1
n has global dimension d the projective dimension of P is at most d. Theorem 2.16(4)

implies Extd
A

d−1
n

(P, P ) = 0. The exact sequence in Corollary 2.19 provides an add{P}-resolution

for each Mx, with x ∈ XS .
We claim that End

Ad−1
n

(P ) is isomorphic to Ad−1
n′ . To see this note that ι gives a bijection be-

tween the the vertices of Qn′,d−1 and the indecomposable summands of P by sending (x′
0, . . . , x

′
d−1)

to Mx, where
x = (s, ι(x′

0 + 1), ι(x′
1 + 1), . . . , ι(x′

d−1 + 1)).

Given the descriptions of Ad−1
n′ and Mn,d by quivers and relations, it is readily checked that this

bijection extends to an isomorphism from Ad−1
n′ to End

Ad−1
n

(P ).

Hence modEnd
A

d−1
n

(P ) has a unique d-cluster tilting subcategory that we may identify with

Mn′,d. Next we claim that under this identification Hom
A

d−1

n′

(P,−) sends Mx ∈ WS to Mι−1(x).

If x0 = s, then Mx ∈ add{P} and the claim is immediate. Otherwise the consider the add{P}-
resolution of Mx given in Corollary 2.19. Applying Hom

A
d−1

n′

(P,−) to this resolution we find the

minimal projective resolution of Mι−1(x) ∈ Mn′,d and the claim follows. Hence Hom
Ad−1

n′

(P,WS)

is the d-cluster tilting subcategory of modEnd
A

d−1
n

(P ).
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Thus Theorem 2.11 applies and the equivalence claimed in part (2) is given by the functor
−⊗End

A
d−1
n

(P ) P . �

Corollary 3.4. The map in Theorem 3.1 is well-defined and injective.

Proof. For a non-interlacing collection Σ we need to show that add{WS | S ∈ Σ} is wide. By
Proposition 3.3(1), each WS is wide. Moreover, since the sets S are non-interlacing, there are no
non-trivial morphisms or d-extensions between modules in WS and WS′ for S 6= S′ (see Remark 3.2).
It follows from Proposition 2.10 that add{WS | S ∈ Σ} is wide.

To show injectivity consider a wide subcategory W in the image of the map in Theorem 3.1.
Let PW be the poset of all admissible sets S satisfying WS ⊆ W ordered by inclusion. Now write
W = add{WS | S ∈ Σ} for a non-interlacing collection Σ = {S1, . . . , Sl}. We claim that Σ equals
the set of maximal elements in PW . This implies injectivity as we can recover Σ from W .

To show the claim first note that for i 6= j we have Si 6⊆ Sj as Si and Sj do not interlace. It
remains to show for all S ∈ PW that S ⊆ Si for some i. To do this note that WS is connected and
satisfies

WS ⊆ add{WS1
, . . . ,WSl

}.

Since Σ is non-interlacing there is no walk in W connecting some Mx ∈ WSi
with some My ∈ WSj

for i 6= j, and so WS ⊆ WSi
for some i, which implies S ⊆ Si. �

3.3. Surjectivity. It remains to show that the map in Theorem 3.1 is surjective. We will do this
using several Lemmas, each stating that a certain wide subcategory is of the form WS for some
admissible set S. Lemmas 3.5, 3.6 and 3.7 take care of certain special cases that have to be dealt
with separately.

Lemma 3.5. Assume n > 2. Let l > d + 2 and s1 < · · · < sl be elements in Nn,d. Set
S = {s1, . . . , sl−1} and S′ = {s2, . . . sl}. Then

wide{WS,WS′} = WS∪S′ .

Proof. We apply Proposition 3.3(3) to S∪S′. Hence we may assume that S = {1, . . . n+d−1} and
S′ = {2, . . . n + d} so that WS∪S′ = Mn,d. By Proposition 2.18 any module Mz ∈ Mn,d satisfies
Mz ∈ wide{Mx,My} for some Mx ∈ WS and My ∈ WS′ . The claim follows. �

Lemma 3.6. We have
wide{M(1,2,...,d+1),W{2,3,...,n+d}} = Mn,d.

Proof. The proof is by induction on n. The case n = 1 is trivial. Assume n > 1. By induction
hypothesis

wide{M(1,2,...,d+1),W{2,3,...,n+d−1}} = W{1,2,...,n+d−1}.

Since W{2,3,...,n+d−1} ⊆ W{2,3,...,n+d} we have

wide{M(1,2,...,d+1),W{2,3,...,n+d}} ⊇ wide{W{1,2,...,n+d−1},W{2,3,...,n+d}}.

Now applying Lemma 3.5 with S = {1, 2, . . . , n+ d− 1} and S′ = {2, 3, . . . , n+ d} we get

wide{M(1,2,...,d+1),W{2,3,...,n+d}} ⊇ WS∪S′ = Mn,d.

�

Lemma 3.7. Let x, x′ ∈ Nn,d such that xk 6= x′
k for some k and xi = x′

i for all i 6= k. Then

wide{Mx,Mx′} = WSx∪Sx′

Proof. Without loss of generality assume xk < x′
k. Apply Corollary 2.19 to

y = (x1, x2, . . . , xk, x
′
k, xk+1, . . . , xd)

with s = x0 to obtain the exact sequence

E : 0 → Myd → · · · → My0 → My → 0.

Then yk = x and yk−1 = x′ (for the extreme case k = 0, this should be interpreted as y = y−1 = x′).
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Extracting the morphism Myk → Myk−1 we get a non-zero morphism f : Mx′ → Mx. Moreover,
we may view the sequence E as the concatenation of the map f with its minimal d-kernel and
d-cokernel. In particular, the terms of the sequence all belong to wide{Mx,Mx′}. But the terms
are exactly the indecomposable modules in WSx∪Sx′

. �

In general the d-kernels and d-cokernels of morphisms Mx → My are not as easy to compute as
in the proof of Lemma 3.7. Fortunately we will not need complete information about such d-kernels
and d-cokernels to prove our results. More precisely we will make do with the following statement.

Lemma 3.8. Let f : Mx → My be a non-zero morphism.

(1) If xk−1 < yk−1 < xk, then for x′ = (x0, . . . , xk−1, yk−1, xk+1, . . . , xd) the module Mx′ appears
as a summand in the term K1 in any d-kernel Kd → · · · → K1 → Mx of f . In particular,
Mx′ ∈ wide{Mx,My} and there is a non-zero morphism Mx′ → Mx.

(2) If yk < xk+1 < yk+1, then for y′ = (y0, . . . , yk−1, xk+1, yk+1, . . . , yd) the module My′ appears
as a summand in the term C1 of any d-cokernel My → C1 → · · · → Cd of f . In particular,
My′ ∈ wide{Mx,My} and there is a non-zero morphism My → My′ .

Proof. We only prove (1) as (2) is dual.
The d-kernels of f may be computed in the wide subcategory WS , where S = Sx ∪ Sy. By

Proposition 3.3(3), we may assume that S = Nn,d and WS = Mn,d. Then x′ = σ−
k (x) and so there

is an arrow in Qd
n from x′ to x. Hence there is a corresponding morphism g ∈ RadMn,d

(Mx′ ,Mx) \

Rad2Mn,d
(Mx′ ,Mx). Notice that x′ 64 y and so Hom

A
d−1
n

(Mx′ ,My) = 0 by Theorem 2.16(3). In
particular, f ◦ g = 0 and the claim follows from Proposition 2.7. �

Before continuing with the proof we illustrate the utility of Lemma 3.8 in an example.

Example 3.9. Let n = 4 and d = 2 as in Example 2.15 and consider W = wide{M136,M246}.
Since {1, 3, 6} and {2, 4, 6} interlace, we must have W = W{1,2,3,4,6} in order for Theorem 3.1
to hold. Indeed, if W = add{WS | S ∈ Σ} for some non-interlacing collection Σ, we must have
{1, 3, 6} ⊆ S and {2, 4, 6} ⊆ S for some common S ∈ Σ and so the smallest possible collection
is Σ = {{1, 2, 3, 4, 6}}. Below is the quiver of M4,2 with the indecomposables in W{1,2,3,4,6}

underlined.

M123

M124

M125

M126

M134

M135

M136

M145

M146

M156

M234

M235

M236

M245

M246

M256

M345

M346

M356

M456

::tt

::tt

::tt

$$❏❏

$$❏❏
❏

$$❏❏

::tt

::tt

$$❏❏
❏

$$❏❏

::tt $$❏❏

��✎✎
✎
✎
✎
✎
✎
✎
✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎
✎
✎
✎
✎
✎
✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✎✎
✎
✎
✎
✎
✎
✎
✎
✎

��✎✎
✎✎
✎✎
✎✎
✎✎
✎

::tt

::tt

$$❏❏
❏

$$❏❏

::tt $$❏❏

��✎✎
✎✎
✎✎
✎
✎✎
✎✎

��✎✎
✎
✎
✎
✎
✎
✎
✎
✎

��✎✎
✎✎
✎✎
✎
✎✎
✎✎

::tt $$❏❏

��✎✎
✎
✎✎
✎✎
✎✎
✎✎

We verify that W = W{1,2,3,4,6} does indeed hold by applying Lemma 3.8 repeatedly.
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Considering the 2-kernel of the nonzero morphism M136 → M246 we find that M126,M134 ∈
W . Considering the 2-cokernel we find M346 ∈ W . Similarly, the 2-cokernel of the the nonzero
morphism M134 → M136 gives M146 ∈ W .

Next we consider the nonzero morphism M126 → M136 and get M123,M236 ∈ W . This allows us
to consider M236 → M246, which gives M234 ∈ W , and then M134 → M234, which gives M124 ∈ W .

Hence all 10 indecomposables in W{1,2,3,4,6} lie in W .

We now continue with the general case. The following Lemma is the main tool in the proof of
Theorem 3.1 and can be thought of as a generalisation of Example 3.9. The proof is similar to the
strategy of Example 3.9 in that we successively build up more and more objects in a certain wide
subcategory.

Lemma 3.10. Let x ∈ Nn,d and S ⊆ Nn,d admissible. If

Hom
A

d−1
n

(WS ,Mx) 6= 0 or Hom
A

d−1
n

(Mx,WS) 6= 0,

then wide{WS,Mx} = WS∪Sx
.

Proof. Recall from Theorem 2.16(3) that

dimK Hom
A

d−1
n

(Mx,My) =

{

1 if x4 y,

0 else.

We will use this freely throughout the proof to characterise when Hom
A

d−1
n

(Mx,My) = 0.

Set W = wide{WS ,Mx}. It is enough to show the inclusion WS∪Sx
⊆ W . Note that the claim

is trivial if Sx ⊆ S. We proceed in several steps.
Step 1: First consider the case when Sx contains only one element a that is not in S, i.e.,

S∪Sx = S∪{a}. We use induction on |S|. If |S| = d+1, then WS consists of a single indecomposable
Mx′ and the claim follows by Lemma 3.7.

Next assume that |S| > d + 1. By Proposition 3.3(3), we may assume S ∪ {a} = Nn,d so that
WS∪Sx

= Mn,d. We proceed with a case by case analysis depending on the value of a. Our strategy
in each case is to produce more and more elements of W to finally reach Mn,d.

Step 1.1: Assume a = 1, i.e., S = {2, . . . , n+d}. Then x0 = 1 and we have Hom
A

d−1
n

(WS ,Mx) =
0 so that

Hom
A

d−1
n

(Mx,WS) 6= 0

which implies x1 > 3. Next let x′ ∈ Nn,d be such that x′
0 = 1, x′

1 > 3, Mx′ ∈ W and the value of
∑d

i=1 x
′
i is as small as possible. We claim that

x′ = (1, 3, 4, . . . , d+ 2).

Otherwise there is some b > 3 satisfying x′
k−1 < b < x′

k for some k > 1. Set

y =

{

(2, x′
1, . . . , x

′
k−2, b, x

′
k, . . . x

′
d), if k > 2,

(b, x′
1, . . . x

′
d), if k = 1.

Then My ∈ WS and applying Lemma 3.8(1) to a non-zero morphism Mx′ → My we get that
Mx′′ ∈ wide{Mx′,My} ⊆ W for

x′′ = (1, x′
1, . . . , x

′
k−1, b, x

′
k+1, . . . , x

′
d)

contradicting the minimality of
∑d

i=1 x
′
i.

Next set

y′ = (2, 3, . . . , d+ 2).

Then My′ ∈ W and applying Lemma 3.7 to Mx′ and My′ we find that

M(1,2...,d+1) ∈ wide{Mx′,My′} ⊆ W .

Finally by Lemma 3.6,

Mn,d = wide{M(1,2,...,d+1),W{2,3,...,n+d}} ⊆ W .
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Step 1.2: Assume a = n + d, i.e., S = {1, . . . , n + d − 1}. This is similar to Step 1.1 and the
proof is omitted.

Step 1.3: Assume 1 < a < n+ d, i.e., S = {1, . . . , a− 1, a+1, . . . , n+ d}. Then xk = a for some
k. The condition

Hom
A

d−1
n

(WS ,Mx) 6= 0 or Hom
A

d−1
n

(Mx,WS) 6= 0,

implies that xk−1 < a− 1 or xk+1 > a+ 1. We treat these inequalities in three separate substeps.
Step 1.3.1: Assume both xk−1 < a− 1 and xk+1 > a+ 1 hold. In particular 1 6 k 6 d− 1. Set

x′ = (x0, . . . , xk−1, a− 1, xk+1, . . . , xd).

Then Mx′ ∈ WS ⊆ W and applying Lemma 3.7 to Mx and Mx′ we find that Mx′′ ∈ W for

x′′ = (x1, . . . xk−2, a− 1, a, xk+1, . . . , xd).

Set

y = (x1, . . . xk−2, a− 1, a+ 1, xk+1, . . . , xd)

and S′ = S \ {1}. Then Mx′′ ∈ WS′∪{a} and My ∈ WS′ . Moreover, Hom
A

d−1
n

(Mx′′ ,My) 6= 0 and so
by induction hypothesis

wide{Mx′′ ,WS′} = WS′∪{a} = W{2,...,n+d}.

Hence

W ⊇ wide{Mx′′,WS′ ,WS} = wide{W{2,...,n+d},WS}.

Set

z =

{

(1, 3, . . . , a− 1, a+ 1, . . . , d+ 3), if a 6 d+ 2,

(1, 3, . . . , d+ 2), if a > d+ 2.

Then Mz ∈ WS and Hom
A

d−1
n

(Mz,W{2,...,n+d}) 6= 0. By Step 1.1

wide{W{2,...,n+d},WS} = Mn,d.

Step 1.3.2: Assume xk−1 < a − 1 and xk+1 = a + 1. Since |S| > d + 1 there is some b ∈
S \ (Sx ∪ {a− 1}). Choose b as small as possible. There are two cases to consider: b < a− 1 and
b > a+ 1.

Step 1.3.2.1: Assume b < a − 1. First we replace x with something more suitable. For this

purpose let x′ ∈ Nn,d be such that x′
i = xi for all i > k, x′

k−1 < a − 1, Mx′ ∈ W and
∑k−1

i=1 x′
i

as large as possible. Notice that such x′ exists since x is a candidate. We claim that x′
0 > 1.

Otherwise there is b′ < a− 1 such that x′
l < b′ < x′

l+1 for some 0 6 l 6 k − 1. Set

y =

{

(x′
0, . . . , x

′
l, b

′, x′
l+2, . . . , x

′
k−1, a− 1, x′

k+1, . . . , x
′
d), if l < k − 1,

(x′
0, . . . , x

′
l, b

′, x′
k+1, . . . , x

′
d), if l = k − 1.

Then My ∈ WS ⊆ W and applying Lemma 3.8(2) to a non-zero morphism My → Mx′ we find that
Mx′′ ∈ W for

x′′ = (x′
0, . . . , x

′
l−1, b

′, x′
l+1, . . . , x

′
d)

contradicting the maximality of
∑k−1

i=1 x′
i.

Now set

y′ = (x′
0, . . . , x

′
k−1, a− 1, x′

k+1, . . . , x
′
d).

Then Hom
A

d−1
n

(My′ ,Mx′) 6= 0 and My′ ∈ WS′ for S′ = S\{1}. As in step 1.3.1 we get by induction
that

wide{Mx′,WS′} = WS′∪{a} = W{2,...,n+d}

and Step 1.1 yields

W ⊇ wide{Mx′ ,WS′ ,WS} = Mn,d.

Step 1.3.2.2: Assume b > a + 1. As before we replace x with something more suitable. Let

x′ ∈ Nn,d be such that x′
i = xi for all i 6 k, Mx′ ∈ W and

∑d

i=k+1 x
′
i as large as possible. Note

that there is a b′ such that x′
l < b′ < x′

l+1 for some l > k or x′
d < b′.
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We claim that l = k so that Step 1.3.1 can be applied after replacing x by x′. To show this we
assume l > k and reach a contradiction.

Let
x′′ = (x′

0, . . . x
′
k−1, a− 1, x′

k+1, . . . , x
′
d)

and apply Lemma 3.7 to Mx′ and Mx′′ to obtain My ∈ W for

y = (x′
0, . . . x

′
k−1, a− 1, a, x′

k+2, . . . , x
′
d).

Next set
y′ = (x′

0, . . . x
′
k−1, a− 1, x′

k+1, x
′
k+2, . . . , x

′
l−1, b

′, x′
l+1, . . . , x

′
d).

Then My′ ∈ WS ⊆ W . Applying Lemma 3.8(2) to a non-zero morphism My → My′ we obtain
My′′ ∈ W for

y′′ = (x′
0, . . . x

′
k−1, a, x

′
k+1, x

′
k+2, . . . , x

′
l−1, b

′, x′
l+1, . . . , x

′
d).

But then
∑d

i=k+1 y
′′
i >

∑d

i=k+1 x
′
i, which is a contradiction.

Step 1.3.3: Assume xk−1 = a− 1 and xk+1 > a+ 1. This is similar to step 1.3.2 and the proof
is omitted.

Step 2: Now consider the general case. We proceed by induction on m = |Sx \ S|. Note that
the cases m = 0 and m = 1 have already been proved. Thus consider the case m > 1. We assume
Hom

A
d−1
n

(Mx,WS) 6= 0 (the case Hom
A

d−1
n

(WS ,Mx) 6= 0 is similar). Then there exists y with
Sy ⊆ S such that there is a non-zero morphism f : Mx → My. Hence x4 y. Since m > 1 there
must be a 1 6 k 6 d such that xk−1 6∈ S. In particular yk−1 6= xk−1 and so

xk−1 < yk−1 < xk.

Hence by Lemma 3.8(1), we get that Mx′ ∈ W for

x′ = (x0, . . . , xk−1, yk−1, xk+1, . . . , xd).

Moreover, there is a non-zero morphism g : Mx′ → Mx. Now xk−1 < yk−1 < xk also means that
xk−1 < x′

k < xk so by Lemma 3.8(2) we find that Mx′′ ∈ W for

x′′ = (x0, . . . , xk−2, yk−1, xk, xk+1, . . . , xd).

Notice that x′′ is obtained from x by replacing xk−1 (which is not in S) by yk−1 (which is in S). In
particular, |Sx′′ \S| < m and setting S′ = S∪Sx′′ we get by induction that WS′ ⊆ wide{WS ,Mx′′}
and so WS′ ⊆ W . On the other hand Hom

A
d−1
n

(Mx,WS′) 6= 0 and Sx \ S′ = {xk−1} so by Step 1

we get that WS′∪Sx
⊆ wide{WS′ ,Mx} ⊆ W . But S′ ∪ Sx = S ∪ Sx so the claim follows. �

Lemma 3.11. Let W be a wide subcategory, Mx ∈ W and WS ⊆ W for some admissible set S
that is maximal (with respect to inclusion) with this property. If there is My ∈ WS such that there
is a walk of morphisms in W connecting Mx and My then Mx ∈ WS.

Proof. The claim follows in case the walk consists of a single morphism by maximality and applying
Lemma 3.10. Propagating along an arbitrary walk gives the general result. �

Proposition 3.12. The map in Theorem 3.1 is surjective.

Proof. Let W be a wide subcategory. Consider again the poset PW of all admissible subsets S
satisfying WS ⊆ W ordered by inclusion. Let Σ be the collection of maximal elements in PW . Since
every module Mx ∈ W lies in some WS ⊆ W (e.g., S = Sx) it follows that W = add{WS | S ∈ Σ}.
It remains to show that Σ is non-interlacing. We do this by showing that if S, S′ ∈ Σ interlace,
then WS = WS′ and so S = S′. Note that if S, S′ ∈ Σ interlace, then by Remark 3.2, there are
Mx ∈ WS and Mx′ ∈ WS′ such that there is either a non-zero morphism connecting Mx and Mx′

or a non-trivial d-extension in W with endpoints Mx and Mx′ (in some order) as described in
Theorem 2.17. In either case there is a walk in W from Mx to Mx′ . Moreover, since WS and WS′

are connected there is in fact a walk in W from any indecomposable in WS to any indecomposable
in WS′ . The claim now follows by Lemma 3.11. �

This completes the proof of Theorem 3.1.
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3.4. Number of wide subcategories. Finally, we briefly discuss the number of wide subcate-
gories of Mn,d, which we denote by wn,d. For d = 1 it is well-known that the numbers wn,1 are
Catalan numbers:

wn,1 =
1

n+ 2

(

2n+ 2

n+ 1

)

.

For n = 1 we have w1,d = 2 since Mn,d has precisely one indecomposable in this case.
For n = 2 the category Mn,d has d+ 1 indecomposables

M1 = M1,2,...,d,d+1, M2 = M1,2,...,d,d+2, . . . , Md = M1,3,...,d+1,d+2, Md+1 = M2,3,...d+1,d+2.

Hence a wide subcategory of Mn,d is determined by a subset of {M1, . . . ,Md+1}, which is naturally
encoded as word of length d+ 1 in letters 0, 1. Such a word corresponds to a wide subcategory if
and only if it avoids any occurrence of 11 when read cyclically or is the word 11 . . . 1. Counting
the number of such words is straightforward. In fact, (w2,d)d appears as A001612 in [OEIS] and
satisfies the recurrence relation

w2,d = w2,d−1 + w2,d−2 − 1.

For general n and d, we have not found an easy formula wn,d. However, due to the simple
combinatorial description of wide subcategories in Theoreom 3.1 it is straightforward to write an
algorithm that computes the number wn,d for any n > 1, d > 1. For instance one may generate
each Σ by iteratively attaching admissible sets S that do not interlace. Running such an algorithm
on a computer one finds the following values for small n and d.

Some values of wn,d

d w1,d w2,d w3,d w4,d w5,d w6,d w7,d w8,d

1 2 5 14 42 132 429 1, 430 4, 862
2 2 8 47 374 4, 083 62, 824 1, 376, 012 42, 579, 642
3 2 12 237 16, 830 4, 597, 078
4 2 19 1, 724 3, 499, 884
5 2 30 17, 934
6 2 48 273, 092
7 2 77 5, 732, 137
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