
ar
X

iv
:2

00
2.

02
85

4v
1 

 [
m

at
h.

Q
A

] 
 7

 F
eb

 2
02

0

IDEMPOTENT SOLUTIONS OF THE YANG-BAXTER EQUATION AND

TWISTED GROUP DIVISION

DAVID STANOVSKÝ AND PETR VOJTĚCHOVSKÝ

Abstract. Idempotent left nondegenerate solutions of the Yang-Baxter equation are in one-to-one
correspondence with twisted Ward left quasigroups, which are left quasigroups satisfying the identity
(x∗y)∗(x∗z) = (y∗y)∗(y∗z). Using combinatorial properties of the Cayley kernel and the squaring
mapping, we prove that a twisted Ward left quasigroup of prime order is either permutational or
a quasigroup. Up to isomorphism, all twisted Ward quasigroups (X, ∗) are obtained by twisting
the left division operation in groups (that is, they are of the form x ∗ y = ψ(x−1y) for a group
(X, ·) and its automorphism ψ), and they correspond to idempotent latin solutions. We solve the
isomorphism problem for idempotent latin solutions.

1. Introduction

We continue our program of studying left nondegenerate set-theoretic solutions of the Yang-
Baxter equation from an algebraic perspective, taking advantage of the associated left quasigroups
[2, 12].

It is well-known that the algebraic counterpart to derived left nondegenerate solutions of the
Yang-Baxter equation are racks, which are left quasigroups satisfying the identity

(x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z). (1.1)

There is vast literature on racks, on idempotent racks (i.e., quandles), and on their usage in knot
theory [1, 7, 9, 15, 21].

Jones [11] and Turaev [22] showed that Yang-Baxter operators r : V ⊗ V → V ⊗ V that satisfy
a quadratic equation r2 = ar + b give rise to polynomial invariants of knots. In the realm of set-
theoretic solutions, the quadratic equation reduces to either r2 = 1 (the involutive case) or r2 = r
(the idempotent case).

Rump showed in [20] that the algebraic counterpart to involutive left nondegenerate solutions
are cycle sets, which are left quasigroups satisfying the identity

(x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z). (1.2)

We have renamed cycle sets Rump left quasigroups in [2] and we continue to use this terminology
here.

In this paper we focus on idempotent left nondegenerate solutions. In Section 2 we provide a
uniform treatment to the correspondences for derived, involutive and idempotent left nondegenerate
solutions. We recover the above correspondences for derived and involutive left nondegenerate
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solutions, and we prove that the algebraic counterpart to idempotent left nondegenerate solutions
are left quasigroups satisfying the identity

(x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z), (tW)

which we call twisted Ward left quasigroups for reasons explained below.
In Section 3 we completely classify twisted Ward quasigroups and hence idempotent latin solu-

tions of the Yang-Baxter equation, cf. Theorem 3.10. First we show that, unlike in the case of latin
racks and Rump quasigroups, every twisted Ward quasigroup is isotopic to a group. In fact, every
twisted Ward quasigroup has the form (X, ∗) with x∗y = cψ(x−1y), where (X, ·) is a group, ψ is an
automorphism of (X, ·) and c ∈ X. Classifying these quasigroups up to isomorphism, it suffices to
consider groups (X, ·) up to isomorphism, automorphisms ψ up to conjugation in the automorphism
group of (X, ·), and c = 1. Summarizing, idempotent latin solutions of the Yang-Baxter equation
are in one-to-one correspondence with conjugacy classes of automorphisms of groups.

The above representation theorem is the reason why we have chosen the terminology “twisted
Ward quasigroup.” Quasigroups (X, ∗) defined over groups (X, ·) via x ∗ y = x−1y were first
investigated by Ward in [23] and later became known as Ward quasigroups. They are precisely the
quasigroups satisfying the identity

(x ∗ y) ∗ (x ∗ z) = y ∗ z

and they can be though of as groups axiomatized by left division instead of multiplication, cf.
[10, 18, 19, 23].

In Section 4 we classify twisted Ward left quasigroups of prime order. We consider two equivalence
relations on a twisted Ward left quasigroup, namely the Cayley kernel and the kernel of the squaring
map, and we show that, in the finite case, each of the equivalences has blocks of uniform size.
Consequently, a twisted Ward left quasigroup of prime order is either permutational or a quasigroup.
This complements the result of Etingof, Soloviev and Guralnick [8] who classified all indecomposable
nondegenerate solutions to the Yang-Baxter equation with a prime number of elements.

2. Three classes of left nondegenerate braidings

A binary algebraic structure (X, ∗) is a left quasigroup if all left translations Lx : X → X,
y 7→ x ∗ y are bijections of X. In a left quasigroup (X, ∗) we can define the left division operation
by x\∗y = L−1

x (y) and observe that, obviously,

x\∗(x ∗ y) = y = x ∗ (x\∗y) (2.1)

holds for all x, y ∈ X. Conversely, if (X, ∗, \∗) is a set equipped with two binary operations satisfying
the identity (2.1), then (X, ∗) is a left quasigroup with left division \∗. Note that if (X, ∗) is a left
quasigroup with left division \∗, then (X, \∗) is a left quasigroup with left division ∗ [17].

Dually, (X, ∗) is a right quasigroup if all right translations Rx : X → X, y 7→ y ∗ x are bijections
of X. The right division operation is then defined by x/∗y = R−1

y (x). A left quasigroup that is also
a right quasigroup is called a quasigroup.

A set-theoretic solution of the Yang-Baxter equation

(r × 1)(1 × r)(r × 1) = (1× r)(r × 1)(1 × r) (YB)

is a mapping r : X ×X → X ×X such that (YB) holds as an equality of mappings X ×X ×X →
X×X×X under composition [5]. Set-theoretic solutions of (YB) are also known as braidings [13].

For any mapping (not necessarily a braiding) r : X ×X → X ×X we write

r(x, y) = (x ◦ y, x • y)
2



for suitable binary operations ◦ and • on X. Straightforward calculation then shows that r is a
braiding if and only if the following three identities hold:

x ◦ (y ◦ z) = (x ◦ y) ◦ ((x • y) ◦ z), (YB1)

(x ◦ y) • ((x • y) ◦ z) = (x • (y ◦ z)) ◦ (y • z), (YB2)

(x • y) • z = (x • (y ◦ z)) • (y • z). (YB3)

A mapping r : X ×X → X ×X is said to be left nondegenerate if (X, ◦) is a left quasigroup;
nondegenerate if (X, ◦) is a left quasigroup and (X, •) is a right quasigroup; latin if (X, ◦) is a
quasigroup; derived if x • y = x for every x, y ∈ X; involutive if r2 = 1 [20]; and idempotent if
r2 = r [13].

We are mostly interested in braidings where one of the two operations ◦, • is either trivial or
can be reconstructed from the other one. The following result gives three classes of mappings with
such a property.

Lemma 2.1. Let r : X ×X → X ×X be a mapping, r(x, y) = (x ◦ y, x • y). Then:

(i) r is derived if and only if x • y = x.
(ii) r is involutive and left nondegenerate if and only if (X, ◦) is a left quasigroup and x • y =

(x ◦ y)\◦x.
(iii) r is idempotent and left nondegenerate if and only if (X, ◦) is a left quasigroup and x • y =

(x ◦ y)\◦(x ◦ y).

Proof. Part (i) holds by definition. For (ii), note that r is involutive if and only if the identities

(x ◦ y) ◦ (x • y) = x, (x ◦ y) • (x • y) = y

hold. If r is also left nondegenerate then x • y = (x ◦ y)\◦x is equivalent to the first identity, and
the second identity becomes

((x ◦ y) ◦ ((x ◦ y)\◦x))\◦(x ◦ y) = y,

which holds in any left quasigroup (X, ◦). Finally, for (iii), note that r is idempotent if and only if
the identities

(x ◦ y) ◦ (x • y) = x ◦ y, (x ◦ y) • (x • y) = x • y

hold. If r is also left nondegenerate then x • y = (x ◦ y)\◦(x ◦ y) is equivalent to the first identity,
and the second identity becomes

(z ◦ (z\◦z))\◦(z ◦ (z\◦z)) = z\◦z

with z = x ◦ y, which holds in any left quasigroup (X, ◦). �

The proof of the following result is somewhat involved. Nevertheless it is purely equational and
can be verified in a fraction of a second by an automated theorem prover, such as Prover9 [14].

Proposition 2.2. Let r : X ×X → X ×X be a mapping. Then:

(i) r is a derived braiding if and only if x • y = x and

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z). (2.2)

(ii) r is an involutive left nondegenerate braiding if and only if (X, ◦) is a left quasigroup,
x • y = (x ◦ y)\◦x and

x ◦ (y ◦ z) = (x ◦ y) ◦ (((x ◦ y)\◦x) ◦ z). (2.3)

(iii) r is an idempotent left nondegenerate braiding if and only if (X, ◦) is a left quasigroup,
x • y = (x ◦ y)\◦(x ◦ y) and

x ◦ (y ◦ z) = (x ◦ y) ◦ (((x ◦ y)\◦(x ◦ y)) ◦ z). (2.4)
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Proof. (i) By Lemma 2.1, r is a derived mapping if and only if x • y = x holds. Then (YB1) is
equivalent to (2.2), (YB2) is equivalent to the trivial identity x ◦ y = x ◦ y, and (YB3) is equivalent
to the trivial identity x = x.

For the rest of the proof, let us write xy instead of x ◦ y, x\y instead of x\◦y, and [x, y] instead
of x • y to save space and improve legibility. The identities (YB1)–(YB3) then become

x(yz) = (xy)([x, y]z),

[xy, [x, y]z] = [x, yz][y, z],

[[x, y], z] = [[x, yz], [y, z]].

(ii) By Lemma 2.1, r is an involutive left nondegenerate mapping if and only if (X, ·) is a left
quasigroup and [x, y] = (xy)\x. Hence (YB1) holds if and only if (2.3) holds. Suppose that (YB1)
holds and let us rewrite it as (xy)\(x(yz)) = [x, y]z. Upon substituting y\z for z, we obtain

(xy)\(xz) = [x, y](y\z). (2.5)

Using (YB1), the left hand side of (YB2) can be written as [xy, [x, y]z] = ((xy)([x, y]z))\(xy) =
(x(yz))\(xy). Upon substituting y\z for z into (YB2), we therefore obtain the identity

(xz)\(xy) = [x, z][y, y\z] = [x, z](z\y),

which is (2.5) with y and z interchanged. Hence (YB2) holds. To show that (YB3) also holds,
first note that (2.3) can be written as LxLy = LxyL(xy)\x. Substituting x\y for y, we obtain
LxLx\y = LyLy\x, and taking inverses yields

L−1
x\y
L−1
x = L−1

y\x
L−1
y . (2.6)

We will return to (2.6) shortly. By (YB1), the left hand side of (YB3) is equal to

[[x, y], z] = ([x, y]z)\[x, y] = ((xy)\(x(yz)))\((xy)\x).

By (YB2) and (YB1), the right hand side of (YB3) is equal to

[[x, yz], [y, z]] = ([x, yz][y, z])\[x, yz] = [xy, [x, y]z]\[x, yz]

= [xy, (xy)\(x(yz))]\[x, yz] = ((x(yz))\(xy))\((x(yz))\x).

Upon substituting y\z for z, we see that (YB3) is then equivalent to

((xy)\(xz))\((xy)\x) = ((xz)\(xy))\((xz)\x),

which is further equivalent, upon substitution of x\y for y and x\z for z, to

(y\z)\(y\x) = (z\y)\(z\x).

But this says L−1
y\zL

−1
y = L−1

z\yL
−1
z , which is (2.6) with the variables renamed.

(iii) By Lemma 2.1, r is an idempotent left nondegenerate mapping if and only if (X, ·) is a left
quasigroup and [x, y] = (xy)\(xy). Hence (YB1) holds if and only if (2.4) holds. Suppose that
(YB1) holds. As in (ii), we obtain the equivalent identity (2.5). Usinq (YB1), the left hand side of
(YB2) can be written as ((xy)([x, y]z))\((xy)([x, y]z)) = (x(yz))\(x(yz)). Upon substituting y\z
for z into (YB2), we therefore obtain the identity

(xz)\(xz) = [x, z][y, y\z] = [x, z](z\z),

which is an instance of (2.5) with y = z. Hence (YB2) holds. To see that (YB3) also holds, note
that (2.4) is equivalent to LxLy = LxyL(xy)\(xy), which is the same as LxLx\y = LyLy\y and hence

L−1
x\yL

−1
x = L−1

y\yL
−1
y . (2.7)

Following the same series of steps as in (ii), we can rewrite (YB3) as

((xy)\(x(yz)))\((xy)\(x(yz))) = ((x(yz))\(x(yz)))\((x(yz))\(x(yz))),
4



which is equivalent, upon substitution of y\z for z, to

((xy)\(xz))\((xy)\(xz)) = ((xz)\(xz))\((xz)\(xz)),

and hence to
(y\z)\(y\z) = (z\z)\(z\z).

But this is implied by L−1
y\zL

−1
y = L−1

z\zL
−1
z , which is (2.7) with the variables renamed. �

As has become clear from the proof of Proposition 2.2, the identities (2.3) and (2.4) are somewhat
inconvenient to work with. We will therefore employ the following syntactic trick due to Rump
[20] to arrive at simpler left quasigroup identities that correspond to the same braidings as in
Proposition 2.2 (but not necessarily to the same left quasigroups).

Given a left nondegenerate mapping r : X ×X → X ×X, the trick is to write

r(x, y) = (x\◦y, x • y)

and express the equations (YB1)–(YB3) in terms of the operations ◦ and •, rather than \◦ and •.

Proposition 2.3. Let r : X ×X → X ×X be a left nondegenerate mapping written as r(x, y) =
(x\◦y, x • y). Then:

(i) r is a derived left nondegenerate braiding if and only if (X, ◦) is a left quasigroup, x • y = x
and

(x ◦ y) ◦ (x ◦ z) = x ◦ (y ◦ z). (2.8)

(ii) r is an involutive left nondegenerate braiding if and only if (X, ◦) is a left quasigroup,
x • y = (x\◦y) ◦ x and

(x ◦ y) ◦ (x ◦ z) = (y ◦ x) ◦ (y ◦ z). (2.9)

(iii) r is an idempotent left nondegenerate braiding if and only if (X, ◦) is a left quasigroup,
x • y = (x\◦y) ◦ (x\◦y) and

(x ◦ y) ◦ (x ◦ z) = (y ◦ y) ◦ (y ◦ z). (2.10)

Proof. (i) By Proposition 2.2, r is a derived left nondegenerate braiding if and only if (X, \◦) is a
left quasigroup (equivalently, (X, ◦) is a left quasigroup), x • y = x and

x\◦(y\◦z) = (x\◦y)\◦(x\◦z).

In terms of the left translations in (X, ◦), the last identity is equivalent to L−1
x L−1

y = L−1
x\◦yL

−1
x .

Taking inverses on both sides, we obtain the equivalent identity LyLx = LxLx\◦y. Substituting x◦y
for y, we obtain Lx◦yLx = LxLy, which is (2.8).

(ii) By Proposition 2.2, r is an involutive left nondegenerate braiding if and only if (X, ◦) is a
left quasigroup, x • y = (x\◦y) ◦ x and

x\◦(y\◦z) = (x\◦y)\◦(((x\◦y) ◦ x)\◦z).

This says L−1
x L−1

y = L−1
x\◦yL

−1
(x\◦y)◦x, which is equivalent to Lx◦yLx = Ly◦xLy, i.e., to (2.9).

(iii) By Proposition 2.2, r is an idempotent left nondegenerate braiding if and only if (X, ◦) is a
left quasigroup, x • y = (x\◦y) ◦ (x\◦y) and

x\◦(y\◦z) = (x\◦y)\◦(((x\◦y) ◦ (x\◦y))\◦z).

This says L−1
x L−1

y = L−1
x\◦yL

−1
(x\◦y)◦(x\◦y), which is equivalent to Lx◦yLx = Ly◦yLy, i.e., to (2.10). �

Recall from the introduction that a left quasigroup (X, ∗) is a rack (resp. Rump left quasigroup,
resp. twisted Ward left quasigroup) if it satisfies (1.1) (resp. (1.2), resp. (tW)).

Part (i) of Theorem 2.4 is well-known and part (ii) can be found in [20, Proposition 1].

Theorem 2.4. Let X be a set. Denote a typical braiding on X by r(x, y) = (x ◦ y, x • y). Then:
5



(i) There is a one-to-one correspondence between derived left nondegenerate braidings on X
and racks on X, given by

r 7→ (X, ∗), x ∗ y = x\◦y, (X, ∗) 7→ r, r(x, y) = (x\∗y, x).

(ii) There is a one-to-one correspondence between involutive left nondegenerate braidings on X
and Rump left quasigroups on X, given by

r 7→ (X, ∗), x ∗ y = x\◦y, (X, ∗) 7→ r, r(x, y) = (x\∗y, (x\∗y) ∗ x).

(iii) There is a one-to-one correspondence between idempotent left nondegenerate braidings on
X and twisted Ward left quasigroups on X, given by

r 7→ (X, ∗), x ∗ y = x\◦y, (X, ∗) 7→ r, r(x, y) = (x\∗y, (x\∗y) ∗ (x\∗y)).

Proof. It is clear that in each case the two mappings are mutually inverse. The rest follows from
Proposition 2.3. �

Remark 2.5. (a) As we have shown, the identities x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z) and x\◦(y\◦z) =
(x\◦y)\◦(x\◦z) are equivalent in the variety of left quasigroups. It is therefore customary to replace
the correspondence from Theorem 2.4(i) with the correspondence

r 7→ (X, ∗), x ∗ y = x ◦ y, (X, ∗) 7→ r, r(x, y) = (x ∗ y, x).

Our version of the correspondence for racks fits better with the uniform approach employed here.
(b) Neither of the identities (2.3) and (2.9) implies the other in the variety of left quasigroups.

Likewise, neither of the identities (2.4) and (2.10) implies the other in the variety of left quasigroups.
Therefore, in both cases, there are two varieties of left quasigroups that can be chosen to correspond
to the braidings in question.

Corollary 2.6. Let X be a set, |X| ≥ 2. Then every idempotent braiding on X is degenerate.

Proof. Let r(x, y) = (x ◦ y, x • y) be an idempotent nondegenerate braiding and let (X, ∗) be
the corresponding twisted Ward left quasigroup, i.e., x ∗ y = x\◦y. For every y ∈ X, the right
translation x 7→ x • y = (x\∗y) ∗ (x\∗y) is a bijection of X, which immediately implies that the
squaring mapping σ : x 7→ x∗x is onto X. We will prove that σ is also injective. First observe that
x • (x ∗ y) = (x\∗(x ∗ y)) ∗ (x\∗(x ∗ y)) = y ∗ y, hence x = (y ∗ y)/•(x ∗ y) is independent of y, and thus
x = (x ∗x)/•(x ∗x). Consequently, if σ(u) = σ(v), we have u = (u ∗u)/•(u ∗u) = (v ∗ v)/•(v ∗ v) = v.

Now, σ(x ∗ y) = (x ∗ y) ∗ (x ∗ y) = (y ∗ y) ∗ (y ∗ y) = σ(y ∗ y) is an instance of (tW), and since σ
is bijective, we have x ∗ y = σ(y) for every x, y ∈ X. But then x • y = (x\∗y) ∗ (x\∗y) = σ(x\∗y) =
σ(σ−1(y)) = y, hence r is right degenerate, a contradiction. �

The following are examples of twisted Ward left quasigroups.

Example 2.7. Let (X, ∗) be an elementary abelian 2-group. Then (x ∗ y) ∗ (x ∗ z) = y ∗ z =
(y ∗ y) ∗ (y ∗ z), so (X, ∗) is a twisted Ward (left) quasigroup.

Example 2.8. Let (X,+) be an abelian group, ϕ ∈ End(X,+), ψ ∈ Aut(X,+) and c ∈ X. Define
a binary operation ∗ on X by

x ∗ y = ϕ(x) + ψ(y) + c.

It is easy to check that the resulting left quasigroup (X, ∗) satisfies (tW) if and only if

ϕψ = ψϕ and ϕ2 + ϕψ = 0.

Example 2.9. Let x ∗ y = f(y) for some bijection f of X. Then (X, ∗) is clearly a left quasigroup,
usually called a permutational left quasigroup. Every permutational left quasigroup satisfies (tW).

Lemma 2.10. Let (X, ∗) be a twisted Ward left quasigroup. Then the following conditions are
equivalent:

6



(i) (X, ∗) is a rack,
(ii) (X, ∗) is a Rump left quasigroup,
(iii) (X, ∗) is permutational.

Proof. If (X, ∗) is permutational then it satisfies both (1.1) and (1.2). If (X, ∗) satisfies (1.1) then
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z) and substituting y\∗z for z yields x ∗ z = (y ∗ y) ∗ z,
which means that all left translations are the same and (X, ∗) is permutational. If (X, ∗) satisfies
(1.2) then (y ∗ x) ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) = (y ∗ y) ∗ (y ∗ z) and substituting y\∗z for z and y\∗x
for x again yields x ∗ z = (y ∗ y) ∗ z. �

We will return to twisted Ward left quasigroups in Section 4.

3. Twisted Ward quasigroups

A quasigroup (X, ∗) is a twisted Ward quasigroup if it satisfies the identity (tW).
Note that in Example 2.8, (X, ∗) is a quasigroup if and only if ϕ ∈ Aut(X,+), in which case

(X, ∗) satisfies (tW) if and only if ϕ = −ψ. This motivates the following construction.

Example 3.1. Let (X, ·) be a group, ψ ∈ Aut(X, ·) and c ∈ X. Then (X, ∗) = tWq(X, ·, ψ, c)
defined by

x ∗ y = cψ(x−1y)

is a twisted Ward quasigroup. Indeed, to verify (tW), we compute

(x ∗ y) ∗ (x ∗ z) = (cψ(x−1y)) ∗ (cψ(x−1z)) = cψ((cψ(x−1y))−1cψ(x−1z)) = cψ(ψ(y−1z)),

which is independent of x and therefore equal to (y ∗ y) ∗ (y ∗ z).

As we shall see in Theorem 3.7, all twisted Ward quasigroups are of the form tWq(X, ·, ψ, c). We
start by proving in two ways that every twisted Ward quasigroup is isotopic to a group. The first
proof uses the quadrangle criterion known from the theory of latin squares and the second proof is
based on the structure of the displacement group.

Recall that two quasigroups (X, ·), (Y, ∗) are isotopic if there are bijections α, β, γ : X → Y such
that α(x) ∗ β(y) = γ(x · y) for every x, y ∈ X. Replacing (Y, ∗) with an isomorphic copy, we can
assume that γ = 1 in an isotopism [17, Theorem III.1.4].

Proposition 3.2 ([3, p. 18] or [6, Theorem 2.2]). A quasigroup (X, ∗) is isotopic to a group if
and only if it satisfies the quadrangle criterion, i.e., for every ai, bi, ci, di ∈ X, if a1 ∗ c1 = a2 ∗ c2,
a1 ∗ d1 = a2 ∗ d2 and b1 ∗ c1 = b2 ∗ c2 then b1 ∗ d1 = b2 ∗ d2.

Lemma 3.3. Let (X, ∗) be a twisted Ward quasigroup and a1, a2, c1, c2 ∈ X. Then:

(i) The squaring map x 7→ x ∗ x is constant.
(ii) If a1 ∗ c1 = a2 ∗ c2, then La1L

−1
c1 = La2L

−1
c2 .

Proof. (i) From (tW), (x ∗ y) ∗ (x ∗ y) = (y ∗ y) ∗ (y ∗ y) for every x, y ∈ X. Upon substituting x/∗y
for x, we see that x ∗ x is independent of x.

(ii) Let us again write x ∗ y = xy. Note that (xx)(x(y\z)) = (yx)(y(y\z)) = (yx)z is an
instance of (tW) and therefore (c2c2)(c2(a2\(a1x))) = (a2c2)(a1x) = (a1c1)(a1x) = (c1c1)(c1x),
using (tW) again in the last step. Canceling the unique square and dividing on the left by c2, we
get a2\(a1x) = c2\(c1x). Substituting c1\x for x and multiplying on the left by a2, we finally get
a1(c1\x) = a2(c2\x). �

Proposition 3.4. Every twisted Ward quasigroup is isotopic to a group.
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Proof. Suppose that (X, ·) is a twisted Ward quasigroup and the assumptions of the quadrangle
criterion are satisfied. Applying Lemma 3.3(ii) to equalities a1c1 = a2c2 and b1c1 = b2c2, we
get d2 = a2\(a2d2) = a2\(a1d1) = a2\(a1(c1\(c1d1))) = a2\(a2(c2\(c1d1))) = c2\(c1d1) and thus
b2d2 = b2(c2\(c1d1)) = b1(c1\(c1d1)) = b1d1. We are done by Proposition 3.2. �

The left multiplication group of a quasigroup (X, ∗) is the permutation group generated by all
left translations, i.e.,

LMlt(X) = 〈Lx : x ∈ X〉.

As in [2], we define the positive (resp. negative) displacement group of (X, ∗) as the subgroup of
LMlt(X) generated by all positive (resp. negative) displacements, that is,

Dis+(X) = 〈LxL
−1
y : x, y ∈ X〉, Dis−(X) = 〈L−1

x Ly : x, y ∈ X〉.

The displacement group of (X, ∗) is then the group

Dis(X) = 〈LxL
−1
y , L−1

x Ly : x, y ∈ X〉.

Note that Dis+(X) = 〈LeL
−1
x : x ∈ X〉 for any fixed e ∈ X since LxL

−1
y = (LeL

−1
x )−1(LeL

−1
y ), and

Dis−(X) = 〈L−1
x Le : x ∈ X〉 since L−1

x Ly = (L−1
x Le)(L

−1
y Le)

−1.
A permutation group G acts regularly on a set X if for every x, y ∈ X there is a unique g ∈ G

such that g(x) = y. Recall the following result of Drápal:

Proposition 3.5. [4, Proposition 5.2] A quasigroup X is isotopic to a group if and only if Dis+(X)
acts regularly on X. In such a case, X is isotopic to Dis+(X).

It follows from Propositions 3.4 and 3.5 that every twisted Ward quasigroup X is isotopic to the
group Dis+(X), which acts regularly on X. Here is an alternative proof of this fact which does not
refer to Propositions 3.2 and 3.5.

Lemma 3.6. Let X = (X, ∗) be a twisted Ward quasigroup and let e denote the unique square in
X. Then:

(i) Dis(X) = Dis+(X) = Dis−(X).
(ii) (L−1

x Le)(L
−1
y Le) = L−1

(x/∗e)∗(e\∗y)
Le and (L−1

x Le)
−1 = L−1

(e\∗x)∗eLe for every x, y ∈ X.

(iii) Dis(X) is equal to {L−1
x Le : x ∈ X} and is isomorphic to the group isotope (X, ⋄), where

x ⋄ y = (x/∗e) ∗ (e\
∗y).

Proof. (i) The identity (tW) says Lx∗yLx = Ly∗yLy = LeLy and hence is equivalent to LxL
−1
y =

L−1
x∗yLe, which shows that Dis+(X) ≤ Dis−(X). Replacing y with x\∗y, we obtain the identity

LxL
−1
x\∗y = L−1

y Le, (3.1)

which implies Dis−(X) ≤ Dis+(X). Hence Dis(X) = Dis+(X) = Dis−(X).
(ii) Fix x, y ∈ X and let u = x/∗e so that u\∗x = e. By a repeated application of (3.1), we have

(L−1
x Le)(L

−1
y Le) = (LuL

−1
u\∗x)(LeL

−1
e\∗y) = Lu(L

−1
u\∗xLe)L

−1
e\∗y

= LuL
−1
e\∗y = LuL

−1
u\∗(u∗(e\∗y)) = L−1

u∗(e\∗y)Le = L−1
(x/∗e)∗(e\∗y)

Le.

Using (3.1) again, we also have

(L−1
x Le)

−1 = (LeL
−1
e\∗x)

−1 = Le\∗xL
−1
e = Le\∗xL

−1
(e\∗x)\∗((e\∗x)∗e) = L−1

(e\∗x)∗eLe.

(iii) Part (ii) proves that Dis(X) = Dis−(X) is equal to {L−1
x Le : x ∈ X} and is isomorphic to

(X, ⋄), where x ⋄ y = (x/∗e) ∗ (e\
∗y), which therefore has to be a group. Clearly, (X, ⋄) is isotopic

to (X, ∗). �

We proceed to describe all twisted Ward quasigroups.
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Theorem 3.7. Let (X, ∗) be a quasigroup. Then (X, ∗) is a twisted Ward quasigroup if and only
if there is a group (X, ·), ψ ∈ Aut(X, ·) and c ∈ X such that x ∗ y = cψ(x−1y) for every x, y ∈ X.

Proof. We have verified the converse implication in Example 3.1. For the direct implication, suppose
that (X, ∗) is a twisted Ward quasigroup. By Proposition 3.4, (X, ∗) is isotopic to a group (X, ·),
i.e., there are permutations ϕ, ψ of X such that x ∗ y = ϕ(x)ψ(y) for all x, y ∈ X. We may assume
without loss of generality that ψ(1) = 1, otherwise set ϕ̄(x) = ϕ(x)ψ(1) and ψ̄(y) = ψ(1)−1ψ(y) to
obtain x ∗ y = ϕ̄(x)ψ̄(y) and ψ̄(1) = 1.

Writing (tW) in terms of ·, ϕ and ψ, and replacing z with ψ−1(z), we have

ϕ(ϕ(x)ψ(y)) · ψ(ϕ(x)z) = ϕ(ϕ(y)ψ(y)) · ψ(ϕ(y)z)

for all x, y, z ∈ X. Rearranging this, we have

ϕ(ϕ(y)ψ(y))−1 · ϕ(ϕ(x)ψ(y)) = ψ(ϕ(y)z) · ψ(ϕ(x)z)−1.

Note that the left hand side is independent of z. Comparing the right hand sides upon substituting
z = 1 and z = ϕ(x)−1, respectively, we obtain

ψ(ϕ(y)) · ψ(ϕ(x))−1 = ψ(ϕ(y)ϕ(x)−1) · ψ(ϕ(x)ϕ(x)−1) = ψ(ϕ(y)ϕ(x)−1)

for all x, y ∈ X, where we have used ψ(1) = 1. Since ϕ is bijective, this is equivalent to

ψ(y)ψ(x)−1 = ψ(yx−1)

for all x, y ∈ X, and thus ψ is an automorphism of the group (X, ·).
Writing (tW) in terms of ·, ϕ and ψ again and substituting y = z = 1, we have

ϕ(ϕ(x)) · ψ(ϕ(x)) = ϕ(ϕ(1)) · ψ(ϕ(1))

for every x ∈ X, with the right hand side being constant, say equal to c. Since ϕ is bijective, this is
equivalent to ϕ(x)ψ(x) = c. Then ϕ(x) = cψ(x)−1 and x ∗ y = cψ(x)−1ψ(y) = cψ(x−1y) for every
x, y ∈ X. �

Since isotopic groups are isomorphic [17, Corollary III.2.3], the following result solves the iso-
morphism problem for twisted Ward quasigroups.

Proposition 3.8. Let (X, ·) be a group, ϕ,ψ ∈ Aut(X, ·) and c ∈ X. Then:

(i) The mapping x 7→ cx is an isomorphism tWq(X, ·, ϕ, 1) → tWq(X, ·, ϕ, c).
(ii) The twisted Ward quasigroups tWq(X, ·, ϕ, 1) and tWq(X, ·, ψ, 1) are isomorphic if and only

if ϕ, ψ are conjugate in Aut(X, ·).

Proof. Let us denote the multiplication in tWq(X, ·, ϕ, c) by ∗ϕ,c.
(i) For every x, y ∈ X, we have (cx) ∗ϕ,c (cy) = cϕ((cx)−1(cy)) = cϕ(x−1y) = c(x ∗ϕ,1 y).
(ii) If ψ = ρϕρ−1 for some ρ ∈ Aut(X, ·), then

ρ(x ∗ϕ,1 y) = ρϕ(x−1y) = ψρ(x−1y) = ψ(ρ(x)−1ρ(y)) = ρ(x) ∗ψ,1 ρ(y).

Conversely, if ρ is an isomorphism tWq(X, ·, ϕ, 1) → tWq(X, ·, ψ, 1) then

ρϕ(x−1y) = ψ(ρ(x)−1ρ(y)) (3.2)

for every x, y ∈ X. Upon substituting x = 1 into (3.2) we obtain ρϕ = ψρ. Applying ψ−1 to both
sides of (3.2), we then get ρ(x−1y) = ρ(x)−1ρ(y), so ρ ∈ Aut(X, ·). �

For a group G, let cc(G) denote the number of conjugacy classes of G.

Corollary 3.9. The number of twisted Ward quasigroups of order n up to isomorphism is

q(n) =
∑

G

cc(Aut(G)),

where the summation runs over all groups G of order n up to isomorphism.
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Returning to braidings, we deduce:

Theorem 3.10. Let r : X×X → X×X be given by r(x, y) = (x◦y, x•y). Then r is an idempotent
latin braiding if and only if there is a group (X, ·), an automorphism ϕ ∈ Aut(X, ·) and c ∈ X such
that

r(x, y) = (xϕ(c)−1ϕ(y), c).

Moreover, up to isomorphism, we can take c = 1 and ϕ up to conjugation in Aut(X, ·).

Proof. By Theorem 2.4, r is an idempotent left nondegenerate braiding if and only if r(x, y) =
(x\∗y, (x\∗y) ∗ (x\∗y)) for a twisted Ward left quasigroup (X, ∗), and r is latin if and only if (X, ∗)
is a twisted Ward quasigroup. Then, by Theorem 3.7, x ∗ y = cψ(x−1y) for some group (X, ·),
ψ ∈ Aut(X, ·) and c ∈ X. Then certainly (x\∗y) ∗ (x\∗y) = c, and since x\∗y = xψ−1(c−1y), we can
write x ◦ y = x\∗y = xϕ(c)−1ϕ(y) by taking ϕ = ψ−1. The last part follows by Proposition 3.8. �

4. The Cayley kernel, squaring and twisted Ward left quasigroups of prime order

For an equivalence relation R on a set X, let XR be a complete set of representatives of the
equivalence classes of R and let [x]R denote the equivalence class of R containing the element x.

On a left quasigroup (X, ·) define two equivalence relations

x ∼ y ⇔ Lx = Ly,

x ≡ y ⇔ xx = yy.

The equivalence relation ∼ is usually called the Cayley kernel in this context. If ∼ is the full
equivalence X×X then (X, ·) is called permutational, cf. Example 2.9. If ∼ is the equality relation
{(x, x) : x ∈ X} then (X, ·) is called faithful.

Lemma 4.1. Let (X, ·) be a left quasigroup. Then the equivalence relations ∼ and ≡ intersect
trivially and the following inequalities hold for every x ∈ X:

(i) |[x]≡| ≤ |X∼|,
(ii) |[x]∼| ≤ |X≡|,
(iii) |X| ≤ |X∼| · |X≡|.

Proof. Let x ∼ y and x ≡ y. Then xy = yy = xx and left cancellation yields x = y. The inequalities
(i) and (ii) are then immediate consequences. Finally, |X| =

∑
x∈X∼

|[x]∼| ≤ |X∼| · |X≡| by (ii). �

In general left quasigroups, neither of the two equivalences is a congruence. In finite twisted
Ward left quasigroups, the Cayley kernel is not always a congruence (cf. Example 4.2) but ≡ is a
congruence (cf. Proposition 4.3). We do not know whether ≡ is a congruence in infinite Ward left
quasigroups, too.

Example 4.2. In the twisted Ward left quasigroup with multiplication table

1 2 3 4
1 1 3 2 4
2 1 3 2 4
3 4 2 3 1
4 4 2 3 1

the Cayley kernel is not a congruence: L1 = L2 and L2·1 = L1 6= L3 = L2·2.

Proposition 4.3. In a finite twisted Ward left quasigroup, the equivalence ≡ is a congruence.

Proof. Since (xz)(xz) does not depend on x by (tW), we always have xz ≡ yz. If x ≡ y then
(zx)(zx) = (xx)(xx) = (yy)(yy) = (zy)(zy) by (tW), and hence zx ≡ zy. By finiteness, ≡ is
invariant under left division, too. �
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We proceed towards a classification of twisted Ward left quasigroups of prime order.

Lemma 4.4. Let (X, ·) be a twisted Ward left quasigroup and x, y ∈ X. If Lx, Ly agree at a point
then Lx = Ly. In particular, every finite faithful twisted Ward left quasigroup is a quasigroup.

Proof. Assume that xc = yc for some c ∈ X. Then for every z ∈ X we have (xc)(xz) = (cc)(cz) =
(yc)(yz) = (xc)(yz) and we obtain xz = yz by left cancellation. �

Proposition 4.5. Let (X, ·) be a twisted Ward left quasigroup. Then the following conditions hold
for every x ∈ X:

(i) |[x]≡| = |X∼|,
(ii) if X is finite then |[x]∼| = |X≡|,
(iii) |X| = |X≡| · |X∼|.

Proof. (i) Fix z ∈ X and observe that for every x ∈ X we have (xz)(xz) = (zz)(zz). Hence the
elements Rz(X) = {xz : x ∈ X} in the column indexed by z all have the same square. By Lemma
4.4, the cardinality of Rz(X) is equal to |X∼|. Hence |[u]≡| ≥ |X∼| for every u ∈ Rz(x), and Lemma
4.1(i) asserts equality. By varying z, we will encounter all elements of X in this fashion.

(iii) By (i), all blocks of ≡ have the same size |X∼|, so |X| = |X≡| · |X∼|.
(ii) By Lemma 4.1(ii) and by part (iii), we have |X| =

∑
x∈X∼

|[x]∼| ≤ |X∼| · |X≡| = |X|. Hence
we have an equality and |[x]∼| = |X≡| follows because |[x]∼| ≤ |X≡| for every x ∈ X. �

Example 4.6. The sets X∼, X≡ may have different cardinalities. For instance, in the twisted
Ward left quasigroup X with multiplication table

1 2 3 4 5 6
1 2 1 4 3 5 6
2 3 4 1 2 6 5
3 2 1 4 3 5 6
4 3 4 1 2 6 5
5 2 1 4 3 5 6
6 3 4 1 2 6 5

we have |[x]∼| = 3 and |[x]≡| = 2 for every x ∈ X. Note that X is neither permutational nor a
quasigroup.

Theorem 4.7. Every twisted Ward left quasigroup of prime order is either permutational or a
quasigroup.

Proof. Let X be a twisted Ward left quasigroup of prime order. By Proposition 4.5, all equivalence
classes of ∼ have the same cardinality. Since X is of prime order, it follows that either ∼ has
a single equivalence class or all equivalence classes of ∼ are singletons. In the former case, X is
permutational. In the latter case, X is faithful and thus a quasigroup by Lemma 4.4. �

Corollary 4.8. Let q(n) (resp. ℓ(n)) denote the number of twisted Ward quasigroups (resp. twisted
Ward left quasigroups) of order n up to isomorphism. Let p(n) be the partition number, i.e., the
number of ways in which n can be written as a sum of nonincreasing positive integers. Then
ℓ(n) ≥ q(n) + p(n) if n > 1. Moreover, if n is prime then ℓ(n) = q(n) + p(n) = n− 1 + p(n).

Proof. Denote by (X, f) the permutational (Ward) left quasigroup with multiplication given by
x∗y = f(y). It is easy to see that (X, f) is isomorphic to (X, g) if and only if f and g are conjugate
in the symmetric group SX . Recall that there are p(|X|) conjugacy classes in SX . Moreover, if
|X| > 1 then (X, f) is never a quasigroup. Hence ℓ(n) ≥ q(n) + p(n) if n > 1.

Suppose that n is prime. By Theorem 4.7, ℓ(n) = q(n) + p(n). The only group of order n is
the cyclic group Cn. Since Aut(Cn) is an abelian group of order n − 1, we have q(n) = n − 1 by
Corollary 3.9. �
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The following table summarizes the numbers of twisted Ward left quasigroups ℓ(n) and twisted
Ward quasigroups q(n) of order n ≤ 11 up to isomorphism, as well as the partition number p(n).

n 1 2 3 4 5 6 7 8 9 10 11
ℓ(n) 1 3 5 14 11 31 21 93 64 ? 66
q(n) 1 1 2 5 4 5 6 25 14 9 10
p(n) 1 2 3 5 7 11 15 22 30 42 56

Neither of the sequences (ℓ(n)), (q(n)) appears in the Online Encyclopedia of Integer Sequences
[16]. It is not difficult to calculate the numbers q(n) for small values of n by hand, using Corollary
3.9. We can then calculate ℓ(n) for prime orders n from Corollary 4.8. The remaining values ℓ(n)
(and for independent verification also all other values except for ℓ(10) and ℓ(11)) were calculated
by the finite model builder Mace4 [14].

We conclude the paper with a construction that yields all finite twisted left Ward quasigroups
in principle.

Proposition 4.9. Let X and A be sets. For every x ∈ X, let fx be a bijection on X × A and let

us write fx(y, b) = (f
[1]
x (y, b), f

[2]
x (y, b)). Define (X ×A, ∗) by

(x, a) ∗ (y, b) = fx(y, b).

Then (X ×A, ∗) is a twisted Ward left quasigroup if and only if

f
f
[1]
x (y,b)

fx (4.1)

is independent of x. Moreover, every finite twisted Ward left quasigroup is isomorphic to one of
this form.

Proof. The groupoid (X×A, ∗) is a left quasigroup. The identity (tW) requires that the expression
((x, a) ∗ (y, b)) ∗ ((x, a) ∗ (z, c)) is idependent of (x, a). Expanding the expression, we obtain

fx(y, b) ∗ fx(z, c) = (f [1]x (y, b), f [2]x (y, b)) ∗ fx(z, c) = f
f
[1]
x (y,b)

fx(z, c).

Hence (X ×A, ∗) satisfies (tW) if and only if (4.1) is independent of x.
By Proposition 4.5, the Cayley kernel of a finite twisted Ward left quasigroup W has blocks of

the same size, say each bijectively mapped onto a fixed set A. We can then represent the underlying
set of W as X × A for a suitable set X. The product (x, a) and (y, b) in W depends only on x,
y and b. Moreover, for a fixed (x, a), the left translation by (x, a) in W is a bijection of X × A
depending on x only, and this is how we obtain the mappings fx. �
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