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Fibonacci Plays Billiards

Elwyn Berlekamp and Richard Guy

2003-02-07

Abstract

A chain is an ordering of the integers 1 to n such that adjacent

pairs have sums of a particular form, such as squares, cubes, triangular

numbers, pentagonal numbers, or Fibonacci numbers. For example 4

1 2 3 5 form a Fibonacci chain while 1 2 8 7 3 12 9 6 4 11 10 5 form

a triangular chain. Since 1 + 5 is also triangular, this latter forms

a triangular necklace. A search for such chains and necklaces can be

facilitated by the use of paths of billiard balls on a rectangular or other

polygonal billiard table.

At the July, 2002 Combinatorial Games Conference in Edmonton we found
Yoshiyuki Kotani looking for values of n which would enable him to arrange
the numbers 1 to n in a chain so that adjacent links summed to a perfect cube.
Part of such a chain might be

. . . 61 3 5 22 42 . . .

He had seen the corresponding problem asked for squares. Later Ed Pegg
informed us that this latter problem, with squares and with n = 15, was
proposed by Bernardo Recaman Santos, of Colombia, at the 2000 World Puzzle
Championship. More recently this has appeared as Puzzle 30 in [6].

(16→)9→7→2←14→11→5→4←12←13→3←6←10←15→1←8(←17)

Figure 1: Solution(s) to Recaman’s problem for n = 15, 16, 17.

This inspired Joe Kisenwether to ask for the numbers 1 to 32 to be arranged
as a necklace whose neighboring beads add to squares (Figure 2).

The extension to cubes was suggested by Nob Yoshigahara. The least n for
such a chain or necklace may be greater than 300. But it seems certain that
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4 21 28 8 1 15 10 26 23
32 2
17 14
19 22
30 27
6 9
3 16
13 20
12 24 25 11 5 31 18 7 29

Figure 2: A necklace with adjacent pairs of beads adding to squares.

such chains and necklaces can be found for all sufficiently large n, and for
any other powers or polynomials, e.g., figurate numbers of various kinds; see
Figure 3.

3
7 12

8 9
2 6

1 5 10 11 4

Figure 3: A necklace with adjacent pairs of beads adding to triangular numbers.

So we asked about more rapidly divergent sequences. For powers of 2, it is
not possible to connect chains of odd numbers to chains of even numbers, and
there are similar difficulties with powers of larger numbers.

However, the corresponding problem with neighbors summing to Fibonacci
numbers, F0 = 0, F1 = 1, Fk+1 = Fk + Fk−1, has a better balanced solution.

We can draw a graph with the numbers 1 to n as vertices and edges joining
pairs whose sum is a Fibonacci number: for n = 11, this is Figure 4. The
arrows are drawn from the larger to the smaller number to emphasize that the
larger number is not part of the graph unless the smaller is already present.
From the graph we can read off 1 2; 1 2 3; 4 1 2 3; 4 1 2 3 5; 4 1 7 6 2 3 5; 4 1 7
6 2 3 5 8; 9 4 1 7 6 2 3 5 8 and 9 4 1 7 6 2 11 10 3 5 8. We can also verify that
6 and 10 can’t be included in a chain unless some larger number is also present
(in the former case 4, 5 and 6 are monovalent vertices and all three can’t be
ends of the chain; in the latter case, 8, 9 and 10). Evidently the Law of Small
Numbers is at work. Six and ten are the only numbers which are not powers
of primes. Is there some connexion with projective planes? No, but the Law
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9 8
↓ ↓
4 5
↓ ↓
1 3

ւ տ ւ տ
7 2 10
տ ր տ ր

6 11

Figure 4: Graph whose adjacencies are Fibonacci sums

of Small Numbers is indeed at work, but the villains are 9 and 11.

Theorem 1. There is a chain formed with the numbers 1 to n with each
adjacent pair adding to a Fibonacci number, just if n = 9, 11, or Fk or Fk − 1,
where Fk is a Fibonacci number with k ≥ 4. The chain is essentially unique.

Proof. For n ≤ 11 (k = 4, 5, 6) this follows from Figure 2. If k = 7, then
12 = F7−1 can be appended to the 11-chain, forming a 4-circuit; also, F7 = 13
can be appended at the other end, as shown in Figure 5.

4
ւ տ

(13→) 8→5→3 . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . 1 9
տ ր տ ր տ ր

10 ← 11 6 ← 7 12

Figure 5: Ball and chain for 12 or 13.

Although 2 is adjacent to 1 and 3, the chain for 12 or 13 is essentially unique,
except that the right tail may be 12 or 4 for either chain. None of the Fibonacci
chains that we have seen will form a necklace; nor will any others.

The rest of the proof is by induction, but the comparatively simple pattern
is made more difficult to describe by the fact that only every third Fibonacci
number is even.

Balls and chains occur just for F3m+1 − 1 and F3m+1 with m ≥ 1; other cases
are simple chains. The chain 1—2—3 can be thought of as the “zeroth ball”
(Figure 6).

There are no chains for n = 14, 15, 16, 17, 18 or 19, since, when we successively
append these numbers to the graph, the first three are monovalent vertices, as
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(F2+F4)
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տ
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ր
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F3=3

1

2
F3m+3

3m+2

ւ
3m+4

տ
F3m+3− 1

2
F3m

3m

−→ 1

2
F3m

1

2
(F3m+2+F3m+4)

3m+4

տ
3m

ր
3

2
F3m+3

Figure 6: Zeroth ball and general ball. Small numbers above the arrows are
ranks of Fibonacci numbers to which pairs of linked numbers sum.

also is 17 (= 1

2
F9), though this last can be accommodated by breaking the ball

and allowing 17 to become an end of the chain. When we adjoin 18 & 19 they
repectively allow 16 & 15 to become bivalent, but a chain is not reachieved
until we append F8 − 1 = 20 at 1 & 14.

Note that all the partitions (5&3, 2&6, 7&1) of F6 = 8 into two distinct parts
have been bypassed by the partitions of F9 = 34 into parts of size less than
F8 = 21, which itself can then be appended to form a new tail to the chain.
Because F9 is even, as is every third Fibonacci number, 1

2
F9 = 17 can only be

appended to 4 (= 1

2
F6).

17= 1

2
F9

8

ւ
4

7

տ
(21

9→)13
8→8

7→ 5 3
7←10

8←11
7→ 2 6

7← 7 1 9= 1

2
(F5+F7)

8↑ ↑ 8 8↑ ↑ 8 8 ↑ ↑ 8
7

տ
8

ր
16

9←18 19
9→ 15 14

9← 20 12

Figure 7: Fibonacci chains for F8 − 1 = 20 and F8 = 21.

If we continue, we find that a chain cannot again be achieved until we have
replaced the six partitions of F7 = 13 by links of partitions of F10 = 55 into
two parts of size at most F9 − 1 = 33 (Figure 8).
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8 5 3 10 11 2 6 7 1 12 9 4
| | | | | | | | | | | |
26—29 31—24 23—32 28—27 33—22 25—30

Figure 8: Links extending the chain to F9 − 1 = 33.

F9 = 34 can then be appended to 21 = F8 to make a new tail to the chain.

The next chain is for F10 − 1 = 54, obtained by appending links of partitions
of F11 = 89 into parts of size at most 54: 54—35, 53—36, . . ., 45—44 to the
ten partitions 1—20, 2—19, . . ., 10—11, of F8 = 21. The chain for F10 = 55
can be formed by appended it at the end F9 = 34.

Note that the link —51—38— need not immediately replace the end link,
—4—17, of the chain, but the latter can remain as part of a new ball, the case
m = 2 of Figure 6, until we wish to append 1

2
F12 = 72, which we will do when

forming the 88- and 89-chains.

We have seen several stages of the induction. In Figure 5 the numbers between
F5 = 5 and F6 = 8 and F6 itself are appended, as also are the numbers between
F6 = 8 and F7 = 13 and 13 itself. In Figures 7 and 8, the numbers between Fk

and Fk+1 are appended for k = 7 and 8 respectively. Note that in the former
1

2
Fk+2 = 17 is appended to 1

2
Fk−1 = 4.

Fk+1 Fk+1−i Fk+i 1

2
Fk+2

Fk i Fk−1−i 1

2
Fk−1

k+2 k+1 k+1 k+1

k+2

Figure 9: Extending Fk−1 and Fk chains to those for Fk+1−1 and Fk+1 The
appendage on the right is required only when k = 3m+ 1.

Generally, as in Figure 9, we append the pairs of numbers Fk + i, Fk+1 − i
for 1 ≤ i ≤ 1

2
(Fk−1 − 1), except that, when k = 3m + 1, 1

2
(Fk−1 − 1) is not

an integer and we have a new tail, 1

2
Fk+2, which is an integer, appended to

1

2
Fk−1.

These last numbers are denominators of the convergents to the continued frac-
tion for

√
5, sequence A001076 in Neil Sloane’s Online Encyclopedia of Integer
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Sequences [5].

The proof can be made much more perspicuous with billiards diagrams, which
will also throw light on the other kinds of chain in which we are interested.
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2
)(10 1

2
)

Figure 10: Fibonacci plays billiards. The thick upward paths connect 21-sums.
The other upward paths connect 8-sums. The down paths connect 13-sums.

Figure 10 is equivalent to Figure 5. The ‘ball’ may be achieved by connecting
the Fibonacci sum 1—+—4 = 5.

This billiard table viewpoint is useful for depicting long chains whose adjacent
pair-sums all lie in a set of only three or four elements. If successive corners
are at a, b, c, d, where a < b < c < d, then the semi-perimeter must be
c− a = d− b, and the perimeter is P = 2(c− a) = 2(d− b). One side must be
b − a = d − c, and the other must be c − b = a − d (mod P ). Viewed along
the 45 degree path taken by the billiard ball, each integer along the side of the
table has valence 2, and each integer in a corner has valence 1. Hence, if the
corners include 2 integers (called pockets) and 2 non-integers, then the path
beginning at either pocket must eventually terminate in the other pocket.

Figure 11 shows a rectangle of perimeter 21, whose corners are at a = 2,
b = 6.5, c = 12.5, d = 17. The sequence between pockets (thick lines) is 2, 11,
14, 20, 5, 8, 17. This sequence fails to reach many of the other integers along
the perimeter, which lie in the following cycle: 1, 3, 10, 15, 19, 6, 7, 18, 16,
9, 4, 21, 13, 12, 1. The question of which rectangular billiard tables yield a
single covering path and which yield a degeneracy of this sort is answered by
the following lemma.

Lemma. Let A, B, C, D, be positive integers such that A < B < C < D and
C − A = D − B. Let a = A/2; b = B/2; c = C/2, and d = D/2. Further
suppose that exactly two of a, b, c, d are integers, so that the corresponding
billiard table has two corner pockets. Then the 45 degree path between the
pockets touches all of the integers along the perimeter just if the rectangle’s
double-sides, B − A and C − B, are relatively prime.
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)

Figure 11: A billiard table with A = 4, B = 13, C = 25, D = 34 and perimeter
P = 21. The double-sides B−A = 9 and C −B = 12 are not relatively prime.

Note. In Figure 11 the sides are 6.5 − 2 = 4.5 and 12.5 − 6.5 = 6, so the
double-sides are 9 and 12. They have a common factor of 3. So we could color
each integer of shape 3k+2 and both pockets would be colored. Every integer
along the ball’s path would then also be colored. In general, this argument
shows that a degeneracy occurs whenever the double-sides are not relatively
prime.

Proof of non-degeneracy. If the double-sides are prime to each other, and
hence to the perimeter P = C − A = D − B, so that, mod P , A ≡ C and
D ≡ B, then consider any two integers separated by exactly one bounce along
the ball’s path. If the bounce is at x, these integers, mod P , are at A− x and
B − x, and the distance between them is B − A ≡ D − C if measured in one
direction mod P , or A−B ≡ C−D ≡ A−D ≡ C−B if measured in the other
direction. But since B − A is a double-side, which is relatively prime to P ,
it follows that the sequence, obtained by looking at alternate bounce-points
along the ball’s path, cannot cycle back to itself, mod P , without first reaching
a pocket. Since this is true for all values of x, the ball-path from one pocket
to the other must go through every integer point on the rectangle’s perimeter.

We can take three corners of a rectangle as the halves of any three consecutive
Fibonacci numbers (recall that the corners are allowed to be half-integers).
The perimeter of this rectangle will be the middle of these three Fibonacci
numbers. Since any pair of adjacent Fibonacci numbers is relatively prime, the
path from pocket to pocket is complete.

Square chains. For the ‘square’ chains and necklaces which we mentioned at
the outset, Ed Pegg and Edwin Clark have verified that there are chains for n =
15, 16, 17, 23, 25 to 31 and necklaces (and hence chains) for n = 32 upwards.
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Figure 12: A billiard table giving a Fibonacci chain of length P = 21.

The existence problem was solved quite recently; more in the appendix at the
end.

The billiards technique allows us to construct arbitrarily large specimens. Fig-
ure 13 shows how our billiard table technique can be used to find a ‘square’
chain of length 16.
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Figure 13: A billiard table with A = 9, B = 16, C = 25 (all squares), and
D = 32 (half a square) and perimeter P = 16.

We may delete 16, or append 17, giving the 15-, 16- and 17-chains of Figure 1.

It is possible to accommodate other numbers by using billiard tables with more
than four corners! Figure 14 shows such a table with corners at 4.5, 8.5, 9, 12.5,
24.5, and 32. The corner at 8.5 is reflex; the others are right. The perimeter
is 39. There are two pockets: a conventional corner pocket at 32, and a side
pocket at 9. The path between these two pockets is complete.

Square necklaces. In order to connect the two pockets and make a necklace,
we must be sure that they sum to a square. Two half-squares summing to a
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Figure 14: A billiard table with six corners.

square are provided by the parametric equation

(

(r + s)2 − 2r2
)2

+
(

(r + s)2 − 2s2
)2

= 2
(

r2 + ss
)2

For example, 12 + 72 = 2 · 52. We multiply the solution by 6 to get the parity
right and to avoid the sides having a common factor of 3. 422−62 = 26 ·33 can
be arranged as the difference of two odd squares, which are not multiples of 3,
in just two different ways, 432 − 112 and 4332 − 4312. Billiard tables with half
these squares as corners have perimeters 1728 and 185725. Their double-sides,
(5 · 17, 31 · 53) and (26 · 33, 11 · 43 · 389) are coprime, so the chains contain every
integer on the perimeter. Moreover, the ends of the chains are 1

2
62 and 1

2
422)

which sum to 302 so that they may be joined to form necklaces.

Here are some small square necklaces. The bold numbers are 6x, 6y.
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x2 + y2 = 2z2 corners are half double sides perimeter
r, s x, y the squares of: are coprime P
2,1 1,7 6,11,42,43 85,1643 1728
3,2 7,17 42,102,119,151 3757,8640 12397
4,3 17,31 102,186,197,251 4213,24192 28405
7,3 1,41 6,23,246,247 493,59987 60480
7,5 23,47 109,138,269,282 7163,53317 60480
5,4 31,49 186.294,373,437 51840,52693 104533
7,3 1,41 6,246,397,467 60480,97093 157573
2,1 1,7 6,42,431,433 1728,183997 185725
5,3 7,23 42,138,859,869 17280,718837 736117
7,3 1,41 6,246,2153,2167 60480,4574893 4635373
3,2 7,17 42,102,2159,2161 8640,4650877 4659517
5,4 31,49 186,294,2587,2597 51840,6606133 6657973
5,3 7,23 42,138,4319,4321 17280,18634717 18651997
4,3 17,31 102,186,6047,6049 24192,36531613 36555805
7,5 23,47 138,282,15119,15121 60480,228504637 228565117

Of course, if one looked for square chains by putting halves of odd squares at
the corners of a billiard table, then, by Theorem 0 of number theory, namely
that odd squares are congruent to 1 mod 8, we would find that our tour broke
up into four separate loops, those containing 0 and 1, −1 and 2, −2 and 3, and
those containing −3 and 4 modulo 8. However, we are able to make a single
necklace, by breaking the loops at places which sum to a square on other loops.
For example, the billiard table with corners at 4.5, 24.5, 40.5 and 60.5 yields
four 18-loops which may be connected to form a 72-necklace as follows

. . . 1 — 3 . . . 6 — 10 . . . 71 — 29 . . . 52 —48 . . .

where the dots represent the other 16 members of each of the four loops.

More generally, if the odd squares are (s−2r)2, (s+2r)2, (2s−r)2 and (2s+r)2,
we will have n = 3(s2 − r2). In order that the point 1 is on an edge adjacent
to the smallest square, we must have s ≥ r +

√

(9r2 − 1)/2.

Cubic chains. The billiard table with corners at {62.5, 171.5, 256, 365} has
perimeter 387. The sides are relatively prime, so the path between the pockets
is complete. The adjacent pair-sums are 125, 343, 512 and 730. In pursuit
of a chain all of whose pair-sums are cubes, we move the corner from 365 to
364.5, and insert a new reflex corner at 386.5 and a side pocket at 387. A
detailed calculation reveals that the path between the pockets at 387 and 256
is complete, so we then have a cubic chain among the numbers from 1 through
387. This chain uses only the cubes 125, 343, 512 and 729.
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By deleting the endpoint at 387 we obtain a cubic chain among the numbers
from 1 through 386. Since each of our Fibonacci chains also has a pocket at
its highest number, we can similarly delete that maximum number and obtain
a Fibonacci chain among the numbers from 1 to Fk − 1, for any k > 3. We
leave the reader to design billiard tables with extra corners to accommodate
such numbers.

No doubt, in answer to Nob Yoshigara’s question, cubic chains and necklaces
exist for all sufficiently large n, but not for n < 295. When n = 295 the
graph has just two monovalent vertices, at 216 and 256, which have to form
the tails of a chain, but it cannot be completed. We can construct a cubic

necklace if we can find a number which is the sum of two odd cubes in two
different ways. If the cubes are a3 + d3 = b3 + c3, then we also need that
a3 < c3 − b3 (to make sure the necklace includes all the numbers from 1 on)
and that gcd(c3 − b3, b3 − a3) = 2 (else the necklace will split up into smaller
necklaces). The smallest try is 233 + 1633 = 1213 + 1373, but the relevant
gcd is 14 and we have 7 small necklaces each of length 114256 instead of
a single necklace of length 799792. Fortunately, Andrew Bremner observes
that 213 + 2573 = 1673 + 2313 where 1673 − 213 = 2 · 13 · 31 · 73 · 79 and
2313− 1672 = 26 · 119827 have gcd 2, so that if we put halves of these four odd
cubes at the corners of a billiard table, we will have a cubic necklace of length
the latter number, 7668928. Surely there are smaller ones.

Triangular chains exist for n = 2 and probably for all n ≥ 9. Necklaces
appear to exist for n ≥ 12, except for n = 14. We would like to see proofs of
these statements, which we have verified to n = 70. It is easy to find arbitrarily
large triangular chains, by taking numbers which are the sum of two triangular
numbers in two different ways. If the triangular numbers A < B < C < D
are odd and not all multiples of three (in fact two will have to be multiples
of 3 and two of them congruent to 1 mod 3), then, by placing their halves at
the corners of a billiard table, we will have a triangular necklace of length
C − A, provided that the sides of the table are coprime, and that A < C − B
(else we will lose some of the beads from the beginning of the necklace).

Here are some triangular necklaces.
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corners are half the sides are perimeter;
triangular numbers: coprime # of beads

1, 15, 91, 105 7, 38 90
55, 153, 253, 351 49, 50 198
91, 231, 325, 465 47, 70 234
15, 253, 465, 703 106, 119 450
21, 55, 561, 595 17, 253 540
45, 153, 595, 703 54, 221 550
91, 253, 741, 903 81, 244 650

253, 703, 1035, 1485 166, 225 782
3, 325, 903, 1225 161, 289 900

325. 703, 1275, 1653 189, 286 950
45, 91, 1035, 1081 23, 472 990
465, 703, 1653, 1891 119, 475 1188
171, 1225, 1431, 2485 103, 527 1260
45, 325, 1431, 1711 140, 553 1386
1, 55, 1431, 1485 27, 688 1430

45, 1035, 1711, 2701 338, 495 1666
1, 435, 1711, 2145 217, 638 1710
171, 703, 1953, 2485 266, 625 1782
91, 153, 1891, 1953 31, 869 1800
55, 1485, 1891, 3321 203, 715 1836
105, 595, 2211, 2701 245, 808 2106
15, 231, 2485, 2701 108, 1127 2470
91, 1485, 2701, 4095 608, 697 2610
55, 435, 2701, 3081 190, 1133 2646
21, 595, 3081, 3655 287, 1243 3060
3, 325, 3081, 3403 161, 1378 3078
171, 253, 3321, 3403 41, 1584 3250
1, 91, 4005, 4095 45, 1957 4004

The existence of ‘triangular triples’, such as —29—91—62—, —44—92—61—,
—27—93—78— in which each pair sums to a triangular number, enable us to
expand the 90-necklace at the head of the last list, to 91-, 92- and 93-necklaces,
as in Figure 15.

In the same way we can insert —101—199—152— and —100—200—53— into
the 198-necklace which is the second in the list.

Pentagonal chains, i.e., those in which adjacent links sum to the pentagonal
numbers, 1, 2, 5, 7, 12, 15, . . ., 1

2
n(3n± 1), appear to exist for all n ≥ 4 (e.g.,

1—4—3—2) and necklaces for all n ≥ 9. E.g., –6–1–4–8–7–5–2–3–9–6– or

This has been checked to n = 49. Here are some other necklaces.
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Figure 15: Expanding a ‘triangular’ 90-necklace by one, two or three beads.

12
10 14

5 8
7 4

15 9

11 2

1 6 9 13

Figure 16: A necklace with adjacent pairs of beads adding to pentagonal num-
bers.

corners are half the sides are perimeter;
pentagonal numbers: coprime # of beads

15, 35, 57, 77 10, 11 42
1, 7, 51, 57 3, 22 50

7, 35, 117, 145 14, 41 110
35, 77, 145, 187 21, 34 110
15, 117, 145, 247 51, 14 130
57, 155, 247, 345 49, 46 190
7, 145, 287, 425 69, 71 280
1, 15, 287, 301 7, 136 286
7, 51, 301, 345 22, 125 294
7. 77, 425, 495 35, 174 418

Prime chains have been considered from time to time [3, 4], but as in all
cases except the Fibonacci numbers and the Lucas numbers, existence proofs
for all large enough n are elusive.

Theorem 2. There is a chain formed with the numbers 1 to n with each
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adjacent pair adding to a Lucas number, just if n = 5, or Lk or Lk − 1, where
Lk is a Lucas number with k ≥ 2 (L2 = 3, L3 = 4, Ln+1 = Ln + Ln−1). The
chain is essentially unique.

The proof can follow either of the methods used for Theorem 1.

There are corresponding theorems for sequences satisfying the same recurrence
relation. For example, the chains that can be formed using the numbers 4, 5,
9, 14, 23, 37, . . . have length one of those numbers, or one less than one of
them.

Appendix on square necklaces.

In the sixteen years since this paper was written, one author has collected
square necklaces for 32 ≤ n ≤ 252. They are not unique. Figure 17 shows a
pair of necklaces for n = 40.

1 3 6 19 30 34 15 10 39 25 24 3 6 19 30 34 15 10 39 25 24 40
8 40 22 9
17 9 27 16
32 16 37 33
4 33 12 31
21 31 13 18
28 18 36 7
36 7 28 29
13 2 21 20
12 23 4 5
37 27 22 14 35 29 20 5 11 38 26 32 17 8 1 35 14 2 23 26 38 11

Figure 17: A pair of square necklaces for n = 40.

At a recent MathFest presentation by the other author, a member of the au-
dience claimed to have used a computer to find square necklaces for 32 ≤ n ≤
1000.

We were delighted to learn that the problem was recently solved by Robert
Gerbicz; see the Mersenne Forum blog thread [1]. Square necklaces exist for
any length of the form n = (71∗25k−1)/2 with k ≥ 0. A generalization of this
construction proves the existence of square necklaces of any length n ≥ 32 and
square chains of any length n ≥ 25. Gerbicz’s C code for generating square
necklaces is available for download [2].

Acknowledgment. Thanks to Alex Fink for finding one of the necklaces in
Figure 17 and to Ethan White for discovering Robert Gerbicz’s blog post.
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