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The characteristic masses of Niemeier lattices
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Abstract

Let L be an integral lattice in the Euclidean space Rn and W an
irreducible representation of the orthogonal group of Rn. We give an
implemented algorithm computing the dimension of the subspace of
invariants in W under the isometry group O(L) of L. A key step
is the determination of the number of elements in O(L) having any
given characteristic polynomial, a datum that we call the characteristic

masses of L. As an application, we determine the characteristic masses
of all the Niemeier lattices, and more generally of any even lattice of
determinant ≤ 2 in dimension n ≤ 25.

For Niemeier lattices, as a verification, we provide an alternative
(human) computation of the characteristic masses. The main ingredi-
ent is the determination, for each Niemeier lattice L with non-empty
root system R, of the G(R)-conjugacy classes of the elements of the
"umbral" subgroup O(L)/W(R) of G(R), where G(R) is the automor-
phism group of the Dynkin diagram of R, and W(R) its Weyl group.

These results have consequences for the study of the spaces of au-
tomorphic forms of the definite orthogonal groups in n variables over
Q. As an example, we provide concrete dimension formulas in the level
1 case, as a function of the weight W , up to dimension n = 25.

1. Introduction

1.1. A motivation: dimension of spaces of level 1 automorphic forms for On

Let n be an integer ≡ 0 mod 8 and let Ln be the set of all even unimodular
lattices in the standard Euclidean space Rn. A standard example of an

∗Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay,
France. During this work, the author has been supported by the C.N.R.S. and by the
projects ANR-14-CE25-0002-01 PERCOLATOR and ANR-19-CE40-0015-02 COLOSS.
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element of Ln is the lattice En = Dn + Z1
2
(1, 1, . . . , 1), where Dn denotes

the subgroup of elements (xi) in Zn with
∑

i xi ≡ 0 mod 2. The orthogonal
group O(Rn) naturally acts on Ln, with finitely many orbits, and we set

(1.1) Xn
def
= O(Rn)\Ln.

Representatives of this set Xn have been determined so far for n ≤ 24 only:
we have X8 = {E8} (Mordell), X16 = {E8 ⊕ E8,E16} (Witt) and |X24| = 24
(Niemeier): see [Kne57, Ni73, Ven80, CS99]. The elements of L24, to which
we shall refer as the Niemeier lattices, will play a major role in this paper.

Similarly, for n ≡ ±1 mod 8 we define Ln as the set of all even lattices
with covolume

√
2 in Rn, as well as Xn by the same Formula (1.1). In this

case, representatives of Xn are known up to n = 121, this last (and most
complicated) case being due to Borcherds [Bor00], and we have

|X1| = |X7| = |X9| = 1, |X15| = 2, |X17| = 4, |X23| = 32 and |X25| = 121.

For any n ≡ −1, 0, 1 mod 8, and any complex, finite dimensional, continu-
ous, linear representation W of O(Rn), we consider the complex vector space
of W -valued O(Rn)-equivariant functions on Ln:

(1.2) MW (On) = {f : Ln −→ W | f(gL) = gf(L) ∀L ∈ Ln, ∀g ∈ O(Rn)}.
This space has a natural interpretation as a space of level 1 and weight W

automorphic forms for the orthogonal group scheme On of any element of
Ln. In particular, it has a very interesting action of the Hecke ring of On

(see e.g. [CL19, Sect. 4]), which is a first indication of our interest in it.

If L is a lattice in the Euclidean space Rn, we denote by O(L) = {g ∈
O(Rn) | gL = L} its (finite) isometry group. If W is a representation of
O(Rn), we denote by W Γ = {w ∈ W | γw = w, ∀γ ∈ Γ} ⊂ W the subspace
of invariants of the subgroup Γ of O(Rn). Fix representatives L1, . . . , Lh of
the classes in Xn. Then the map f 7→ (f(Li)) induces a C-linear isomorphism

(1.3) MW (On)
∼→

h∏

i=1

WO(Li).

It follows that MW (On) is finite dimensional. Our main aim in this work,
which is of computational flavor, is to explain how to compute dimMW (On)
for all n ≤ 25 andW arbitrary. The special cases n = 7, 8, 9 and n = 16, more
precisely their SO-variants1, had been respectively previously considered in

1We define MW (SOn) by replacing O(Rn) with SO(Rn) in (1.2), and W with a repre-
sentation of SO(Rn). We have then MW (SOn) ≃ MW ′(On) where W ′ is the representation
of O(Rn) induced from W [CL19, §4.4.4]. The question of computing dimensions in the
SO-case is thus a special case of the same question in the O-case (the one considered here).
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[CR12, Ch. 2] and in [CL19, Ch. IX Prop. 5.13]. In a different direction,
see Appendix B for an asymptotic formula for dimMW (On) (for any n).

Our main motivation for these computations is the relation between the
spaces MW (On) and geometric ℓ-adic representations of Gal(Q/Q) of Artin
conductor 1 (or pure motives over Q with good reduction everywhere) which
follows from the general yoga and point of views of Langlands and Arthur on
automorphic representations. This circle of ideas has been studied in great
details in the recent works [CL19, CR12], and pursued in [Tai17, CT19a],
to which we refer to for further explanations. As a start, the reader may
consult the preface of [CL19]. Let us simply say here that in a forthcoming
work of Taïbi and the author, we shall use the results of the present paper
as an ingredient to extend to higher dimensions d, hopefully up to d = 24,
the counting of level 1, algebraic, essentially selfdual cuspidal automorphic
representations of GLd over Q started in the aforementioned works. One
alternative motivating goal of these works is to obtain new information on
the size of X31 and X32 (see e.g. [CL19, Thm. IX.6.1] for a direct proof of
the equality |X24| = 24 not relying on any lattice computation).

1.2. Dimension of invariants and characteristic masses

Consider now an arbitrary integral lattice L in the standard Euclidean space
Rn of arbitrary dimension n, and a finite dimensional representation W of
O(Rn). Motivated by the previous paragraph, we are interested in algorithms
to determine the dimension of the subspace WO(L) ⊂ W of O(L)-invariants
in W . Of course, our requirement will be that these algorithms be efficient
for the even lattices of determinant ≤ 2, as in §1.1.

Obviously, we may and do assume that W is irreducible. It will be con-
venient to parameterize the isomorphism classes of irreducible complex rep-
resentations of O(Rn), following Weyl’s original approach [Weyl46], by the
n-permissible2 (integer) partitions: see Appendix A for a brief reminder of
this parameterization and its relation with the highest weight theory for
SO(Rn). This parameterization not only allows to deal with the two con-
nected components of O(Rn) in a very concise way, but it is also especially
relevant for the character formulas we shall use.

We denote by Wλ an irreducible representation of O(Rn) associated with
the n-permissible partition λ = (λ1 ≥ · · · ≥ λn ≥ 0). The element −idn

acts on Wλ by the sign (−1)|λ|, with |λ| =
∑

i λi, so W
O(L)
λ vanishes for

2This means that the first two columns of the Young diagram of the partition have at
most n boxes in total.
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|λ| ≡ 1 mod 2. Our starting point is the trivial formula dimW
O(L)
λ =

1
|O(L)|

∑
γ∈O(L) Trace(γ;Wλ), that we rewrite as

(1.4) dimWλ
O(L) =

∑

P∈Carn

mO(L)(P ) Trace( cP ; Wλ )

where:

(i) Carn ⊂ Z[t] denotes the (finite) subset of polynomials of degree n which
are products of cyclotomic polynomials. This subset is3 also the set of char-
acteristic polynomials of the elements of O(Rn) preserving some lattice in
Rn. Using the irreducibility of cyclotomic polynomials in Q[t], it is straight-
forward to enumerate the elements of Carn for small n with the help of a
computer: see Table 1 for the cardinality of Carn for n ≤ 27 (sequence
A120963 on [OEIS]).

n 1 2 3 4 5 6 7 8 9

|Carn| 2 6 10 24 38 78 118 224 330

n 10 11 12 13 14 15 16 17 18

|Carn| 584 838 1420 2002 3258 4514 7134 9754 15010

n 19 20 21 22 23 24 25 26 27

|Carn| 20266 30532 40798 60280 79762 115966 152170 217962 283754

Table 1: The cardinality of Carn for n ≤ 27.

(ii) For any finite subset S ⊂ O(Rn), and any P in R[t], we denote by mS(P )
the number of elements g in S with det(t idn−g) = P , divided by |S|. This
is an element of Q≥0 that we call the mass of P in S. By definition, we have

∑

P∈R[t]
mS(P ) = 1.

(iii) For P in R[t] a monic polynomial of degree n whose complex roots are
on the unit circle (e.g. P ∈ Carn), we denote by cP ⊂ O(Rn) the unique
conjugacy class whose characteristic polynomial is P .

We now discuss the problem of evaluating Formula (1.4). The main un-
known, which contains all the required information about L and which does

3Set ζ = e
2iπ
m for m ≥ 1. The symmetric bilinear form (x, y) 7→ TraceQ(ζ)/Q(xy) on the

free abelian group L = Z[ζ] defines a inner product on L⊗ R. The multiplication by ζ is
an isometry preserving L, with characteristic polynomial the m-th cyclotomic polynomial.
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not depend on λ, is of course the collection of masses mO(L)(P ) for P in
Carn. This collection will be called the characteristic masses of L, or some-
times simply4 the masses of L, and we will go back to it later. We rather
discuss first the question of evaluating, given an arbitrary polynomial P as
in (iii), the quantity Trace( cP ; Wλ). This question does not depend on L.

Evaluation of Trace( cP ; Wλ). We will use for this the “determinantal”
character formula for Wλ proved by Weyl in [Weyl46, Chap. VII §9]. This
formula applies to arbitrary elements of O(Rn), possibly of determinant −1.
We found it useful to actually use the following alternative expression proved
by Koike and Terada in [KT87] in the spirit of the famous Jacobi-Trudi for-
mula for the Schur polynomials in terms of elementary symmetric polynomi-
als (see Appendix A). Write tnP (1/t) =

∑
i∈Z(−1)ieit

i (so ei = 0 for i < 0
or i > n). Denote by µ1 ≥ µ2 ≥ · · · ≥ µm with m = λ1 the partition which
is dual to λ, and set δ1 = 0 and δj = 1 for j > 1. Then we have the equality

(1.5) Trace( cP ; Wλ ) = det(eµi−i+j + δj eµi−i−j+2)1≤i,j≤m

This formula is clearly efficient when m = λ1 is small, which suits well for
instance the application to |X32| mentioned in §1.1, as it requires all λ’s with
λ1 ≤ 4 for n = 24. Let us note that in this range, the use of the crude
degenerate Weyl character formula as in [CR12, §2] would be impracticable
as the Weyl group of SO(R24) is much too big. Actually, the whole tables of
invariants obtained in [CR12, §2] for the subgroup of determinant 1 elements
in the Weyl groups of type E7, E8 and E8

∐
A1 (with respectively n = 7, 8, 9)

can be recomputed essentially instantly using rather Formula (1.5).

Determination of the characteristic masses of L. This is the remain-
ing and most important5 unknown. In dimension n as large as 24, it is
impossible in general to enumerate the elements of O(L) with a computer,
hence to naively list their characteristic polynomials. For instance when L
is a Niemeier lattice then the size of O(L) is always at least 1014, and it is
about 1030 for L = E24. However, those groups have of course much fewer
conjugacy classes. Write

ConjO(L) = {ci(L)}i∈I
the set of conjugacy classes of O(L). Assuming that we know representatives
of the ci(L), as well as each |ci(L)|, then the enumeration of the characteristic

4Beware not to confuse the masses of L in this sense with the mass of the genus of L,
which traditionally appears in the study of the Minkowski-Siegel-Smith mass formula.

5It is equivalent to determine the finitely many mO(L)(P ) for all P in Carn, and the

dimW
O(L)
λ for all λ, as the Carn × Λ-matrix (Trace( cP ; Wλ))P,λ has rank |Carn| for

general reasons.
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polynomials of O(L) may become straightforward. Of course, if we do not
know representatives of ci(L), but still the trace of the latter in Rn as well
as the power maps on the ci(L), this may similarly allow to determine the
characteristic masses of L.

Example 1.3. (Leech lattice) Consider for instance the case where L =
Leech is “the” Leech lattice in R24. The group O(Leech) is the Conway
group Co0, also denoted 2 .Co1 in the ATLAS p. 180. The character of its
natural representation on R24 is the character χ102 in the table loc. cit. This
character, as well as Newton’s relations and the power maps of the ATLAS

(implemented in GAP), allow to compute the characteristic polynomial of each
conjugacy class in O(Leech), hence the characteristic masses of Leech: they
are gathered in Table C (see p. 10 below for the notations). Note that despite
the huge order ≃ 8 · 1018 of O(Leech), this group only has 167 conjugacy
classes, and 160 distinct characteristic polynomials. This is actually the
minimum for a Niemeier lattice, and makes the table above printable. An
interesting consequence of this computation is the observation

1

|O(Leech)|
∑

g∈O(Leech)

det( t id24 − g) = t24 + t16 + t12 + t8 + 1.

This asserts the existence of a line of O(Leech)-equivariant alternating g-
multilinear form Leechg → Z for each g in {8, 12, 16, 24}. We refer to [CT19b]
for a study of these forms and of the weight 13 pluriharmonic Siegel theta
series for Sp2g(Z) that they allow to construct. The results of this paper
suggest several other intriguing constructions to study in the same spirit, for
instance whenever a 1 appears as a dimension for MWλ

(O24) in Table C (the
case discussed here corresponding to λ = ∅, 18 and 112).

1.4. Algorithms for computing characteristic masses

Let us give now a first algorithm, called Algorithm A in the sequel, which
takes as input the Gram matrix G of some Z-basis of L and returns for each
conjugacy class ci(L) some representative and its cardinality |ci(L)|, hence
in particular the characteristic masses of L. The idea, certainly classical in
computational group theory, is to:

A1. Apply the Plesken-Souvignier algorithm [PS97] to G (implemented e.g. as
qfauto(G) in PARI/GP) to obtain a set G of generators of O(L),

A2. Choose a (small) finite subset S ⊂ L stable under O(L), generating L⊗ R, and
view O(L) as the subgroup of permutations of S generated by G,
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A3. Apply permutation groups algorithms implemented in GAP (such as [Hul00]) to
deduce cardinality and representatives of the conjugacy classes of O(L).

A canonical choice of S is the following: for any lattice L set (inductively)
S(L) =M(L)

∐
S(L′) where M(L) is the subset of elements of L with min-

imal nonzero length, and where L′ is the orthogonal of M(L) in L. The
choice S = S(L) has proved efficient enough for us in practice. We will say
more about a PARI/GP implementation of the whole algorithm later, when
discussing an improvement of it: see §4.3.

Algorithm A is very efficient in small dimension. For instance, when L is a
root lattice of type E6,E7 or E8, it returns the characteristic masses of L
in a few seconds only.6 It turns out that it is still terminates for most of
the even lattices of determinant ≤ 2 and dimension ≤ 25, with running time
varying from a few minutes to a few days in dimensions 23, 24 and 25 when
terminates. For instance, in the case L = Leech it allows to re-compute Table
C from scratch, without relying at all on the ATLAS: it requires about 3
minutes for step A1, nothing for A2, and 42 minutes for A3. On the other
hand, it does not terminate for instance on our computer for lattices L in L25

with root system7
A1D4 2D6D8 or A1D6D8D10 (memory issue). Algorithm

A is typically very slow (and memory consuming) if either L has too many
vectors v of length v · v = Gi,i for some i = 1, . . . , n, because of step A1, or
if O(L) has too many conjugacy classes, because of step A3. It is also quite
sensitive to the choice of Gram matrix G of L in step A1.

In §4, we will explain a significant improvement of Algorithm A when L has
a non trivial root system. The basic idea of this Algorithm B is to first write

O(L) = W(R)⋊O(L)ρ

where R is the root system of L, W(R) its Weyl group, ρ a Weyl vector of R
and O(L)ρ the stabilizer of ρ in O(L). As we shall see, we may actually reduce
the computation of the characteristic masses of L to that of representatives γj,
and sizes, of the conjugacy classes of the smaller group O(L)ρ, an information
which can be obtained by replacing O(L) with O(L)ρ in steps A1 and A3 of
Algorithm A. There are two ingredients for this reduction. The first is the
determination, for each rank r irreducible root system R′ of type ADE, of
the map mS : Carr → Q, where S is any coset of W(R′) in the full isometry

6All the computations in this paper have been made on a processor Intel(R) Xeon(R)

CPU E5-2650 v4 @ 2.20GHz with 65 GB of memory. Nevertheless, all the computations
involving either Algorithm B, or Algorithm A in small dimension, are equally efficient on
our personal computer (processor 1,8 GHz Intel Core i5 with 8 GB of memory).

7For n ≤ 25, it follows from the classification of Xn recalled in §1.1 that two lattices in
Ln are isometric if, and only if, they have isomorphic root systems.
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group O(R′) of the root system R′: see §3 for this step (which does not
depend on L). The second is the determination, for each j, of the conjugacy
class of γj viewed as an element of the automorphism group of the Dynkin
diagram of R. See §4 for a detailed discussion of Algorithm B and of its
implementation.

Remark 1.5. (Generalizations) In this paper, we use a restricted notion of
root which suits well our applications to the lattices in Ln. A minor mod-
ification of Algorithm B allows to consider the most general roots, namely
the elements α of a lattice L such that the orthogonal symmetry about α
preserves L. In a different direction, it would be useful to extend the algo-
rithms above to the context of hermitian or quaternionic positive definite lat-
tices, possibly over totally real number fields, using the theory of complex or
quaternionic reflection groups (see e.g. [Coh76, Coh80]). That should help
extending to higher ranks and weights the computations of dimension spaces
of automorphic forms for definite unitary groups (hermitian or quaternionic)
started in the literature (e.g. in [LP02, Loe10, Dum13, Dem14, GV14]).

1.6. Main results

Using Algorithm B, it only takes a few seconds to the computer to compute
all the characteristic masses of each Niemeier lattices with roots, except in
the case (trivial anyway) of D24 for which the Plesken-Souvignier algorithm
needs about 2 minutes. It is equally efficient in any dimension ≤ 25: the
characteristic masses are computed in a few seconds, except for ten lattices
(in dimension 23 or 25) for which it requires less than 5 minutes, and for
the lattice A1 ⊕ Leech in L25 (about 35 minutes). We refer to the homepage
[Che19] for the gram matrices we used in our computations. Our main result
is then the following.

Theorem. (i) Assume n ≤ 25. The characteristic masses of all L ∈ Ln

are those given8 in [Che19].

(ii) The nonzero values of dimMλ(O24) for λ1 ≤ 3 are given in Table C.

Table C is deduced from assertion (i) for n = 24 using observation (b) and
Formulas (1.4) & (1.5). This step is very efficient: once the masses in (i) are
computed, it takes only 5 minutes about to produce this table. The format
of the table is as follows. The notation nm1

1 . . . nmr
r for a partition λ means

8They cannot be printed here: there are 53204 polynomials P with mO(L)(P ) 6= 0 for
some L in L24, that is about half |Car24|.
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that the diagram of λ has exactly mi rows of size ni for i = 1, . . . , r, and no
other row. Set dλ = dimMWλ

(O24) and denote by ass(λ) the associate of λ
(see §A). The column dim gives the integer dλ in the case λ = ass(λ), and
the two integers dλ : dass(λ) otherwise. See [Che19] for more extensive tables,
including for instance all λ with λ1 = 4 and arbitray n ≤ 25.

Remark 1.7. Let L be a lattice in Rn, fix γ in O(L) and write det(t− γ) =
(t−1)a(t+1)bQ(t) with Q in Z[t] and Q(−1)Q(1) 6= 0. Assuming furthermore
n ≡ −1, 0, 1 mod 8 and L ∈ Ln then Proposition 3.7 in [CT19a] shows9 that
for a = 0 (resp. b = 0) the integer Q(1) (resp. Q(−1)) is a square. This
constraint is in agreement with our computations.

1.8. A direct computation in the case of Niemeier lattices

In section 5, we will explain an alternative (and human) computation of
the characteristic masses of Niemeier lattices. By the results of §3, we are
left to determine, for each Niemeier lattice L with non-empty root system R,
the G(R)-conjugacy classes of the elements of the subgroup O(L)/W(R) of
G(R), where G(R) is the automorphism group of the Dynkin diagram of R.
We do so using a tedious case by case analysis.

We found it useful to gather first in section 2 some elementary results about
the hyperoctahedral group Hn = {±1}n ⋊ Sn. This group is both a typical
direct summand of the G(R) above, and closely related to the Weyl groups of
type Dn studied in §3.2. In particular, we introduce and characterize directly
in §2.5 and §2.7 a few specific subgroups of Hn that will play a role in the
analysis of Niemeier lattices in section 5.

Although more interesting (at least to us) from a mathematical point of
view, it will be eventually clear that this nonautomatized method is too
complicated to be used systematically: it would even require some work
to attack the dimensions 23 and 25 along the same lines. Nevertheless, it
provides an important check that the masses returned by the implementation
of our algorithms are correct.

Aknowledgements: We thank Jean Lannes and Olivier Taïbi for useful
discussions, the LMO for sharing the machine pascaline, as well as Bill
Allombert for answering our questions on PARI/GP.

9If det γ = −1 (so b is odd) and a = 0 (so n is odd), apply the proposition to −γ.
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General notations and conventions

In this paper, all group actions will be on the left. We denote by |X|
the cardinality of the set X. For n ≥ 1 an integer, we denote by Sn the
symmetric group on {1, . . . , n}, by Altn ⊂ Sn the alternating subgroup, and
we set Z/n := Z/nZ.

If V is an Euclidean space, we usually denote by x ·y its inner product, with
associated quadratic form q : V → R defined by q(x) = x·x

2
. A lattice in V is

a subgroup generated by a basis of V , or equivalently, a discrete subgroup L
with finite covolume, denoted covolL.

If L is a lattice in the Euclidean space V , its dual lattice is the lattice
L♯ defined as {v ∈ V | v · x ∈ Z, ∀x ∈ L}. We say that L is integral
(resp. even) if we have L ⊂ L♯ (resp. q(L) ⊂ Z). An even lattice is
integral. If L is integral, we have (covolL)2 = |L♯/L|. This integer is also
the determinant detL of the Gram matrix Gram(e) = (ei · ej)1≤i,j≤n of any
Z-basis e = (e1, . . . , en) of L. The orthogonal group of L is the finite group
O(L) = {γ ∈ O(V ), γ(L) = L}.
In the tables of Appendix C, we use the notation 1a1 2a2 . . . mam for the

polynomial ϕa1
1 ϕ

a2
2 · · ·ϕam

m , where ϕn is the n-th cyclotomic polynomial and
where the symbol "ia" is omitted for a = 0, and shorten as "i" for a = 1.
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2. Preliminaries on the hyperoctahedral groups

2.1. The hyperoctahedral group

Let n ≥ 1 be an integer. The symmetric group Sn on the set {1, . . . , n} acts
on the elementary abelian 2-group {±1}n by permuting coordinates. The
hyperoctahedral group on n letters is defined as the semi-direct product

Hn = {±1}n ⋊ Sn.

Equivalently, Hn is the wreath product {±1} ≀ Sn. It is isomorphic to
several familiar groups: the Weyl group of a root system of type Bn or Cn,
the subgroup of monomial matrices in GLn(Z), the orthogonal group of the
standard unimodular lattice In, the subgroup of the symmetric group on
{±1,±2, . . . ,±n} of permutations σ with σ(−i) = −σ(i) for all i, etc...

In this paper, we will encounter Hn first when discussing O(Dn) and again
when studying automorphism groups of isotypic root systems. Certain sub-
groups of the hyperoctahedral groups will play a role in the study of Niemeier
lattices. Here is an example of an interesting subgroup that will occur in the
case n = 4. We denote by π : Hn → Sn the canonical projection.

Example 2.2. The group GL2(Z/3) acts on the 8-elements set (Z/3)2−{0}
by permuting the 4 disjoint pairs of the form {v,−v}. By the universal
property of wreath products, the choice of elements v1, v2, v3, v4 such that
(Z/3)2−{0} =

∐
i{vi,−vi} defines an embedding ι : GL2(Z/3) −→ H4 (a dif-

ferent choice leading to an H4-conjugate embedding). We have ι(−Id2) = −1;
the morphism π ◦ ι has kernel ±Id2 and induces “the” exceptional isomor-
phism PGL2(Z/3) ≃ S4. The restriction of π ◦ ι to the stabilizer of vi in
GL2(Z/3) is an isomorphism onto the stabilizer (≃ S3) of i in {1, 2, 3, 4}.

We end this paragraph with a few notations and remarks about the basic
structure of Hn. We denote by εi the element of {±1}n whose jth-component
is 1 for j 6= i and −1 for j = i. The center of Hn is generated by the element
−1 =

∏n
i=1 εi. The signature ǫ : Sn → {±1}, composed with the natural

projection π : Hn → Sn, defines a morphism Hn → {±1} that we will still
denote by ǫ. Another important morphism s : Hn → {±1} is defined by

(2.1) s(vσ) =
n∏

i=1

vi, for all σ ∈ Sn and v = (vi) ∈ {±1}n.

The product character ǫ s coincides with the determinant when we view Hn

as a the subgroup of monomial matrices in GLn(Z).
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2.3. Conjugacy classes of Hn

Let Σ be a nonempty subset of {1, . . . , n}. A cycle in Hn with support Σ
is an element of the form h = vc, where c ∈ Sn permutes transitively the
elements of Σ and fixes its complement, and where v = (vi) ∈ {±1}n satisfies
vi = 1 for i /∈ Σ. Such a cycle has a length l(h) defined as |Σ|, and a sign
s(h) (an element in {±1}). This sign is also the i-th coordinate of hl(h) for
any i in Σ, and l(h) is the order of c. One easily checks that two cycles are
conjugate in Hn if, and only if, they have the same length and the same sign.

Just as for Sn, any element h of Hn may be written as a product of cycles hi
with disjoint supports, this decomposition being unique up to permutation
of those cycles. The sum of the lengths of the cycles hi with s(hi) = 1 (resp.
s(hi) = −1) is an integer denoted n+(h) (resp n−(h)); the collection of the
length l(hi) of those hi defines a integer partition of n+(h) (resp. n−(h)) that
we denote by p+(h) (resp. p−(h)). We have n+(h) + n−(h) = n. The type of
h is defined as the couple of integer partitions (p+(h), p−(h)). Two elements
of Hn are conjugate if, and only if, they have the same type.

In the sequel, we will have to determine the type of all the elements of certain
specific subgroups G ⊂ Hn. For instance, when G is the group ι(GL2(Z/3))
of Example 2.2, this information is given in Table 2, the row size giving the
number of elements of the corresponding type divided by |G|:

type 14 14 1 1 2 22 1 3 1 3 4

size 1/48 1/48 1/4 1/8 1/6 1/6 1/4

Table 2: The H4-conjugacy classes of the elements of GL2(Z/3).

In this table, and in others that we will give later, we use standard notations
for partitions, and print p+ in black and p− in cyan. So the sequence of
symbols 1a1 1b1 2a2 2b2 . . . iai ibi . . . stands for the couple (p+, p−) where p+
is the partition of

∑
i ai in a1 times 1, a2 times 2, and so on, and p− is the

partition of
∑

i bi in b1 times 1, b2 times 2, and so on. The symbol "im" (resp.
"im") is omitted for m = 0, and replaced by "i " (resp. "i ") for m = 1.

Remark 2.4. Table 2 is easily deduced from the conjugacy classes of GL2(Z/3).
To fix ideas, define the embedding ι in Example 2.2 by choosing v1, v2, v3 and
v4 to be respectively

[

0
1

]

,

[

1
0

]

,

[

1
1

]

and
[

1
−1

]

. Then the images under ι of

the elements ±I2,
[

1 0
0 −1

]

,

[

0 −1
1 0

]

,±

[

1 1
0 1

]

and ±

[

0 1
1 1

]

of GL2(Z/3) are
respectively ± 1, ε1 (34), ε2 (12) ε4 (34), ± ε1 ε4 (134) and ± ε2 (1342).
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2.5. Digression: subgroups of certain wreath products

Let G be a group, X a set equipped with a transitive action of G, and A an
abelian group. The group G acts in a natural way on the abelian group AX of
all functions X → A, so we can form the semi-direct product H := AX ⋊G.

We denote by π : H → G the canonical projection, with kernel ker π = AX .
We have a “diagonal” map δ : A→ AX , defined by δ(a)(x) = a for all a in A
and x in X. This map δ is an embedding of G-modules if we view the source
A as a trivial G-module: the image of δ is a central subgroup of H . Our aim
in this paragraph is to study:

– the set C of subgroups C ⊂ H with π(C) = G and ker π ∩ C = 1,

– the set G of subgroups G̃ ⊂ H with π(G̃) = G and ker π ∩ G̃ = δ(A).

The group H acts both on C and G by conjugation. We start with two simple
observations:

– For any group morphism χ : G → A, the set Gχ := {δ(χ(g)) · g, g ∈ G}
is a subgroup of H isomorphic to G, and Gχ is an element of C.

– There is a natural map c2 : G → H2(G,A), sending G̃ in G to the equiva-

lence class of the central extension 1 → A
δ→ G̃

π→ G → 1. Two elements of
G which are H-conjugate are also AX -conjugate, hence define the same class
in H2(G,A).

We fix some x ∈ X and denote by Gx ⊂ G the isotropy group of x. For
each integer m ≥ 0, we denote by rm : Hm(G,A) −→ Hm(Gx, A) the usual
restriction map on the cohomology groups of the trivial G-module A.

Proposition 2.6. (i) For χ, χ′ ∈ Hom(G,A), the subgroups Gχ and Gχ′

of H are conjugate if, and only if, χ and χ′ coincide on Gx.

(ii) If r1 is surjective then any subgroup C ∈ C is conjugate to Gχ for some
χ ∈ Hom(G,A).

(iii) If r1 is surjective then the map c2 : H\G → H2(G,A) is injective, and
its image is the subgroup ker r2 of extensions which split over Gx.

Proof. We shall use twice the following classical facts. Let Γ be a group
acting on an abelian group V and denote by π : V ⋊ Γ → Γ the natural
projection. Let K be the set subgroups K ⊂ V ⋊ Γ with π(K) = Γ and
ker π ∩ V = 1. Any K ∈ K has the form {s(γ) γ, γ ∈ Γ} for a unique
1-cocyle s ∈ Z1(Γ, V ), that we denote sK . The map K 7→ sK , K → Z1(Γ, V ),
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is bijective; two elements K,K ′ in K are conjugate by an element of V if,
and only if, sK and sK ′ have the same class in H1(Γ, V ). Last but not least,
note that K,K ′ in K are conjugate by an element of V if, and only if, they
are conjugate in V ⋊ Γ: if we have K ′ = gKg−1 with g ∈ V ⋊ Γ, we may
write g = vk with v ∈ V and k ∈ K, and we have K ′ = vKv−1.

We apply this first to Γ = G and V = AX . The map Hom(G,A) =
Z1(G,A) → Z1(G,AX) defined by δ sends χ to the 1-cocycle defining Gχ.
The choice of x ∈ X identifies the G-module AX with the co-induced mod-
ule of the trivial Gx-module A to G. By Shapiro’s lemma, we obtain for
each integer m ≥ 0 a natural isomorphism sh : Hm(G,AX)

∼−→ Hm(Gx, A).
Concretely, if f : Gm → AX is an m-cocycle, then sh(f) is the class of the
m-cocycle f ′ : Gm

x → A defined by f ′(g1, . . . , gm) = f(g1, . . . , gm)(x). It
follows that the composition of the maps

Hm(G,A)
Hm(δ)−→ Hm(G,AX)

sh
∼−→ Hm(Gx, A)

coincides with the map rm. For m = 1, this proves assertions (i) and (ii).

Let us prove assertion (iii). Let Q be the cokernel of δ. By applying the
first paragraph above to Γ = G and V = Q, we obtain a natural bijection
c1 : H\G ∼−→ H1(G,Q). The long exact sequence of cohomology groups

associated to 0 → A
δ→ AX → Q→ 0 contains a piece of the form

H1(G,A)
H1(δ)−→ H1(G,AX) −→ H1(G,Q)

η−→ H2(G,A)
H2(δ)−→ H2(G,AX).

By the second paragraph, the kernel of η is isomorphic to the cokernel of
r1, and the image of η is the kernel of r2. As it is straightforward to check
from the definition of c2 that we have η ◦ c1 = c2, this concludes the proof of
assertion (iii). �

2.7. Applications to Hn

The group Hn is of course the special case of the construction of §2.5 with
G = Sn, X = {1, . . . , n} and A = {±1} (multiplicative group). The signature
ǫ gives rise to the subgroup Sǫ

n of Hn whose elements have the form ǫ(σ)σ,
σ ∈ Sn. For any transposition τ in Sn we have n−(ǫ(τ)τ) = n − 2, whereas
n−(σ) = 0 for all σ in Sn: this shows that Sǫ

n is not conjugate to Sn in Hn for
n > 2 (a fact which also follows from assertion (i) below).

Proposition 2.8. (i) Let G be a subgroup of Hn of order n! with π(G) =
Sn. Then G is either conjugate to Sn or to Sǫ

n. Moreover, Sn and Sǫ
n

are conjugate in Hn if, and only if, we have n ≤ 2.

14



(ii) Let G be a subgroup of Hn of order 2n! with π(G) = Sn. Then −1 is in
G and exactly one of the following properties holds:

(a) G is conjugate to {±1} · Sn,

(b) n = 2 and G ≃ Z/4,

(c) n = 4 and G is conjugate to the group GL2(Z/3) embedded in H4

as in Example 2.2.

Proof. Note first that in case (ii), {±1}n∩G is a normal subgroup of order 2
of G, hence it is central and generated by −1 by the assumption π(G) = Sn.
The stabilizer of n in Sn is naturally identified with Sn−1, with the convention
S0 = 1. The signature ǫ is a generator of H1(Sn, {±1}), so the restriction map
H1(Sn, {±1}) → H1(Sn−1, {±1}) is clearly surjective, and bijective for n 6= 2.
Moreover, we know form Schur that the restriction map r2 : H

2(Sn, {±1}) →
H2(Sn−1, {±1}) is surjective as well for all n > 1, and that the dimension of
the Z/2-vector space H2(Sn, {±1}) is 2 for n ≥ 4, 1 for n = 3 and 2, and 0
for n = 1 [Sch1911]. The kernel of r2 is thus 0 for n 6= 2, 4, isomorphic to
Z/2 otherwise. We conclude by Proposition 2.6 and Example 2.2. �

Remark 2.9. The natural map Hi(Alt4,Z/2) → Hi(Alt3,Z/2) is 0 → 0 for
i = 1 and Z/2 → 0 for i = 2. By Proposition 2.6 (iii), there is thus a unique
conjugacy class of nonsplit central extensions of Alt4 by {±1} in H4 (or in
{±1}4 ⋊ Alt4). As Alt4 does not embed in GL2(Z/3), one such extension is
the inverse image of Alt4 in the extension described in Example 2.2.

We now give another example. As is well-known, the group S5 has a unique
isomorphism class of transitive actions on the set {1, . . . , 6}, obtained from
the conjugation action on its 6 subgroups of order 5. We fix such an action
and consider the associated semi-direct product {±1}6 ⋊ S5, as in §2.5. We
have a defined loc. cit. a set G of subgroups of {±1}6 ⋊ S5 which are central
extensions of S5 by {±1}.

Proposition 2.10. The set G is the disjoint union of two conjugacy classes:
the one of the split extension {±1}·S5, and another one consisting of nonsplit
extensions which are split over the alternating subgroup Alt5 of S5.

Proof. Let N ⊂ S5 be the normalizer of the subgroup S = 〈(12345)〉. Then
N is the semi-direct product of 〈(2354)〉 ≃ Z/4 by S ≃ Z/5, so we have
Hi(N,Z/2) ≃ Z/2 for each i ≥ 0 and the restriction map H1(S5,Z/2) −→
H1(N,Z/2) is an isomorphism. We observe from the presentation given by
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Schur of the two Schur-covers of S5 that they are non split over the subgroups
of S5 containing a double transposition, such as N or Alt5. This implies that
the kernel of the restriction map H2(S5,Z/2) −→ H2(N,Z/2) is generated by
the remaining nonzero class in H2(S5,Z/2), namely the one which splits over
Alt5 (recall H2(Alt5,Z/2) ≃ Z/2), and we conclude by Proposition 2.6. �

A homomorphism S5 → S6 as above can alternatively be constructed from
the natural action of PGL2(Z/5) ≃ S5 on the projective line P1(Z/5). The
action of GL2(Z/5) on the 12-elements set ((Z/5)2 − {0})/{±1} permutes
the 6 disjoint pairs of the form {v, 2v}, which defines a natural conjugacy
class of embeddings

(2.2) ι : GL2(Z/5)/{±I2} −→ {±1}6 ⋊ S5.

The group ι(GL2(Z/5)/{±I2}) belongs to the second class of Proposition
2.10 (recall PSL2(Z/5) ≃ Alt5). The map ι is explicit enough to allow the
computation of the conjugacy classes of the elements of ι(GL2(Z/5)/{±I2})
viewed as a subgroup of H6 ⊃ {±1}6 ⋊ S5: they are gathered in Table 3.

type 16 16 1222 1222 23 32 32 1 1 4 1 5 1 5 6

size 1/240 1/240 1/16 1/16 1/12 1/12 1/12 1/4 1/10 1/10 1/6

Table 3: The H6-conjugacy classes of the elements of GL2(Z/5)/{±I2}.

3. Characteristic masses of root lattices

3.1. Root systems and root lattices

Let V be an Euclidean space. By a root of V we mean an element α ∈ V
with α ·α = 2; we denote by R(V ) the set of roots of V (a sphere). For each
α ∈ R(V ), the orthogonal reflection about α is an element sα of O(V ), given
by the formula sα(x) = x − (α · x)α.

An ADE root system in V is a finite set R ⊂ R(V ) generating V as a real
vector space, and such that for all α, β ∈ R we have α ·β ∈ Z and sα(β) ∈ R.
In particular, R is a root system in the sense of Bourbaki [Bou81b], and each
irreducible component of R is of type An with n ≥ 1, Dn with n ≥ 4, or En

with n = 6, 7, 8. The root lattice of R is the lattice Q(R)
def
=

∑
α∈R Zα ⊂ V

generated by R. This is an even lattice, and we have the important equality

(3.1) R(V ) ∩Q(R) = R.
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If L ⊂ V is any integral lattice, we denote by R(L) = L ∩ R(V ) the set of
roots of L. It follows at once from the definitions that R(L) is an ADE root
system in the Euclidean subspace U of V generated by R(L). We say that
L is a root lattice if R(L) generates L as an abelian group, i.e. if we have
L = Q(R(L)) (hence U = V ). By definitions and (3.1), the map R 7→ Q(R)
is a bijection between the set of ADE root systems of V and the set of root
lattices of V , whose inverse is L 7→ R(L).

We shall always use a bold font to denote an isomorphism class of root
systems, and reserve the normal font for a root lattice with the corresponding
root system. For instance, if for n ≥ 2 we set Dn = {(xi) ∈ Zn,

∑
i xi ≡

0 mod 2} as in the introduction, then R(Dn) is a root system of type Dn in
the standard Euclidean space Rn. We have also defined loc. cit. the lattice
En for n ≡ 0 mod 8. It is easy to check R(En) = R(Dn) for n > 8 and
that R(E8) is of type E8. We choose in an arbitrary way root lattices An for
n ≥ 1, as well as E6 and E7, whose root systems are of type An, E6 and E7.

Let L be an integral lattice in V and set R = R(L). The sα with α in R
generate a subgroup of O(L) called the Weyl group of L, and denoted W(L).
This is a normal subgroup of O(L), and we denote by G(L) = O(L)/W(L)
the quotient group. Assume first that L is the root lattice Q(R); in this case
we also set W(R) := W(L), O(R) := O(L) (this latter group is also denoted
A(R) by Bourbaki) and G(R) = G(L). As is well-known, G(R) is isomorphic
to the automorphism group of the Dynkin diagram of R, and we have

(3.2) G(R) ≃





1 for R ≃ A1,E7,E8,
S3 for R ≃ D4,
Z/2 otherwise.

Moreover, W(R) permutes the positive root systems10 R+ ofR, or equivalently
the Weyl vectors11of R, in a simply transitive way. Let us now go back to
the case of an arbitrary L. The set R is a root system in the Euclidean space
U generated by R, and the restriction σ 7→ σ|U induces a morphism O(L) →
O(R) and an isomorphism W(L)

∼→ W(R). It follows that O(L) permutes
the Weyl vectors of R, and that W(L) permutes them simply transitively.
So for any Weyl vector ρ of R, the stabilizer O(L)ρ of ρ in O(L) is naturally
isomorphic to G(L) and we have

(3.3) W(L) ∩O(L)ρ = 1, O(L) = W(L) ·O(L)ρ and W(L) ≃ W(R),

so that O(L) is the semi-direct product of O(L)ρ by W(L).

10Recall that a positive root system in R is a subset of the form {α ∈ R, ϕ(α) > 0}
where ϕ : V → R is a linear form with 0 /∈ ϕ(R).

11A Weyl vector of R is a vector of the form ρ = 1
2

∑
α∈R+ α for R+ a positive root

system of R. In particular we have 2ρ ∈ Q(R).
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3.2. Characteristic masses of irreducible root lattices

In this paragraph, we let R ⊂ V be an ADE root system and L = Q(R).
Set n = dimV . Our aim is to determine the characteristic masses of O(L)
and, more generally, the map mS : Carn → Q≥0 where S is any subset of
the form σW(L) with σ ∈ O(L) (see §1.2 (ii) for the definition of mS). We
assume first R irreducible, and argue case by case.

(A) Case R ≃ An with n ≥ 1.

We may assume that V is the hyperplane of sum 0 vectors in Rn+1 and
R = {±(ǫi−ǫj), 1 ≤ i < j ≤ n+1}, where ǫ1, . . . , ǫn+1 denotes the canonical
basis of Rn+1, and L = An. The group W(An) may be identified with the
symmetric group Sn+1, acting on V by permuting coordinates.

Let S denote the set of integer sequences m = (mi)i≥1 with mi ≥ 0 for
each i, and mi = 0 for i big enough. Let An ⊂ S denote the subset of m
such that

∑
i imi = n + 1. For any m in An, the elements of Sn+1 whose

cycle decomposition contains mi cycles of length i for each i form a single
conjugacy class Cm ⊂ Sn+1. We have furthermore |Cm| = (n + 1)!/nm with

nm =
∏

i

mi! i
mi .

The characteristic polynomial of Cm acting on V is

Pm = (t− 1)−1
∏

i

(ti − 1)mi,

since Rn+1/V is the trivial representation of Sn+1. The following trivial
lemma even shows that we have Pm 6= Pm′ for m 6= m′.

Lemma 3.3. The polynomials tl − 1, with l ≥ 1, are Z-linearly independent
in the multiplicative group of the field Q(t).

As a consequence, we obtain the:

Corollary 3.4. For n ≥ 1, we have mW(An)(Pm) = 1/nm for m in An, and
mW(An)(P ) = 0 for all other P in Carn.

As is easily seen, the element −1 = −idV is in W(An) if and only if n = 1,
and we have O(An) = W(An) ∪ −W(An) (this fits of course Formula (3.2)).
The map mS for the coset S = −W(An) is deduced from mW(An) by the
following trivial lemma:
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Lemma 3.5. Let S be a finite subset of O(V ) with dimV = n. Then for all
P ∈ R[t] we have m−S(P ) = mS(Q) with Q(t) = (−1)nP (−t).

(D) Case R ≃ Dn with n ≥ 3.

We may assume V = Rn, R = {±ǫi ± ǫj , 1 ≤ i < j ≤ n} where ǫ1, . . . , ǫn
denote again the canonical basis of V , and L = Dn. The lattice Dn is the
largest even sublattice of the standard lattice

In = Zn = ⊕n
i=1Zǫi,

and thus O(In) is a subgroup of O(Dn). This group O(In) is nothing else
than the hyperoctahedral group Hn already introduced in §2.1: we have

O(In) = Hn = {±1}n ⋊ Sn

where Sn (resp. {±1}n) act on Rn by permuting coordinates (resp. sign
changes). As is well-known, W(Dn) is the index 2 subgroup ker s of O(In)
(recall s is defined by Formula (2.1)). By (3.2) we also have

(3.4) O(In) = O(Dn) for n 6= 4 and G(D4) ≃ S3 (triality).

The conjugacy classes of Hn have been recalled in §2.3. Let Dn ⊂ S × S

be the subset of (m+, m−) with
∑

i i (m
+
i +m−

i ) = n. For any (m+, m−) in
Dn the elements of Hn whose cycle decomposition contains m+

i (resp. m−
i )

cycles of length i with sign +1 (resp. −1) for each i form a single conjugacy
class Cm+,m− ⊂ Hn. We easily check |Cm+,m−| = 2nn!/nm+,m− with

nm+,m− =
∏

i

m+
i ! m

−
i ! (2i)m

+
i +m−

i ,

and s(Cm+,m−) = (−1)|m
−| where we have set |m| = ∑

imi for m ∈ S. The
characteristic polynomial of Cm+,m− acting on V is

Pm+,m− =
∏

i

(ti − 1)m
+
i (ti + 1)m

−

i =
∏

i

(ti − 1)
m+

i −m−

i +m−

i/2 ,

where we have set m−
i/2 = 0 for i odd, and used for i ≥ 1 the relation

(ti − 1)(ti + 1) = (t2i − 1). In contrast with the An case, we may thus have
Pm+,m− = Pn+,n− for distinct (m+, m−) and (n+, n−) in Dn. This leads us to
introduce the subset

D′
n = {(m+, m−) ∈ Dn | m+

i m
−
i = 0 for all i ≥ 1}.
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Lemma 3.3 shows that we have Pm+,m− 6= Pn+,n− for (m+, m−) 6= (n+, n−) in
D′

n. We reduce to D′
n as follows. Consider the following map φ : Dn → Dn:

(i) if (m+, m−) ∈ D′
n set φ(m+, m−) = (m+, m−),

(ii) otherwise there is a smallest j ≥ 1 with m+
j m

−
j 6= 0 and we set

φ(m+, m−) = (n+, n−) with (n+
i , n

−
i ) = (m+

i , m
−
i ) for i 6= j or i 6= 2j,

and with (n+
j , n

−
j ) = (m+

j − 1, n+
j − 1) and (n+

2j , n
−
2j) = (m+

2j + 1, m−
2j).

It is clear that we have Pφ(m+,m−) = Pm+,m− for all (m+, m−) in Dn, and that
for each m = (m+, m−) ∈ Dn the sequence m,φ(m), φ2(m), . . . is eventually
constant and equal to some element of D′

n, that we denote by ψ(m).

Corollary 3.6. Let σ ∈ O(In). For all (m+, m−) in D′
n we have

mσW(Dn)(Pm+,m−) =
∑ 1

nn+,n−

the sum being over all the (n+, n−) in Dn with ψ(n+, n−) = (m+, m−) and
(−1)|m

−| = s(σ). We have mσW(Dn)(P ) = 0 for all other P in Carn.

We have G(D4) ≃ S3 so it remains to determine mσW(D4) for the 6 possible
classes σW(D4). A first general reduction is the following lemma:

Lemma 3.7. Let L be an integral lattice, as well as elements σ1, σ2 in O(L)
whose images in G(L) are conjugate. Then we have mσ1W(L) = mσ2W(L).

Proof. Write σ2 = γσ1γ
−1w0 with γ in O(L) and w0 in W(L). For w ∈ W(L)

we have det(t− σ2w) = det(t− σ1γ
−1w0wγ). We conclude as w 7→ γ−1w0wγ

is a bijection of the normal subgroup W(L) of O(L). �

In particular, mσW(D4) is already given by Lemma 3.6 whenever the image
of σ in G(D4) ≃ S3 has order 1 or 2, and does not depend on σ if this image
has order 3. There are many ways to determine mσW(D4) in this latter case.
One way is to consider first the set

R′ = {v ∈ D4, v · v = 4} = {±2ǫi | i = 1, . . . , 4} ∪ {
4∑

i=1

±ǫi}

and observe that we have α ·x ∈ 2Z for all α ∈ R′ and x ∈ D4. In particular,
1√
2
R′ is a root system (of type D4) in R4 and we have W( 1√

2
R′) ⊂ O(D4).

The two roots α =
√
2ǫ1 and β = 1√

2
(ǫ1 + ǫ2 + ǫ3 + ǫ4) are in 1√

2
R′ with

α · β = 1, and the order 3 element

σ0 := sβ ◦ sα =
1

2

(
−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

)
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of O(D4) does not belong to W(D4). It is trivial to enumerate with a com-
puter the 23 4! = 384 elements of σ0W(D4) and to list their characteristic
polynomials. We obtain:

Corollary 3.8. Let σ be an element of order 3 in G(D4). The mσW(D4)(P )
with P ∈ Car4 are given by Table12 9.

In fact, the reasoning above can be pushed a little further: it turns out that
R′′ = R

∐
R′ is a root system of type F4 in R4 (not ADE of course) and that

we have W(R′′) = 〈W(R),W( 1√
2
R′)〉 = O(D4). But the conjugacy classes of

W(S), with S any irreducible root system of exceptional type, have been
listed and studied in a conceptual way by Carter in [Car72], including their
characteristic polynomials (see p. 22 & 23 loc. cit.). The map mO(D4) may
be deduced in particular from Table 8 of [Car72]. The map mσ0W(D4) follows
then from the equality mO(D4) = −1

3
mW(D4) +

1
2
mO(I4) + 1

3
mσ0W(D4).

Remark 3.9. Assume R is an irreducible root system. It follows from (3.2)
that two elements of G(R) are conjugate if and only if they have the same
order, which is always 1, 2 or 3. In particular, Lemma 3.7 shows that for σ
in O(R) the map mσW(R) only depends on the order of σ in G(R).

(E) Cases R ≃ En with n = 6, 7 and 8.

The aforementioned results of Carter also allow to deduce mW(En) for n =
6, 7 and 8 (using Tables 9, 10 and 11 loc. cit). Alternatively, and as a use-
ful check, these masses can also be computed directly using a variant of the
Algorithm A explained in §1.4. Indeed, choosing a positive system R+ ⊂ R,
we may view W(R) as the subgroup of O(V ) generated by the n reflections
sα, with α a simple root in R+. As W(R) acts faithfully and transitively on
R, it is also the subgroup of the permutation group of R generated by these
n permutations sα, with |R| = 72 (case n = 6), |R| = 126 (case n = 7) or
|R| = 240 (case n = 8). Applying GAP’s ConjugacyClasses algorithm to this
permutation group, we obtain representatives and cardinalities of the con-
jugacy classes of W(R), and it only remains to compute their characteristic
polynomials. All in all, these computations only take a few seconds for the
computer. Both methods lead to the:

Corollary 3.10. For n = 6, 7 and 8, the mW(En)(P ) with P ∈ Carn are given
by Tables 10, 11 and 12.

Note that for n = 7, 8 we have O(En) = W(En) (no non trivial diagram
automorphism). For n = 6, we have O(E6) = W(E6)

∐−W(E6), but the
map m−W(E6) is deduced from mW(E6) using Lemma 3.5.

12The notation for polynomials used in Table 9 is explained on p. 10.
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3.11. The non irreducible case

Assume now R is a non necessarily irreducible ADE root system in V , set
L = Q(R) and fix σ in O(R). Our aim is to give a formula for mσW(R). Write
R as the disjoint union of its irreducible components R =

∐
i∈I Ri. We have

L =

⊥⊕

i∈I
Q(Ri) and W(R) =

∏

i∈I
W(Ri).

The element σ induces a permutation of the set {Ri | i ∈ I} of irreducible
components of R. We write σ = c1 c2 · · · cr the cycle decomposition of this
permutation. For each j = 1, . . . , r, we choose an irreducible component Sj

of R in the support of cj , denote by sj = dimQ(Sj) the rank of Sj and by lj
the length of the cycle cj . For each j we have σlj (Sj) = Sj and we denote by
τj the restriction of σlj to Q(Sj); so τj is an element of O(Sj).

Proposition 3.12. In the setting above, we have for all P in Carn

mσW(R)(P ) =
∑

(P1,...,Pr)

r∏

j=1

mτjW(Sj )(Pj)

summing over all (P1, . . . , Pr) ∈ Cars1 ×· · ·×Carsr with
∏r

j=1 Pj(t
lj ) = P (t).

The first ingredient in the proof is the following trivial lemma.

Lemma 3.13. For i = 1, 2, let Vi be an Euclidean space and Γi ⊂ O(Vi) a
finite subset. Set V = V1 ⊥ V2 and view Γ = Γ1 × Γ2 as a subset of O(V ).
For all monic polynomials P in R[t] of degree dimV we have

mΓ(P ) =
∑

(P1,P2)

mΓ1(P1) mΓ2(P2),

the sum being over the (P1, P2), with Pi ∈ R[t] monic of degree dimVi, and
with P1P2 = P .

Proof. (of Proposition 3.12) Applying Lemma 3.13, we may and do assume
r = 1, i.e. that σ permutes transitively the irreducible components of R.
In this case, we simply write (S, s, l, τ) instead of (S1, s1, l1, τ1). We may
also assume that we have I = {0, . . . , l − 1} and Ri = σi(S) for 0 ≤ i < l.
In particular, we have W(R) =

∏
0≤i<l σiW(S) σ−i. Choose a Z-basis

e = (e1, . . . , es) of Q(S) and consider the following Z-basis of L:

f = (e1, . . . , es, σ(e1), . . . , σ(es), . . . , σ
l−1(e1), . . . , σ

l−1(es)).
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For all w = (σiwiσ
−i)0≤i<l in W(R), the matrix of σw in the basis f is

(3.5)




MWl−1

W0

W1

. . .

Wl−2




where Wi is the matrix of wi ∈ W(S) in the basis e, and M is the matrix of
τ = σl in the basis e. By Lemma 3.14 below, it follows that the multiset of
polynomials det(t− σw) (counted with their multiplicities) when w varies in
W(R), coincides with that of polynomials det(ts−τwl−1wl−2 · · ·w0) when the
l-tuple (w0, w1, . . . , wl−1) varies in W(S)l. As W(S) is a group, this multiset
is also |W(S)|l−1 times the multiset of the det(ts − τw) when w varies in
W(S), and we are done. �

Lemma 3.14. For any W0,W1, . . . ,Wl−1 and M in Ms(C), the characteristic
polynomial of the matrix (3.5) of size sl is det(ts −MWl−1Wl−2 · · ·W0).

Proof. By continuity, we may assume Wi ∈ GLs(C) for each i. Up to
conjugating (3.5) by the diagonal matrix (1,W0,W1W0, . . . ,Wl−2 · · ·W1W0)
we may assume W0 = W1 = · · · = Wl−1 = ids. But in this case, the entries
of (3.5) commute and we conclude by [Ing37] and the following well-known
fact (applied to Q = ts − a): the characteristic polynomial of the companion
matrix of a given monic polynomial Q is the polynomial Q itself. �

4. An algorithm computing characteristic masses

4.1. Algorithm B

Consider the following algorithm, which takes as input an integral lattice L
in the standard Euclidean space V = Rn:

B1. Compute the root system R = R(L), a positive root system R+ ⊂ R and the
associate Weyl vector ρ = 1

2

∑
α∈R+ α.

B2. Determine a set G of generators of the stabilizer O(L)ρ of ρ in O(L).

B3. Compute the set S = S(L) defined on p. 7 and view O(L)ρ as the subgroup of
permutations of S generated by G.

B4. Use permutation groups algorithms to determine the sizes (mj)j∈J and represen-
tatives (γj)j∈J of the conjugacy classes (cj)j∈J of O(L)ρ.
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B5. Compute the set Irr(R) of irreducible components of R, the isomorphism class
of each such component, and a basis of the orthogonal R⊥ of R in V .

B6. For each j in J , compute:

– the characteristic polynomial Pj of γj on R⊥,

– a set of representatives Irrj ⊂ Irr(R) of the orbits for the action of γj on Irr(R),

– for each S ∈ Irrj, the size lS of its γj-orbit and the order dS ∈ {1, 2, 3} of the

permutation γlSj of S.

B7. For each (S, dS) ∈ Irr(R) × {1, 2, 3} found in B6, compute mτW(S) using the
results of §3.2, where τ is any element of order dS in O(S)/W(S) (see Remark 3.9).

B8. Using Proposition 3.12 and step B7, deduce for each j in J the map mγjW(R).

B9. For each j in J , define Mj : Carn → Q by setting Mj(P ) = mγjW(R)(Q) if we
have P = QPj , and Mj(P ) = 0 otherwise.

B10. Return
∑

j∈J mj Mj∑
j∈J mj

.

We will say more about each step of this algorithm in §4.3. Recall from
(3.3) that we have a semi-direct product O(L) = W(L) ⋊ Oρ(L) and that
the restriction to the subspace U = Q(R)⊗R of V induces a morphism res :
O(L) → O(R), an isomorphism W(L)

∼→ W(R) and a morphism O(L)ρ →
O(R)ρ. Together with (3.2), this explains why the elements dS introduced in
the step B6 are indeed in {1, 2, 3}. Moreover, the more correct notation for
γjW(R) in B8 should be res(γj)W(R). For j in J , we have Mj = mγjW(L) as
W(L) acts trivially on R⊥. Last but not least, Lemma 3.7 shows

mO(L) =

∑
j∈J mj mγjW(L)∑

j∈J mj
.

We have proved the:

Proposition 4.2. Algorithm B returns mO(L).

4.3. Precisions and an implementation

We now discuss more precisely the steps of Algorithm B, as well as some
aspects of our implementation: see [Che19] for the source code and a doc-
umentation of the PARI/GP function masses_calc (requiring GAP) that we
developped. Its input is a Gram matrix G of the lattice L, which is thus
viewed as the lattice Zn equipped with the inner product defined by G.

B1. Apply the Fincke-Pohst algorithm [FP85] to G to compute R ⊂ Zn. In
PARI’s implementation, qfminim(G)[3] returns a set T ⊂ Zn with T ∪−T =
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R consisting of all the elements of R lying in a certain half-space of Rn: this
is a positive system, and we simply choose R+ = T .

B2. Let b be the Gram matrix of the Z-valued bilinear form (x, y) 7→
4(ρ · x)(ρ · y) in the canonical basis of Zn. Apply the Plesken-Souvignier
algorithm [PS97] to the pair of matrices (G, b). This is implemented in
PARI/GP as qfauto([G,b])[2] (following Souvignier’s C code). It returns
a set G′ ⊂ GLn(Z) of generators of the subgroup of O(L) whose elements
g satisfy gρ = ±ρ. For each g ∈ G′, determine the sign ǫg with gρ = ǫgρ.
Define13 G as the set of ǫgg with g ∈ G′.

B3. Apply recursively the Fincke-Pohst algorithm to find S ⊂ Zn, as ex-
plained on p. 7. Choose arbitrarily an ordering ψ : S

∼→ {1, . . . , N}. For
each g in G, compute the permutation σg = ψ ◦ g ◦ ψ−1 in the symmetric
group SN . For later use, also extract a basis S0 ⊂ S of Rn.

B4. Apply GAP’s ConjugacyClasses algorithm to the subgroup H of SN

generated by the σg with g in G. It returns a list of representatives (rj)j∈J of
the conjugacy classes of H , as well as their cardinalities (mj)j∈J . Each rj is
a permutation of {1, . . . , N}. Using the subset S0 introduced in B3, compute
the matrix γj ∈ GLn(Z) of the element of O(L)ρ corresponding to rj under
the natural isomorphism H ≃ O(L)ρ.

B5. Compute first the basis B of the root system R associated to R+, using
B = {α ∈ R+ | α · ρ = 1}. Define a graph with set of vertices B, and with
an edge between b, b′ ∈ B if and only if we have b · b′ 6= 0. Determine the
connected components B =

∐
i∈I Bi of this graph. For i in I define R+

i as the
subset of elements α in R+ with α · Bi 6= 0. We have Irr(R) = {Ri | i ∈ I}.
The isomorphism class of the ADE root system Ri = R+

i ∪−R+
i is uniquely

determined by its rank |Bi| and its cardinality 2|R+
i |.

B6. Use i 7→ Ri to identify I with Irr(R). Compute the Weyl vector ρi =
1
2

∑
α∈R+

i
α of Ri for each i in I. Fix j ∈ J . There is a unique permutation

τj of I such that γj(ρi) = ρτj(i) for all i in I. Compute τj and determine its
cycle decomposition.

Steps B7-B10 are theoretically straightforward. Nevertheless, the efficient
implementation of these steps depends on the way the maps mS are repre-
sented: see the documentation in [Che19] for more about the (imperfect) way

13An alternative (cleaner) method to compute the stabilizer in O(L) of a given element
x of L would be to simply add the condition vi · x = bi · x for all i ≤ k in the definition of
a k-partial automorphism in §3 of [PS97], as well as a similar constraint in the definition
of their fingerprint in §4 loc. cit. The main advantage of the trick we use is that we do
not have to modify the code of the PARI port of Souvignier’s program.
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we proceed in gp. In the end, masses_calc(G) returns the vector [a, b, c, d]
where:

– a is the vector of all [P,m] with P in Carn and m = mO(L)(P ) with m 6= 0,

– b is the isomorphism class of the root system R(L),

– c is the vector (cj)j∈J where cj encodes both the cycle decomposition of
γj on Irr(R) and the integers dS for each S in Irrj,

– d is the vector (dj)j∈J with dj = [Pj , mj/M ] and M =
∑

j∈J mj .

5. The characteristic masses of Niemeier Lattices with roots

The aim of this section is to explain a way to determine the characteristic
masses of the Niemeier lattices with roots which does not use the computa-
tionally heavy steps B1 and B4 in Algorithm B, by rather determining directly
the information of step B6 (and then using of course the elementary results of
§3). We will use for this the case by case descriptions of these lattices given
by Venkov [Ven80] or Conway and Sloane [CS99, Ch. 16], based on the
classical connections between lattices and codes [CS99, Ebe02], and study
their automorphism groups in slightly more details than what we could find
in the literature. To keep this section short, we assume some familiarity with
Niemeier lattices and mostly follow the exposition in [CL19, Chap. 2.3] to
which we refer for more details.

5.1. Linking modules, Venkov modules and even unimodular lattices

(a) A (quadratic) linking module14 is a finite abelian group A equipped with
a quadratic map q : A −→ Q/Z whose associated symmetric Z-bilinear map
b(x, y) := q(x+ y)− q(x)− q(y), A×A −→ Q/Z, is a perfect pairing. The
isometry group of A is denoted O(A). If I ⊂ A is a subgroup, we denote
by I⊥ the orthogonal of I with respect to b. We say that I is isotropic if
we have q(I) = 0 (this is usually stronger than I ⊂ I⊥). We say that I is a
Lagrangian if it is isotropic and if we have I = I⊥ (or equivalently |A| = |I|2).
(b) A Venkov module is a linking module A equipped with a (set theoretic)

map qm : A → Q≥0 such that for all a ∈ A we have qm(a) ≡ q(a) mod Z,
qm(0) = 0 and qm(a) > 0 for a 6= 0. Venkov modules form an additive
category Ven in an obvious way; in particular we have an obvious notion of
orthogonal direct sum of such objects, denoted ⊕. A root of a Venkov module
A is an element a ∈ A such that qm(a) = 1.

14Such a module is also called a qe-module in [CL19, Chap. 2.3].
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(c) Assume L is an even lattice in the Euclidean space V . Recall that we
set q(x) = x·x

2
for x ∈ V . The finite abelian group L♯/L, equipped with

the well-defined quadratic map (that we shall still denote by q) L♯/L −→
Q/Z, x + L 7→ q(x) mod Z, is a linking module that we shall denote by
resL (sometimes also called the discriminant group or glue group of L). This
linking module has a canonical structure of Venkov module defined by

qm(x) = infy∈x+L q(y).

Let π : L♯ → resL be the canonical projection. The map I 7→ π−1I is a
bijection between the set of isotropic subspaces I of resL and the set of even
lattices of V containing L. In this bijection, π−1 I is unimodular if, and only
if, I is a Lagrangian. Moreover, we have R(π−1I) = R(L) if, and only if, I
does not contain any root of resL.

(d) We now focus on the case L = Q(R) with R an ADE root system in V .
In this case Q(R)♯ is called the weight lattice of R and we set resR = resL.
The group O(R) naturally acts on resR, with W(R) acting trivially, so we
have a morphism G(R) → AutVen(resR). The Venkov module resR is the
orthogonal sum of the resS with S an irreducible component of R. Assume
now R is irreducible. Canonical representatives for the nonzero elements of
resR are given by the so-called minuscule weights of R, that we denote by ̟i

following Bourbaki’s conventions [Bou81b] for the indices. A key property is
qm(̟i+Q(R)) = q(̟i) (see Table 5.1). We also have G(R)

∼→ AutVen(resR).
In particular, the element −id of O(R) is in W(R) if, and only if, resR is a
Z/2-vector space.

R An Dn, n even Dn, n odd E6 E7 E8

resR Z/(n + 1) Z/2× Z/2 Z/4 Z/3 Z/2 0

min.wts ̟i, i = 1, . . . , n ̟n, ̟1,̟n−1 ̟n,̟1, ̟n−1 ̟1, ̟6 ̟7

class i mod n+ 1 ω, 1, ω 1, 2, 3 mod 4 1, 2 mod 3 1 mod 2

qm
i(n+1−i)
2(n+1)

n
8
, 1
2
, n
8

n
8
, 1
2
, n
8

2
3
, 2
3

3
4

Table 4: The Venkov module resR for R an irreducible ADE root system.

Remark 5.2. In the case R ≃ Dn with n even, some authors (e.g. [CS99])
identify the Z/2-vector space resR with the finite field F4 = {0, 1, ω, ω}. Us-
ing this identification, the automorphism group of resR, in Ven, is generated
by the Frobenius f(x) = x2, as well as m(x) = ωx for n = 4 (triality).
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5.3. The Niemeier lattices with roots

Niemeier and Venkov have shown that L 7→ R(L) induces a bijection be-
tween the isomorphism classes of Niemeier lattices with roots, and the iso-
morphism classes of equi-Coxeter15

ADE root systems in R24. Fix such a root
system R in R24. By §5.1, there is thus a unique O(R)-orbit of Lagrangians
I in resR containing no root (the "codes"). For any such I, the associated
Niemeier lattice with root system R is L = π−1I, we have |resR| = |I|2 and
G(L) = O(L)/W(R) is the stabilizer of I ⊂ resR in G(R). In particular, the
conjugacy class of G(L) in G(R) does not depend on the choice of I.

Goal: For each of the 23 possible isomorphism classes of R, determine the
G(R)-conjugacy class of the elements of G(L) (with their multiplicity).

This is exactly the information actually needed to apply Proposition 3.12
to each coset σW(R) in O(L). We will use information on G(L) given by
Venkov [Ven80] and Conway-Sloane [CS99, Table 16.1] (see also [Ero82]),
such as their order and a composition series. Note that those G(L) are also
exactly the umbral groups studied in [CDH14].16 We may assume that the
decomposition of R as a union of its irreducible components has the form17

R = N1R1 N2R2 . . . NgRg,

with Ri 6≃ Rj for i 6= j, and Ni ≥ 1 for all i. We have natural decompositions

resR =
⊕

i

(resRi)
Ni, G(R) =

∏

i

G(NiRi) and G(NiRi) = G(Ri) ≀ SNi
.

By (3.2), each G(NiRi) is naturally isomorphic either to the symmetric group
SNi

, to the hyperoctahedral group HNi
, or to TNi

:= S3 ≀SNi
in the exceptional

case Ri ≃ D4. The natural exact sequence 1 → ∏
i G(Ri)

Ni → G(R) →∏
i SNi

→ 1 induces an exact sequence 1 → G1(L) → G(L) → G2(L) → 1.
The orders of G1(L) and G2(L) are given in [CS99, Table 16.1]. Moreover,
the image of G2(L) in SNi

is always a transitive subgroup for each i.

We denote by η ∈ G(L) the class of the element −id of O(L). It is a central
element which does not depend on the choice of I, and satisfies η2 = 1. Its

15A root system R is called equi-Coxeter if its irreducible components have the same
Coxeter number, then called the Coxeter number of R and denoted h(R). The Coxeter
numbers of An, Dn, E6, E7 and E8 are respectively n+ 1, 2n− 2, 12, 18 and 30.

16Although we will not use it, as this not the information we need, let us mention that
the character tables of umbral groups have been listed in the appendix 2 loc. cit. (and
computed using GAP).

17This is a short notation for
∐g

i=1

∐Ni

j=1 Ri.
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image in G(NiRi) is trivial if Ri has type A1, D2n, E7 or E8, and equal to the
element −1 of G(NiRi) = HNi

otherwise (§2.1 and Table 5.1). An inspection
of Table [CS99, Table 16.1] shows that we always have G1(L) = 〈η〉, except
in the case R ≃ D

6
4 for which we have G1(L) ≃ Z/3 (and η = 1).

Notation: A conjugacy class C ⊂ G(R) has the form
∏

i Ci where Ci

is a conjugacy class in Gi = G(NiRi). So C is uniquely determined by the
collection (ti) where ti is the type of Ci : a partition ofNi in the case Gi = SNi

,
a couple of partitions as in §2.3 in the case Gi = HNi

, and similarly a triple
of partitions in the case Gi = TNi

. In this last case, and as in §2.3, we use
the sequence of symbols · · · iai ibi ici · · · to denote the conjugacy class whose
elements have a cycle decomposition with ai (resp. bi, ci) cycles of length i
whose i-th power has order 1 (resp. 2, 3), with same conventions as loc.cit.

We now start the description of the G(R)-conjugacy classes of the elements
of G(L). In the non trivial cases, we list their type and give the number of
elements of any given type divided by |G(L)| (the size of the type):

• R ≃ D24, D16E8, A24, A17E7, A15D9 and A11D7E6. We have
G2(L) = 1, so G(L) = G1(L) = 〈η〉.

• R ≃ 3E8. We have G(R) = S3 and resR = 0, so G(L) = G(R) = S3.

• R ≃ 2D12. We have G(R) = H2, G1(L) = 1 and G2(L) = S2. We may
take for I the subgroup {0, (1, ω), (ω, 1), (ω, ω)} (note q(I) = {0, 2, 3}).
For this I, G(L) is the natural subgroup S2 of H2.

• R ≃ D10 2E7. We have G(R) = H1 × H2, G1(L) = 1 and G2(L) = S2.
We may take I = {0, (ω, 1, 0), (ω, 0, 1), (1, 1, 1)} (note qm(I) = {0, 2}).
So G(L) ≃ Z/2 is generated by the element (ε1, (1 2)) of G(R), whose
type is (1,2).

• R ≃ 3D8. We have G(R) = H3, G1(L) = 1 and G2(L) = S3. We
may take for I the subgroup generated by the S3-orbit of (1, 1, ω) (it
contains (0, ω, ω), (ω, ω, ω) and we have |I| = 8 and qm(I) = {0, 2, 3}).
For this I, G(L) is the natural subgroup S3 of H3.

• R ≃ 2A12. We have G(R) = H2, η = −1 and G2(L) = S2. We may
take I = 〈a〉 ≃ Z/13 with a = (1, 5) (note qm(I) = {0, 2, 3}). The
order 4 element σ = ε1(1 2) of H2 satisfies σa = −5a, hence generates
G(L). The type of the elements of G(L) are thus 12, 12 and 2, with
respective size 1/4, 1/4 and 1/2.
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• R ≃ 4E6. We have G(R) = H4, η = −1 and G2(L) = S4: G(L) is a
central extension of S4 by Z/2. Let I be the Lagrangian of resR ≃
(Z/3)4 with π−1I = L. The stabilizer of I in O(resR) is the semi-
direct product of GL(I) ≃ GL2(Z/3) and of a Z/3-vector space. The
natural morphism G(L) → GL(I) is thus injective, hence bijective. In
particular, G(L) is not isomorphic to S4×Z/2 and we are in case (ii) (c)
of Proposition 2.8: G(L) is H4-conjugate to the subgroup of Example
2.2. The H4-conjugacy classes of G(L) are thus given by Table 2.

• R ≃ 4D6. We have G(R) = H4, G1(L) = 1 and G2(L) = S4. We claim
that G(L) does not contain the natural subgroup S4 of H4. Indeed,
assume that the Lagrangian I of resR = (resD6)

4 defining L is stable
under S4. For any x = (x1, x2, x3, x4) ∈ I and any 1 ≤ i 6= j ≤ 4, we
have x + (i j)x in I, hence 2qm(xi + xj) is either 0 or an integer ≥ 2.
This forces xi + xj = 0 by Table 5.1, hence |I| ≤ 4: a contradiction.
By Proposition 2.8, the subgroup G(L) ⊂ H4 is thus H4-conjugate to
the subgroup Sǫ

4, and we are done.

• R ≃ 2A9D6. We have G(R) = H2 × H1, η = (−1, 1) and G2(L) =
S2 × S1. We may take for I the subgroup generated by the elements
a = (2, 4, 0), b = (5, 0, ω) and c = (0, 5, ω), of respective orders 5, 2 and
2 (check qm(I) = {0, 2, 3}). Observe that I is stable by the element
σ = (ε2(1 2),−1) of G(R): we have σ(a) = (4,−2, 0) = 2a, σ(b) =
(0,−5, ω) = c and σ(c) = (5, 0, ω) = b. This shows G(L) = 〈σ〉 ≃ Z/4,
the types of its elements being (12, 1), (12, 1) and (2, 1), with respective
size 1/4, 1/4 and 1/2.

• R ≃ 3A8. We have G(R) = H3, η = −1 and G2(L) = S3. By Proposi-
tion 2.8, G(L) is H3-conjugate to the subgroup {±1} · S3 of H3.

• R ≃ 2A7 2D5. We have G(R) = H2 × H2, η = (−1,−1) and G2(L) =
S2 × S2. We may take for I the subgroup generated by the elements
a = (1, 1, 1, 2) and b = (1,−1, 2, 1) of order 8 (check qm(I) = {0, 2, 3}).
Note that I is stable under σ1 = ((1 2), ε2) and σ2 = (ε2, (1 2)): we
have σ1(a) = a, σ1(b) = (−1, 1, 2, 3) = −b, and σ2 exchanges a and b.
This shows G(L) = 〈σ1, σ2〉 (dihedral of order 8), with types (12, 12),
(12, 12) of size 1/8, and types (2, 1 1), (1 1, 2) and (2, 2) of size 1/4.

• R ≃ 4A6. We have G(R) = H4, η = −1 and |G2(L)| = 12. So G(L) is a
central extension of G2(L) = Alt4 by Z/2. It has an injective morphism
to GL(I) = GL2(Z/7) (same argument as for 4E6): this is a non split
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extension. By Remark 2.9, the types of the elements of G(L) follow
thus from Table 2: they are 14, 14, 22, 1 3 and 1 3, with respective sizes
1/24, 1/24, 1/4, 1/3 and 1/3.

• R ≃ 6D4. We have G(R) = T6, |G1(L)| = 3 and G2(L) = S6. We iden-
tify resD4 with F4 as in Remark 5.2. Following Conway and Sloane, I is
an hexacode in F6

4. By [CS99, §11.2], we may choose for I the F4-vector
space generated by the K-orbit of (ω, ω, ω, ω, ω, ω), where K is the sub-
group of Alt6 preserving {{1, 2}, {3, 4}, {5, 6}}. For this choice, G(L)
contains K and G1(L) is generated by the element (m,m,m,m,m,m)
of AutZ/2(F4)

6 = (S3)
6. Two other elements of G(L) are for instance

(f, f, f, f, f, f)(12) and (1, 1, 1, 1, m2, m)(1 2 3) (for the latter, recall
that (ω, ω, ω, ω, 1, 1) is in I). As K, (1 2) and (1 2 3) generate S6, a
straightforward computation allows to list the types of the elements of
G(L): we obtain Table 5.

type 16 16 14 2 12 22 12 22 23 1 12 3 32

size 1/2160 1/1080 1/48 1/48 1/24 1/48 1/18 1/18

type 12 4 2 4 2 4 1 5 1 5 6 1 2 3

size 1/8 1/24 1/12 2/15 1/15 1/6 1/6

Table 5: The T6-conjugacy classes of the elements of 3.S6.

• R ≃ 4A5D4. We have G(R) = H4×T1, η = (−1, 1) and G2(L) = S4×
S1. We identify resD4 with F4 as in Remark 5.2. The first projection
pr1 : G(L) → H4 is injective, and its image H(L) is a central extension
of S4 by Z/2. By Proposition 2.8, H(L) is either conjugate to {±1}×S4

or to the group GL2(Z/3) embeded as in Example 2.2. By [CS99,
§11.2], we may take for I the subgroup generated by the σ-orbit of
a = (2, 0, 2, 4, 0) and b = (3, 3, 0, 0, w), where σ = ((2 3 4), m). In order
to determine H(L) it is enough to find the unique ±v ∈ {±1}4 such
that v(1 2) ∈ H(L). Note that 2I is the Z/3-vector space generated by
(2, 0, 2, 4, 0) and (2, 4, 0, 2, 0). We deduce v = ±(1, 1, 1,−1): we have
G(L) ≃ H(L) ≃ GL2(Z/3). On the other hand, the second projection
pr2 : G(L) → T1 is trivial on η hence factors through a morphism
µ : S4 → S3. We have σ ∈ G(L) and pr2(σ) = m has order 3: µ is
“the” classical surjective morphism from S4 to S3. The types of G(L)
are thus immediately deduced from Table 2.

31



• R ≃ 6A4. We have G(R) = H6, η = −1 and G2(L) is a transi-
tive subgroup of S6 of order 120, so G2(L) is isomorphic to S5 and
G(L) is a central extension of S5 by Z/2 in H6. We claim that G(L)
does not contain the triple transposition τ = (12) (34) (56). Indeed,
otherwise the Lagrangian I defining L would be invariant by τ . Set
I± = {x ∈ I, τ(x) = ±x}. A nonzero element of I+ has the form
(a, a, b, b, c, c) with 2qm(a) + 2qm(b) + 2qm(c) an integer 6= 1. This
forces {±a,±b,±c} = Z/5 since qm(res A4) = {0, 2

5
, 3
5
}. But the non-

degenerate conic a2 + b2 + c2 = 0 in (Z/5)3 contains all those vectors:
we have dimZ/5 I

+ ≤ 1. A similar argument shows dimZ/5 I
− ≤ 1. This

is a contradiction as I = I+ ⊕ I− has dimension 3, hence the claim.
By Proposition 2.10 and the discussion after this proposition, G(L) is
H6-conjugate to the image of the map (2.2). The type of its elements
are thus given by Table 3.

• R ≃ 8A3. We have G(R) = H8, η = −1 and |G2(L)| = 1344. In
this case, I ⊂ resR = (Z/4)8 is a so-called octacode [CS99]. The
subgroup C := I/2I a Hamming code in resR ⊗ Z/2 = (Z/2)8 and
G2(L) is the automorphism group of this code. In particular, C is
included in the hyperplane H of (Z/2)8 defined by

∑
i xi = 0 and

V := H/C is a hyperplane in the 4-dimensional Z/2-vector space W :=
(Z/2)8/C. The (easy) theory of Hamming codes shows that the map
ι : {1, . . . , 8} →W, sending j to the class of the canonical basis element
δj of (Z/2)8, is injective with image an affine hyperplane under V ,
and identifies G2(L) with the affine group of {1, . . . , 8} for this affine
structure. In particular, G2(L) is isomorphic to GA3(Z/2) = (Z/2)3 ⋊
GL3(Z/2). To go further we choose some I: following [CS99, Table
16.1] we take the subgroup generated by the c-orbit of the element
(3, 2, 0, 0, 1, 0, 1, 1) where c is the 7-cycle (2 3 4 5 6 7 8) (we have qm(I) =
{0, 2, 3, 4}). With this choice of I, we have c ∈ G(L) and checks that
τ = (3 4 6)(5 8 7) and σ = ε3ε6ε7ε8 (2 3)(4 5 6 8) lie in G(L) as well.
The images in G2(L) of 1, c, c−1, τ, σ and σ2 are representatives of the
conjugacy classes of the stabilizer G2(L)1 of 1 in {1, . . . , 8}, with resp.
sizes 1/168, 1/7, 1/7, 1/3, 1/4 and 1/8 (recall G2(L)1 ≃ GL3(Z/2)).
But c, τ and σ belong to the stabilizer G(L)1 of 1 ∈ {±1}8 in G(L):
the natural map G(L) → G2(L) induces an isomorphism G(L)1

∼→
G2(L)1. An inspection of C shows that the translation by the class
of δ1 − δ2 in V is the element (1 2) (3 7) (4 5) (6 8) of S8. One deduces
from these information representatives of the conjugacy classes of G(L):
their types are gathered in Table 6.
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type 18 121222 24 24 1232 1232 1 1 2 4 42 42 2 6 1 7 1 7

size 1/2688 1/32 1/192 1/32 1/12 1/12 1/8 1/16 1/8 1/6 1/7 1/7

Table 6: The H8-conjugacy classes of the nontrivial elements of 2.GA3(Z/2).

• R ≃ 12A2. We have G(R) = H12, η = −1 and G2(L) is isomorphic
to the Mathieu group M12. The Lagrangian I ⊂ resR = (Z/3)12 is
a ternary Golay code, whose automorphism group G(L) is the central
extension of M12 by Z/2 denoted 2.M12 in the ATLAS. We know since
Frobenius [Fro04, p. 11] the cycle decompositions, and cardinality, of
all the conjugacy classes of M12. The inverse image in 2.M12 of such a
class c is the union of one or two conjugacy classes c′ ∪ −c′, the cycle
decomposition of c′ being the same as that of c except that each cycle
of c now has a sign to be determined. It is an amusing exercise18 to
extract these signs from the lines χ2 and χ18, and from the power maps,
of the character table of 2.M12 in the ATLAS. We obtain Table 7.19

type 112 26 1424 1424 1333 1333 34 34 2242 121242

size 1/190080 1/240 1/384 1/384 1/108 1/108 1/72 1/72 1/32 1/32

type 1252 1252 62 1 2 3 6 1 2 3 6 4 8 1 1 2 8 2 10 1 11 1 11

size 1/20 1/20 1/12 1/12 1/12 1/8 1/8 1/10 1/11 1/11

Table 7: The H12-conjugacy classes of the nontrivial elements of 2.M12.

• R ≃ 24A1. We have G(R) = S24 and G(L) is a Mathieu group M24.
The cycle decompositions and cardinality of the conjugacy classes of
M24 are given by Frobenius in [Fro04, p. 12-13]: see Table 8.

Comparison with the output of Algorithm B. For each of the 23 root
systems R above, we verified that the types and sizes of the G(R)-conjugacy

18That such an exercise is possible follows from the following fact: if we have an equality
of polynomials

∏
i(t

i − 1)ai(ti+1)bi =
∏

i(t
i − 1)a

′

i(ti +1)b
′

i with ai+ bi = a′i+ b′i for each
i, then ai = a′i and bi = b′i for each i (use ti + 1 = (t2i − 1)/(ti − 1) and Lemma 3.3).

19An alternative way to proceed is to use the description of 2.M12 given by Hall in
[Hal62], as the automorphism group of a 12× 12 Hadamard matrix (a subgroup of H12).
Using the 4 generators given by Hall loc. cit., and applying GAP’s ConjugacyClasses

algorithm to the permutation group on 24 letters they generate, we confirm Table 7.
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type 18 28 212 16 36 38 24 44 14 22 44 46 14 54 12 22 32 62 64

mass 1/21504 1/7680 1/1080 1/504 1/384 1/128 1/96 1/60 1/24 1/24

type 1373 12 2 4 82 22 102 12 112 2 4 6 12 122 1 2 7 14 1 3 5 15 3 21 1 23

mass 1/21 1/16 1/20 1/11 1/12 1/12 1/7 2/15 2/21 2/23

Table 8: The S24-conjugacy classes of the nontrivial elements of M24.

classes of G(L) found are exactly those returned (from scratch, and in a few
seconds!) by Algorithm B (components 3 and 4 returned by masses_calc,
see §4.3). The natural isomorphism O(L)ρ ≃ G(L) and Algorithm B provide
thus a rather useful tool to study the groups G(L).
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Appendix A. Irreducible characters of compact orthogonal groups

Let n ≥ 1 be an integer. We denote by O(n) the isometry group of the
standard Euclidean space V = Rn. We know since Weyl that the complex,
irreducible, continuous representations of the compact group O(n) are all
defined over R and parameterized in a natural way by the n-permissible (in-
teger) partitions λ. In this section, we recall this parameterization and discuss
formulas for the irreducible characters due to Weyl and Koike-Terrada.

A. 1 The n-permissible partitions

Recall that a partition λ is a non-increasing integer sequence λ1 ≥ λ2 ≥ · · ·
with λi ≥ 0 for all i ≥ 1 and λi = 0 for i big enough. We also say that λ is a
partition of the integer |λ| := ∑

i λi. The diagram of λ is the Young diagram
whose i-th row has λi boxes for each i ≥ 1. The dual of λ is the partition λ∗

defined by λ∗i = |{j ≥ 1 | λj ≥ i}| (with “transpose” diagram).

Following Weyl, the partition λ is called n-permissible if the first two columns
of its diagram contain at most n boxes, or equivalently if we have λ∗1+λ

∗
2 ≤ n.

If λ is n-permissible, there is a unique n-permissible partition µ with λ∗i = µ∗
i

for i > 1 and λ∗1 + µ∗
1 = n, called the associate of λ and denoted ass(λ). The

map λ 7→ ass(λ) is an involution of the set of n-permissible integer partitions.

An partition λ is called n-positive if we have λ∗1 ≤ n/2 (hence λi = 0 for
i > n/2). If λ is n-admissible but not n-positive, then ass(λ) is n-positive.

A. 2 Weyl’s construction

For any integer d ≥ 0, we consider following Weyl the kernel Kd(V ) of the
direct sum of the d(d−1)/2 contraction maps20 ci,j : V

⊗d → V ⊗(d−2), defined
for 1 ≤ i < j ≤ d by ci,j(v1⊗v2⊗· · ·⊗vd) = (vi · vj) v1⊗v2⊗· · ·⊗ v̂i⊗· · ·⊗
v̂j ⊗ · · · ⊗ vd. This kernel has a natural linear action of O(n) × Sd, hence
decomposes as

Kd(V ) ≃
⊕

{λ | |λ|=d}
Kλ(V )⊗ Rλ

where Rλ is “the” irreducible representation of Sd classically parameterized
by λ, and Kλ(V ) is a real representation of O(n). Set Wλ = Kλ(V )⊗ C.

20All tensor products are taken over R in §A. 2.
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Weyl shows that Wλ is either 0 or an irreducible representation of O(n)
[Weyl46, Thm. 5.7.D]. Moreover, Wλ is nonzero if and only if λ is n-
permissible [Weyl46, Thm. 5.7.A & C]. Moreover, he shows that λ → Wλ

is a bijection between the set of n-permissible partitions and the isomorphism
classes of irreducible representations of O(n) [Weyl46, Thm. 5.7.H & 7.9.B].
The element −1n clearly acts as multiplication by (−1)d on Wλ. Weyl shows

(1.1) Wass(λ) ≃ Wλ ⊗ det

and studies the restriction of Wλ to the index two subgroup SO(n) ⊂ O(n)
in Chap. V.9 & VII.9. We may assume λ is n-positive. There are two cases:

(i) λ 6= ass(λ). The restriction of Wλ to SO(n) is then irreducible with high-
est weight

∑
i≤n/2 λi εi, using the classical notations of Bourbaki [Bou81b,

Pl. IV]. Moreover, the natural action of O(n)/SO(n) = Z/2 on the highest
weight lines of Wλ is trivial (and non trivial on those of Wass(λ) ⊗ C).

(ii) λ = ass(λ). This forces n ≡ 0 mod 2 and λn/2 > 0. The restriction of
Wλ to SO(n) is then the sum of the two irreducible representations, conjugate

under O(n), with highest weights ±λn/2 εn/2 +
∑n/2−1

i=1 λi εi.

A. 3 Character formulas

Weyl gives a determinantal formula for the character of Wλ in [Weyl46,
Theorem 7.9.A]. Contrary to the standard so-called Weyl character formula,
which applies to any connected compact Lie groups, that formula equally ap-
plies to elements in any of the two connected components21 of O(n). Assume
g is in O(n) and write det(1− tg)−1 =

∑
i∈Z pit

i in Z[[t]] (so pi = 0 for i < 0).
Weyl shows loc. cit. that for any n-permissible partitions λ we have

(1.2) Trace(g ; Wλ) = det (pλi−i+j − pλi−i−j)1≤i,j≤λ∗
1
.

If we write det(1 + tg) =
∑

i∈Z eit
i (so ei = 0 for i < 0 or i > n), and set

δ1 = 0 and δj = 1 for j > 1, then [KT87, Theorem 2.3.3 (6)] implies

(1.3) det (pλi−i+j − pλi−i−j)1≤i,j≤λ∗
1
= det(eλ∗

i −i+j + δj eλ∗
i−i−j+2)1≤i,j≤λ1,

See also the equivalence of (ii) and (iv) in [FH91, Cor. A.46] for a direct
alternative proof of this equality.

21Let us mention that there exists also a variant of the Weyl character formula which
applies to the irreducible characters of non connected compact Lie groups: see e.g. [Kos61,
Wen01].
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Remark A. 4. In the case λ1=0, or equivalently |λ| = 0 or λ is the empty
diagram, then Wλ is the trivial representation and both determinants above
are indeed 1 by convention. Moreover, the formula en−i = (det g)ei for i ∈ Z

shows that the determinant on the right-hand side of (1.3) is multiplied by
det g if λ is replaced by ass(λ) (it amounts to multiply by det g the first line
of the matrix inside the determinant), in agreement with Formula (1.1).

Appendix B. An asymptotic formula

Proposition B. 1. Let L be a lattice in the Euclidean space Rn and λ an
n-permissible partition with |λ| ≡ 0 mod 2. Then we have

dimW
O(L)
λ ∼ 2

|O(L)| dimWλ

for λ→ ∞, in the sense that λi − λi+1 → +∞ for each 1 ≤ i ≤ n/2.

Proof. As we have λ → ∞ we may assume λ is positive and λ[n/2] > 0.
Denote by Vλ the irreducible constituent of (Wλ)|SO(n) with highest weight∑

i≤n/2 λi εi. Set SO(L) = O(L) ∩ SO(n). If n is odd, we have (Wλ)|SO(n) =

Vλ, O(L) = {±id}×SO(L) and W
O(L)
λ = V

SO(L)
λ . If n is even, then (Wλ)|SO(n)

is the direct sum of Vλ and of its outer conjugate V′
λ, and Wλ is induced

from Vλ: we have thus W
O(L)
λ = V

SO(L)
λ in the case O(L) 6= SO(L) and

W
O(L)
λ = V

SO(L)
λ ⊕ (V′

λ)
SO(L) otherwise. We conclude from the degenerate

form of Weyl’s character formula for SO(n) given in [CC09, Prop. 1.9]. �

Assume now n ≡ −1, 0, 1 mod 8 and set µn =
∑

[L]∈Xn

1
|O(L)| . The mass for-

mula of Minkowski-Siegel-Smith asserts that we have µn = |Bn/2

n

∏n/2−1
j=1

B2j

4j
|

for n ≡ 0 mod 8, and µn = |∏(n−1)/2
j=1

B2j

4j
| for n ≡ ±1 mod 8, where the Bm

are the Bernouilli numbers [CS88].

Corollary B. 2. For n ≡ −1, 0, 1 mod 8, |λ| ≡ 0 mod 2 and λ → ∞ we
have dimMWλ

(On) ∼ 2µn dimWλ.

For instance, in the case n = 24 of main interest here we have µ24 ≈ 8·10−15,
quite a small number compared to |X24| = 24, and of course we expect
dimMWλ

(O24) to be small for small values of λ.
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Appendix C. Tables

P m P m P m P m P m P m P m

32 1/24 62 1/24 123 1/12 226 1/12 1 2 3 1/4 12 1/4 1 2 6 1/4

Table 9: The 7 nonzero m = mσW(D4)(P ) for P in Car4, where σ in G(D4) has order 3.

P m P m P m P m P m P m P m P m P m

16 1/51840 33 1/648 1232 1/108 1 234 1/96 1 2 32 1/36 132 4 1/32 3 12 1/12 125 1/10 1 2 8 1/8

152 1/1440 143 1/216 1242 1/96 3 62 1/72 12226 1/36 12223 1/24 1 2 3 6 1/12 1 2 5 1/10

1224 1/1152 1422 1/192 1323 1/96 132 3 1/36 223 6 1/36 12224 1/16 1 2 4 6 1/12 9 1/9

Table 10: The 25 nonzero m = mW(E6)(P ) for P in Car6.

P m P m P m P m P m P m P m P m P m

17 1/2903040 1522 1/3072 1423 13/9216 13226 1/288 2 326 1/144 135 1/60 122 4 6 1/48 1 3 5 1/30 1 9 1/18

27 1/2903040 1225 1/3072 1324 13/9216 1 246 1/288 1 3 62 1/144 2310 1/60 1 224 6 1/48 2 6 10 1/30 2 18 1/18

162 1/46080 1 33 1/1296 142 4 1/384 122 42 1/256 13223 1/96 13224 7/384 122 8 1/32 1 3 12 1/24 122 3 6 1/18

1 26 1/46080 2 63 1/1296 1 244 1/384 1 2242 1/256 12236 1/96 12234 7/384 1 4 8 1/32 2 6 12 1/24 1 223 6 1/18

153 1/4320 1342 1/768 142 3 1/288 1332 1/216 122 32 1/72 122 3 4 1/48 1 228 1/32 122 5 1/20 1 7 1/14

256 1/4320 2342 1/768 12233 1/288 2362 1/216 1 2262 1/72 1 223 4 1/48 2 4 8 1/32 1 2210 1/20 2 14 1/14

Table 11: The 54 nonzero m = mW(E7)(P ) for P in Car7.

P m P m P m P m P m P m P m P m

18 1/696729600 2442 1/18432 3262 1/1728 123 42 1/576 1 2 3 62 1/288 1 2310 1/120 226 10 1/60 127 1/28

28 1/696729600 152 4 1/15360 132 42 1/1536 13233 1/576 122262 1/288 122242 9/1024 3 9 1/54 1 2 7 1/28

172 1/5806080 1 254 1/15360 1 2342 1/1536 1 233 4 1/576 6212 1/288 129 1/108 6 18 1/54 1 2 14 1/28

1 27 1/5806080 152 3 1/8640 145 1/1200 132 4 6 1/576 13234 19/4608 2218 1/108 1 2 3 8 1/48 2214 1/28

163 1/311040 1 256 1/8640 2410 1/1200 13236 1/576 82 1/192 12223 4 1/96 1 2 3 12 1/48 24 1/24

266 1/311040 1233 1/7776 14223 1/1152 22426 1/576 132 3 4 1/192 12224 6 1/96 1 2 6 8 1/48 1 2 4 12 1/24

1622 1/184320 2263 1/7776 12246 1/1152 132 32 1/432 1 234 6 1/192 12225 1/80 1 2 6 12 1/48 20 1/20

1226 1/184320 12243 1/6912 22326 1/864 1 2362 1/432 123 12 1/144 122210 1/80 1 2 4 5 1/40 1 2 4 8 5/64

34 1/155520 14226 1/6912 123 62 1/864 132 8 1/384 132 3 6 1/144 4212 1/72 1 2 4 10 1/40

64 1/155520 1424 37/221184 14224 1/768 1 238 1/384 1 233 6 1/144 1 2 3 4 6 1/72 1 2 9 1/36

44 1/46080 1432 1/2592 1 2 43 1/768 122232 1/288 226 12 1/144 12228 1/64 1 2 18 1/36

1442 1/18432 1 2 33 1/2592 12244 1/768 3212 1/288 124 8 1/128 123 5 1/60 12223 6 1/36

1523 1/18432 1 2 63 1/2592 52 1/600 122 1/288 224 8 1/128 1 2 3 5 1/60 15 1/30

1325 1/18432 2462 1/2592 102 1/600 1 2 326 1/288 132 5 1/120 1 2 6 10 1/60 30 1/30

Table 12: The 106 nonzero m = mW(E8)(P ) for P in Car8.
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Table 13: The 160 nonzero m = mO(Leech)(P ) for P in Car24.

P m P m P m P m P m P m

124 1/8315553613086720000 263465 1/311040 3464122 1/4608 14244482 1/768 428212 24 1/144 123 5 152 1/60

224 1/8315553613086720000 182844 1/294912 3393 1/3888 122242 1/576 14112 1/132 123 5 15 30 1/60

312 1/2690072985600 34124 1/276480 63183 1/3888 142433426 12 1/576 24222 1/132 226 10 15 30 1/60

612 1/2690072985600 64124 1/276480 143244122 1/3456 14223362122 1/576 124 8 162 1/128 12223 5 6 10 15 1/60

11628 1/178362777600 4484 1/92160 16263363 1/3456 2232426 123 1/576 224 8 162 1/128 226 10 302 1/60

18216 1/178362777600 1854 1/72000 244462122 1/3456 12223 446 122 1/576 7221 1/126 12223 5 6 10 30 1/60

412 1/2012774400 28104 1/72000 1673 1/2352 123 4262123 1/576 14242 1/126 12427 28 1/56

1848 1/743178240 86 1/48384 26143 1/2352 14243464 1/576 15 60 1/120 224214 28 1/56

2848 1/743178240 18243462 1/41472 12224284 1/2048 12243263122 1/576 30 60 1/120 52 1/52

112212 1/389283840 14283264 1/41472 34152 1/1800 14243 426312 1/576 14227214 1/112 12223 6 8224 1/48

11236 1/117573120 74 1/35280 64302 1/1800 212 1/504 12247 142 1/112 1222324 6 12 24 1/48

21266 1/117573120 144 1/35280 16244382 1/1536 422 1/504 12223 9218 1/108 12223 4 6212 24 1/48

1639 1/25194240 14223663 1/31104 14264382 1/1536 326 9218 1/432 123 6 9218 1/108 1222324262122 1/48

2669 1/25194240 12243366 1/31104 44124 1/1440 3 629 182 1/432 12226 9 182 1/108 12327 21 1/42

3864 1/19906560 1455 1/30000 203 1/1200 3212 242 1/384 223 6 9 182 1/108 226214 42 1/42

3468 1/19906560 24105 1/30000 44202 1/1200 6212 242 1/384 326212224 1/96 20 40 1/40

56 1/6048000 54102 1/19200 1453102 1/1200 52152 1/360 84 1/84 12225210 20 1/40

106 1/6048000 52104 1/19200 14245310 1/1200 102302 1/360 3 9 12 36 1/72 12225 10220 1/40

1102644 1/1474560 162646 1/15360 2452103 1/1200 132 1/312 82242 1/72 1222425 10 20 1/40

1621044 1/1474560 144284 1/12288 14245 103 1/1200 262 1/312 6 12 18 36 1/72 39 1/39

142448 1/1179648 244284 1/12288 143 93 1/972 142432426212 1/288 35 1/70 78 1/39

1838 1/1088640 153 1/10800 123293 1/972 15230 1/240 70 1/70 56 1/28

2868 1/1088640 303 1/10800 246 183 1/972 15 302 1/240 3233 1/66 1223 1/23

126 1/483840 3262124 1/9216 2262183 1/972 14325215 1/180 6266 1/66 2246 1/23

1626356 1/311040 142484 1/6144 52202 1/960 246210230 1/180 12228 162 1/64 122211 22 1/22

163564 1/311040 123342123 1/5184 102202 1/960 282 1/168 20 60 1/60

16263 65 1/311040 224263123 1/5184 243 1/864 142452102 1/160 12260 1/60

41



Table 14: The nonzero dimensions of MWλ
(O24) for λ1 ≤ 3.

λ dim λ dim λ dim λ dim λ dim

24 : 1 32 4 : 0 33241 181 : 0 3428 148 3626 276

18 1 : 1 3212 19 : 0 332413 97 : 0 351 27 : 0 371 174 : 0

112 1 322 3 : 0 332415 1 3513 94 : 1 3713 333 : 17

2 9 : 0 32212 19 : 0 33251 251 : 1 3515 20 : 0 3715 211

22 27 : 0 3222 15 : 0 332513 120 : 1 3517 1 3721 512 : 17

23 26 : 0 322212 50 : 0 33261 265 : 1 3521 140 : 0 37213 801 : 342

24 43 : 0 3223 18 : 0 332613 100 35213 242 : 1 37221 905 : 253

2418 1 322312 58 : 0 33271 219 : 51 35215 82 : 1 372213 927

25 35 : 0 3224 46 : 0 33281 134 35221 308 : 0 37231 1042 : 683

2514 1 : 1 322412 97 : 0 34 28 : 0 352213 417 : 1 37241 675

26 67 : 1 322416 1 3412 28 : 0 352215 87 38 191 : 34

2614 1 : 1 3225 48 : 0 3414 53 : 1 35231 546 : 1 3812 476 : 137

2616 1 322512 91 : 0 3418 1 352313 551 : 111 3814 530

27 42 : 0 3226 97 : 0 342 30 : 0 35241 672 : 58 382 327 : 51

28 69 : 1 322612 123 : 1 34212 80 : 0 352413 525 38212 881 : 552

2814 1 322614 1 34214 51 : 0 35251 659 : 325 3822 660 : 333

29 37 : 0 3227 70 : 0 34216 1 : 1 35261 398 382212 1047

210 48 : 0 322712 74 : 0 3422 112 : 1 36 36 : 0 3823 500 : 364

211 11 : 0 3228 104 : 0 342212 202 : 1 3612 217 : 1 3824 346

212 37 322812 86 342214 132 : 2 3614 180 : 0 391 307 : 133

31 1 : 0 3229 39 : 8 342216 1 3616 91 3913 496

321 7 : 0 32210 54 3423 155 : 0 362 79 : 0 3921 651 : 491

3221 11 : 0 331 8 : 0 342312 291 : 0 36212 474 : 0 39221 542

3231 31 : 0 3313 6 : 0 342314 126 : 1 36214 367 : 61 310 158 : 121

3241 33 : 0 3321 25 : 0 3424 293 : 1 3622 270 : 0 31012 406

3251 56 : 0 33213 33 : 0 342412 432 : 1 362212 902 : 93 3102 177 : 160

3261 61 : 0 33221 67 : 0 342414 156 362214 551 31022 161

3271 63 : 0 332213 49 : 0 3425 270 : 0 3623 386 : 16 3111 93

3281 59 : 0 332215 1 : 1 342512 387 : 75 362312 988 : 418 312 74

32813 1 33231 122 : 0 3426 380 : 73 3624 563 : 197

3291 53 : 0 332313 102 : 1 342612 362 362412 948

32101 18 332315 1 : 1 3427 192 : 89 3625 371 : 286
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