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THE TRACE METHOD FOR COTANGENT SUMS

WIKTOR EJSMONT AND FRANZ LEHNER

Abstract. This paper presents a combinatorial study of sums of integer powers of the cotan-
gent which is a popular theme in classical calculus. Our main tool the realization of cotangent
values as eigenvalues of a simple self-adjoint matrix with integer matrix. We use the trace
method to draw conclusions about integer values of the sums and and provide explicit evalua-
tions; it is remarkable that throughout the calculations the combinatorics are governed by the
higher tangent and arctangent numbers exclusively. Finally we indicate a new approximation
of the values of the Riemann zeta function at even integer arguments.
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1. Introduction

It is a well known fact that the trace of a matrix equals the sum of its eigenvalues

TrA “
ÿ

λi,
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2 WIKTOR EJSMONT AND FRANZ LEHNER

counting algebraic multiplicities. This relation is respected by functional calculus and the
identity

Tr fpAq “
ÿ

fpλiq

holds for arbitrary holomorphic (and other functions in the case of self-adjoint matrices), in
particular, powers and polynomials. The trace method consists in the evaluation of this identity
for particular matrices in order to obtain nontrivial combinatorial relations.
In the present paper we apply this method to cotangent sums of the form

(1.1) Spm,n, αq “
n´1ÿ

k“0

cotm
α ` kπ

n

for α ‰ kπ, n,m P N, n ě 2, and the limit case

(1.2) S0pm,nq “
n´1ÿ

k“1

cotm
kπ

n
.

Sums of this kind are a recurrent theme in the mathematical literature. They arise in number
theory in connection with Dedekind sums and topology [50, 30], and more recently were used to
evaluate the Riemann zeta function, see [49, Problem 141ff] for the apparently first occurrence
of this connection and later rediscoveries [33, 47, 38, 6, 3, 21]; Berndt and Yeap [8] attribute
the first occurence of cotangent sums to [45, p. 155]. The recent literature on this topic is
abundant, in particular the question for which values of the parameters the sums (1.1) yield
integer values is intriguing. For example, Byrne and Smith [11] proved that the sums are
integer valued polynomials in n at the offset α “ π{4, found the leading terms and established
recurrence relations. For the case m “ 2 finite Fourier analysis is applicable [4]. We were led to
study such sums in connection with certain limit theorems arising in free probability, see our
papers [24, 23], where the matrices considered below arise in a natural way and we apply the
trace method and expansions of generating functions to evaluate such expressions into closed
form.
We will see below that in many cases the integrity of the values of (1.1) is a simple consequence
of the trace formula; moreover we provide an explicit formula and as a corollary, the sums in
terms of arctangent, tangent and secant numbers

Sp2m ` 1, n, π{4q “
nÿ

k“1

p´1qk cot2m`1
p2k ´ 1qπ

4n
“

1

2p2mq!

mÿ

k“0

p2nq2k`1A
p2k`1q
2m`1 S2k,

Sp2m,n, π{4q “
nÿ

k“1

cot2m
p2k ´ 1qπ

4n
“ p´1qmn `

1

2p2m ´ 1q!

mÿ

k“1

p2nq2kA
p2kq
2m T2k´1,

see Corollary 6.4. Moreover we obtain an explicit formula for the sum (1.2)

n´1ÿ

k“1

cot2m
kπ

n
“ p´1qmpn ´ 1q ´

1

p2m ´ 1q!

mÿ

k“1

p´1qkA
p2kq
2m

4kB2k

2k
pn2k ´ 1q.

which was previously evaluated by Berndt and Yeap in terms of Bernoulli numbers [8] (cf. also
[48, 27, 21, 2, 22, 29]), see Corollary 6.5. Chu and Marini [15] wrote a systematic study of
generating functions and we complement this in Section 4 by providing a generating function
for arbitrary α. The most general formula for the sum (1.1) so far was given in by Cvijović
and Klinowski [20], who realized the cotangent values cot α`kπ

n
as roots of a polynomial and

expressed the sums via Cramer’s rule applied to the Newton relations between elementary and
power sum symmetric functions. In the present paper we go one step further and show that
the polynomial found in [20] is in fact the characteristic polynomial of a simple matrix. Thus
the trace method is applicable and we can draw certain conclusions about the sum (1.1). For
example, if cotα is an integer, e.g., α “ π

4
, it follows trivially that (1.1) evaluates to an integer,
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as was observed by different means in [11]. For an evaluation of cosecant sums via the trace
method see [44].
It is perhaps interesting to note that the papers [12, 13] evaluate certain trigonometric sums
using matrices with trigonometric entries and integer eigenvalues, while in the present paper
we exploit integer matrices with trigonometric eigenvalues.

2. Preliminaries on Linear Algebra and the Tangent function

The main role in this paper is played by a certain matrix and its intricate relations to the
tangent and cotangent functions.

2.1. A matrix. For scalars a, b, c P C we denote by r a b
c a sn P MnpCq the matrix whose diagonal

elements are equal to a, whose upper-triangular entries are equal to b and whose lower-triangular
elements are equal to c, respectively. For simplicity of notation, we use the same letter Jn and
Bn for the following matrices

Jn :“

»

—————
–

1 1 1 . . . 1
1 1 1 . . . 1

1 1 1
. . . 1

...
. . .

. . .

1 1 1 . . . 1

fi

ffiffiffiffiffi
fl

and Bn :“ i

»

—————
–

0 1 1 . . . 1
´1 0 1 . . . 1

´1 ´1 0
. . . 1

...
. . .

. . .

´1 ´1 ´1 . . . 0

fi

ffiffiffiffiffi
fl
.

The first observation reveals that the entries of the sum (1.1) can be realized as eigenvalues of
the following matrix and consequently the sum is the trace of the m-th power of this matrix.

Lemma 2.1. If a “ cotα, then the characteristic polynomial of the matrix

Cn “ aJn ` Bn “

»

——
–

a a ` i . . . a ` i

a ´ i a . . . a ` i

. . . . . . . . . . . . . . . . . . . . . .
a ´ i a ´ i . . . a

fi

ffiffi
fl P MnpCq

is

(2.1) χnpα;λq “
pcotα ` iqpλ ´ iqn ´ pcotα ´ iqpλ ` iqn

2i
“ Impcotα ` iqpλ ´ iqn

(assuming λ real) and the eigenvalues are given by

λk “ cot
α ` kπ

n
, for 0 ď k ď n ´ 1.

Proof. The spectrum of the matrix Cn can be computed from its characteristic polynomial
χnpα;λq “ detpλI ´ Cnq using the following recurrence relation. Let w “ a ` i , then we have

χnpα;λq “

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ ´ a ´w ´w ´w . . . ´w

´ sw λ ´ a ´w ´w . . . ´w

´ sw ´ sw λ ´ a ´w . . . ´w

´ sw ´ sw ´ sw λ ´ a . . . ´w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
´ sw ´ sw ´ sw ´ sw . . . λ ´ a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

we subtract the second row from the first row

“

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ ´ a ` sw ´λ ´ w ` a 0 0 . . . 0
´ sw λ ´ a ´w ´w . . . ´w

´ sw ´ sw λ ´ a ´w . . . ´w

´ sw ´ sw ´ sw λ ´ a . . . ´w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
´ sw ´ sw ´ sw ´ sw . . . λ ´ a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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and the second column from the first column

“

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2λ ´ 2a ` w ` sw ´λ ´ w ` a 0 0 . . . 0
´λ ´ sw ` a λ ´ a ´w ´w . . . ´w

0 ´ sw λ ´ a ´w . . . ´w

0 ´ sw ´ sw λ ´ a . . . ´w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ´ sw ´ sw ´ sw . . . λ ´ a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

“ p2λ ´ 2a ` w ` swqχn´1pα;λq ´ pλ ´ a ` wqpλ ´ a ` swqχn´2pα;λq

and the solution of this recurrence equation (with initial values χ0pα;λq “ 1 and χ1pα;λq “ λ)
is

χnpα;λq “
wpλ ´ a ` swqn ´ swpλ ´ a ` wqn

w ´ sw

“
pa ` iqpλ ´ iqn ´ pa ´ iqpλ ` iqn

2i
“ Impa ` iqpλ ´ iqn.

Thus we have to solve the equation

(2.2) Impa ` iqpλ ´ iqn “ 0.

To compute the zeros, write a`i “ r0e
iα, i.e., a “ cotα and assume λ´i “ re´iθ. Then equation

(2.2) becomes Im r0e
iαrne´inθ “ 0 and is equivalent to the equation sinpα ´ nθq “ 0, that is,

α ´ nθ “ ´kπ for some k P Z. Thus the solutions of (2.2) can be written as λk “ i ` rke
´iθk

with θk “ α`kπ
n

. Now our matrix is selfadjoint, all roots of the characteristic polynomial
(2.2) are real and hence ´1 “ Impλk ´ iq “ ´rk sin θk; we conclude that rk “ 1

sin θk
and

λk “ Repλk ´ iq “ rk cos θk “ cot θk. Consequently

χnpα;λq “
n´1ź

k“0

ˆ
λ ´ cot

α ` kπ

n

˙
.(2.3)

�

Remark 2.2. An alternative formula for this polynomial can be found in [20, Formula (4)].
Indeed the coefficients of this polynomial are as follows

(2.4)

χnpα;λq “ Impa ` iqpλ ´ iqn

“ Im
nÿ

k“0

ˆ
n

k

˙
pa ` iqλkp´iqn´k

“ Im
nÿ

k“0

ˆ
n

k

˙
pap´iqn´k ´ p´iqn´k`1qλk

“
nÿ

k“0

ckλ
k

where

ck “

$
’’’&

’’’%

ˆ
n

k

˙
p´1qpn´kq{2 n ´ k even

a

ˆ
n

k

˙
p´1qpn´k`1q{2 n ´ k odd

or equivalently,

cn´k “

ˆ
n

k

˙ ˆ
cos

kπ

2
` a sin

kπ

2

˙
“

$
’’’&

’’’%

ˆ
n

k

˙
p´1qk{2 k even

a

ˆ
n

k

˙
p´1qpk`1q{2 k odd
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cf. [20, Formula (4b)].
In fact the discussion of [20] starts by showing that the characteristic polynomial χnpα; xq is
related to the expression sin arccot x. Indeed evaluation of the polynomial (2.1) at λ “ cot θ
and few elementary manipulations yield the identity

χnpα; cot θq “
sinpnθ ´ αq

sinα sinn θ
.

2.2. Formulas for tanpnxq. A simple manipulation of the addition formulae for sine and cosine
show that the tangent function obeys the addition rule

(2.5) tanpx ` yq “
tan x ` tan y

1 ´ tan x tan y

This rule is not practical for iteration and the following equivalent elegant formula proposed
by Szmulowicz [46] is a convenient alternative

1 ` i tan
ř

xk

1 ´ i tan
ř

xk

“
ź 1 ` i tanxk

1 ´ i tanxk

(2.6)

It follows immediately from the identity

e2ix “
1 ` i tanx

1 ´ i tanx
(2.7)

and in particular, tanpn arctan zq is a rational function. Indeed

1 ` i tanpnxq

1 ´ i tanpnxq
“

ˆ
1 ` i tan x

1 ´ i tan x

˙n

(2.8)

and thus

tanpnxq “ i
1 ´

`
1`i tanx
1´i tanx

˘n

1 `
`
1`i tanx
1´i tanx

˘n(2.9)

“ i
p1 ´ i tanxqn ´ p1 ` i tanxqn

p1 ´ i tanxqn ` p1 ` i tanxqn
(2.10)

and

cotpnxq “ i
pcot x ` iqn ` pcotx ´ iqn

pcot x ` iqn ´ pcotx ´ iqn
.(2.11)

Thus we obtain the well known formula [5, item 16]

(2.12) tanpn arctan zq “ i
p1 ´ izqn ´ p1 ` izqn

p1 ´ izqn ` p1 ` izqn
;

comparing with the reciprocal polynomial of (2.1) at a “ cotα “ 0 which is

p̃npzq “ znχnp0; 1{zq “
p1 ´ izqn ` p1 ` izqn

2

we see that

(2.13) tanpn arctan zq “ ´
1

n ` 1

p̃1
n`1

pzq

p̃npzq
.
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2.3. Formulas for tanpnx ´ αq. In view of later applications we introduce a nonzero offset
into equation (2.8) and obtain

(2.14)
1 ` i tanpnx ` αq

1 ´ i tanpnx ` αq
“

ˆ
1 ` i tanx

1 ´ i tanx

˙n
1 ` i tanα

1 ´ i tanα

which after a few manipulations yields the identity

tanpnx ` αq “ i
1 ´

`
1`i tan x
1´i tan x

˘n cotα`i
cotα´i

1 `
`
1`i tan x
1´i tan x

˘n cotα`i
cotα´i

(2.15)

“ i
pcotα ´ iqp1 ´ izqn ´ pcotα ` iqp1 ` izqn

pcotα ´ iqp1 ´ izqn ` pcotα ` iqp1 ` izqn
(2.16)

The reciprocal provides the following crucial identity for cot

(2.17) cotpnx ´ αq “ ´i
pcotα ` iqp1 ´ izqn ` pcotα ´ iqp1 ` izqn

pcotα ` iqp1 ´ izqn ´ pcotα ´ iqp1 ` izqn

which after comparison with the reciprocal polynomial

χ̃npα; zq “ znχnpα; 1{zq “
pcotα ` iqp1 ´ izqn ´ pcotα ´ iqp1 ` izqn

2i

identifies to

(2.18) cotpn arctan z ´ αq “
1

n ` 1

χ̃1
n`1

pα; zq

χ̃npα; zq

2.4. Derivatives of tan and cot. The higher derivatives of tan z and cot z are closely re-
lated, since cot z “ tan

`
π
2

´ z
˘
. It is easy to see that there exist polynomials Pnpzq such that

dn

dzn
tan z “ Pnptan zq; indeed these derivative polynomials satisfy the recursion

Pn`1pxq “ p1 ` x2qP 1
npxq

and can be used to efficiently compute tangent and Bernoulli numbers [34]. Explicitly, these
polynomials can be expressed via the geometric polynomials [10, (2.1)]

(2.19) ωnpxq “
nÿ

k“0

"
n

k

*
k! xk

as follows, see [10, (3.10–11)]:

(2.20) Pnpzq “ p2iqnpz ` iqωn

ˆ
´
iz ` 1

2

˙
“ p´2iqnpz ´ iq

nÿ

k“0

k!

2k

"
n

k

*
piz ´ 1qk

On the other hand (see [1, Lemma 2.1] or [10, (3.15)])

(2.21)
dn

dzn
cot z “ p´1qnPnpcot zq “ p2iqnpcot z ´ iq

nÿ

k“1

k!

2k

"
n

k

*
pi cot z ´ 1qk

and thus p´1qnPnpxq serve as derivative polynomials for cot.
Interest in these polynomials goes back at least to Ramanujan [7, Chapter 7, entry 11] and
there is some literature, see for example [39, 14, 31, 32, 26, 48].



THE TRACE METHOD FOR COTANGENT SUMS 7

2.5. Tangent and arctangent numbers. The tangent numbers are the Taylor coefficients
of the tangent function. They make up the odd part of the sequence of En of Euler zigzag
numbers, which are given by the exponential generating function

(2.22) tanpzq ` secpzq “
8ÿ

n“0

En

n!
zn.

The higher order tangent numbers [14] are defined as coefficients of the series

(2.23) tank z “
8ÿ

n“k

T
pkq
n

n!
zn;

Their bivariate generating function

T px, zq “
8ÿ

k“1

xk tank z

“
8ÿ

n“0

nÿ

k“1

T
pkq
n

n!
xkzn

“
x tan z

1 ´ x tan z

“
8ÿ

n“0

Tnpxq

n!
zn

where Tnpxq “
řn

k“1
T

pkq
n xk. On the other hand, from the addition formula (2.5) we infer the

exponential generating function of the derivative polynomials to be

(2.24) P px, zq “
8ÿ

n“0

Pnpxq
zn

n!
“

x ` tan z

1 ´ x tan z
.

Comparing the two generating functions we find the relation

(2.25) xPnpxq “ p1 ` x2qTnpxq.

On the other hand let us denote by A
pkq
n the arctangent numbers (see [16, p. 260] or [19]) defined

by their exponential generating function

(2.26)
parctan zqk

k!
“

8ÿ

n“k

A
pkq
n

n!
zn;

notice that A
pkq
n “ 0 unless n´k is even and that up to sign these are the same as the coefficients

of the hyperbolic arctangent function

(2.27)
patanh zqk

k!
“

8ÿ

n“k

Ã
pkq
n

n!
zn.

The latter are nonnegative and

(2.28) Apkq
n “ p´iqkinÃpkq

n .

2.6. Derivatives of arctan. The derivatives of arctan z are rational functions and it is easy to
verify by induction that they are given by the following formulas

d

dz
arctan z “

1

1 ` z2
“

1

2i

ˆ
1

z ´ i
´

1

z ` i

˙
,

and thus

(2.29)
dm

dzm
arctan z “

ip´1qmpm ´ 1q!

2

`
pz ´ iq´m ´ pz ` iq´m

˘
.
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2.7. Faà di Bruno’s formula. In this section we briefly recall the combinatorics behind the
composition of exponential generating functions. Let panqně1 and pbnqně1 be sequences and
define a new sequence by their combinatorial convolution

(2.30) cn “
ÿ

πPPpnq
a|π|

ź

BPπ
b|B|

Then Fa di Bruno’s formula [43, Theorem 5.1.4] asserts that their exponential generating
functions Fapzq “

ř8
k“1

ak
k!
zk and Fbpzq “

ř8
k“1

bk
k!
zk satisfy the relation

(2.31) Fcpzq “ FbpFapzqq.

Equivalently, given smooth functions f and g, the m-th derivative of the composed function is

(2.32)
dm

dzm
fpgpzqq “

ÿ

πPPpmq
f p|π|qpgpzqq

ź

BPπ
gp|B|qpzq.

3. Trace formula

In this section we apply the trace method to the matrix constructed in the previous section in
order to prove certain properties of the sum (1.1).

Theorem 3.1. (i) The cotangent sum (1.1) can be expressed as

(3.1) Spm,n, αq “ Tr ppcotαJn ` Bnqmq

(ii) There are universal integer valued polynomials pm,m´2kpxq with rational coefficients such
that the cotangent sum (1.1) can be expressed as a polynomial of degree m in cotα

(3.2) Spm,n, αq “
ÿ

0ďkďtm{2u

pm,m´2kpnq cotm´2k α.

Moreover, for any n P N, the coefficients pm,m´2kpnq are positive integers.

Example 3.2. For example, we have1

(1) Sp1, n, αq “ n cotα
(2) Sp2, n, αq “ n2 cot2 α ` n2 ´ n

(3) Sp3, n, αq “ n3 cot3 α ` pn3 ´ nq cotα
(4) Sp4, n, αq “ n4 cot4 α ` 4

3
pn4 ´ n2q cot2 α ` 1

3
n4 ´ 4

3
n2 ` n

(5) Sp5, n, αq “ n5 cot5 α ` 5

3
pn5 ´ n3q cot3 α ` p2

3
n5 ´ 5

3
n3 ` nq cotα

It will be apparent from (6.1) later that indeed Spm,n, αq is a rational polynomial of degree m
in both n and cotα.

Proof. It is clear that the trace (3.1) is a polynomial of degree at most n in cotα. Moreover
since the entries of the matrices Jn and Bn are integers, the coefficients pm,m´2kpnq are integers
as well. For positivity, we show that the mixed moments of Jn and Bn are positive. To see
this, note that Pn “ 1

n
Jn is a self-adjoint projection of rank 1. It follows that for any matrix

Cn the compression PnCnPn lies in the 1-dimensional algebra generated by Pn, more precisely,
PnCnPn “ ξTCnξPn where ξ “ 1?

n
p1, 1, . . . , 1qT spans the image of Pn. For our matrixBn clearly

ξTBnξ “
ř

bij “ 0 and by antisymmetry, also for odd powers ξTBk
nξ “ p´1qkξTBk

nξ “ 0. It
follows that any mixed moment

TrpJk1
n Bl1

n J
k2
n Bl2

n ¨ ¨ ¨Jkr
n Blr

n q “ nk1`¨¨¨`kr TrpP k1
n Bl1

n P
k2
n Bl2

n ¨ ¨ ¨P kr
n Blr

n q

“ nk1`¨¨¨`kr TrpPnB
l1
n PnB

l2
n Pn ¨ ¨ ¨PnB

lr
n Pnq

“ nk1`¨¨¨`krξTBl1
n ξξ

TBl2
n ξ ¨ ¨ ¨ ξTBlr

n ξ

“

#
“ 0 if some lj is odd

ą 0 if all lj are even.

1We note in passing that there is a misprint in the formula for S5pq; ξq in [20, p. 154].
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�

In particular, Spm,n, αq evaluates to an integer (natural number) whenever cotα is an integer
(natural number). It was observed in [11] to the surprise of the authors that the sums in the
next corollary are integer valued; explicit formulas are computed in Corollary 6.4 below. We
will see later that even for noninteger values of cotα the sum may evaluate to an integer, e.g.,
for n “ 2 and cotα “ 1

2
, Lucas numbers appear, see (5.1) below.

Corollary 3.3. The sums

Sp2m ´ 1, n, π{4q “
nÿ

k“1

p´1qk cot2m´1
p2k ´ 1qπ

4n

Sp2m,n, π{4q “
nÿ

k“1

cot2m
p2k ´ 1qπ

4n

can be represented as integer-valued polynomials in n of degrees 2m ´ 1 and 2m, respectively.

Proof. Applying Lemma 2.1 to the matrix
“

1 1`i
1´i 1

‰
n
, we obtain its eigenvalues as

λk “ cot

ˆ
π

4n
`

k

n
π

˙
, for k P t1, . . . , nu,

because α “ arccotp1q “ π
4
. Let us show how these are related the sums considered by Byrne

and Smith [11]. Indeed the corresponding power sums are

nÿ

k“1

cotr
ˆ

π

4n
`

k

n
π

˙
“

tn{2uÿ

k“1

cotr
ˆ

π

4n
`

k

n
π

˙
`

nÿ

k“tn{2u`1

cotr
ˆ

π

4n
`

k

n
π

˙

and substituting cotp π
4n

` k
n
πq “ ´ cotp´ π

4n
` n´k

n
πq into the second sum, we get

“

tn{2uÿ

k“1

cotr
ˆ

π

4n
`

k

n
π

˙
`

n´tn{2u´1ÿ

k“0

p´1qr cotr
ˆ

´
π

4n
`

k

n
π

˙

“

#
´

řn

k“1
p´1qk´1 cotr p2k´1qπ

4n
if r is odd,

řn

k“1
cotr p2k´1qπ

4n
if r is even.

�

Remark 3.4. (1) The second part of Theorem 3.1 could be seen as a very special case the
BMV conjecture [41]: if A and B are positive semi-definite matrices, then for all positive
integers m, the polynomial in t, TrpA ` tBqm, has only non-negative coefficients. The
proof above shows that the assertion is also true whenever A is an orthogonal projection
of rank one and B is a positive or antisymmetric self-adjoint matrix.

(2) From the Newton identities between power sum and elementary symmetric polynomials
we conclude

ÿ

l1ăl2ă¨¨¨ălk

kź

j“1

cot
α ` ljπ

n
“ p´1q´kcn´k “

#`
n

k

˘
p´1q´k{2 k even

cotα
`
n

k

˘
p´1qp1´kq{2 k odd.

(3.3)

in situation when |B| “ 1, then we reduce to Theorem 6.1 with m “ 1 or when For
|B| “ n this is confirmed by the well known identities

n´1ź

k“0

sin

ˆ
kπ

n
` z

˙
“ 21´n sinpnzq and

n´1ź

k“0

cos

ˆ
kπ

n
` z

˙
“ 21´n sin

´
nz `

π

2
n

¯
.

For other literature about trigonometric multiple cotangent sum similar to those in
(3.3), we refer the reader to [8, Section 6] and [50].
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4. Generating functions

In the present section we compute the generating function of the cotangent sums (1.1), for fixed
n, i.e.,

Fnpz, αq “
8ÿ

m“0

Spm,n, αqzm,

which is the moment generating function of the matrix cotαJn ` Bn with respect to the non-
normalized trace. Moreover we will compute the moment generating function of the matrix Bn

with respect to the nonnormalized trace and with respect to the state ω with density matrix
Pn “ 1

n
Jn, that is,

ωpCq “ TrpPnCq “
1

n

nÿ

i,j

cij “ ξTCξ

where as above by ξ we denote the unit vector ξ “ 1?
n

p1, 1, . . . , 1qT and C “ rci,js
n
i,j“1

P MnpCq.

The moment generating functions

MxJn`Bn
pzq “ TrppI ´ zpxJn ` Bnqq´1q,

MBn
pzq “ TrppI ´ zBnq´1q,

with respect to the trace are easy to compute directly through the characteristic polynomials.
On the other hand, direct computation of

M̃Bn
pzq “ ωppI ´ zBnq´1q “ TrpPnpI ´ zBnq´1q

requires information about the eigenvectors which we could not obtain. It will therefore be
computed indirectly. The tangent function and its inverse will play a major role in these
computations and we collect some facts about these functions first.

4.1. Generating function for cotangent sums.

Proposition 4.1. For fixed n the ordinary generating function of the cotangent sums (1.1) is

Fnpz, αq “
8ÿ

m“0

n´1ÿ

k“0

cotm
α ` kπ

n
zm(4.1)

“
n´1ÿ

k“0

1

1 ´ z cot θk
(4.2)

“
n

1 ` z2
p1 ´ z cotpn arctan z ´ αqq(4.3)

where θk “ α`kπ
n

. More generally, the moment generating function of the matrix pencil xJn`Bn

is

(4.4) MxJn`Bn
pzq “

n

1 ` z2

ˆ
1 ` z

x ` tanpn arctan zq

1 ´ x tanpn arctan zq

˙
.

Proof. Once we have realized cot θk as roots of a polynomial, it is easy to write down the
generating function of the sequence (1.1) as a logarithmic derivative. Indeed, let

gnpzq “
n´1ÿ

k“0

1

z ´ cot θk

“
χ1
npα; zq

χnpα; zq

“ n
pcotα ` iqpz ´ iqn´1 ´ pcotα ´ iqpz ` iqn´1

pcotα ` iqpz ´ iqn ´ pcotα ´ iqpz ` iqn
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then the ordinary generating function is

Fnpz, αq “
1

z
gn

ˆ
1

z

˙

“ n
pcotα ` iqp1 ´ izqn´1 ´ pcotα ´ iqp1 ` izqn´1

pcotα ` iqp1 ´ izqn ´ pcotα ´ iqp1 ` izqn

“
n

1 ` z2
pcotα ` iqp1 ´ izqnp1 ` izq ´ pcotα ´ iqp1 ` izqnp1 ´ izq

pcotα ` iqp1 ´ izqn ´ pcotα ´ iqp1 ` izqn

“
n

1 ` z2

ˆ
1 ` iz

pcotα ` iqp1 ´ izqn ` pcotα ´ iqp1 ` izqn

pcotα ` iqp1 ´ izqn ´ pcotα ´ iqp1 ` izqn

˙

“
n

1 ` z2
p1 ´ z cotpn arctan z ´ αqq

where in the last step we used identity (2.17). The general formula (4.4) follows by substituting
α “ arccot x and the addition formula for tangent (2.5). �

Remark 4.2. In the cases α “ 0 (α “ π{2, resp.) formula (4.3) reproduces [15, Formula (A7.2)
(resp. (C6.2))]. At a first glance for α “ 0 the sum diverges:

řn´1

k“0
cotm kπ

n
“ ˘8. However [15,

Formula (A7.1)] the sum starts at k “ 1, i.e.,
řn´1

k“1
cotm kπ

n
. Inspection of the partial fraction

expansion of the generating function (4.2) however reveals that the term 1

1´z cot θ0
vanishes as θ

goes to zero and the generating function becomes

Fnpz, 0q “
n´1ÿ

k“1

1

1 ´ z cot θk

and this is indeed the generating function of the sums
řn´1

k“1
cotm kπ

n
. In the case α “ π{2

formula (4.3) reproduces [15, Formula (C6.2)]. Indeed, since cotpα ´ π{2q “ ´ tanα we have

MBn
pzq “ TrppI ´ zBnq´1q “ np1`z tanpn arctan zqq

1`z2
.

4.2. A functional relation. In this section we indicate an algorithm to calculate the co-
efficients pm,m´2kpnq, which is the main contribution of this paper. The following lemma is
a special case of cyclic Boolean convolution [36]; we reproduce the calculation here for the
reader’s convenience.

Lemma 4.3. The generating functions Fnpz, αq and M̃Bpzq satisfy the relation

(4.5) MxJn`Bn
pzq “

nxz d
dz
zM̃Bn

pzq

1 ´ nxzM̃Bn
pzq

` MBn
pzq

Proof. The first terms of the power series are easy to calculate

(4.6) MxJn`Bn
pzq “ n ` xnz `

ÿ

mě2

TrppxJn ` Bnqmqzm
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and for m ě 2 we expand the powers and arrange the resulting words according to the last
letter:

TrppxJn ` Bnqmq “ Tr
´

pxJnqm ` Bm
n

`
ÿ

kě1
p0ě0

p1,p2,...,pkě1

q1,q2,...,qkě1
p0`q1`p1`¨¨¨`qk`pk“m

Bp0
n pxJnqq1Bp1

n pxJnqq2Bp2
n ¨ ¨ ¨ pxJnqqkBpk

n

`
ÿ

kě1
q0ě0

p1,p2,...,pkě1

q1,q2,...,qkě1
q0`p1`q1`¨¨¨`pk`qk“m

pxJnqq0Bp1
n pxJnqq1Bp2

n pxJqq2 ¨ ¨ ¨Bpk
n pxJnqqk

¯

“ TrpBm
n q ` TrppxJnqmq

`
ÿ

kě1
p0ě0

p1,p2,...,pkě1

q1,q2,...,qkě1

p0`q1`p1`¨¨¨`qk`pk“m

pxnqq1`q2`¨¨¨`qk TrpPBp1
n qTrpPBp2

n q ¨ ¨ ¨TrpPBpk´1

n qTrpPBpk`p0
n q

`
ÿ

kě1
q0ě0

p1,p2,...,pkě1

q1,q2,...,qkě1

q0`p1`q1`¨¨¨`pk`qk“m

pxnqq0`q1`¨¨¨`qk TrpPBp1
n qTrpPBp2

n q ¨ ¨ ¨TrpPBpk
n q

Inserting this expansion into (4.6) we obtain

MxJn`Bn
pzq “ n ` nxz `

ÿ

mě2

TrpBm
n qzm `

ÿ

mě2

pnxzqm

`
ÿ

kě1

ˆ
xnz

1 ´ xnz

˙k

pM̃Bn
pzq ´ 1qk´1M̂Bn

pzq

`
1

1 ´ xnz

ÿ

kě1

ˆ
xnz

1 ´ xnz

˙k

pM̃Bn
pzq ´ 1qk

“ TrppI ´ zBnq´1q `
nxz

1 ´ nxz

`
nxz

1 ´ nxz

1

1 ´ nxz
1´nxz

pM̃Bn
pzq ´ 1q

M̂Bn
pzq `

1

1 ´ nxz

˜
1

1 ´ nxz
1´nxz

pM̃Bn
pzq ´ 1q

´ 1

¸

“ MBn
pzq `

nxz

1 ´ nxz
`

nxzM̂Bn
pzq

1 ´ nxzM̃Bn
pzq

`
1

1 ´ nxzM̃Bn
pzq

´
1

1 ´ nxz

“ MBn
pzq `

1 ` nxzM̂Bn
pzq

1 ´ nxzM̃Bn
pzq

´ 1

“ MBn
pzq `

nxzpM̂Bn
pzq ` M̃Bn

pzqq

1 ´ nxzM̃Bn
pzq
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where

M̂Bn
pzq “

ÿ

p0ě0,pě1

TrpPBp0`p
n qzp0`p

“
8ÿ

m“1

ÿ

p0ě0

pě1

p0`p“m

TrpPBm
n qzm

“
8ÿ

m“1

mTrpPBm
n qzm

“ z
d

dz
M̃Bn

pzq

�

Lemma 4.4. For any x the differential equation

(4.7)
nxzg1pzq

1 ´ nxgpzq
` MBn

pzq “ MxJn`Bn
pzq

with initial condition gp0q “ 1 has unique solution gpzq “ zM̃Bn
pzq “ 1

n
tanpn arctan zq.

Proof. Observe that the considered expression can be rewritten to the first order linear equations
on the standard form

g1pzq ` qpzqgpzq “ ppzq.

The method involves construction of an explicit solution to show that the associated integral

equation has unique solution. So if we substitute gpzq “ tanpn arctan zq
n

we see that this function
satisfy equation from Lemma 4.4. �

5. Combinatorial interpretation

In this section we indicate explicit combinatorial interpretations of the coefficients of polynomi-
als (3.2) which express the value of trace of matrices in terms of Dyck paths and rooted binary
trees. We emphasize that these coefficients pm,kpnq are nonzero, whenever m and k have the
same parity.

5.1. Dimension 2. First let us record that for n “ 2 at offset cotα0 “ 1

2
we recover the

well known sequence Lucas numbers (A000032 in the encyclopedia of integer sequences [40]).
Indeed, the characteristic polynomial (2.1) is

χ2pλq “ Imp
1

2
` iqpλ ´ iq2 “ λ2 ´ λ ´ 1

and the roots are the golden ratios φ˘ “ 1˘
?
5

2
with moments

(5.1) Spm, 2, α0q “ Lm “ φm
` ` φm

´

satisfying the recurrence relation

Lm “

$
’&

’%

2 m “ 0

1 m “ 1

Lm´1 ` Lm´2 m ě 2

.
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5.2. Interpretation of TrpJnB
2m
n q in terms of Dyck paths. For the general case we estab-

lish some recurrence relations. An explicit formula will be established in Corollary 6.7 below.

Proposition 5.1. The moments

(5.2) dn,m “ TrpJnB
2m
n q

satisfy the recurrence

dn,0 “ 1 ` dn´1,0 “ n,

d1,m “ δ0,m,

dn,m “ dn´1,m `
m´1ÿ

k“0

dn´1,kdn,m´k´1.

(5.3)

which is reminiscent of the recurrence relations for the Motzkin numbers.

Proof. The function Qnpzq “ tanpn arctan zq
z

is rational by (2.13). Indeed Q1pzq “ 1 and for higher
order the addition theorem for the tangent function (2.5) yields the recurrence

Qnpzq “
1

z
tanparctan z ` pn ´ 1q arctan zq “

z ` tanppn ´ 1q arctan zq

z ´ z2 tanppn ´ 1q arctan zq
“

1 ` Qn´1pzq

1 ´ z2Qn´1pzq

or eqivalently

Qnpzq “ 1 ` Qn´1pzq ` z2Qn´1pzqQnpzq.

From Lemma 4.4 we infer that
ř8

m“0
dn,mz

2m “ Qnpzq and we can readily calculate the required
recurrence for the moments dn,m. �

The continued fraction of the rational function Qnpzq is finite and was computed in [37]:

Qnpzq “
n

1 ´
pn`1qpn´1q

1¨3 z2

1 ´
pn`2qpn´2q

3¨5 z2

1 ´
pn`3qpn´3q

5¨7 z2

. . .

We can thus infer from Flajolet’s theory of continued fractions [25] the following formula for
the moments dn,m.

Theorem 5.2.

(5.4) dn,m “ n
ÿ

πPDm

wpπq

where the sum runs over Dyck paths of length at most 2m with weights ak´1 “ n´k
2k´1

, bk “ n`k
2k`1

,
k “ 1, 2, . . . , n.

Example 5.3. For n “ 3 the generating function is

Q3pzq “
z2 ´ 3

3 z2 ´ 1
“ 3 ` 8 x2 ` 24x4 ` 72x6 ` 216x8 ` 648x10 ` O

`
x11

˘

and indeed for n “ 3 with weights

a0 “
2

1
, a1 “

1

3
, b1 “

4

3
, b2 “

5

5

we have
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d3,1 “ 3 ¨

¨

˝
2

1
¨ 4

3

˛

‚“ 8

d3,2 “ 3 ¨

¨

˚̊
˚̊
˚
˝

2

1
¨ 4

3
¨ 2

1
¨ 4

3

`
2

1
¨ 1

3
¨ 5

5
¨ 4

3

˛

‹‹‹‹‹
‚

“ 3 ¨

ˆ
64

9
`

8

9

˙
“ 24

d3,3 “ 3 ¨

˜

0
`

2

1
¨ 1

3
¨ 5

5
¨ 1

3
¨ 5

5
¨ 4

3

`
2

1
¨ 4

3
¨ 2

1
¨ 1

3
¨ 5

5
¨ 4

3

`
2

1
¨ 1

3
¨ 5

5
¨ 4

3
¨ 2

1
¨ 4

3

`
2

1
¨ 4

3
¨ 2

1
¨ 4

3
¨ 2

1
¨ 4

3

¸

“ 3 ¨

ˆ
0 `

8

27
`

64

27
`

64

27
`

512

27

˙
“ 72

etc.

5.3. Interpretation of TrpJnB
2m
n q in terms of binary trees. Set en,k “ dn,k´1 and dn,´1 “ 1,

then recursion (5.3) can be rewritten more compactly as

en,0 “ 1,

en,1 “ n,

e1,m “ δ0,m´1,

en,m “
mÿ

k“1

en´1,ken,m´k.

which is reminiscent of the Catalan recurrence relations.

Definition 5.4. A rooted binary tree is a rooted tree in which each node has at most two
children, one of which we distinguish as firstborn. We use the convention that the root is not
a child and therefore does not count as a firstborn; our trees are unordered but we take the
convention that firstborns are always drawn on the right. We denote by Tn,m the set of rooted
binary trees with m leaves, such that each leaf has a brother and every path emanating from
the root contains at most n ´ 1 firstborns. We note that the set Tn,m is empty unless m ď n.

For a rooted binary tree τ P Tn,m we denote by Pathspτq the set of maximal rooted paths. For
such a path p P Pathspτq we denote by rppq be the number of firstborn nodes occuring in p and
its weight ωppq “ n ´ rppq which is a number between 1 and n.

Theorem 5.5. Let 1 ď m ď n, then

en,m “
ÿ

πPTn,m

ź

pPPathspπq
ωppq.(5.5)
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3 ˆ 2 2 ˆ 1

Figure 5.1. T3,2 with corresponding weight of paths.

3 ˆ 2 ˆ 1 3 ˆ 2 ˆ 2 2 ˆ 1 ˆ 2 2 ˆ 1 ˆ 1

Figure 5.2. T3,3 with corresponding weight of paths.

Proof. Let us denote the right-hand side of (5.5) by cn,m. If m “ 1 the root is the only node
and does not count as a firstborn, therefore en,1 “ cn,1 “ n. Moreover T2,2 only contains one
tree of weight e2,2 “ c2,2 “ 2. More generally Tn,2 contains pn ´ 1q trees and en,2 “ cn,2 “
npn´ 1q ` pn´ 1qpn´ 2q ` ¨ ¨ ¨` 2ˆ 1. So, it is sufficient to verify that en,m “ cn,m for n,m ě 3.
Notice that any rooted binary tree can be viewed as one or two (non-empty because n,m ě 3)
rooted binary trees grafted onto a common root; see Fig. 5.1 and 5.2. Thus in order to create
all possible binary trees we start with a root vertex, and one child (Case 1) or two children
(Case 2a and 2b) with all possible choices of the subtrees trees as shown in the diagram below.

Tn´1,m Tn,m´k Tn´1,k

Case 1. Assume that the root has only one child v0. Then every path from the root to a leaf
with at most n ´ 1 firstborns consists of the first step and a path from v0 with at most n ´ 2
firstborns. So the weight remains the same and the number of leaves remains m.
Case 2a). Let τ be such a tree and p a path passing through the firstborn child v0. Then we can
consider the latter as root vertex of new binary tree in Tn´1,k with k leaves for k P t1, . . . , m´1u.
Denote by p1 the restriction of the path p to this subtree. Observe that p1 contains at most
n ´ 2 firstborns because v0 already counts as a firstborn and the weights of p and p1 coincide.
Indeed rppq “ rpp1q ` 1 and so ωppq “ n ´ rppq “ n ´ 1 ´ rpp1q “ ωpp1q.
Case 2b). Let now p be a path passing through the other child, that is, p1 is a path in a tree
from Tn,m´k and again the weight does not change.
Finally we have

ÿ

τPTn,m

ź

pPPathspτq
ωppq “

m´1ÿ

k“1

ÿ

τPTn,m´k

ź

pPPathspτq
ωppq

ÿ

τPTn´1,k

ź

pPPathspτq
ωppq `

ÿ

τPTn´1,m

ź

pPPathspτq
ωppq,
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and now we can write

cn,m “
m´1ÿ

k“1

cn´1,kcn,m´k ` cn´1,m

Thus we see that cn,m “ en,m. �

5.4. Interpretation of pm,kpnq for k ě 2. The combinatorial objects that we consider now
are called circular binary forests.

Definition 5.6. Assume that m, k P N have the same parity. For k P t2, . . . , mu a circular
binary forest TE

n,m,k of degree k is a set of k binary trees as above arranged on a circle with a
total number of m leaves, see Figure 5.3 for an example.

Figure 5.3. A circular forest; firstborns are marked with an extra cicle

The weight of a forest F “ pτ1, τ2, . . . , τkq is the product

ωpF q “
ź

τPF
ωpτq.

Proposition 5.7. Assuming that m and k pk ‰ 0q have the same parity, then

pm,kpnq “
ÿ

FPTE
m,n,k

ωpF q.

Proof. From the proof of Theorem (3.1), we see that

pm,kpnq “
ÿ

l0,l1,...,lkě0

l1,...,lk´1,l0`lk evenř
li“m´k

TrpBl0
n JnB

l1
n JnB

l2
n ¨ ¨ ¨JnB

lk
n q

ÿ

l0,l1,...,lkě0

l1,...,lk´1,l0`lk evenř
li“m´k

TrpJnB
l0`lk
n q

ź

1ďiďk´1

TrpJnB
li
n q

This can be visualized in terms of forests, see Figure 5.3. �

5.5. Interpretation of the constant term TrpB2m
n q. The moment generating function of Bn

is

MBn
pzq “

np1 ` z tanpn arctan zqq

1 ` z2
“

n ` nz2Qnpzq

1 ` z2
.
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If we expand the generating function in powers of z, then we obtain

TrpB2m
n q “ ndn,m´1 ´ TrpB2m´2

n q “ ndn,m´1 ´ ndn,m´2 ` ndn,m´3 ` ¨ ¨ ¨ ` ndn,0p´1qm´1 ` np´1qm

“ n

mÿ

i“0

dn,m´1´ip´1qi “ n

mÿ

i“0

en,m´ip´1qi

6. Explicit analytic evaluation of cotangent sums

In this section we study the Taylor series expansions of the generating function (4.3) and obtain
closed formulas in terms of derivative polynomials.

Theorem 6.1. The cotangent sum (1.1) can be expressed as

(6.1) Spm,n, αq “ p´1qm{2n1m even
`

p´iqm

pm ´ 1q!

ÿ

πPPoddpmq
P|π|´1pcotαqpinq|π|µp0̂m, πq

where p´1qnPnpxq are the derivative polynomials for cot (2.21) and µp0̂m, πq is the Möbius
function of the partition lattice.

Proof. We start by expressing the generating function (4.3) in terms of the functions fpzq “
lnp|sinpz ´ αq|q and gpzq “ n arctan z. Indeed observe that

n

1 ` z2
p1 ´ z cotpn arctan z ´ αqq “

n

1 ` z2
´ z

d

dz
fpgpzqq.

and moreover the Leibniz rule of order m implies

dm

dzm

ˆ
z
d

dz
fpgpzqq

˙
“ m

dm

dzm
fpgpzqq ` z

dm`1

dzm`1
fpgpzqq

thus

dm

dzm

ˆ
z
d

dz
fpgpzqq

˙ ˇ̌
ˇ̌
ˇ
z“0

“ m
dm

dzm
fpgpzqq

ˇ̌
ˇ̌
ˇ
z“0

.

Now we can apply Faà di Bruno’s formula (2.32) for the m-th derivative of a composed function
and obtain
dm

dzm
fpgpzqq “

ÿ

πPPpmq
f p|π|qpgpzqq

ź

BPπ
gp|B|qpzq

“
ÿ

πPPpmq
cotp|π|´1qpgpzq ´ αq

ź

BPπ

nip´1q|B|p|B| ´ 1q!

2
ppz ´ iq´|B| ´ pz ` iq´|B|q

“
ÿ

πPPpmq
p´1q|π|´1P|π|´1pcotpgpzq ´ αqq

ˆ
´
ni

2

˙|π|

µp0̂m, πq
ź

BPπ
ppz ´ iq´|B| ´ pz ` iq´|B|q

where µp0̂m, πq “
ś

BPπp´1q|B|´1p|B| ´ 1q! is the Möbius function of the partition lattice [42,
Example 3.10.4]. Now at z “ 0 we have gp0q “ 0 and

p´iq´k ´ i´k “ ik ´ p´iqk “

#
0 k even

2ik k odd;

moreover if π is odd then |π| ” m mod 2 and we obtain

(6.2)
dm

dzm
fpgpzqq

∣

∣

∣

∣

z“0

“ ´p´iqm
ÿ

πPPoddpmq
P|π|´1pcotαq pniq|π| µp0̂m, πq

finally the Taylor coefficients of n
1`z2

contribute nim for even m and the claim follows.
�



THE TRACE METHOD FOR COTANGENT SUMS 19

Corollary 6.2. The cotangent sums (1.1) evaluate to

(6.3) Spm,n, αq “ p´1qm{2n1m even
`

1

pm ´ 1q!

mÿ

k“1

nkApkq
m Pk´1pcotαq

where A
pkq
m are the arctangent numbers (2.26); note that these are alternating (2.28).

Proof. We extract the essential part of the formula (6.1) and arrive at the expression

ÿ

πPPoddpmq
P|π|´1pcotαqpniq|π|µp0̂m, πq “

mÿ

k“1

cm,kpniqkPk´1pcotαq

where

cm,k “
ÿ

πPPoddpmq
|π|“k

µp0̂m, πq

This sum can be evaluated using the combinatorial convolution (2.30) by setting

fk “

#
pk ´ 1q! for odd k

0 else

and gk “ tk and the generating functions are

Ff pzq “
ÿ

k odd

pk ´ 1q!

k!
zk “

1

2
plogp1 ` zq ´ logp1 ´ zqq “

1

2
log

1 ` z

1 ´ z
“ atanh z

and

Fgpzq “
8ÿ

k“1

tk

k!
zk “ etz ´ 1;

hence by (2.31)

FgpFfpzqq “ et atanh z ´ 1

and the coefficient of tk yields the desired coefficient cm,k “ Ã
pkq
m and from (2.28) we gather the

correct sign. �

Remark 6.3. Comtet [16, p. 260] asserts that the arctangent numbers are inverse to the
derivative polynomials. This means that the standard monomials can be expanded as a linear
combination of tangent polynomials as follows [19, Formula (2.14)]:

(6.4) xm “
1

pm ´ 1q!

mÿ

k“1

Apkq
m Pk´1pxq ` p´1qm{2

1m even

Let us explain now that the similarity of this formula with (6.3) is not a coincidence. Indeed
using the property that the derivative polynomials linearize the cotangent power and the simple
formula Sp1, n, αq “ TrCn “ n cotα allow for the following alternative straightforward proof:
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nÿ

s“1

cotm
α ` sπ

n
“ np´1qm{2

1m even `
1

pm ´ 1q!

nÿ

s“1

mÿ

k“1

Apkq
m Pk´1pcot

α ` sπ

n
q

“ np´1qm{2
1m even `

1

pm ´ 1q!

nÿ

s“1

mÿ

k“1

Apkq
m nk´1p´1qk´1

dk´1

dαk´1
cot

α ` sπ

n

“ np´1qm{2
1m even `

1

pm ´ 1q!

mÿ

k“1

Apkq
m nk´1p´1qk´1

dk´1

dαk´1

nÿ

s“1

cot
α ` sπ

n

“ np´1qm{2
1m even `

1

pm ´ 1q!

mÿ

k“1

Apkq
m nk´1p´1qk´1

dk´1

dαk´1
n cotα

“ np´1qm{2
1m even `

1

pm ´ 1q!

mÿ

k“1

Apkq
m nkPk´1pcotαq

Let us evaluate formula (6.3) at certain offsets. We start with the elementary evaluations at
α “ π{2 and α “ π{4. The first sum vanishes for odd m and yields the free cumulants of the
generalized tetilla law, see [24, Proposition 4.10]. The second sum provides an explicit formula
for the sums considered by Byrne and Smith [11].

Corollary 6.4.

Sp2m,n, π{2q “ p´1qmn `
1

p2m ´ 1q!

mÿ

k“1

n2kA
p2kq
2m T2k´1(6.5)

Spm,n, π{4q “ p´1qm{2n1m even
`

1

2pm ´ 1q!

mÿ

k“1

p2nqkApkq
m Ek´1(6.6)

Proof. The evaluation of the generating function (2.24) yields

P p0, zq “ tan z P p1, zq “
1 ` tan z

1 ´ tan z
“ tanp2zq ` secp2zq

and we conclude that Pnp0q “ Tn and Pnp1q “ 2nEn “ EB
n which are also known as Euler

numbers of type B [35]. �

Finally let us give an alternative and somewhat simpler expression for the summation formula
of Berndt and Yeap [8, Corollary 2.2]

(6.7)
n´1ÿ

k“1

cot2m
kπ

n
“ p´1qmn ´ p´1qm22m

ÿ

j0,j1,j2,...,j2mě0

j0`j1`j2`¨¨¨`j2m“m

n2j0

2mź

p“0

B2jp

p2jpq!
..

Corollary 6.5. The sum S0p2m,nq can be evaluated as follows

(6.8)
n´1ÿ

k“1

cot2m
kπ

n
“ p´1qmpn ´ 1q ´

1

p2m ´ 1q!

mÿ

k“1

p´1qkA
p2kq
2m

4kB2k

2k
pn2k ´ 1q.

Proof. The sum S0p2m,nq can be obtained from the general formula Sp2m,n, αq after removing
the singular term at k “ 0 and then taking the limit α Ñ 0. Let

S0p2m,n, αq “
n´1ÿ

k“1

cot2m
α ` kπ

n
“ Sp2m,n, αq ´ cot2m

α

n
,

then S0p2m,nq “ limαÑ0 S0p2m,n, αq. First we linearize the singular term according to formula
(6.4) and combine it with the summation formula (6.3) to obtain

S0p2m,n, αq “ p´1qmpn ´ 1q `
1

p2m ´ 1q!

2mÿ

k“1

Apkq
m pnk Pk´1pcotαq ´ Pk´1pcotpα{nqq.
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Next we replace the polynomial evaluation by the derivative according to (2.21) and we see
that

nk`1Pkpcotαq ´ Pkpcotpα{nqq “ p´1qkpnk`1 cotpkqpαq ´ cotpkqpα{nqq

At this point it is convenient to recall the series expansion of cotangent

cot z “
1

z
`

8ÿ

p“1

p´1qp
22pB2p

p2pq!
z2p´1

to observe that the derivatives of the singular term 1{z cancel and we can express the difference
in terms of the analytic part

γpzq “ cot z ´
1

z
“

8ÿ

p“1

p´1qp
22pB2p

p2pq!
z2p´1

and find

lim
αÑ0

nk`1Pkpcotαq ´ Pkpcotpα{nqq “ p´1qk lim
αÑ0

nk`1γpkqpαq ´ γpkqpα{nqq

“ p´1qkpnk`1 ´ 1qγpkqp0q

“

#
0 k even

´p´1qpk`1q{2pnk`1 ´ 1q2k`1Bk`1

k`1
k odd

and finally

lim
αÑ0

S0p2m,n, αq “ p´1qmpn ´ 1q ´
1

p2m ´ 1q!

ÿ

k even

p´1qk{2Apkq
m pnk ´ 1q

2kBk

k
.

�

Remark 6.6. The generating function of the Euler zigzag numbers (2.22) is related to the
generating function (2.24)

tanpzq ` secpzq “
1 ` tanpz{2q

1 ´ tanpz{2q
“

8ÿ

n“0

Pnp1q
zn

2nn!

and comparing with the explicit formula for the derivative polynomials (2.20) we conclude the
following identity:

En “ ´p´iqn
nÿ

k“0

k!

2k

"
n

k

*
pi ´ 1qk`1.

See [18] for other evaluations of the derivative polynomials at rational angles.

Corollary 6.7. Extracting the linear coefficient of (6.3) we can obtain an explicit expression
for the moments (5.2)

(6.9) TrpJnB
2m
n q “

1

p2mq!

˜

A
p1q
m`1n `

2m`1ÿ

k“1

T
p2q
k´1

A
pkq
2m`1n

k

¸

where T
pkq
n are the higher tangent numbers (2.23).

7. Concluding Remarks

In this section we connect the algebraic and analytic approach and give some final remarks.
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7.1. Another explicit formula for α “ π
2
. From [28, Problem 76 on P. 317, Answer on P.

559], we infer the identity (cf. [9, (3.29)])

ωn

`
´1{2

˘
“

mÿ

k“1

p´1qk
k!

2k

!m

k

)
“

"
2

m`1
p1 ´ 2m`1qBm`1 if m is odd

0 if m is even.

If we plug in α “ π
2
into Equation (6.1) we will take into account the equation (2.20) then for

m even (for m odd the sum is zero) our sums can be written in terms of Bernoulli numbers
(which frequently appear in trigonometric sums, see [17, 8, 2, 22, 29])

Spm,n, π{2q “ p´1qm{2n `
ÿ

πPPoddpmq
|π| is even

p´1qm{2π!p2nq|π|

pm ´ 1q!|π|
p1 ´ 2|π|qB|π|.

7.2. Asymptotic analysis and derivative. In order to investigate asymptotic properties
formula from Theorem 6.1 it is sufficient to consider the singleton partition and we obtain

lim
nÑ8

1

nm

n´1ÿ

k“0

cotm
α ` kπ

n
“

"
1

pm´1q!Pm´1pcotαq if m ą 1

cotα if m “ 1.

In particular from equation (3.1) we infer the asymptotic expression

1

pm ´ 1q!
Pm´1pzq “ lim

nÑ8
Tr

”´
z

”
1{n 1{n
1{n 1{n

ı

n
`

”
0 i{n

´i{n 0

ı

n

¯mı
for m ą 1.

Similarly we prove that the derivatives of tangent and cotangent can be approximated by simple
matrices.
Finally we examine the limit formula for α “ π

2
. From Section 7.1 we conclude

lim
nÑ8

1

nm

n´1ÿ

k“0

cotm
π
2

` kπ

n
“

" p´1qm{2`12mp2m´1qBm

m!
if m is even

0 if m is odd.

Indeed inspecting formula (6.5) immediately yields the asymptotics

n´1ÿ

k“0

cot2m
ˆ

π

2n
`

kπ

n

˙
“ p´1qm`1A

p2mq
2m p22m ´ 1qn2m 22mB2m

p2mq!
` Opn2m´2q

and since A
p2mq
2m “ 1 this yields the desired limit.

Euler’s identity ζp2kq “ p´1qk`1p2πq2kB2k

2p2kq! and above facts leads us to a new approximation of the

values of the Riemann zeta function at even integer arguments, namely

ζp2kq “ lim
nÑ8

π2k Tr
`

r 0 i
´i 0 s

2k

n

˘

2n2kp22k ´ 1q
for k P N.

Approximation of the Riemann zeta function for even values by powers of cotangent is well
studied, see [47, 3, 21].
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