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Abstract

In this study, we explore the properties of certain solutions of Hofstadter’s

famous V -recurrence, defined by the nested recurrence relation

V (n) = V (n− V (n− 1)) + V (n− V (n− 4)). First, we discover the nature

behind a finite chaotic meta-Fibonacci sequence in terms of mortality in the

V -recurrence. Then, we construct a new kind of quasi-periodic solution which

suggests a connection with another Hofstadter-Huber recursion,

H(n) = H(n−H(n− 2)) +H(n−H(n− 3)).
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1 Introduction

In the 1960s, Douglas Richard Hofstadter introduced the Q-sequence [11], which is

defined by the nested recurrence relation Q(n) = Q(n−Q(n−1))+Q(n−Q(n−2))

with initial conditions Q(1) = Q(2) = 1. The resulting sequence appears to grow

approximately like n
2 , but with a lot of noise. It remains open whether the Q-

sequence actually grows this way, or, in fact, whether the sequence is truly infinite.

It is theoretically possible that, at some point, Q(n) could exceed n. If this happens,

Q(n+ 1) and all subsequent terms would be undefined. If a sequence generated by

a nested recurrence is finite in this way, we say the sequence dies.

Due to a superficial resemblance to the definition of the Fibonacci sequence, se-

quences defined like the Q-sequence are known as meta-Fibonacci sequences. Hofs-

tadter and Greg Huber have since [13] studied the two-parameter generalization of

meta-Fibonacci recursions: Qr,s(n) = Qr,s(n−Qr,s(n− r)) +Qr,s(n−Qr,s(n− s))

with r < s. Based on this investigation, a well-behaved solution to the recurrence

V (n) = V (n−V (n−1))+V (n−V (n−4)) was discovered empirically. The initial con-

ditions V (1) = V (2) = V (3) = V (4) = 1 generate a monotone solution that includes

every positive integer, a property now known as slow. Later, the properties of this

solution were confirmed with a proof [4, 5]. During the process of this investigation,

a variety of experiments on the V-recurrence were carried out in order to understand

the behaviour of other probable solution sequences [5]. However, very little is known

about the behaviour of the V -recurrence under different sets of initial conditions.

This study aims to clarify the properties of other solutions and their curious con-

nections with another nested recursion:H(n) = H(n−H(n−2))+H(n−H(n−3)).

1.1 Notation

Going forward, un-decorated symbols such as Q, V , etc. will be used to denote

specific sequences with those names. To refer to other sequences satisfying the same

recurrences, we use the symbols with subscripts. Also, initial conditions are often
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denoted in this paper by sequences of numbers enclosed in angle brackets. For

example, the initial conditions to the V -sequence would be written as 〈1, 1, 1, 1〉.

2 On Mortality of Remarkably Long Life

Finding nested recurrence relations with increasing “mortality” and understanding

the generational behaviour of them can be seen as a meaningful attempt in order to

discover the nature of chaotic solutions [19]. In literature, there are some examples

of long-living, finite, chaotic sequences which are produced by meta-Fibonacci recur-

rences. One remarkable example for the V -recurrence is that the initial conditions

〈3, 1, 4, 4〉 generates a sequence that terminates after 474767 terms [5]. Similarly, the

recurrenceBA(n) = BA(n−BA(n−1))+BA(n−BA(n−2))+BA(n−BA(n−3)) with

the initial conditions 〈1, 1, 1, 4, 3〉 dies [1] when BA(509871) = 519293. More surpris-

ingly, Isgur notes that LA(n) = LA(n− 19−LA(n− 3))+LA(n− 28−LA(n− 12))

with initial conditions LA(n) = 1 for 1 ≤ n ≤ 29 has relatively long life and it

becomes incalculable after more than 19 million terms [12]. Inspired by these curi-

ous examples, we study an exceptional chaotic sequence [17] Vc that is generated

by the V -recurrence with the initial conditions 〈3, 4, 5, 4, 5, 6〉. Investigation of the

behaviour of Vc(n) may be highly illustrative since it has really long life [17] (more

precisely Vc(3080193026) = Vc(3080193026− Vc(3080193025)) + Vc(3080193026−
Vc(3080193022)) = Vc(2290654567)+Vc(1873687422) = 1686223049+1415176819 =

3101399868), and it has a curious generational structure.

2.1 Generational Structure

Before we proceed, it is important to discuss the concept of a generational structure.

A sequence generated by a two-term Hofstadter-Huber recurrence (such as the Q

or V -recurrence) has the property that each term is the sum of two earlier terms

in the sequence. The indices of these earlier terms are known as the parents of the

current term, with the index coming from the first term in the recurrence known as

the mother or mother spot and the second as the father or father spot. For example,

in a sequence Va satisfying the V -recurrence, the mother of Va(n) is n− Va(n− 1)

and the father is n− Va(n− 4).

Some sequences have the property that they can be partitioned into intervals

where both parents of a term in one interval lie in the previous interval. If this is

possible, the sequence is said to have a generational structure. Sometimes, this is

not possible, but it is almost possible. It is also useful to discuss generations in these

cases [2, 3, 6, 14, 15].

2.2 Generations of Vc(n)

In order to see the facts behind this long-lived finite sequence, we need to construct

some auxilary sequences which analyze the generational structure of Vc(n). With

similar methodology of previous studies [2, 3, 14], we can define W (n), Ps(n) and

R(n) as below, see Table 1 and Table 2 for corresponding values. In our experi-

mental range, these auxilary sequences are used in order to detect unpredictable

sub-generations of the sequence which are responsible for termination of Vc(n). See

Figure 1 in order to observe generational boundaries of Vc(n).
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Definition 1 Let W (n) be the least m such that minimum of the father (m −
Vc(m− 4)) and mother (m− Vc(m− 1)) spots is equal or greater than n.

Definition 2 Let Ps(n) = W (Ps(n−1)) for n > 2, with Ps(1) = 1 and Ps(2) = 4.

Furthermore, define P (n) = Ps(n) + 3 for n > 2, with P (1) = Ps(1) and P (2) =

Ps(2).

Definition 3 Let R(n) be the largest m < P (n+1)−1 such that Vc(m+1)−Vc(m)

is not 0 or 1 for n > 2, with R(1) = 1 and R(2) = 4.

For a corresponding noise sequence, define Sc(n) = Vc(n)− n
2 , Let

〈

Sc(n)
〉

k
denote

the average value of Sc(n) over the k
th generation’s boundaries that are determined

by P (k) and R(k), and define α(k, Sc(n)) as below.















Mk(Sc(n))
2 =

〈

Sc(n)
2
〉

k
−
〈

Sc(n)
〉2

k

α(k, Sc(n)) = log2

(

Mk(Sc(n))
Mk−1(Sc(n))

)

(2.1)

Figure 1 A line plot of Sc(n) = Vc(n) −
n

2
for R(7) ≤ n ≤ P (11). Red regions are corresponding

to slow subsequence of Vc(n), while black regions have unpredictable noise characteristics.

Computational results in Table 3 show that α values oscillate in different range

than the sequences which include Hofstadter’sQ-sequence that are studied before [2,

3, 14, 15]. This investigation suggests that Vc(n) is going to termination step by

step in its successive generational order due to increasing characteristics of noise

that α values which are greater than 1 depict. So experimental evidence suggests

that infinite chaotic solution for V -recurrence is very difficult to construct although

exceptionally long life is possible for some choices of initial conditions sets based on

appearance of such generational structure. Furthermore, initial condition patterns

which are formulated by asymptotic property of V -sequence also confirm mortality

of solution sequence if a slow solution does not exist [2]. At this case, it is natural

to think that if a non-slow infinite solution sequence exists for V -recurrence, most

likely that solution has quasi-periodic nature [9, 16].



Alkan et al. Page 4 of 20

Table 1 The values of P (n) sequence for n ≤ 20.

m

1 2 3 4 5

P (m+ 0) 1 4 17 37 78
P (m+ 5) 162 331 671 1352 2715
P (m+ 10) 5443 10900 21816 43649 87316
P (m+ 15) 174652 349325 698673 1397370 2794765

Table 2 The values of R(n) sequence for n ≤ 20.

m

1 2 3 4 5

R(m + 0) 1 4 18 45 111
R(m + 5) 257 542 1115 2242 4501
R(m + 10) 9029 18088 36213 72462 144994
R(m + 15) 290027 580112 1161200 2323822 4650379

Table 3 Values of α(k, Sc(n)) for 5 ≤ k ≤ 20.

k α(k, Sc(n))

5 0.8402
6 0.7278
7 0.7477
8 1.4374
9 1.0590
10 1.1340
11 1.1686
12 1.1744
13 1.1077
14 1.1656
15 1.1558
16 1.1339
17 1.1371
18 1.1336
19 1.1212
20 1.1231

3 A new kind of solution

Given a meta-Fibonacci recurrence, there is a known algorithm to search for solu-

tions to it that satisfy a linear recurrence relation [7]. This algorithm finds infinite

families of solutions that eventually consist of interleavings of simple (typically con-

stant or linear) subsequences. For the V -recurrence, the algorithm finds 20 solution

families eventually consisting of interleavings of five constant or linear sequences.

Since solutions to the V -recurrence are invariant under shifting all of the terms [8],

this corresponds to four fundamentally different families. The initial conditions in

Table 4 each generate a representative of one of these families. (Despite having

the same constant-linear pattern, the terms in the last two families have different

congruences mod 5. They are therefore distinct families.)
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Pattern Initial Condition

C,C,C,L,L 〈5, 4, 0, 0, 0, 5, 0, 5, 5, 1, 5, 4〉
C,C,L,C,L 〈4, 0, 5,−2, 1, 3,−3, 5, 3, 0, 4, 10, 5, 8〉
C,L,C,L,L 〈0, 14,−4,−7, 8, 5, 14,−2,−2, 8, 0, 0, 6, 3, 18, 15, 14, 11, 8, 8, 20, 14, 16, 13, 8, 25〉
C,L,C,L,L 〈0, 2,−2,−6, 11, 6, 2, 3, 0, 11, 0, 2, 8,−2, 11, 15, 2, 13〉

Table 4 Patterns and representative initial conditions for each of the four families of period-5
solutions to the V -recurrence. (C=constant, L=linear)

In this section, we describe another infinite family of solutions to the V -recurrence.

Like the families in Table 4, its members eventually consist of five relatively simple

interleaved sequences. But, as we shall see, not all of them are constant or linear.

Then, we describe a related family of solutions to a different recurrence.

3.1 A System of Nested Recurrences with Slow Solutions

As an aside, we first discuss the behavior of solutions to a certain type of system of

nested recurrences.

Definition 4 For integers cf , df , cg, and dg with df + dg > 0, the Golomb-like

system with those parameters is the system







f(n) = g(n− g(n− 1)− cf ) + df

g(n) = f(n− f(n)− cg) + dg.

The name Golomb-like stems from the observation that the recurrences in these

systems bear a superficial resemblance to Golomb’s [10] recurrence G(n) = G(n −
G(n − 1)) + 1. Also, solutions to Golomb-like systems appear to behave similarly

to solutions to Golomb’s recurrence. In particular, Golomb-like systems have some

slow solutions with simple descriptions, which we will see shortly. They also appear

to have many non-slow solutions with noticeable patterns. Golomb’s recurrence ex-

hibits similar behavior, and it is conjectured [18] that all solutions to Golomb’s re-

currence grow asymptotically like
√
2n. We have a similar conjecture about Golomb-

like systems:

Conjecture 1 Any solution to the Golomb-like system with parameters cf , df ,

cg, and dg grows asymptotically like
√

(df + dg)n.

The evidence for this conjecture comes from experimentation combined with the

similar behavior to Golomb’s recurrence. In particular, these solutions all appear to

be sub-linear.

3.1.1 Specific Solutions to Golomb-like Systems

We now examine a few specific solutions to some Golomb-like systems. All of these

solutions are slow and easy to describe. They all appear again in connections with

the V -recurrence.

Proposition 1 The Golomb-like system







f(n) = g(n− g(n− 1))

g(n) = f(n− f(n)) + 1
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given initial condition f(1) = 0 generates a slow solution where each nonnegative

integer i appears in the f -sequence 2i+ 1 times and in the g-sequence 2i times.

Proof If each nonnegative integer i appears 2i + 1 times in the f -sequence, terms

f(i2+1) through f(i2+2i+1) must equal i. Similarly, if each nonnegative integer i

appears 2i times in the g-sequence, terms g(i2− i+1) through g(i2+ i) must equal

i.

We now proceed by induction on the index. First, we observe that f(1) = 0, as

required. We now examine each sequence, starting with the g-sequence. Suppose n

is a positive integer, and suppose that, for all m ≤ n, f(m) equals its desired value.

We can write n = i2 − i + 1 + r for some i ≥ 1 and 0 ≤ r < 2i. Wishing to show

g(n) = i, we have

g(n) = g(i2 − i+ 1 + r)

= f(i2 − i+ 1 + r − f(i2 − i+ 1 + r)) + 1

= f(i2 − i+ 1 + r − f(i2 + 1 + (r − i))) + 1.

We now have two cases to consider:

r < i: If r < i, then r− i < 0, meaning that f(i2+1+(r − i)) = i−1 by induction.

We then have that

g(n) = f(i2 − i+ 1 + r − (i− 1))

= f(i2 − 2i+ 2 + r) + 1

= f((i− 1)
2
+ 1 + r) + 1.

Since 0 ≤ r < i < 2 (i− 1) + 1, we have that f((i− 1)
2
+ 1 + r) = i − 1,

meaning g(n) = i, as required.

r ≥ i: If r ≥ i, then r − i ≥ 0, meaning that f(i2 + 1 + (r − i)) = i by induction.

We then have that

g(n) = f(i2 − i+ 1 + r − i)

= f(i2 − 2i+ 1 + r) + 1

= f((i− 1)
2
+ 1 + (r − 1)) + 1.

Since i−1 ≤ r−1 < i < 2 (i− 1)+1, we have that f((i− 1)
2
+1+(r − 1)) =

i− 1, meaning g(n) = i, as required.

Now, we examine the f -sequence. Suppose n ≥ 2 is an integer, and suppose that,

for all m < n, g(m) equals its desired value. We can write n = i2 + 1 + r for some

i ≥ 1 and 0 ≤ r < 2i+ 1. Wishing to show f(n) = i, we have

f(n) = f(i2 + 1 + r)

= g(i2 + 1 + r − g(i2 + 1 + r))

= g(i2 + 1 + r − g(i2 + i + 1 + (r − i− 1)))

= g(i2 + 1 + r − g((i+ 1)
2 − (i+ 1) + 1 + (r − i− 1))).

We now have two cases to consider:



Alkan et al. Page 7 of 20

r ≤ i: If r ≤ i, then r−i−1 < 0, meaning that g((i+ 1)2−(i+ 1)+1+(r − i− 1)) =

i by induction. We then have that

f(n) = g(i2 + 1 + r − i)

= g(i2 − i+ 1 + r).

Since 0 ≤ r ≤ i < 2i, we have that g(i2 − i+ 1+ r) = i, meaning f(n) = i, as

required.

r > i: If r > i, then r−i−1 ≥ 0, meaning that g((i+ 1)
2−(i+ 1)+1+(r − i− 1)) =

i+ 1 by induction. We then have that

f(n) = g(i2 + 1 + r − (i+ 1))

= g(i2 − i+ 1 + (r − 1)).

Since i ≤ r−1 < 2i, we have that g(i2−i+1+(r − 1)) = i, meaning f(n) = i,

as required.

Proposition 2 The Golomb-like system







f(n) = g(n− g(n− 1))

g(n) = f(n− f(n)) + 2

given initial conditions f(1) = 0, f(2) = 1, f(3) = 1, g(1) = 1, g(2) = 1, and

g(3) = 2 generates a slow solution where:

• Each odd integer i ≥ 3 appears in the f -sequence 2i + 1 times and the g-

sequence 2i− 1 times.

• Each even positive integer appears in each sequence once.

• The f -sequence starts with 0, this being the only appearance of 0 in either

sequence.

• The number 1 appears exactly 4 times in the f -sequence and exactly twice in

the g-sequence.

Proposition 2 has a similar proof to Proposition 1, with the added complication of

keeping track of even versus odd. The odd terms are generated similarly to all the

terms in the proof of Proposition 1, and each even term in one sequence comes from

the preceding even term in the other sequence. For brevity, the proof of Proposition 2

is omitted.

Proposition 3 The Golomb-like system







f(n) = g(n− g(n− 1)) + 1

g(n) = f(n− f(n)) + 2

given initial conditions f(1) = 0, f(2) = 1, f(3) = 1, g(1) = 1, g(2) = 1, and

g(3) = 2 generates a slow solution where:
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• If i ≥ 3 is a multiple of 3, i appears once in the f -sequence and 2i− 2 times

in the g-sequence.

• If i ≥ 4 is congruent to 1 mod 3, i appears 2i− 1 times in the f -sequence and

twice in the g-sequence.

• If i is a positive integer congruent to 2 mod 3, i appears twice in the f -sequence

and once in the g-sequence.

• The f -sequence starts with 0, this being the only appearance of 0 in either

sequence.

• The number 1 appears exactly twice in each sequence.

Again, the proof is similar and is omitted for brevity.

3.2 An Infinite Family of Solutions to the V -recurrence

We are now able to describe an infinite family of solutions to the V -recurrence that

consist of interleavings of five simpler sequences. These solutions are of a similar

flavor to those in [7]. But, the methods of that paper would not find these solutions,

as these include subsequences that are Θ(
√
n) in growth.

Theorem 1 Let K, b0, b1, b2, b4, af , ag, and m be integers satisfying the following

properties:

• b0 ≡ 1 (mod 5)

• b1 ≡ 4 (mod 5)

• b2 ≡ 2 (mod 5) and 7 ≤ b2 < K + 3

• b4 ≡ 3 (mod 5) and 8 ≤ b4 < K + 5

• af ≡ 2 (mod 5)

• ag ≡ 3 (mod 5)

• af + ag > 0

• m ≥ 1.

Define the following Golomb-like system:







f(n) = g
(

n− g(n− 1)− b1+1
5

)

+
b1−b0+af

5

g(n) = f
(

n− f(n)− b0−1
5

)

+
b0−b1+ag

5 .

Then, there is a solution VG to the V -recurrence that, starting at index K, has the

form







































VG(K + 5k) = 5f(k) + b0

VG(K + 5k + 1) = 5g(k) + b1

VG(K + 5k + 2) = 5k + b2

VG(K + 5k + 3) = 5m

VG(K + 5k + 4) = 5k + b4

with any initial condition satisfying the following properties:

1 VG(K + 5− b4) = af

2 VG(K + 6− b2) = ag
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3 VG(K + 3− b2) + VG(K + 8− b4) = 5m

4 For each integer 1 ≤ i ≤ m, VG(K + 2− 5i) = b2 − 5i

5 VG(K − 2) = 5m

6 For each integer 1 ≤ i ≤ m, VG(K + 4− 5i) = b4 − 5i

7 Let n0 =
⌊

K−1
5

⌋

. The initial conditions

〈

VG(K − 5n0)− b0

5
,
VG(K − 5 (n0 − 1))− b0

5
,
VG(K − 5 (n0 − 2))− b0

5
, . . . ,

VG(K − 5)− b0

5

〉

for the f -sequence and

〈

VG(K − 5n0 + 1)− b1

5
,
VG(K − 5 (n0 − 1) + 1)− b1

5
,
VG(K − 5 (n0 − 2) + 1)− b1

5
, . . . ,

VG(K − 4)− b1

5

〉

for the g-sequence generate sublinear sequences where, for all n > n0, f(n) ≤
n+ b0−1

5 , g(n− 1) ≤ n+ b1+1
5 , and g(n) ≤ n+ b1+1

5 . (Note that not all terms

in these initial conditions need to be integers, but, in order for the sequences

to live, no term after the initial condition can refer to a non-integer term.)

Proof The proof is by induction on the index, with base case provided by the initial

condition. Suppose the parameters and initial conditions satisfy all of the listed

conditions, and furthermore suppose that the general form of the solution holds

through index n− 1 for some n ≥ K. We now have five cases to consider:

n−K ≡ 0 (mod 5): In this case, n = K + 5k for some k ≥ 0. We have

VG(K+5k) = VG(K+5k−VG(K+5k−1))+VG(K+5k−VG(K+5k−4)).

By induction, VG(K + 5k − 1) = 5 (k − 1) + b4, as this term either falls in

the inductive hypothesis or in restriction 6 on the initial condition. Similarly,

VG(K + 5k − 4) = 5g(k − 1) + b1, as this term either falls in the inductive

hypothesis or in restriction 7 on the initial condition. So, we have

VG(K + 5k) = VG(K + 5k − 5 (k − 1)− b4) + VG(K + 5k − 5g(k − 1)− b1)

= VG(K + 5− b4) + VG(K + 5 (k − g(k − 1))− b1).

We now observe that VG(K+5−b4) = af by restriction 1 on the initial condi-

tion. Also, since b1 ≡ 4 (mod 5) and since restriction 7 guarantees g(k− 1) ≤
k+ b1+1

5 , we have VG(K+5 (k − g(k − 1))−b1) = 5g
(

k − g(k − 1)− b1+1
5

)

+b1.

Putting these together yields

VG(K + 5k) = af + 5g

(

k − g(k − 1)− b1 + 1

5

)

+ b1

= 5g

(

k − g(k − 1)− b1 + 1

5

)

+ (b1 − b0 + af ) + b0

= 5f(k) + b0,

as required.
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n−K ≡ 1 (mod 5): In this case, n = K + 5k + 1 for some k ≥ 0. We have

VG(K+5k+1) = VG(K+5k+1−VG(K+5k))+VG(K+5k+1−VG(K+5k−3)).

By induction, VG(K + 5k − 3) = 5 (k − 1) + b2, as this term either falls in

the inductive hypothesis or in restriction 4 on the initial condition. Similarly,

VG(K + 5k) = 5f(k) + b0, as this term falls in the inductive hypothesis. So,

we have

VG(K + 5k + 1) = VG(K + 5k + 1− 5f(k)− b0) + VG(K + 5k + 1− 5 (k − 1)− b2)

= VG(K + 5 (k − f(k)) + 1− b0) + VG(K + 6− b2).

We now observe that VG(K + 6 − b2) = ag by restriction 2 on the initial

condition. Also, since b0 ≡ 1 (mod 5) and since restriction 7 guarantees

f(k) ≤ k+ b0−1
5 , we have VG(K+5 (k − f(k))−b0) = 5f

(

k − f(k)− b0−1
5

)

+b0.

Putting these together yields

VG(K + 5k + 1) = 5f

(

k − f(k)− b0 − 1

5

)

+ b0 + ag

= 5f

(

k − f(k)− b0 − 1

5

)

+ (b0 − b1 + ag) + b1

= 5g(k) + b1,

as required.

n−K ≡ 2 (mod 5): In this case, n = K + 5k + 2 for some k ≥ 0. We have

VG(K+5k+2) = VG(K+5k+2−VG(K+5k+1))+VG(K+5k+2−VG(K+5k−2)).

By induction, VG(K +5k+1) = 5g(k)+ b1, as this term falls in the inductive

hypothesis. Similarly, VG(K + 5k − 2) = 5m, as this term either falls in the

inductive hypothesis or in restriction 5 on the initial condition. So, we have

VG(K + 5k + 2) = VG(K + 5k + 2− 5g(k)− b1) + VG(K + 5k + 2− 5m)

= VG(K + 5 (k − g(k)) + 2− b1) + VG(K + 5k + 2− 5m).

We now observe that VG(K+5k+2− 5m) = 5 (k −m)+ b2, as this term falls

in the inductive hypothesis or in restriction 4 on the initial condition. Also,

since b1 ≡ 4 (mod 5) and since restriction 7 guarantees g(k) ≤ k + b1+1
5 , we

have VG(K + 5 (k − g(k)) + 2− b1) = 5m. Putting these together yields

VG(K + 5k + 2) = 5m+ 5 (k −m) + b2 = 5k + b2,

as required.

n−K ≡ 3 (mod 5): In this case, n = K + 5k + 3 for some k ≥ 0. We have

VG(K+5k+3) = VG(K+5k+3−VG(K+5k+2))+VG(K+5k+3−VG(K+5k−1)).
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By induction, VG(K + 5k + 2) = 5k + b2, as this term falls in the inductive

hypothesis. Similarly, VG(K+5k−1) = 5 (k − 1)+b4, as this term either falls

in the inductive hypothesis or in restriction 6 on the initial condition. So, we

have

VG(K + 5k + 3) = VG(K + 5k + 3− 5k − b2) + VG(K + 5k + 3− 5 (k − 1)− b4)

= VG(K + 3− b2) + VG(K + 8− b4).

By restriction 3, this equals 5m, as required.

n−K ≡ 4 (mod 5): In this case, n = K + 5k + 4 for some k ≥ 0. We have

VG(K+5k+4) = VG(K+5k+4−VG(K+5k+3))+VG(K+5k+4−VG(K+5k)).

By induction, VG(K + 5k) = 5f(k) + b0, as this term falls in the inductive

hypothesis. Similarly, VG(K + 5k + 3) = 5m, as this term also falls in the

inductive hypothesis. So, we have

VG(K + 5k + 4) = VG(K + 5k + 4− 5m) + VG(K + 5k + 4− 5f(k)− b0)

= VG(K + 5k + 4− 5m) + VG(K + 5 (k − f(k)) + 4− b0).

We now observe that VG(K+5k+4− 5m) = 5 (k −m)+ b4, as this term falls

in the inductive hypothesis or in restriction 6 on the initial condition. Also,

since b0 ≡ 1 (mod 5) and since restriction 7 guarantees f(k) ≤ k + b0−1
5 , we

have VG(K + 5 (k − f(k)) + 4− b0) = 5m. Putting these together yields

VG(K + 5k + 4) = 5 (k −m) + b4 + 5m = 5k + b4,

as required.

3.2.1 Concrete Examples of Solutions to the V -recurence

Let us now see a couple of concrete solutions to the V -recurrence corresponding to

specific settings of the parameters in Theorem 1.

Proposition 4 The initial conditions 〈4, 2, 5, 3, 1〉 to the Hofstadter V -recurrence

produce a solution of the following form for k ≥ 1:







































VG(5k) = 5f(k) + 1

VG(5k + 1) = 5g(k)− 1

VG(5k + 2) = 5k + 2

VG(5k + 3) = 5

VG(5k + 4) = 5k + 3,

where f and g are the sequences in Proposition 1.
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Proof Let K = 10, b0 = 1, b1 = −1, b2 = 12, b4 = 13, af = 2, ag = 3, and

m = 1. These values satisfy all of the requirements on these parameters. The first

nine terms of the sequence resulting from the initial conditions 〈4, 2, 5, 3, 1〉 are

4, 2, 5, 3, 1, 4, 7, 5, 8. We now check that these satisfy all seven requirements:

• We have VG(K + 5− b4) = VG(10 + 5− 13) = VG(2) = 2 = af , as required.

• We have VG(K + 6− b2) = VG(10 + 6− 12) = VG(4) = 3 = ag, as required.

• We have VG(K+3−b2)+VG(K+8−b4) = VG(10+3−12)+VG(10+8−13) =

VG(1) + VG(5) = 4 + 1 = 5, as required.

• We have VG(K + 2− 5) = VG(7) = 7 = 12− 5, as required.

• We have VG(K − 2) = VG(8) = 5, as required.

• We have VG(K + 4− 5) = VG(9) = 8 = 13− 5, as required.

• In this case, n0 = 1. We have VG(5) = 1 and VG(6) = 4. This means our initial

conditions to the recurrence system are 〈0〉 for f and 〈1〉 for g. Furthermore, we

see that the Golomb-like system obtained is precisely the one in Proposition 1,

so we obtain those sequences. We now observe that, in those sequences, for

n > 1, f(n) ≤ n, g(n− 1) ≤ n, and g(n) ≤ n, meaning this final restriction is

satisfied.

The above means we have a solution of the form







































VG(10 + 5k) = 5f(k) + 1

VG(10 + 5k + 1) = 5g(k)− 1

VG(10 + 5k + 2) = 5k + 12

VG(10 + 5k + 3) = 5

VG(10 + 5k + 4) = 5k + 13,

beginning at index 10. Re-indexing and noting that the pattern actually starts

earlier results in the desired solution.

Proposition 5 The initial conditions 〈3, 1, 4, 2, 5, 3〉 to the Hofstadter V -recurrence

produce a solution of the following form for k ≥ 2:







































VG(5k) = 10

VG(5k + 1) = 5k − 2

VG(5k + 2) = 5f(k + 1) + 1

VG(5k + 3) = 5g(k + 1)− 1

VG(5k + 4) = 5k − 3,

where f and g are the sequences in Proposition 2.

Proof Let K = 22, b0 = 1, b1 = −1, b2 = 17, b4 = 23, af = 2, ag = 8, and m = 2.

These values satisfy all of the requirements on these parameters. The first 21 terms

of the sequence resulting from the initial conditions 〈3, 1, 4, 2, 5, 3〉 are

3, 1, 4, 2, 5, 3, 6, 4, 7, 10, 8, 6, 9, 7, 10, 13, 6, 14, 12, 10, 18, 6.

We now check that these satisfy all seven requirements:
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Pattern Initial Condition

C,C,C,L,L 〈5, 3, 0,−1,−1, 5, 0, 1, 4, 2, 5, 3, 10〉
C,C,L,C,L 〈2, 0, 5, 0, 0, 0, 5, 5, 5, 3, 2〉
C,C,L,L,L 〈7, 0,−3, 0, 4, 7, 5, 0, 7, 4, 0, 8, 7, 5, 4, 7, 15, 12, 10〉
C,C,L,L,L 〈6, 1, 0, 3, 3, 0, 6, 4,−1, 3, 6, 0, 12, 4, 3, 6, 16, 14, 9〉

Table 5 Patterns and representative initial conditions for each of the four families of period-5
solutions to the recurrence H. (C=constant, L=linear)

• We have VG(K + 5− b4) = VG(22 + 5− 23) = VG(4) = 2 = af , as required.

• We have VG(K + 6− b2) = VG(22 + 6− 17) = VG(11) = 8 = ag, as required.

• We have VG(K+3−b2)+VG(K+8−b4) = VG(22+3−17)+VG(22+8−23) =

VG(8) + VG(7) = 4 + 6 = 10, as required.

• We have VG(K + 2 − 10) = VG(14) = 7 = 17 − 10, and VG(K + 2 − 5) =

VG(19) = 12 = 17− 5, as required.

• We have VG(K − 2) = VG(10) = 10, as required.

• We have VG(K + 4 − 10) = VG(16) = 13 = 23 − 10, and VG(K + 4 − 5) =

VG(21) = 18 = 23− 5, as required.

• In this case, n0 = 4. We have VG(2) = 1, VG(7) = 6, VG(12) = 6, VG(17) = 6

and VG(3) = 4, VG(8) = 4, VG(13) = 9, VG(18) = 14. This means our initial

conditions to the recurrence system are 〈0, 1, 1, 1〉 for f and 〈1, 1, 2, 3〉 for g.

Furthermore, we see that the Golomb-like system obtained is precisely the one

in Proposition 2, so we obtain those sequences. (The initial conditions there

are the first three terms of each of these initial conditions, but the fourth

terms here equal the fourth terms in those sequences.) We now observe that,

in those sequences, for n > 4, f(n) ≤ n, g(n− 1) ≤ n, and g(n) ≤ n, meaning

this final restriction is satisfied.

The above means we have a solution of the form







































VG(22 + 5k) = 5f(k) + 1

VG(22 + 5k + 1) = 5g(k)− 1

VG(22 + 5k + 2) = 5k + 17

VG(22 + 5k + 3) = 10

VG(22 + 5k + 4) = 5k + 23,

beginning at index 22. Re-indexing and noting that the pattern actually starts

earlier results in the desired solution.

3.3 A Companion to the V -Recurrence

The patterns we observe in the V -recurrence all repeat with a period of 5. The

V -recurrence, V (n) = V (n − V (n − 1)) + V (n − V (n − 4)) prominently features

a 1 and a 4, which sum to 5. There is another recurrence, H(n) = H(n − H(n −
2)) +H(n−H(n− 3)) with a similar property. In fact, this recurrence seems to be

a sort of companion to the V -recurrence, in that it has a similar families of period-

5 solutions. Like the V -recurrence, H has four fundamentally different families of

solutions that eventually consist of interleavings of five constant or linear sequences

(see Table 5). More importantly, there is a family of solutions analogous to the

solutions to V described in Theorem 1.
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Theorem 2 Let K, b0, b1, b2, b4, af , ag, and m be integers satisfying the following

properties:

• b0 ≡ 1 (mod 5) and 6 ≤ b0 < K + 2

• b1 ≡ 4 (mod 5) and 9 ≤ b1 < K + 3

• b2 ≡ 2 (mod 5)

• b4 ≡ 3 (mod 5)

• af ≡ 4 (mod 5)

• ag ≡ 1 (mod 5)

• af + ag > 0

• m ≥ 1.

Define the following Golomb-like system:







f(n) = g
(

n− g(n− 1)− b4+2
5

)

+
b4−b2+af

5

g(n) = f
(

n− f(n)− b2−2
5

)

+
b2−b4+ag

5 .

Then, there is a solution HG to the H-recurrence that, starting at index K, has the

form







































HG(K + 5k) = 5k + b0

HG(K + 5k + 1) = 5k + b1

HG(K + 5k + 2) = 5f(k) + b2

HG(K + 5k + 3) = 5m

HG(K + 5k + 4) = 5g(k) + b4

with any initial condition satisfying the following properties:

1 HG(K + 2− b0) = af

2 HG(K + 4− b1) = ag

3 HG(K + 3− b0) + VG(K + 3− b1) = 5m

4 For each integer 1 ≤ i ≤ m, HG(K − 5i) = b0 − 5i

5 For each integer 1 ≤ i ≤ m, HG(K + 1− 5i) = b1 − 5i

6 HG(K − 2) = 5m

7 Let n0 =
⌊

K+1
5

⌋

. The initial conditions

〈

HG(K − 5n0 + 2)− b0

5
,
HG(K − 5 (n0 − 1) + 2)− b0

5
,
HG(K − 5 (n0 − 2 + 2))− b0

5
, . . . ,

HG(K − 3)− b0

5

〉

for the f -sequence and

〈

HG(K − 5n0 + 4)− b1

5
,
HG(K − 5 (n0 − 1) + 4)− b1

5
,
HG(K − 5 (n0 − 2) + 4)− b1

5
, . . . ,

HG(K − 1)− b1

5

〉

for the g-sequence generate sublinear sequences where, for all n > n0, f(n−
1) ≤ n+ b2+3

5 , f(n) ≤ n+ b2−2
5 , and g(n− 1) ≤ n+ b4+2

5 .

Proof The proof is by induction on the index, with base case provided by the initial

condition. Suppose the parameters and initial conditions satisfy all of the listed
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conditions, and furthermore suppose that the general form of the solution holds

through index n− 1 for some n ≥ K. We now have five cases to consider:

n−K ≡ 0 (mod 5): In this case, n = K + 5k for some k ≥ 0. We have

HG(K+5k) = HG(K+5k−HG(K+5k−2))+HG(K+5k−HG(K+5k−3)).

By induction, HG(K + 5k − 2) = 5m, as this term falls in the inductive

hypothesis or into restriction 6 on the initial condition. Similarly, HG(K +

5k+3) = 5f(k− 1)+ b2, as this term falls in the inductive hypothesis or into

restriction 7. So, we have

HG(K + 5k) = HG(K + 5k − 5m) +HG(K + 5k − 5f(k − 1)− b2)

= HG(K + 5k − 5m) +HG(K + 5 (k − f(k − 1))− b2).

We now observe that HG(K + 5k − 5m) = 5 (k −m) + b0, as this term falls

in the inductive hypothesis or in restriction 4 on the initial condition. Also,

since b2 ≡ 2 (mod 5) and since restriction 7 guarantees f(k − 1) ≤ k + b2+3
5 ,

we have HG(K + 5 (k − f(k − 1))− b2) = 5m. Putting these together yields

HG(K + 5k) = 5 (k −m) + b0 + 5m = 5k + b0,

as required.

n−K ≡ 1 (mod 5): In this case, n = K + 5k + 1 for some k ≥ 0. We have

HG(K+5k+1) = HG(K+5k+1−HG(K+5k−1))+HG(K+5k+1−HG(K+5k−2)).

By induction, HG(K + 5k − 1) = 5g(k − 1) + b4, as this term falls in the

inductive hypothesis or in restriction 7 on the initial condition. Similarly,

HG(K +5k− 2) = 5m, as this term either falls in the inductive hypothesis or

in restriction 6 on the initial condition. So, we have

HG(K + 5k + 1) = HG(K + 5k + 1− 5g(k − 1)− b4) +HG(K + 5k + 1− 5m)

= HG(K + 5 (k − g(k − 1)) + 1− b4) +HG(K + 5k + 1− 5m).

We now observe that HG(K+5k+1−5m) = 5 (k −m)+b1, as this term falls

in the inductive hypothesis or in restriction 5 on the initial condition. Also,

since b4 ≡ 3 (mod 5) and since restriction 7 guarantees g(k − 1) ≤ k + b4+2
5 ,

we have HG(K+5 (k − g(k − 1))+1−b4) = 5m. Putting these together yields

HG(K + 5k + 1) = 5m+ 5 (k −m) + b1 = 5k + b1,

as required.

n−K ≡ 2 (mod 5): In this case, n = K + 5k + 2 for some k ≥ 0. We have

HG(K+5k+2) = HG(K+5k+2−HG(K+5k))+HG(K+5k+2−HG(K+5k−1)).
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By induction, HG(K + 5k) = 5k + b0, as this term falls in the inductive

hypothesis. Similarly, HG(K + 5k − 1) = 5g(k − 1) + b4, as this term either

falls in the inductive hypothesis or in restriction 7 on the initial condition. So,

we have

HG(K + 5k + 2) = HG(K + 5k + 2− 5k − b0) +HG(K + 5k + 2− 5g(k − 1)− b4)

= HG(K + 2− b0) +HG(K + 5 (k − g(k − 1)) + 2− b4).

We now observe that HG(K + 2 − b0) = af by restriction 1 on the ini-

tial condition. Also, since b4 ≡ 3 (mod 5) and since restriction 7 guaran-

tees g(k − 1) ≤ k + b4+2
5 , we have HG(K + 5 (k − g(k − 1)) + 2 − b4) =

5g
(

k − g(k − 1)− b4+2
5

)

+ b4. Putting these together yields

HG(K + 5k + 2) = af + 5g

(

k − g(k − 1)− b4 + 2

5

)

+ b4

= 5g

(

k − g(k − 1)− b4 + 2

5

)

+ (b4 − b2 + af ) + b2

= 5f(k) + b2,

as required.

n−K ≡ 3 (mod 5): In this case, n = K + 5k + 3 for some k ≥ 0. We have

HG(K+5k+3) = HG(K+5k+3−HG(K+5k+1))+HG(K+5k+3−HG(K+5k)).

By induction, HG(K + 5k + 1) = 5k + b1, as this term falls in the inductive

hypothesis. Similarly, HG(K + 5k) = 5k + b0, as this term also falls in the

inductive hypothesis. So, we have

HG(K + 5k + 3) = HG(K + 5k + 3− 5k − b1) +HG(K + 5k + 3− 5k − b0)

= HG(K + 3− b1) +HG(K + 3− b0).

By restriction 3, this equals 5m, as required.

n−K ≡ 4 (mod 5): In this case, n = K + 5k + 4 for some k ≥ 0. We have

HG(K+5k+4) = HG(K+5k+4−HG(K+5k+2))+HG(K+5k+4−HG(K+5k+1)).

By induction, HG(K + 5k − 1) = 5k + b1, as this term falls in the inductive

hypothesis. Similarly, HG(K + 5k + 2) = 5f(k) + b2, as this term falls in the

inductive hypothesis. So, we have

HG(K + 5k + 4) = HG(K + 5k + 4− 5f(k)− b2) +HG(K + 5k + 4− 5k − b1)

= HG(K + 5 (k − f(k)) + 4− b2) +HG(K + 4− b1).

We now observe that HG(K +4− b1) = ag by restriction 2 on the initial con-

dition. Also, since b2 ≡ 2 (mod 5) and since restriction 7 guarantees f(k) ≤
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k+ b2−2
5 , we have HG(K +5 (k − f(k))+ 4− b2) = 5f

(

k − f(k)− b2−2
5

)

+ b0.

Putting these together yields

HG(K + 5k + 4) = 5f

(

k − f(k)− b2 − 2

5

)

+ b2 + ag

= 5f

(

k − f(k)− b2 − 2

5

)

+ (b2 − b4 + ag) + b4

= 5g(k) + b4,

as required.

3.4 Concrete Examples for the H-recurrence

Let us now see a couple of concrete solutions to the H-recurrence corresponding to

specific settings of the parameters in Theorem 2.

Proposition 6 The initial conditions 〈3, 1, 4, 2〉 to the H-recurrence produce a

solution of the following form for k ≥ 1:







































HG(5k) = 5

HG(5k + 1) = 5g(k)− 2

HG(5k + 2) = 5k + 1

HG(5k + 3) = 5k + 4

HG(5k + 4) = 5f(k + 1) + 2,

where f and g are the sequences in Proposition 1.

Proof Let K = 12, b0 = 11, b1 = 14, b2 = 2, b4 = −2, af = 4, ag = 1, and

m = 1. These values satisfy all of the requirements on these parameters. The

first 11 terms of the sequence resulting from the initial conditions 〈3, 1, 4, 2〉 are

3, 1, 4, 2, 5, 3, 6, 9, 7, 5, 3. We now check that these satisfy all seven requirements:

• We have HG(K + 2− b0) = HG(12 + 2− 11) = HG(3) = 4 = af , as required.

• We have HG(K + 4− b1) = HG(12 + 4− 14) = HG(2) = 1 = ag, as required.

• We haveHG(K+3−b0)+HG(K+3−b1) = HG(12+3−11)+HG(12+3−14) =

HG(4) +HG(1) = 2 + 3 = 5, as required.

• We have HG(K − 5) = HG(7) = 6 = 11− 5, as required.

• We have HG(K + 1− 5) = HG(8) = 9 = 14− 5, as required.

• We have HG(K − 2) = HG(10) = 5, as required.

• In this case, n0 = 2. We have HG(4) = 2, HG(9) = 7 and HG(6) = 3,

HG(11) = 3. This means our initial conditions to the recurrence system are

〈0, 1〉 to f and 〈1, 1〉 to g. Furthermore, we see that the Golomb-like system

obtained is precisely the one in Proposition 1, so we obtain those sequences.

(The initial conditions there are the first term of our f -initial condition, but

the other terms here equal the next terms in those sequences.) We now observe

that, in those sequences, for n > 2, f(n− 1) ≤ n+1, f(n) ≤ n, and g(n) ≤ n,

meaning this final restriction is satisfied.
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The above means we have a solution of the form







































HG(12 + 5k) = 5k + 11

HG(12 + 5k + 1) = 5k + 14

HG(12 + 5k + 2) = 5f(k) + 2

HG(12 + 5k + 3) = 5

HG(12 + 5k + 4) = 5g(k)− 2,

beginning at index 12. Re-indexing and noting that the pattern actually starts

earlier results in the desired solution.

Proposition 7 The initial conditions 〈4, 2, 5, 3, 1, 4, 7, 5〉 to the H-recurrence pro-

duce a solution of the following form for k ≥ 3:







































HG(5k) = 5k − 9

HG(5k + 1) = 5k − 6

HG(5k + 2) = 5f(k) + 2

HG(5k + 3) = 10

HG(5k + 4) = 5g(k)− 2,

where f and g are the sequences in Proposition 3.

Proof Let K = 25, b0 = 16, b1 = 19, b2 = 2, b4 = −2, af = 9, ag = 6, and m = 2.

These values satisfy all of the requirements on these parameters. The first 24 terms

of the sequence resulting from the initial conditions 〈4, 2, 5, 3, 1, 4, 7, 5〉 are

4, 2, 5, 3, 1, 4, 7, 5, 3, 6, 9, 7, 10, 8, 6, 9, 12, 10, 13, 11, 14, 12, 10, 13.

We now check that these satisfy all seven requirements:

• We have HG(K +2− b0) = HG(25+2− 16) = HG(11) = 9 = af , as required.

• We have HG(K +4− b1) = HG(25+4− 19) = HG(10) = 6 = ag, as required.

• We haveHG(K+3−b0)+HG(K+3−b1) = HG(25+3−16)+HG(25+3−19) =

HG(12) +HG(9) = 7 + 3 = 10, as required.

• We have HG(K − 10) = HG(15) = 6 = 16− 10, and HG(K − 5) = HG(20) =

11 = 16− 5, as required.

• We have HG(K + 1 − 10) = HG(16) = 9 = 19 − 10, and HG(K + 1 − 5) =

HG(21) = 14 = 19− 5, as required.

• We have HG(K − 2) = HG(23) = 10, as required.

• In this case, n0 = 5. We have HG(2) = 2, HG(7) = 7, HG(12) = 7, HG(17) =

12, HG(22) = 12 and HG(4) = 3, HG(9) = 3, HG(14) = 8, HG(19) = 13,

HG(24) = 13. This means our initial conditions to the recurrence system are

〈0, 1, 1, 2, 2〉 to f and 〈1, 1, 2, 3, 3〉 to g. Furthermore, we see that the Golomb-

like system obtained is precisely the one in Proposition 3, so we obtain those

sequences. (The initial conditions there are the first three terms of our initial

conditions, but the other terms here equal the next terms in those sequences.)
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We now observe that, in those sequences, for n > 5, f(n−1) ≤ n+1, f(n) ≤ n,

and g(n) ≤ n, meaning this final restriction is satisfied.

The above means we have a solution of the form







































HG(25 + 5k) = 5k + 16

HG(25 + 5k + 1) = 5k + 19

HG(25 + 5k + 2) = 5f(k) + 2

HG(25 + 5k + 3) = 10

HG(25 + 5k + 4) = 5g(k)− 2,

beginning at index 25. Re-indexing and noting that the pattern actually starts

earlier results in the desired solution.

4 Conclusion

This study sheds light on a new kind of solution while exploring the mysterious

nature behind the V -recurrence. Especially, Vc(n) can be seen as a fascinating ex-

ample for coexistence of order and chaos in a meta-Fibonacci recurrence although

in that case chaotic behaviour brings about termination of corresponding sequence

after billions of terms. This perfect mixture of regularity and irregularity reminds

that results of Pinn’s study that suggests a physical picture such as terms of random

walks in some bizarre surrounding could perhaps help to better understand some of

the interesting properties of certain chaotic meta-Fibonacci sequences [14]. Indeed,

for example, it would be remarkably interesting if the sequences obtained in this

study would be helpful to model and calculate the transport of atoms by altering

the site number of the potential in terms of localization and dislocalization prop-

erties of the quasi-periodic lattices [20]. Some future works could potentially focus

on such similar physical application attempts of these curious family of nonlinear

recurrences. At the same time, it is known that finding different meta-Fibonacci

recurrences with similar behavior is significant and has been an essential key to

the substantial progress in terms of new directions in this research area [13]. In

that direction, this study also provides new connections for two essential nested

recurrence relations which are represented by V and H and corresponding results

strongly suggest that Hofstadter-Huber generalization is fruitful to discovery for

new curious solution sequence families, especially for quasi-periodic relations that

this study focuses on.
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