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Abstract

The calculation of many and large Perrin pseudoprimes is a challenge. This is mainly
due to their rarity. Perrin pseudoprimes are one of the rarest known pseudoprimes. In
order to calculate many such large numbers, one needs not only a fast algorithm but also
an idea how most of them are structured to minimize the amount of numbers one have to
test.

We present a quick algorithm for testing Perrin pseudoprimes and develop some ideas
on how Perrin pseudoprimes might be structured. This leads to some conjectures that
still need to be proved.

We think that we have found well over 90% of all 20-digit Perrin pseudoprimes. Over-
all, we have been able to calculate over 9 million Perrin pseudoprimes with our method,
including some very large ones. The largest number found has 3101 digits. This seems to
be a breakthrough, compared to the previously known just over 100,000 Perrin pseudo-
primes, of which the largest have 20 digits.

In addition, we propose two new sequences that do not provide any pseudoprimes up
to 109 at all.
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1 Introduction

To motivate that it makes sense to deal with primes, it is best to quote Gauss [3]:

The problem of distinguishing prime numbers from composite numbers, and of
resolving the latter into their prime factors is known to be one of the most

important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers to such an extent that it would be superfluous to

discuss the problem at length. Nevertheless we must confess that all methods that
have been proposed thus far are either restricted to very special cases or are so

laborious and difficult that even for numbers that do not exceed the limits of tables
constructed by estimable men, they try the patience of even the practiced calculator.

And these methods do not apply at all to larger numbers.

Prime numbers are a very serious issue. We prefer dealing with pseudoprimes. Pseudoprimes
are numbers that behave similar to primes.
Sometimes it is a big challenge to compute all or at least many or some very large pseudoprimes
of a given type.
In this paper, we introduce a quick algorithm for the calculation of Perrin pseudoprimes. This
is nothing special, there are already many fast algorithms. Similar to primes, also for pseudo-
primes it is difficult to guess their structure. Therefore, in order to calculate all of them there
is nothing left but to test every single number. This strongly limits the size of the numbers.
It turns out, however, that the structure can be guessed for most of the pseudoprimes. This
very much limits the range of potential numbers to be tested and makes it possible to calculate
millions of them and even very large ones.
We do the following Notations:
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• The set of all primes is denoted by P.

• a|b means a divides b or b is divisible by a.

• We state some classical facts from number theory as theorems, omitting the proofs.

1.1 The Perrin sequence

Let us define a sequence (called Perrin sequence) Pn recursively:

P0 = 3

P1 = 0

P2 = 2

Pn = Pn−2 + Pn−3, n ≥ 3

and calculate the first entries:

(Pn)∞n=0 = 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, ...

We observe: If n is prime, we have n|Pn and that goes on for a long time.
Anyone seeing this sequence for the first time is certainly quite surprised, since it is believed
that there is no simple algorithm for calculating the primes.
The recursion law of this sequence was found in 1899 by Edouard Lucas. This sequence with
the initial values given above, was first used by Raoul Perrin [7, 8].
Probably many mathematicians and amateur mathematicians have tried to answer the question
of whether this sequence really only produces primes. Considering that already the number
P811 has 100 digits, one can imagine how difficult that has been.
The answer was not found until 1982, when Jeffrey Shallit (according to [8]) calculated the first
two non-prime numbers – so-called Perrin pseudoprimes (PPP) – with a computer. Here they
are: 271441 = 521· 521 and 904631 = 7 · 13 · 9941. P271441 has 33150 digits. Today it is known
that there are infinitely many Perrin pseudoprimes [1]. Nevertheless, they are very rare, which
makes their finding still difficult.
In this paper, we develop an effective algorithm for calculating Perrin pseudoprimes and present
some numerical results that constitute, to our knoledge, right now the world’s largest collection
of Perrin pseudoprimes including the largest PPP.

2 Pseudoprimes

2.1 Iff– and if–Theorems

There are two kinds of theorems dealing with primes that can be used to test a given number
on whether it is a prime.
1) Theorems like: p ∈ P if and only if property A(p) holds.
2) Theorems like: p ∈ P, then property A(p) holds.
Theorems of the first kind are, for example

• Theorem: p ∈ P ⇐⇒ ∀k ∈ P, k ≤ √p : k 6 |p
• Theorem (Wilson): p ∈ P ⇐⇒ p|1 · 2 · 3 · · · (p− 1) + 1
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• Theorem:

p ∈ P ⇐⇒ p|
(
p

k

)
∀k = 1, ..., p− 1 (1)

These theorems allow for deterministic tests. If for a given number p the property A(p) holds,
then p is prime.
Unfortunately, algorithms based on deterministic testing have high complexity, so far.

Theorems of the second kind state: If for a given number p the property A(p) holds, then p can
be prime or not. This is useful, if p is prime with very high “probability”. Testing A(p) one
can be “very sure” that p is prime. Typically such kind of probabilistic tests are much faster
(have a lower complexity) than deterministic ones. Thus, it is useful to create tests with a very
small equivalence gap, the gap between if and iff.
Numbers n that lie in this gap, i.e. A(n) holds, but n is composite, are called pseudoprimes
with respect to property A.
One example, following immediately from (1) is:

Theorem: p ∈ P =⇒ p

∣∣∣∣∣
p−1∑
k=1

ak

(
p

k

)
for some given integers ak.

It is clear that looking at a linear combination of binomial coefficients instead of all coefficients
in detail, we loose information. This is just the equivalence gap. Looking at a given linear
combination of binomial coefficients is faster than looking at every one in detail. The idea is
to choose such coefficients ak so that the equivalence gap is small.

Here, we define some kind of probability (better frequency) for a pseudoprime test. Let π(n)
be the number of primes less than n and P (n) the number of pseudoprimes less than n for a
given pseudoprime test. By W (n) = P (n)/π(n) we define the frequency of numbers incorrectly
tested and call it error rate. Thus, the lower the error rate W (n), the better the test.
Of course, it would be best if a test provided only a finite number of pseudoprimes. These
would be calculated and stored in a database which allowed for a deterministic test, practically.
Such a test is not yet known. In contrast, until now, for many pseudoprime number type, it
has been proved sooner or later that there are infinitely many ones.

2.2 Fermat and Carmichael pseudoprimes

The simplest pseudoprimes are Fermat pseudoprimes. They are consequences of Fermat’s little
Theorem: Given an integer z ≥ 2. If p ∈ P then p|zp − z.
Conversely, if a number n for some z satisfies n|zn − z but n 6∈ P, n is called Fermatz pseudo-
prime.
Best known is the special case z = 2:
Theorem: If p ∈ P then p|2p − 2.
A number n 6∈ P with n|2n − 2 is called Fermat2 pseudoprime.

2.2.1 Fermat2 pseudoprimes

Fermat’s little Theorem for z = 2 is an easy consequence of Theorem 1.
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Indeed, multiplying out (a+ b)n with integers a, b we get

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3 + · · ·+ bn

Therefore, defining

fn = (a+ b)n − an − bn =

(
n

1

)
an−1b+ . . .+

(
n

n− 1

)
abn−1

we obtain the

Theorem: If p ∈ P then p|fp.
The special case (a = b = 1) yields Fermat’s little Theorem to the base z = 2.

Let’s calculate the first ones:

n 2n − 2 n|2n − 2 ? n is prime?
2 2 yes! yes!
3 6 yes! yes!
4 14 no! no!
5 30 yes! yes!
6 62 no! no!
7 126 yes! yes!

341 4479... (103 digits) yes! no! 341 = 11 · 31
561 7547... (169 digits) yes! no! 561 = 3 · 11 · 17
645 1459... (195 digits) yes! no! 645 = 3 · 5 · 43

Up to 100000 we have 78 pseudoprimes and 9592 primes. Thus, we have W (105) = 0.00813178.

2.2.2 Carmichael numbers

Instead of z = 2 we can consider Fermatz pseudoprimes with other bases. Maybe other bases
provides fewer pseudoprimes? It turns out that z = 2 is one of the best bases. Moreover, there
are non-primes n with n|zn − z for any base z, the so-called Carmichael numbers. 561 is the
smallest one. The next ones are

Carmichael number factors
561 3 · 11 · 17
1105 5 · 13 · 17
1729 7 · 13 · 19
2465 5 · 17 · 29
2821 7 · 13 · 31
6601 7 · 23 · 41
8911 7 · 19 · 67
10585 5 · 29 · 73

Carmichael number factors
15841 7 · 31 · 73
29341 13 · 37 · 61
41041 7 · 11 · 13 · 41
46657 13 · 37 · 97
52633 7 · 73 · 103
62745 3 · 5 · 47 · 89
63973 7 · 13 · 19 · 37
75361 11 · 13 · 17 · 31

There are 16 Carmichael numbers up to 100000. Moreover, we have the following

Theorem: There are infinitely many Carmichael numbers [1].
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2.3 General pseudoprimes

2.3.1 Sums of powers. Multinomial coefficients

Similar to binomial coefficients, there is a theorem for multinomial coefficients:
Theorem: p ∈ P ⇐⇒ p| p!

i! j! k!
, ∀i, j, k with 0 < i+ j + k = p

From this, we conclude the following

Theorem: p ∈ P =⇒ p
∣∣∣∑0<i+j+k=p aijk

p!
i! j! k!

. for some integer coefficients aijk.

From this, multiplying out (a+ b+ c)n with integers a, b, c we conclude the
Theorem: Given a sequence

fn = (a+ b+ c)n − an − bn − cn =
∑

0<i+j+k=n

n!

i! j! k!
aibjck

Then, p ∈ P implies p|fp.

Similarly we get the
Theorem: Given integers a1, ..., ak. Build the sequence

fn = (a1 + a2 + ...+ ak)
n − (an1 + an2 + ...+ ank) (2)

Then, p ∈ P implies p|fp.

The example ai = 1 yields fn = kn − k, Fermat’s little theorem in the general case.

Perrin’s sequence is given in a recurrent way. Here, we recall the important connection between
polynomials and recurrence sequences.

2.3.2 Polynomials and recurrence sequences

A linear recurrence sequence (or linear difference equation) of order k is a sequence (hn)∞n=0

defined in the following way:
Given k numbers c1, ..., ck set

hn = c1hn−1 + c2hn−2 + ...+ ckhn−k . (3)

Together with k initial conditions h0, h1, ..., hk−1 such a sequence is uniquely determined.

Obviously, if c1, ..., ck and h0, h1, ..., hk−1, are integers, then hn is an integer for all n.

There is a remarkable connection between such sequences and polynomials of degree k. If we
put hn = xn and multiply by xk−n, we get an algebraic equation for the roots of a polynomial
formed from the coefficients of the sequence

Q(x) = −xk + c1x
k−1 + c2x

k−2 + ...+ ck−1x+ ck . (4)

This polynomial has k – in general complex – roots x1, ..., xk. For simplicity, we assume that
the roots are different.



2.3 General pseudoprimes 7

Set

gn = b1x
n
1 + b2x

n
2 + ...+ bkx

n
k , (5)

with some coefficients b1, ..., bk. Solve the system of k linear equations hi = gi, i = 0, ..., k − 1
with respect to the unknown bj. This is always uniquely solvable, because the corresponding
matrix is the Vandermonde matrix (xji ). Its determinant does not vanish if the roots xi are
different, as required.
Theorem: For any n ≥ 0 we have gn = hn.
This is easily proved, since we have Q(xi) = 0 for i = 1, ..., k.

The opposite is also true:
Theorem: Given k different complex numbers x1, ..., xk and k real numbers b1, ..., bk. Calculate
the first entries h0, ..., hk−1 of some sequence (hn) by the right-hand side of (5) and compile a
polynomial (4) from it’s roots x1, ..., xk

Q(x) = −(x− x1) · · · (x− xk) = −xk + (−1)k+1(x1 + ...+ xk)x
k−1 + ...

Then, the sequence (3), given in a recurrent way is exactly the sequence (5), given explicitely.

Thus, we have a one-to-one correspondence between the linear recurrence sequence (3) and the
sum of powers (5).
This can be applied to Perrin’s sequence.

2.3.3 Perrin’s sequence, given explicitely

Starting with the sequence

P0 = 3

P1 = 0

P2 = 2

Pn = Pn−2 + Pn−3, n ≥ 3

at first, we compile the polynomial from the coefficients

Q(x) = −x3 + x+ 1

Its roots are

a = 1.32472...

b = −0.662359...+ 0.56228...i

c = −0.662359...− 0.56228...i

Set hn = an + bn + cn (since a+ b+ c = 0). The first entries are

h0 = a0 + b0 + c0 = 3

h1 = a1 + b1 + c1 = 0

h2 = a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca) = 0− 2(−1) = 2

Thus, the sequences Pn and hn coincide.
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The theorem

p ∈ P =⇒ p|Pp = ap + bp + cp

does not follow from this, immediately, since a, b, c are not integers.
We have to answer two questions:

• When is fn = (a+ b+ c)n − an − bn − cn an integer sequence?

• When does (p ∈ P =⇒ p|fp) hold?

2.3.4 When is fn = (a+ b+ c)n − an − bn − cn an integer?

For any n, the expression (a+ b+ c)n − an − bn − cn is a symmetric polynomial in a, b and c.
Theorem: Any symmetric polynomial can be expressed in terms of elementary symmetric
polynomials.
Here, these are

A1 = a+ b+ c, A2 = ab+ bc+ ca, A3 = abc

which are the coefficients of a polynomial with roots a, b, c.
Calculating, for example, the first entries, we get

(a+ b+ c)0 − a0 − b0 − c0 = −2

(a+ b+ c)1 − a1 − b1 − c1 = 0

(a+ b+ c)2 − a2 − b2 − c2 = 2A2

(a+ b+ c)3 − a3 − b3 − c3 = 3A1A2 − 3A3

(a+ b+ c)4 − a4 − b4 − c4 = 4A2
1A2 − 4A1A3 − 2A2

2

Hence, fn is integer if a, b, c are roots of a polynomial with integer coefficients.

2.3.5 When does (p ∈ P =⇒ p|fp) hold?

We have

fn = (a+ b+ c)n − (an + bn + cn) =
∑

0<i+j+k=n

n!

i! j! k!
aibjck

and p ∈ P =⇒ p| p!
i! j! k!

, ∀i, j, k with 0 < i+ j + k = n.

n!

i! j! k!
does not change by a permutation of i, j, k. It can be lifted out.

∑
0<i+j+k=n

n!

i! j! k!
aibjck =

∑
0<i≤j≤k

n!

i! j! k!

∑
π(i,j,k)

aibjck

∑
π(i,j,k) a

ibjck is again a symmetric polynomial and so it is an integer if a, b, c are roots of an
polynomial with integer coefficients.
Hence, if a, b, c are roots of a polynomial with integer coefficients, and fn = (a+ b+ c)n− (an +
bn + cn), then p ∈ P =⇒ p|fp.
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2.3.6 The recurrent calculation of the sequence

From the polynomial Q(x) it is easy to compile the recurrent relation

gn = a1 fn−1 + a2 fn−2 + a3 fk−3 + . . .+ ak fn−k

corresponding to the explicit expression

gn = xn1 + . . .+ xnk .

From this explicit expression we have to calculate the initial values g0, ..., gk−1. Then, we have

fn = gn − an1 .

Actually, this is practicable if a1 = 0 (like in the Perrin case) or a1 = ±1. In other cases, an1
increases rapidly and it is better to look on

fn = (xn1 + . . .+ xnk)− (x1 + . . .+ xk)
n

as on a sum of k+1 powers. This corresponds to a sequence of order k+1, having a corresponding
polynomial with the k + 1 roots x1, ..., xk, a1 = x1 + . . .+ xk. This polynomial is

G(x) = −(x− x1) · · · (x− x1)(x− x1 − . . .− xk) = Q(x)(x− a1) =

= −xk+1 + 2a1x
k +

k−1∑
i=1

(ai+1 − a1ai)xk−i − a1ak

2.3.7 The main theorem

Connecting the last facts together, we finally obtain the
Main Theorem: Given a polynomial of degree k

Q(x) = −xk + a1 x
k−1 + a2 x

k−2 + a3 x
k−3 + . . .+ ak−1 x+ ak

with integer coefficients ai ∈ Z and (maybe complex) roots x1, ..., xk. Then, the sequence

fn = (xn1 + . . .+ xnk)− (x1 + . . .+ xk)
n

is an integer sequence and it holds p ∈ P =⇒ p|fp.
The sequence fn can be calculated in a recurrent way from an order k-recurrent relation

gn = a1 fn−1 + a2 fn−2 + a3 fk−3 + . . .+ ak fn−k

by fn = gn − an1 or directly from an order (k + 1)-recurrent relation

fn = 2a1fn−1 +
k−1∑
i=1

(ai+1 − a1ai)fn−i−1 − a1akfn−k−1

We can conclude that any polynomial with integer coefficients is cantidate to generate pseudo-
primes.
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3 Numerical algorithms

To calculate pseudoprimes, at first we have to calculate fn by a recurrent or explicit expression
and then we test whether n|fn.
The recurrence relation seems to be very fast, with some additions for every number. Un-
fortunately, the entries fn grow very fast. For the Perrin sequence we have Pn ∼ 1.32472...n

(the largest root). Thus, P271441 has 33150 decimal digits, P99607901521441 – the 17-th Perrin
pseudoprime has 12,164,524,642,561 decimal digits requiring ∼ 5 TByte to store it.
The same problem arises with the explicit expression. We have to calculate xnj considering a
huge number of digits to get an integer in the end. But this is necessary to check the remainder
of fn when divided by n.

The only useful method is to carry out all operations modulo n. This will save us from the usage
of the huge numbers fn. We can still use the recurrence relation but for every new number we
have to start at the very beginning of the sequence, since calculating fn mod n, we cannot use
the result to calculate fn+1 mod n+ 1.
Even doing so, this is still a problem if we want (and we want!) to deal with large numbers
n having, say, 100 digits. Note, this is the number of digits of the index, not of the sequence
member!
Thus, if n = 10100 we need a fast algorithm for 10100 additions of numbers like 10100 (all done
modulo n).
Clearly, this has to be an algorithm with logarithmic complexity. This can be done in pursuing
following steps:

• We can calculate k entries of the sequence at once, using matrix powers.

• The n-th power of a matrix can be performed in logb n operations using the decomposition
of n with respect to a fixed basis and Horner’s method.

• In some special cases – and the Perrin sequence is such a case – the calculation can be
further simplified.

3.1 Matrix powers instead of additions

Given a recurrence sequence of order k

fn = ck−1fn−1 + ck−2fn−2 + ...+ c0fn−k (6)

with initial values

F0 := (f0, ..., fk−1) . (7)

The k-th entry

fk = ck−1fk−1 + ck−2fk−2 + ...+ c0f0

is a linear combination of the initial values and so are all entries, for example the k+1-th entry

fk+1 = ck−1fk + ck−2fk−1 + ...+ c0f1 =

= ck−1(ck−1fk−1 + ck−2fk−2 + ...+ c0f0) + ck−2fk−1 + ck−3fk−2 + ...+ c0f1 =

= (c2k−1 + ck−2)fk−1 + (ck−1ck−2 + ck−3)fk−2 + ...+ (ck−1c1 + c0)f1 + ck−1c0f0
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Writing all the entries F1 := (fk, ..., f2k−1) as linear combinations of F0 = (f0, ..., fk−1), we can
compile a matrix A and write F1 = AF0, i.e.,

fk
fk+1

...
f2k−1

 =

 c0 c1 · · · ck−1
ck−1c0 ck−1c1 + c0 · · · c2k−1 + ck−2

...
...

...
...




f0
f1
...

fk−1


This is an equivalent description of (6), (7).
In the special case k = 3 we have f3

f4
f5

 =

 c0 c1 c2
c0c2 c0 + c1c2 c22 + c1

c0c
2
2 + c0c1 c21 + c22c1 + c0c2 c32 + 2c1c2 + c0

 f0
f1
f2


It follows Fm = AmF0 for Fm = (fmk, fmk+1, ..., f(m+1)k−1). Thus, if we want to know fn, we
have to divide n by k with remainder, i.e., to write n = mk+ i with i = 0, ..., k−1 and calculate
Am. Instead of additions we have to calculate the power of a matrix. This can be done very
effectively.

3.2 Horner’s method instead of matrix powers

We have to calculate Am for a given matrix A. Let m = a0b
j + ... + aj−1b + aj be the

decomposition of m to base b with a0 > 0 and b > ai ≥ 0. Then, calculating the polynomial
a0b

j + ...+ aj−1b+ aj with Horner’s method, iteratively

a0b
j + ...+ aj−1b+ aj = ((((a0b)b+ a1)b+ a2)b+ ...+ aj)

we conclude

Am = Aa0bj+...+aj−1b+aj = (((((IbAa0)bAa1)bAa2)b · · · )Aaj)

The vector

(A0,A1, ...,Ab−1) = (A0,A1,A2, ...,Ab−1)

can be calculated and stored in advance. The calculation runs especially effectively if b itself is
a power of 2. For practicle purposes we used b = 2, 4, 8.

3.3 A fast algorithm for the Perrin sequence

The following algorithm was written in 1982 by Frank Bauernöppel and Uwe Kaufmann [2] in
Berlin.
1st step: Given n. Set n = 3m+ i, i ∈ {0, 1, 2}. Since we have

P3 = P1 + P0

P4 = P2 + P1

P5 = P3 + P2 = P1 + P0 + P2
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we can introduce a matrix

S =

 1 1 0
0 1 1
1 1 1


and have P3m

P3m+1

P3m+2

 = Sm

 3
0
2

 =

 1 1 0
0 1 1
1 1 1

m

·

 3
0
2


2nd step: The power of S can be further simplified by using the square S2. Depending on
whether m is even or odd, one have

Sm =
(
S

m
2

)2
, 2|m or Sm =

(
S

m−1
2

)2 · S, 2 6 |m
The total power Sm can now be calculated iteratively by using the binary representation of m.
Let m = (α0, α1, α2, ..., αk, ...), α0 = 1 be the dual number representation of m. We calculate
iteratively matrices Sk in the following way:

S0 = I

Sk+1 =

{
S2
k if αk = 0

S2
k · S if αk = 1

Then, Sm = Sk0 for some k0 < m.
For example, we have

S22 = S101102 = ((((I2 · S)2 · S)2 · S)2)2 = S22

For every 0 (the even digits) one has to square (operation Q), for every 1 (the odd digits) one
has to square and then to multiply (operation QM).
3rd step: Observe that

Sm =

 1 1 0
0 1 1
1 1 1

m

=

 a c b
b a+ b c
c b+ c a+ b


Thus, one only has to remember the first column (a, b, c) and to know how this column changes
when multiplying M and squaring Q.
Operation multiplying M : a c b

b a+ b c
c b+ c a+ b

 1 1 0
0 1 1
1 1 1

 =

 a+ b a+ b+ c b+ c
b+ c a+ 2b+ c a+ b+ c

a+ b+ c a+ 2b+ 2c a+ 2b+ c


Thus, M : (a, b, c) −→ (a+ b, b+ c, a+ b+ c).
Operation squaring Q: a c b

b a+ b c
c b+ c a+ b

2

=

 a2+2bc b2+2ac+2bc 2ab+b2+c2

2ab+b2+c2 a2+2ab+b2+2bc+c2 b2+2ac+2bc
b2+2ac+2bc 2ab+2b2+2ac+2bc+c2 a2+2ab+b2+2bc+c2


Thus, Q : (a, b, c) −→ (a2 + 2bc, b2 + c2 + 2ab, b2 + 2ac+ 2bc).
Furthermore, some numbers n can be excluded from the beginning, because we have

n ≡ 0 mod 4 =⇒ fn 6≡ 0 mod 4 =⇒ fn 6≡ 0 mod n .

The same happens for n = 9, 14, .... Moreover, we have

n ≡ 0 mod 3 , n 6≡ 0, 1, 3, 9 mod 13 =⇒ fn 6≡ 0 mod 3 =⇒ fn 6≡ 0 mod n
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3.4 All steps combined

1. Decompose n = 3m+ i, i ∈ {0, 1, 2}

2. Compute the dual representation D of m.

3. In D, replace every zero with Q and every 1 with QM and get the word W .

4. Set (a, b, c) := (1, 0, 0) and, following the word W from left to right, perform the following
operations modulo n:

M : (a, b, c) := (a+ b, b+ c, a+ b+ c)

Q : (a, b, c) := (a2 + 2bc, b2 + c2 + 2ab, b2 + 2ac+ 2bc) .

5. Finally, calculate

Pn mod n =


3a+ 2b for i = 0
3b+ 2c for i = 1

2a+ 2b+ 3c for i = 2 .

For Example we test whether 19 divides P19?

1. 19 = 3 · 6 + 1, m = 6, i = 1

2. Dual representation of 6: D = 110.

3. W = QMQMQ

4. (a, b, c) = (1, 0, 0)
Q

=⇒ (a, b, c) = (1, 0, 0)
M

=⇒ (a, b, c) = (1, 0, 1)
Q

=⇒ (a, b, c) = (1, 1, 2)
M

=⇒ (a, b, c) = (2, 3, 4)
Q

=⇒ (a, b, c) = (9, 18, 11)

5. (9, 18, 11)
i=1
=⇒ 3 · 18 + 2 · 11 = 76 ≡ 0 mod 19

Thus, we have 19|P19 and therefore 19 can be a Perrin pseudoprime or a prime.
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3.5 A mathematica-code for the algorithm

To deal with large integers we used mathematica. Of course, as an interpretive language it
is slower than a compiled code. But that saved us the development of an own long integer
operation package.
The following mathematica-code was used to check a given number n on whether n|Pn. The
code outputs True if n is prime or a Perrin pseudoprime and False otherwise. We used
mathematica11.3 at a Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz. To check the largest
known 1436-digit PPP (see page 19) takes 0.18 seconds. Checking the largest Mersenne prime
known in 1982 286243 − 1 takes 4 minutes. Though, at that time the computers were slower.
Today, testing 21398269 − 1, the 35-th Mersenne prime, found in 1996, takes a day.

PPP[n_] := (i = Mod[n, 3];

k = Quotient[n, 3];

lk = IntegerDigits[k, 2];

b1 = 1; b2 = 0; b3 = 0;

Do[ If[ lk[[j]] == 0,

c1 = b1 * b1 + 2 * b2 * b3;

c2 = b2 * b2 + b3 * b3 + 2 * b1 * b2;

c3 = b2 * b2 + 2 * b1 * b3 + 2 * b2 * b3 ,

a1 = b1 * b1 + 2 * b2 * b3;

a2 = b2 * b2 + b3 * b3 + 2 * b1 * b2;

a3 = b2 * b2 + 2 * b1 * b3 + 2 * b2 * b3;

c1 = a1 + a2;

c2 = a2 + a3;

c3 = a1 + a2 + a3];

b1 = Mod[c1, n]; b2 = Mod[c2, n]; b3 = Mod[c3, n],

{j, 1, Length[lk]}];

Which[i == 0, b = 3 * b1 + 2 * b2,

i == 1, b = 3 * b2 + 2 * b3,

i == 2, b = 2 * b1 + 2 * b2 + 3 * b3];

Mod[b, n] == 0)

The Table on [6] can be tested with

ppp = << PPP-new-math;

Do[ If[ Not[ PPP[ ppp[[k1]] ] ] || PrimeQ[ ppp[[k1]] ],

Print[ ppp[[k1]]," is not a PPP!" ] ], {k1, 1, Length[ppp]}]

Do not forget the semicolon, the list ppp is very large. It runs less than two hours.
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4 How to reduce the number of candidates

It takes many weeks to calculate the 1700 PPP up to 1014 even with high performance algorithms
and computers. One has to check every number (except a few ones like mentioned at page 12
that can be sorted out in advance). Thus, there is no hope, that one could calculate all PPPs,
say, up to 1020 in the next years. Moreover, since they are very rare, if you take a random n,
you will ”never” get a PPP.

So, to calculate more PPPs, one must try to limit the set of potential candidates.

Dana Jacobsen tested other pseudoprimes, hoping that, for example many of the Fermat2-PP
are also PPPs. And indeed, she found 101994 PPPs up to 18446724258335155361 < 1020 [5].

It turns out that 510 of the 1700 PPPs less than 1014 are Fermat2-PP, too.

4.1 The structure of most of the PPPs

Let’s have a look at the first PPPs and factorize them:

271441 = 521 · 521 = [1(521− 1) + 1] · 521
904631 = 7 · 13 · 9941

16532714 = 2 · 11 · 11 · 53 · 1289
24658561 = 19 · 271 · 4789
27422714 = 2 · 11 · 11 · 47 · 2411
27664033 = 3037 · 9109 = [3(3037− 1) + 1] · 3037
46672291 = 4831 · 9661 = [2(4831− 1) + 1] · 4831

102690901 = 5851 · 17551 = [3(5851− 1) + 1] · 5851
130944133 = 6607 · 19819 = [3(6607− 1) + 1] · 6607
196075949 = 5717 · 34297 = [6(5717− 1) + 1] · 5717
214038533 = 8447 · 25339 = [3(8447− 1) + 1] · 8447
517697641 = 6311 · 82031 = [13(6311− 1) + 1] · 6311
545670533 = 13487 · 40459 = [3(13487− 1) + 1] · 13487
801123451 = 8951 · 89501 = [10(8951− 1) + 1] · 8951
855073301 = 16883 · 50647 = [3(16883− 1) + 1] · 16883
903136901 = 17351 · 52051 = [3(17351− 1) + 1] · 17351
970355431 = 22027 · 44053 = [2(22027− 1) + 1] · 22027

We see that many of them have the structure P = [k(p − 1) + 1] · p, with some p ∈ P and
k = 1, 2, 3, ... is a small number. Clearly, such numbers are never prime. Moreover, to calculate
numbers P in the region of 1016, it is sufficient to consider factors ∼ 108. Thus, taking into
account that we have 5761455 primes up to 108, we get all pseudoprimes of this structure up
to ∼ 1016 for a given k in half an hour.

This was the starting point of a couple of ideas to reduce the amount of candidates to be tested.
We list them here in their logical order.

1. Consider numbers P =
[
k(p− 1) + 1

]
p, p ∈ P

It was amazing that already k = 3 and k = 2 gives more than 50% of the 1700 known
PPPs up to 1014.

2. Next, we considered numbers like P =
[
k1(p−1)+1

][
k2(p−1)+1

]
, p ∈ P; gcd(k1, k2) = 1.
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3. We saw that some PPPs of this structure were overlooked, because p must not be prime.
Thus, we considered numbers like P =

[
k1(p− 1) + 1

][
k2(p− 1) + 1

]
, p 6∈ P, p odd.

4. Clearly, the next step were numbers of the form
P =

[
k1(p− 1) + 1

][
k2(p− 1) + 1

][
k3(p− 1) + 1

]
5. and generally P =

∏m
i=1

[
ki(p− 1) + 1

]
. For m > 3 we get only a few new PPP’s.

With this method, we calculated all PPP’s with 2 factors for given ki < 100, with 3 factors for
given ki < 15, and with 4 factors for ki < 10 up to 1020. More than 95% of the 1700 known
PPPs up to 1014 have such a structure. Extrapolating this result, we assume that we know
now 95% of the PPPs up to 1020.

It was not possible to find such a PPP with 5 factors for months.

The largest PPPs have about 40 digits.

To calculate larger PPPs we used two different methods:

• Starting from a PPP with m factors, guess a PPP with m + 1 factors with the same p
and some km+1 resulting form the other k1, ..., km. For example, take km+1 as a multiple
of the least common multiple of the k1, ..., km. In this way we could find some very large
PPPs.

• Do we have to test all odd p? It turns out that only a few remainders of p with respect
to 23 occur. In this way we could find millions of new PPPs up to 1024.

4.2 The remainders of p

Since 23 is the discriminant of the corresponding polynomial of the Perrin sequence, we look at
the remainders of p with respect to 23 in more detail. It turns out that for a given pair (k1, k2)
we have only a few remainders instead of 23 possible ones.

For example:

• Take (k1, k2) = (3, 1), we have the remainders = (1, 2, 6, 9, 18)

• Take (k1, k2) = (2, 1), we have the remainders = (1, 2, 13, 16, 18)

The same holds for multiples of 23. Taking, for example, the number 23·2·3·5·7·11·13 = 690690.
We have

• For (k1, k2) = (3, 1) only 14853 remainders (a proportion of 0.0215046),

• For (k1, k2) = (2, 1) only 7425 remainders (a proportion of 0.0107501).

During our calculation we considered the remainders with respect to 23 · 2 · 3 = 138.

Here is a collection of the remainders with respect to 138 for all pairs (k1, k2) with k1 = 5 and
k1 = 7:
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k1 k2 possible remainders with respect to 138
5 1 1, 25, 31, 55, 73, 121
5 2 1, 7, 15, 21, 25, 43, 61, 67, 93, 99, 117, 135
5 3 1, 9, 25, 43, 55, 63, 75, 93, 109, 117, 121, 135
5 4 1, 7, 31, 43, 67, 73
7 1 1, 13, 25, 29, 31, 35, 47, 59, 71, 77, 121, 127
7 2 1, 13, 25, 67, 97
7 3 1, 5, 11, 19, 25, 29, 47, 65, 71, 97, 103, 121
7 4 1, 11, 13, 19, 31, 47, 59, 65, 67, 77, 103, 113
7 5 1, 25, 31, 67, 121
7 6 1, 5, 13, 29, 47, 59, 67, 79, 97, 113, 121, 125

These remainders were found experimentally. For a given pair (k1, k2) we calculated some PPPs
for any odd p, enough to be sure about the possible remainders. Having obtained these, we
test the following p only with these remainders. That resulted in a strong speed-up.

Unfortunately, we have no idea how the remainders can be calculated in advance. We think
this is an interesting problem for specialists, for example, in Carmichael numbers.

For PPPs with 3 factors we observed the following interesting experimental result:

Fix a pair (k1, k2) with gcd(k1, k2) = 1 and let be R(k1, k2) the set of remainders of p. Then,
the set of remainders R(k1, k2, k3) for a PPP with 3 factors is

R(k1, k2, k3) = R(k1, k2) ∩R(k1, k3) ∩R(k2, k3)

Thus, the number of possible remainders decreases with the number of factors.

A similar result holds for PPPs with more than 3 factors. Again, we do not know how to prove
this.

The remainder 1 with respect to multilpes of 23 contains in any set of remainders for any (ki).

5 Numerical results

5.1 The state of the art

A current overview can be found in N.J.A. Sloanes famous OEIS (On-Line Encyclopedia of
Integer Sequences) [8].

By now, all PPPs – 1700 – up to 1014 are known. Since we have 3204941750802 primes up
to 1014, using the Perrin prime test, a PPP occurs with probability W (1014) = 5.3043110−10.
Thus, to check whether a given number less than 1014 is prime you can use the Perrin test and
– if it is true – look at the table whether it is one of the 1700 PPPs. If not, it is prime.

The following table shows the probability W (n) up to n = 1014. We used [10] for the numbers
of primes.
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n PPPs primes probability W (n)
108 7 5761455 1.21497 ∗ 10−6

109 17 50847534 3.34333 ∗ 10−7

1010 42 455052511 9.22970 ∗ 10−8

1011 116 4118054813 2.84115 ∗ 10−8

1012 285 37607912018 7.57819 ∗ 10−9

1013 649 346065536839 1.87537 ∗ 10−9

1014 1700 3204941750802 5.30431 ∗ 10−10

5.2 Our results

We calculated 9261931 (by December 2019) PPPs that an be found in the database [6]. (Note,
that the database is updated from time to time.)
We tried to find all PPPs up to 1020 and all with 2 factors and (k1, k2) = (3, 1) and (k1, k2) =
(2, 1) up to 1022. Of course there is a by-catch of many PPPs up to 1030.
Moreover, we tried to find some very large ones using two methods:
At first, we constructed PPPs with m+ 1 factors starting from a known ones with m factors.
Second, knowing that 1 is always a remainder with respect to multilpes of 23 for all p, we tested
numbers of the form n = p ·

(
k(p−1)+1

)
. with k = 2, 3 and p = 23 ·2 ·3 ·5 ·7 ·11 · · · a multiple

of 23 and the first primes This yields very large PPPs, for example the one on page 19.

5.2.1 Almost all PPPs

Having a look at the table above, we see
that logW (n) behaves largely linearly. We
extrapolate this and expect the following
numbers of PPPs. The numbers up to
1020 are “almost all”, the numbers up to
1022 are “more than a half” of all PPPs.

10 15 20 25

-15

-10

-5

log10 n

log10W (n)

n expected PPPs founded PPPs
1015 4360 4409
1016 11236 11972
1017 29076 33045
1018 75520 93001
1019 196790 262236
1020 514287 742759
1021 1347560 1502883
1022 3539332 3615622
1023 9316050 7870747
1024 24569601 7874995
1025 64915566 7879187
1026 171799266 7885930
1027 455365341 7898184
1028 1208691635 7920907
1029 3212505576 7964655
1030 8548808804 8049285
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5.2.2 Huge PPPs

Collected by factors: We found

• 1 PPP with 14 factors.

• 13 PPPs with 13 factors.

• 64 PPPs with 12 factors.

• 113 PPPs with 11 factors.

• 176 PPPs with 10 factors.

• 481 PPPs with 9 factors.

• 1054 PPPs with 8 factors.

• 2591 PPPs with 7 factors.

• 7159 PPPs with 6 factors.

• 29529 PPPs with 5 factors.

Collected by digits: We found

• ∼ 4000 PPPs with more than 80 decimal digits

• ∼ 1600 PPPs with more than 100 decimal digits

• 36 PPPs with more than 500 decimal digits

• 6 PPPs with more than 1000 decimal digits

• The largest PPP has 3101 digits. Here it is:

2182001064371918934845924375655593970781204553917566660863280384747887616030277480053172205785183353188400

4126146210865090197070653868880189559625867459754727073713090924616711853613422828119114381617102058517546

8653751496284195684000100419880283999039015488001095163810247785156033211221423472140681188918922518742770

0398996872031544022682029689624783660853880129295123479427747681652039459239579760489615206781614707161883

9138537548347177754556329233097993446947475927879595917904730731452471057039913228447069819231974147528469

7693616171472498459173243671532936165356214403017220481995761095314765972379574827945192124085559691984391

8008661242667729379149221402733564699474653803584334247108722459604844155931040562979301921938928545995807

4207926519074011909871332364749649617141024864366985374867133374038568149858039921667907016960062202008122

9182067899216118132468035588845067378082718617393902077009092862097562284582389695785019716348129717066692

0783325505675383114442119375756418942531432620905077133117297177064802424569877645651274316923030865339422

6661109617675061215430499075868542147459797368102792867066735398199032669816585264700339738266181367925685

9183901438799475057989326512787989244219170992158347364160368593405317157057039942593979747214483064168779

3723363454025576455261406877507795872082604992320378872519383088242811076665512015332176716276340248257164

6729443535184738262902790223792682930259972646770066028255813046639125749771256788743514165965139691554159

3353592560965482315120431456622925845399082336306306234166863238919515156950417488352070194395498058003429

2609689928226091668646468088635185719074533550653987615133601688385577315810376211381436151897390975873498

9194775781036920280653165835092015711042583063595692979056408307560965084104645943087850367750725513620664

9589379996405514942415050679736879467176251813294056719410189773891939434281262409431885675830573414891359

7068260880092249389030829673092944201188379579217564895495418187279934349004962876837044167260718567772046

7521150708667751876125544569499435754902575963129390715770989789849330459963345038762428879760367628428833

7083464467875818139474195085529183097604033933360012552535245232509900842279440109453302234497800743667133

2290093368659872164696682455863309852162786109791145473780233128398296687924256984146263917624053810047106

9132240022024999815261877155099328326233538506570393468310793807821070234336347574184496483617336881484518

9783926914876429525603769119738558257277589955344693025872664161546365759997766592490233729898293133230624

4301770299046097662381531807593304842496115443710755824125123112656492287865978030693101114925766670096297

4043457120990040352730767662860730019992114778921176312285224644592166173374663104973515972020108030670776

0538966132268173354370805800388713443173563909282726774947019900416544732774260586167631835100825092596248

4432038054992189389231847184387110810917603905274409490013362690801082371949435532760468825732391337145460

6507376646884319008228201004154992411941387896249068825523566890040592991334780411481021215235342677940980

162869702039217052132582551
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5.2.3 Some more information

• Our method found 1647 out of the known 1700 up to 1014. Thus, 53 or ∼ 3% left. We
call them “sporadic PPPs”.

• Dana Jacobsen’s list of 101994 PPPs contains 699 that we could not find with our method.

• We found 742759 PPPs up to 1020. If these compile 97% of all PPPs, then 22972 sporadic
ones are left.

• Among the the first 10000 Carmichael numbers (taken from [9]) there are 16 PPPs:

C1353 = 7045248121 = 821 ∗ 1231 ∗ 6971 =

= (2(411− 1) + 1) ∗ (3(411− 1) + 1) ∗ (17(411− 1) + 1)

C1375 = 7279379941 = 211 ∗ 3571 ∗ 9661

C2142 = 24306384961 = 19 ∗ 53 ∗ 79 ∗ 89 ∗ 3433

C2652 = 43234580143 = 223 ∗ 5107 ∗ 37963

C2837 = 52437986833 = 23 ∗ 463 ∗ 1453 ∗ 3389

C2988 = 60518537641 = 23 ∗ 89 ∗ 991 ∗ 29833

C3336 = 80829302401 = 89 ∗ 199 ∗ 463 ∗ 9857

C3855 = 118805562613 = 829 ∗ 9109 ∗ 15733

C4125 = 144377609419 = 1319 ∗ 9227 ∗ 11863

C4322 = 165321688501 = 101 ∗ 271 ∗ 691 ∗ 8741

C4342 = 167385219121 = 83 ∗ 6971 ∗ 289297

C5046 = 254302215553 = 307 ∗ 3673 ∗ 225523

C5731 = 364573433665 = 5 ∗ 7 ∗ 23 ∗ 37 ∗ 997 ∗ 12277

C6743 = 575687567521 = 11 ∗ 19 ∗ 79 ∗ 137 ∗ 307 ∗ 829

C6810 = 588909469501 = 1871 ∗ 16831 ∗ 18701 =

= 1871 ∗ (9(1871− 1) + 1) ∗ (10(1871− 1) + 1)

C7057 = 652270080001 = 3361 ∗ 9241 ∗ 21001

Some of them, namely, C2142, C2837, C3336, C4342, C5731, C6743 and C7057 we could not find
with our method.

Note, that C7057 = (4 ∗ (841 − 1) + 1) ∗ (11 ∗ (841 − 1) + 1) ∗ (25 ∗ (841 − 1) + 1) with
841 = 192. We could not find it, since we restrict ourself to ki ≤ 15 for numbers with 3
factors.

5.2.4 Some conjectures

During the calculations, we were led to the following conjectures. We invite everyone to think
about the proofs.

• Almost all PPPs have the structure P =
∏m

i=1

[
ki(p− 1) + 1

]
• There are infinitely many of such type.

• The p has few remainders with respect to multiples of 23. They can be calculated theo-
retically in advance.
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• If
∏m

i=1

[
ki(p− 1) + 1

]
is a PPP, then with “high” probability∏m+1

i=1

[
ki(p− 1) + 1

]
is a PPP with km+1 = ckm. In such a way you can construct large

PPPs.

• The set of remainders (with respect to multiples of 23) of p corresponding to given ki
with 3 (or more) factors are the intersection of the sets of remainders corresponding to
fewer ki, requiring gcd(ki, kj) = 1.

• There are a particularly large number of PPPs if the ki are prime, pairwise.

• If for some p the number with {k2 ·k3, k2, k3} is a PPP then so is the number with {k2, k3}.

6 Other promising polynomials for pseudoprimes

We tested polynomials of degree 3 and 4 with integer coefficients ai with |ai| ≤ 20. Every
corresponding sequences we tested for pseudoprimes up to 109. For polynomials of third order
the Perrin sequence is indeed the rarest.

For polynomials of fourth order we find two polynomials without any pseudoprimes up to 109

at all. Here they are:

Q(x) = −x4 + x3 − 17x2 + 0x+ 5

R(x) = −x4 + 11x3 + x2 − 12x+ 14

We have for Q(x) the corresponding sequence

qn = qn−1 − 17qn−2 + 5qn−4

q0 = 4

q1 = 1

q2 = −33

q3 = −50

and the testing rule n ∈ P =⇒ n|(qn − 1).

For R(x) the sequence is

rn = 11rn−1 + rn−2 − 12rn−3 + 14rn−4

r0 = 4

r1 = 11

r2 = 123

r3 = 1328

and the testing rule is n ∈ P =⇒ n|(rn − 11n).

To avoid the term 11n, it is better to consider

G(x) = Q(x)(x− 11) = −x5 + 22x4 − 120x3 − 23x2 + 146x− 154



22 REFERENCES

instead of R(x). This corresponds to the 5-th oder sequence

gn = 22gn−1 − 120gn−2 − 23gn−3 + 146gn−4 − 154gn−5

g0 = 3

g1 = 0

g2 = 2

g3 = −3

g4 = 14

with the testing rule n ∈ P =⇒ n|gn.
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