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Abstract

In 1965, Paul Erdős asked about the largest family Y of k-sets in {1, . . . , n} such
that Y does not contain s + 1 pairwise disjoint sets. This problem is commonly
known as the Erdős Matching Conjecture. We investigate the q-analog of this
question, that is we want to determine the size of a largest family Y of k-spaces in
F
n
q such that Y does not contain s+ 1 pairwise disjoint k-spaces.

Our main result is, slightly simplified, that if 16s ≤ min{q
n−k−1

4 , q
n

2
−k+1},

then Y is either small or a union of intersecting families. Thus showing the Erdős
Matching Conjecture for this range. The proof uses a method due to Metsch. We
also discuss constructions. In particular, we show that for larger s, there are large
examples which are close in size to a union of intersecting families, but structurally
different.

As an application, we discuss the close relationship between the Erdős Matching
Conjecture for vector spaces and Cameron-Liebler line classes (and their general-
ization to k-spaces), a popular topic in finite geometry for the last 30 years. More
specifically, we propose the Erdős Matching Conjecture (for vector spaces) as an
interesting variation of the classical research on Cameron-Liebler line classes.

1 Introduction

In 1961, Erdős, Ko, and Rado famously showed that an intersecting family of k-sets in
{1, . . . , n} has at most size

(

n−1
k−1

)

and, if n > 2k, consists of all k-sets which contain
a fixed element in the case of equality [10]. In other words, intersecting families are
families of k-sets with no 2 of its elements pairwise disjoint and we know the largest
such families. If we replace 2 by a parameter s, then we obtain the setting of the Erdős
Matching Conjecture from 1965 [8]. Let us say that a family without s + 1 pairwise
disjoint elements is an s-EM-family. There are two natural choices for s-EM-families of
k-sets in {1, . . . , n}. The first one, let us call it Y1, is the family of k-sets which intersect
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{1, . . . , s} non-trivially. The family Y1 has size
(

n
k

)

−
(

n−s
k

)

. The second one, let us call
it Y2, is the family of k-sets which are contained in {1, . . . , k(s + 1)− 1}. The family Y2

has size
(

k(s+1)−1
k

)

. Erdős states in [8] that the following “is not impossible”:

Conjecture 1 (The Erdős Matching Conjecture). Let Y be a largest s-EM-family of
k-sets of {1, . . . , n}. Then |Y | = max{|Y1|, |Y2|}.

The conjecture was proven for k = 2 by Erdős and Gallai [9] and for k = 3 by Frankl
[14]. In particular, Frankl showed the conjecture for n ≥ (2s + 1)k − s [13] and for
n ≤ (s+1)(k+ ǫ) where ǫ depends on k [15]. Furthermore, Frankl and Kupavskii showed
the conjecture for n ≥ 5

3
sk− 2

3
s for sufficiently large s. A more complete overview on the

history of the problem can be found in [16].
For our purposes, let us rephrase the Erdős Matching Conjecture in a way that makes

it more generic and easily transferable between lattices.

Conjecture 2 (The Erdős Matching Conjecture (rephrased)). Let Y be a largest s-EM-
family of k-sets of {1, . . . , n}. Then Y is the union of s intersecting families or its
complement.

Note that one can easily deduce Conjecture 1 from Conjecture 2 due to the fact
that the structure of large intersecting families of k-sets is well-known. In this paper we
consider s-EM-families of k-spaces in F

n
q . The natural conjecture here is as follows.

Conjecture 3. Let Y be a largest s-EM-family of k-space of Fn
q . Then Y is the union of

s intersecting families or its complement.

One could also write down a more explicit description of the largest examples as in
Conjecture 1, but this is far more tedious than in the set case due to the rigid nature of
vector spaces.

We consider the setting in vector spaces as particularly interesting: In the set case,
we have that if k divides n and Z is a family of k-sets which partitions {1, . . . , n}, then Z

intersects an s-EM-family Y in at most s elements. It is not hard to see that this implies

|Y | ≤ s

(

n− 1

k − 1

)

.

One can show that equality in this bound only holds when Y is, in the language of [21],
a equitable bipartition of the Johnson graph or, in the language of [12], a Boolean degree
1 function of the Johnson graph. These do not exist except for s = 0, 1, n

k
− 1, n

k
, so the

bound above can be instantaneously improved by one.
Write

[

n
k

]

q
for the Gaussian (or q-binomial) coefficient, that is

[

n
k

]

q
is the number of

k-spaces in F
n
q . In the vector space analog, if k divides n and Z is a family of k-spaces

which partitions F
n
q \ {0}, so a spread of Fn

q , then the same behavior occurs. In this
setting, Boolean degree 1 functions are known as Cameron-Liebler classes of k-spaces
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[3, 12]. Here we have the analogous result, that is a s-EM-family Y of k-spaces intersects
Z in at most s elements, from which it follows that

|Y | ≤ s

[

n− 1

k − 1

]

q

.

It is easy to find trivial examples for Cameron-Liebler classes which meet this bound for
small s, but the general picture is not clear. Throughout the paper, we use projective
notation and call 1-spaces points, 2-spaces lines, 3-spaces planes, and (n − 1)-spaces
hyperplanes. The trivial examples, up to taking complements and besides the empty
set, are all k-spaces through a fixed point, all k in a fixed hyperplane, and the disjoint
union of the first two examples. Non-trivial Cameron-Liebler classes appear to exist for
(n, k) = (4, 2) and any q > 2 [5, 6, 7, 11, 19, 31], but not for n ≥ 2k when n > 4. The
latter is at least true for q ∈ {2, 3, 4, 5} [12]. The fact that non-trivial example exist
for (n, k) = (4, 2) does not imply that the Erdős Matching Conjecture is false as these
example might have s + 1 pairwise disjoint elements which do not extend to a spread
of Fn

q . Indeed, all known non-trivial examples investigated by the author are not s-EM
families. Nonetheless, it makes one doubt that Conjecture 3 is true.

It is known that there are no non-trivial small examples for Boolean degree 1 functions.
Metsch established a proof technique in [28] which essentially shows that small Boolean
degree 1 functions are s-EM-families. He used it to show the following.

Theorem 4 (Metsch [28, Theorem 1.4]). All Cameron-Liebler classes Y of k-spaces in
F
2k
q with 5 · |Y | ≤ q

[

n−1
k−1

]

are trivial.

Note that [28] states that q has to be sufficiently large, but this condition can be
dropped [25]. Blokhuis, De Boeck and D’haeseleer generalized this to k-spaces in F

n
q [3,

Theorem 4.9], but the proof of their result (and therefore the stated result) contains a
minor mistake which we amend with Theorem 7.

Our main result is as follows. Throughout the document ℓ is the smallest integer such

that s ≤ qℓ−1
q−1

.

Theorem 5. Let Y be a largest s-EM family of k-spaces in F
n
q . If 16s ≤ min{ q

n−k−ℓ+2

3 ,

q
n

2
−k+1}, then Y is the union of s intersecting families.

Note that we did not optimize the constant 16. Indeed, 16 can be certainly replaced
by a constant cq which is arbitrarily close to 1 for q sufficiently large. Besides this, the
argument is optimized to the best knowledge of the author. As s ≥ qℓ−1, Theorem 5 is
satisfied if 16s ≤ min{q

n−k−1

4 , q
n

2
−k+1} as stated in the abstract. For n ≥ 3k − 4, this

simplifies further to
Cameron-Liebler classes are completely classified for q ∈ {2, 3, 4, 5} [7, 12, 18, 20],

while in general only some limited characterizations are known. For the special case of
(n, k) = (4, 2) Gavrilyuk and Metsch [20], and Metsch [27] showed highly non-trivial
existence conditions. The latter is as follows.
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Theorem 6 (Metsch [27]). Let Y be a Cameron-Liebler class of lines in F
3
q of size

s(q2+ q+1). If s ≤ Cq4/3(q2+ q+1) for some universal constant C, then Y is the union
of s intersecting families.

From Theorem 5 we deduce the following.

Theorem 7. Let Y be a Cameron-Liebler class of k-spaces in F
n
q of size s

[

n−1
k−1

]

. If

16s ≤ min{q
n−k−ℓ+2

3 , q
n−2k−r+1

3 }, where n = mk − r with 0 ≤ r < k, then Y is the union
of s intersecting families.

Our original intend was to improve a result in [3] for certain choices of parameters,
but as we discovered a mistake in the argument in [3], this is the only such bound at the
time of writing.1

2 Preliminaries

2.1 Gaussian Coefficients

For any real number a and q > 0, we define [a]q := limr→q
ra−1
r−1

and, for b a non-negative
integer, we define the Gaussian coefficient by

[

a

b

]

q

=
b
∏

i=1

[a− i]q
[b− i]q

.

We write [a] instead of [a]q and
[

a
b

]

instead of
[

a
b

]

q
as q is usually fixed. Notice that

[

n
k

]

corresponds to the number of k-spaces in F
n
q . We have by [24, Lemma 2.1] (alternatively,

[26, Lemma 34]):

Lemma 8. Let a ≥ b ≥ 0 and q ≥ 2. Then

qb(a−b) ≤

[

a

b

]

≤ (1 + 5q−1)qb(a−b) ≤ 4qb(a−b)

and, if q ≥ 4,

qb(a−b) ≤

[

a

b

]

≤ (1 + 2q−1)qb(a−b) ≤ 2qb(a−b).

Let ρ = 1 + 5q−1 for q ∈ {2, 3} and ρ = 1 + 2q−1 otherwise. We will use that
[

a
b

]

≤ ρqb(a−b) ≤ 4qb(a−b) throughout the document. For [a] we use the better bound of
[a] ≤ q

q−1
qq−1 ≤ 2qa−1.

The Gaussian coefficients satisfies the following generalization of Pascal’s identity:
[

a

b

]

= qb
[

a− 1

b

]

+

[

a− 1

b− 1

]

= qa−b

[

a− 1

b− 1

]

+

[

a− 1

b

]

. (1)

This enables us to make the following useful observation.

1Our bound is Cs ≤ q
n

2
−k+1 for n large enough while the alleged bound in [3] is Cs ≤ q

n

2
−k+ 1

2 and
only holds for n ≥ 3k. We consider the behavior for n close to 2k as the most interesting.
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Lemma 9. Let q ≥ 2, a, x be real numbers with a ≥ x > 1, and b an integer with
a ≥ b ≥ 2. Then

[

a

b

]

− qbx
[

a− x

b

]

≤ ρ(1 + 1
q−1

)qx+(b−1)(a−b)−1

≤ (1 + 7q−1)qx+(b−1)(a−b)−1.

Proof. Equation (1) together with Lemma 8 implies that

[

a

b

]

= qb
[

a− 1

b

]

+

[

a− 1

b− 1

]

≤ qb
[

a− 1

b

]

+ ρq(b−1)(a−b)

for some constant ρ. If we repeat this x times, then we obtain (we bound the geometric
series by q

q−1
)

[

a

b

]

≤ qbx
[

a− x

b

]

+ ρ(1 +
q

q − 1
· q−1)qx+(b−1)(a−b)−1.

The assertion follows.

We use this bound mostly for x = b and x = b + 1, so let use restate the bound for
these particular cases:

[

a

b

]

− qb
2

[

a− b

b

]

≤ (1 + 7q−1)q(b−1)(a−b+1).

and

[

a

b

]

− qb
2+b

[

a− b− 1

b

]

≤ (1 + 7q−1)q1+(b−1)(a−b+1).

Remark 10. The first coefficients of
[

a
b

]

seen as a polynomial in q are the possible ways
of partitioning b− 1, so sequence A000041 in OEIS. This can be seen in a similar way.

2.2 Geometry

We rely on the existing results on intersecting families and partial spreads of k-spaces in
F
n
q . If Y is the family of all k-spaces containing a fixed point, then we call Y a dictator.

If Y is the family of all k-spaces contained in a fixed hyperplane, then we call Y a dual
dictator.

Extending work by Hsieh [23] and Frankl and Wilson [17], Newman showed the fol-
lowing [29]:

Theorem 11. If n ≥ 2k, then the size of an intersecting family Y of k-spaces in F
n
q is

at most
[

n−1
k−1

]

. Equality holds in one of the following two cases:

(i) the family Y is a dictator,

5



(ii) we have n = 2k and the family Y is a dual dictator.

We will use the following corollary later on.

Lemma 12. Let Y be a dictator, or let Y be a dual dictator with n = 2k. A k-space not
in Y meets at most [k]

[

n−2
k−2

]

elements of Y .

The following was shown for large q by Blokhuis et al. [2] and for all q by the author
[25].

Theorem 13. Let n ≥ 2k and Y is an intersecting family of k-spaces in F
n
q with |Y | >

3[k]
[

n−2
k−2

]

. Then Y is contained in a (uniquely determined) dictator or a dual dictator.

A partial spread is a set of pairwise disjoint k-spaces. Beutelspacher showed the
following [1].

Theorem 14. Let n = mk + r with 0 ≤ r < k. Then there exists a partial spread of
k-spaces of Fn

q consisting of size

qk+r[n− k − r]

[k] + 1
.

Let

z(n, k, q) :=
qk+r[n− k − r]

[k]
+ 1.

When n, k, q are clear from the context, we just write z. In particular, s ≤ z. We denote
a partial spread of size z as a z-spread.

We will also need the well-known fact that a k-space is disjoint to

qkℓ
[

n− k

ℓ

]

(2)

ℓ-spaces of Fn
q [22, Theorem 3.3]. It follows that if we fix two disjoint k-spaces, then at

least

qk
2

[

n− k

k

]

− [k]

[

n− 1

k − 1

]

k-spaces are disjoint to both of them.
Let ni be the number of z-spreads through i fixed, pairwise disjoint k-spaces. An easy

double counting argument show (e.g. see [3, 30]) that

n1

n2
=

qk
2
[

n−k
k

]

z − 1
=

qk
2

[k]

qk+r[n− k − r]

[

n− k

k

]

,

n2

n3

=
qk

2
[

n−k
k

]

− [k]
[

n−1
k−1

]

z − 2
.

6



Lemma 15. Let n ≥ 2k ≥ 4. The number of (k − 1)-spaces in F
n−1
q which are disjoint

to two fixed k-spaces is at most

qk
2−k

[

n− k − 1

k − 1

]

−
1

4
q(k−2)(n−k+1).

Proof. Without loss of generality we assume that the two fixed k-spaces are disjoint.
Let A be one of the fixed k-spaces. For a point p ⊆ A the number of (k − 1)-spaces B

through p with A∩B = p is, by Equation (2), qk
2−k

[

n−k−1
k−2

]

. The number of (k−1)-spaces

which meet both fixed k-spaces in a point is at most [k]2
[

n−3
k−3

]

. Hence, the number of
(k − 1)-spaces disjoint to both fixed k-spaces is at most

[

n− 1

k − 1

]

− 2[k]q(k−1)(k−2)

[

n− k − 1

k − 2

]

+ [k]2
[

n− 3

k − 3

]

.

By Lemma 9, with q ≥ 7, the first term in the sum is at most

qk
2−k

[

n− k − 1

k − 2

]

+
3

2
q1+(k−2)(n−k+1).

Using our bounds on the Gaussian coefficients (see Lemma 8 and the following) with
q ≥ 7, the previous term simplifies to

qk
2−k

[

n− k − 1

k − 2

]

+
3

2
q1+(k−2)(n−k+1) − 2q1+(k−2)(n−k+1) +

7

4
q(k−3)(n−k+1)+k+1

≤ qk
2−k

[

n− k − 1

k − 2

]

−
1

4
q(k−2)(n−k+1).

In the last step we use that n ≥ 2k and q ≥ 7.

3 The General Case

Let Y be an (n, k, q, s)-EM-family. Choose ℓ such that s ≤ [ℓ]. We assume that Y has
size at least

y := s

([

n− 1

k − 1

]

− [ℓ− 1]

[

n− 2

k − 2

])

.

If we take s points in an ℓ-space and let Y be the family of k-spaces which contain at
least one of these points, then it is easy to see that |Y | ≥ y.

Assumption: From now on we assume that 16s ≤ min{ q
n−k−ℓ+2

3 , q
n

2
−k+1} till the end

of the section. Recall that the first interesting case is s = 3. Hence, we assume that that
n ≥ 2k + 5 if q = 2, n ≥ 2k + 3 if q ≤ 3, n ≥ 2k + 2 if q ≤ 5, and n ≥ 2k + 1 if q ≤ 49 as
the theorem does not say anything non-trivial for the excluded cases.
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Lemma 16. Let Z be a z-spread. Then

E(|Y ∩ Z|) > s− 3s
[k − 1][ℓ− 1]

[n− 1]
.

Proof. Note that

[

n
k

]

|Z|
=

[n]

[k]

[

n− 1

k − 1

]

·
[k]

qk+r[n− k − r]

=
[n]

qk+r[n− k − r]

[

n− 1

k − 1

]

≤ (1 + 2qk+r−n)

[

n− 1

k − 1

]

.

The average size of the intersection is

|Y | · |Z|
[

n
k

] ≥
y

(1 + 2qk+r−n)
[

n−1
k−1

]

≥ s(1− 2qk+r−n)

(

1−
[k − 1][ℓ− 1]

[n− 1]

)

≥ s− 2sqk+r−n − s
[k − 1][ℓ− 1]

[n− 1]
.

From here ℓ ≤ n
2
− k + 2 implies the claim.

For a k-space S, we let wS denote E(|Y ∩Z| : S ∈ Z) for all z-spreads Z with contain
S.

Corollary 17. There exists a z-spread Z such all elements S ∈ Y ∩ Z satisfy wS >

s− 3s2 [k−1][ℓ−1]
[n−1]

Proof. By averaging and Lemma 16, we find a z-spread Z with
∑

S∈Y ∩Z wS ≥ s(s −

3s [k−1][ℓ−1]
[n−1]

). We have wS ≤ s. The worst case is that s − 1 elements S ∈ Y ∩ Z have
wS = s. Then the remaining element T satisfies

wT ≥
∑

S∈Y ∩Z

wS − (s− 1)s = s− 3s2
[k − 1][ℓ− 1]

[n− 1]
.

This shows the claim.

Let Y ′ the set of elements S ∈ Y such that E(|Y ∩Z|) ≥ s−3s2 [k−1][ℓ−1]
[n−1]

for all partial
spreads Z of size z with S ∈ Z.

Lemma 18. (i) An element S ∈ Y meets at least

[

n− 1

k − 1

]

(

1− 4q2ℓ+k−n−3 − 2(s− 1)qk+r−n
)

elements of Y non-trivially.

8



(ii) For S, T ∈ Y ′, there are at most

2q(k−2)(n−k+1)+1 + 7sq(k−2)(n−k+1) + 200s2q(k−2)(n−k)+ℓ−2

elements of Y which meet S and T non-trivially.

Proof. By double counting (Z,R), where Z is a partial z-spread with S ∈ Z and R ∈ Y

with R is disjoint to S, we see that R is disjoint to at most (wS − 1)n1

n2
elements of Y .

Hence, S meets |Y | − (wS − 1)n1

n2
elements of Y non-trivially.

Similarly, double counting (Z,R), where Z is a partial spread of size z with S, T ∈ Z

and R ∈ Y with R is disjoint to S and T , shows that S and T are disjoint to at most
(s− 2)n2

n3
elements of Y . Hence, S and T meet at most

A := |Y | − (wS + wT − 2)
n1

n2

+ (s− 2)
n2

n3

elements of Y simultaneously non-trivially.
What remains are some tedious calculations. In the case of (i), where we ask for an

upper bound, we use wS ≤ s. Then

|Y | − (wS − 1)
n1

n2
≥ y − (s− 1)

qk
2
[

n−k
k

]

z − 1

= y − (s− 1)qk
2 [n− k]

[n− k − r]qk+r

[

n− k − 1

k − 1

]

≥ y − (s− 1)qk
2−k(1 + 2qk+r−n)

[

n− k − 1

k − 1

]

≥

[

n− 1

k − 1

](

1−
[ℓ][ℓ− 1][k − 1]

[n− 1]
− 2(s− 1)qk+r−n

)

≥

[

n− 1

k − 1

]

(

1− 4q2ℓ+k−n−3 − 2(s− 1)qk+r−n
)

.

Set δ = 3s2 [k−1][ℓ−1]
[n−1]

. For (ii), we use that wS, wT > s− δ For (ii) we have that

A = y − 2(s− 1− δ)
qk

2
[

n−k
k

]

z − 1
+ (s− 2)

(

qk
2
[

n−k
k

]

− [k]
[

n−1
k−1

]

)

z − 2

≥ y − s
qk

2
[

n−k
k

]

z − 1
− (s− 2)

[k]
[

n−1
k−1

]

z − 2
+ 2δ

qk
2
[

n−k
k

]

z − 1

≥ y − sqk
2−k

[

n− k − 1

k − 1

]

− (s− 2)q(k−2)(n−k+1)+1 + 2δqk
2

[

n−k
k

]

z − 1
.

Now we apply Lemma 9 together with y ≤ s
[

n−1
k−1

]

to obtain that

A ≤ 2q(k−2)(n−k+1)+1 + 7sq(k−2)(n−k+1) + 100s2q(k−2)(n−k)+ℓ−2.

This shows the assertion.
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Proof of Theorem 5. First we show that Y contains s intersecting families E1, . . . , Es such
that Y \

⋃s
i=1 Ei is small. From this we then conclude that Y \

⋃s
i=1 Ei is actually empty.

By Corollary 17, there exists a z-spread Z such that |Y ′∩Z| = s. Write {S1, . . . , Ss} =
Y ′ ∩Z. Let Ei denote the set of elements of Y which meet Si trivially and are disjoint to
any Sj with i 6= j. By Lemma 18,

|Ei| ≥

[

n− 1

k − 1

]

(

1− 4q2ℓ+k−n−3 − 2(s− 1)qk+r−n
)

− (s− 1)
(

2q(k−2)(n−k+1)+1 + 7sq(k−2)(n−k+1) + 100s2q(k−2)(n−k)+ℓ−2
)

.

In the following, we will bound the individual terms of the sum.
Recall that [ℓ− 1] ≤ s. If q ≤ 3, then ℓ ≤ n

2
− k. Hence, as n ≥ 2k + 3 ≥ 7,

4q2ℓ+k−n−3 ≤ 4q−k−3 ≤
1

8
.

If 4 ≤ q < 16, then ℓ ≤ n
2
− k + 1. Hence,

4q2ℓ+k−n−3 ≤ 4q−k−1 ≤
1

8
.

If q ≥ 16, then ℓ ≤ n
2
− k + 2. Hence,

4q2ℓ+k−n−3 ≤ 4q−k+1 ≤
1

8
.

As 16s ≤ q
n

2
−k+1, we have

2(s− 1)qk+r−n ≤
1

8
q−

n

2
+r ≤

1

8
q−1 ≤

1

16
.

We conclude that
[

n− 1

k − 1

]

(

1− 4q2ℓ+k−n−3 − 2(s− 1)qk+r−n
)

≥
13

16

[

n− 1

k − 1

]

.

As 16s ≤ q
n

2
−k+1, we have that

2(s− 1)q(k−2)(n−k+1)+1 ≤
1

8
q(k−2)(n−k+1)+n

2
−k+2

≤
1

8
q(k−1)(n−k)−n

2
+k

≤
1

8
(1 + 5q−1)q−

n

2
+k

[

n− 1

k − 1

]

≤
3

16

[

n− 1

k − 1

]

.

In the last step we use that n
2
− k ≥ 3 for q ≤ 3, n

2
− k ≥ 2 for q ≤ 5, n

2
− k ≥ 1 for

q ≤ 49.
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As 16s ≤ q
n

2
−k+1, we have

7s(s− 1)q(k−2)(n−k+1) ≤
3

4
·
1

16
q(k−2)(n−k+1)+n−2k+2

=
3

64
q(k−1)(n−k) ≤

3

16

[

n− 1

k − 1

]

.

As 16s ≤ q
n−k−ℓ+2

3 , we have

100(s− 1)s2q(k−2)(n−k)+ℓ−2 ≤
25

1024
q(k−1)(n−k) ≤

1

8

[

n− 1

k − 1

]

.

Hence,

|Ei| ≥
5

16

[

n− 1

k − 1

]

> 3[k]

[

n− 2

k − 2

]

for n ≥ 2k + 5, q ≥ 3 and n ≥ 2k + 3, q ≥ 4 and n ≥ 2k + 1, and q ≥ 49 and n ≥ 2k.
Hence, by Theorem 13, Ei lies in a unique dictator or dual dictator E ′

i.
We finish the proof by contradiction. Suppose that there exists a T ∈ Y \

⋃s
i=1 E

′
i.

By Theorem 13, we do know that that at most [k]
[

n−2
k−2

]

elements of Ei meet T . First we

consider the case that n > 2k. Then, by Theorem 13, |Ei ∩ Ej| ≤
[

n−2
k−2

]

for i 6= j. Hence,

as 16s ≤ q
n

2
−k+1, we have that

|Ei| − s

[

n− 2

k − 2

]

=
5

16

[

n− 1

k − 1

]

− s

[

n− 2

k − 2

]

> 0.

Hence, there exists an element Zi in each Ei \
⋃

j 6=i Ej which is disjoint to T . Thus
{Z1, . . . , Zs, T} is a subset of s + 1 pairwise disjoint elements in Y , a contradiction.

For n = 2k, we can only guarantee that |Ei ∩ Ej | ≤
[

n−2
k−1

]

for i 6= j. As 16s ≤ q and
k ≥ 2, our estimate is

|Ei| − s

[

n− 2

k − 1

]

=
5

16

[

n− 1

k − 1

]

− s

[

n− 2

k − 1

]

> 0.

As before, this is a contradiction.

4 Cameron-Liebler Classes

Cameron-Liebler classes of k-spaces on F
n
q , which the author often refers to as Boolean

degree 1 functions of k-spaces on F
n
q [12], is a well-investigated object [3, 12, 30]. In

particular for the case n = 4 and k = 2 where it is known as Cameron-Liebler line class.
When k divides n (so a z-spread is simply a spread), one particular property of Boolean
degree 1 functions is that their size is s

[

n−1
k−1

]

for some integer s and that every spread

intersects them in exactly s elements [3]. In the following, define s by |Y | = s
[

n−1
k−1

]

, even
if k does not divide n. Theorem 4.9 in [3] claims a result similar to Theorem 7. A minor,
but sadly consequential sign-error in Lemma 4.6 of [3] makes Theorem 4.9 false in the
stated form. Below we provide a fix for Lemma 4.6 of [3] in form of Lemma 19. We use
this to show Theorem 7.
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Lemma 19. Let n ≥ 2k+1. Let Y be a Cameron-Liebler class of k-spaces on F
n
q of size

s
[

n−1
k−1

]

. If s3 ≤ qn−2k−r+1, where n = mk − r with 0 ≤ r < k, then Y contains at most s
pairwise disjoint k-spaces.

Proof. As shown in [3, Lemma 4.6], this is equivalent to

(1− ⌊s⌋)s⌊s⌋

2

[

n− 1

k − 1

]

+ (s− 1)(⌊s⌋2 − 1)qk
2−k

[

n− k − 1

k − 1

]

>
(s− 2)(⌊s⌋+ 1)⌊s⌋

2
WΣ,

where WΣ denotes the number of k-spaces through a point disjoint to two fixed, disjoint
k-spaces. Note that [3, Lemma 4.6] requires that n ≥ 2k + 1.

The coefficient of the first term is negative, so (this is the mistake in [3, Lemma
4.6]), we can obtain a sufficient condition by substituting

[

n−1
k−1

]

by the upper bound from
Lemma 9. We will bound WΣ by Lemma 15.

Hence, it suffices that

(1− ⌊s⌋)s⌊s⌋

2

(

qk
2−k

[

n− k − 1

k − 1

]

+
3

2
q1+(k−2)(n−k+1)

)

+(s− 1)(⌊s⌋2 − 1)qk
2−k

[

n− k − 1

k − 1

]

>
(s− 2)(⌊s⌋ + 1)⌊s⌋

2

(

qk
2−k

[

n− k − 1

k − 1

]

−
1

4
q1+(k−2)(n−k+1)

)

.

Rearranging yields

8 (⌊s⌋ − s+ 1) qk
2−k

[

n− k − 1

k − 1

]

> ⌊s⌋(7s⌊s⌋ − 2⌊s⌋ − 5s− 2)q1+(k−2)(n−k+1).

Hence, it suffices to guarantee

8 (⌊s⌋ − s+ 1) qn−2k+1 > 7s3.

It is shown in [3, Theorem 2.9.4] that s[k] divisible by [n]. Hence, ⌊s⌋ − s+ 1 is at least
(q − 1)q−r−1. The assertion follows using q ≥ 7.

Hence, using Theorem 5, we obtain Theorem 7. While n = 2k is technically not
included in Lemma 19, this case is implied by Theorem 4. We do not need the condition
16s ≤ q

n

2
−k+1 in Theorem 7 as it always implied by one of the other two bounds on s.

5 Almost Counterexamples and Future Work

One objective of this project was to find counterexamples to the natural Conjecture 3.
Obviously, we did not achieve this goal and it is left to future work. For (n, k) = (4, 2),

12



we have (q2+1)(q2+ q+1) lines. The trivial upper bound is s(q2+ q+1). By combining
intersecting families, it is easy to obtain examples of size s(q2 + q) + 2 for s ≤ 2q.
This number is still very close to the trivial bound, so it seems unreasonable to find
counterexamples in this range. If we limit ourselves to s ≤ q2+1

2
, so we take at most half

of all lines, then maybe the first plausible parameter to look at is q = 5 with s = 11.
Here we will provide one construction which show that there is not much stability

possible in Theorem 5. The examples are limited to (n, k) = (4, 2) for the sake of clarity.
We take an elliptic quadric Q in F

4
q. This consists of q2 + 1 points, no three of which

are collinear. A line which contains two points of Q is called a secant. Let Y be the
family of all secants. Clearly, |Y | =

(

q2+1
2

)

= q2

2
(q2 + 1) and, if q even, then Y contains

at most q2

2
pairwise disjoint secants. Hence, s = q2

2
. For sufficiently large q, it is not too

hard to find a union Y ′ of q2

2
intersecting families with2 |Y ′| = q2

2
· q2 + q2 + q + 2. Here

|Y ′| − |Y | = q2

2
+ q + 2.

There are several other similar constructions using quadric curves and related objects
such as hyperovals, but we could never extend them in a way that it disproves Conjecture
3. We could also not adapt any of the many constructions for non-trivial Cameron-Liebler
line classes for (n, k) = (4, 2) to obtain such a counterexample. Our search here was surely
very incomplete as for instance [19] and [31] show that there are many such examples.

Furthermore, there are other classical geometrical structures for which the Erdős
Matching Conjecture might be interesting. For instance, one can easily deduce the fol-
lowing using the same methods as in Theorem 5 for some universal constant C.

Theorem 20. Let Y be an s-EM family of k-spaces in AG(n, q). If Cs ≤ min{ q
n−k−ℓ+2

3 ,

q
n

2
−k+1}, then Y is the union of s intersecting families.

Here improvements on this bound might be easier compared to the investigated case
as spreads always exist.

Similarly, k × (n− k)-bilinear forms over Fq can be seen as the set of k-spaces which
are disjoint to a fixed (n− k)-space [4, §9.5]. Again, a analogous result is easy to show.

Theorem 21. Let Y be an s-EM family of k × (n− k)-bilinear forms over Fq. If Cs ≤

min{ q
n−k−ℓ+2

3 , q
n

2
−k+1}, then Y is the union of s intersecting families.

The trivial bound here is s
([

n−1
k−1

]

−
[

n−2
k−2

])

(instead of s
[

n−1
k−1

]

for vector spaces) which
can be easily obtained for all s ≤ [k]. It might be easier to find counterexamples to the
natural variation of Conjecture 3 in affine spaces or bilinear forms.

Note that the statement of Theorem 7 is empty for 2k < n < 5
2
k. We believe that

this can be improved by using better estimated in Lemma 19.

2Fix a line ℓ and a plane π with ℓ. Let P a set of q2

2
− q points in π \ ℓ. Let Y ′ be the union of

the set of lines in planes through ℓ and the set of all lines which contain a point of P . Then |Y ′| =

q(q2 + q) + 1 + ( q
2

2
− q)q2 + q + 1 = q4

2
+ q2 + q + 2.
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