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1 Abstract—A permutation π over alphabet Σ = 1, 2, 3, . . . , n,
is a sequence where every element x in Σ occurs exactly
once. Sn is the symmetric group consisting of all permutations
of length n defined over Σ. In = (1, 2, 3, . . . , n) and Rn =
(n, n − 1, n − 2, . . . , 2, 1) are identity (i.e. sorted) and reverse
permutations respectively. An operation, that we call as an LRE
operation, has been defined in OEIS with identity A186752. This
operation is constituted by three generators: left-rotation, right-
rotation and transposition(1,2). We call transposition(1,2) that
swaps the two leftmost elements as Exchange. The minimum
number of moves required to transform Rn into In with LRE
operation are known for n ≤ 11 as listed in OEIS with sequence
number A186752. For this problem no upper bound is known.
OEIS sequence A186783 gives the conjectured diameter of the
symmetric group Sn when generated by LRE operations [1]. The
contributions of this article are: (a) The first non-trivial upper
bound for the number of moves required to sort Rn with LRE;
(b) a tighter upper bound for the number of moves required
to sort Rn with LRE; and (c) the minimum number of moves
required to sort R10 and R11 have been computed. Here we
are computing an upper bound of the diameter of Cayley graph
generated by LRE operation. Cayley graphs are employed in
computer interconnection networks to model efficient parallel
architectures. The diameter of the network corresponds to the
maximum delay in the network.

Index Terms—Permutation, Sorting, Left Rotate, Right Rotate,
Exchange, Symmetric Group, Upper Bound, Cayley Graphs.

I. INTRODUCTION

The following problem is from OEIS with sequence number

A186752: “Length of minimum representation of the permu-

tation [n, n− 1, . . . , 1] as the product of transpositions (1, 2)
and left and right rotations (1, 2, . . . , n). [1].” We call this

operation as LRE. LRE operation consists of following three

generators: (i) LeftRotate that cyclically shifts all elements

to left by one position, (ii) RightRotate that cyclically shifts

all elements to right by one position and (iii) Exchange
that swaps the leftmost two elements of the permutation.

The mentioned operations are abbreviated as L, R and E
respectively. Rn denotes (n, n−1, ...., 2, 1) whereas In denotes

the sorted order or identity permutation: (1, 2, . . . , n). Sorting

a permutation π in this article refers to transforming π into In
with LRE operation. The alphabet is Σ = (1, 2, 3, . . . , n). [2],

[3] studied a more restricted version of this problem, i.e. LE
operation where the operation R is disallowed and appears in

1This article is submitted to 10th International Advanced Computing
Conference, IACC-2020.

OEIS with sequence number A048200 [1]. We note that the

results of [2], [3] are applicable to RE operation (that has not

been studied) due to symmetry. We seek to obtain an upper

bound on the length of generator sequence that transforms Rn

with LRE into In.

The optimum number of moves to sort Rn with LRE are

known only for n ≤ 11 (n = 10 and n = 11 are our

contributions). We give the first non-trivial upper bound to

sort Rn with LRE.

Let π[1 · · ·n] be the array containing the input permutation.

The element at an index i is denoted by π[i]. Initially for

all i, π[i] = Rn[i]. We define a permutation Kr,n ∈ Sn

as follows. The elements n − (r − 1), n − (r − 2), . . . n
are in sorted order i.e. the largest r elements of Σ are

in sorted order. Kr,n is obtained by concatenating sublists

(n−(r−1), n−(r−2), . . . n) and (n−r, n−(r+1), . . . 3, 2, 1).
Therefore a permutation Kr,n can be denoted as follows

(n− (r − 1), n− (r − 2), . . . n, n− r, n− (r+ 1), . . . 3, 2, 1).
Therefore, K1,n is (n, n−1, . . . 3, 2, 1) which is Rn and Kn,n

(1, 2, . . . , n − 1, n) which is In. Let LE denote execution

of Left-Rotate move followed by a Exchange move and RE
denote execution of Right-Rotate move followed by a Ex-

change move. Further, let (LE)p and (RE)p be p consecutive

executions of RE and RE respectively. Similarly, let Lp and

Rp be p consecutive executions of L and R respectively.

A. Background

A Cayley graph Γ defined on Symmetric group Sn, cor-

responding to an operation Ψ with a generator set G has n!
vertices each vertex corresponding to a unique permutation.

An edge in Γ from a vertex u to another vertex v indicates

that there exits a generator g ∈ G such that when g is applied

to u one obtains v. Applying a generator is called as making a

move. An upper bound of x moves to sort any permutation in

Sn indicates that the diameter of Γ is at most x. An exact upper

bound equals the diameter of Γ. Cayley graphs have many

properties that render them apt for computer interconnection

networks [4], [5]. Various operations to sort permutations have

been posed that are of theoretical and practical interest [5].

Jerrum showed that when the number of generators is

greater than one, the computation of minimum length of

sequence of generators to sort a permutation is intractable

[14]. LRE operation has three generators and the complexity
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of transforming one permutation in to another with LRE
unknown. Exchange move is a reversal of length two, in fact

it is a prefix reversal of length two.

For sorting permutations with (unrestricted) prefix reversals

the operation that has n− 1 generators, the best known upper

bound is 18n/11+O(1) [9]. In LRE operation, both left and

right rotate cyclically shifts the entire permutation. In contrast,

[12] an extended bubblesort is considered, where an additional

swap is allowed between elements in positions 1 and n. We

call an operation say Ψ symmetric if for any generator of Ψ
its inverse is also in Ψ. Exchange operation is inverse of

itself whereas left and right rotate are inverses of one another,

thus, LRE is symmetric. Both LE and LRE are restrictive

compared to the other operations that are studied in the context

of genetics e.g. [6]. Research in the area of Cayley graphs

has been active. Cayley graphs are studied pertaining to their

efficacy in modelling a computer interconnection network,

their properties in terms of diameter, presence of greedy

cycles in them etc. [11], [13], [15]. Efficient computation of

all distances, some theoretical properties of specific Cayley

graphs, and efficient counting of groups of permutations in

Sn with related properties have been recently studied [7], [8],

[10], [16].

II. ALGORITHM LRE

Algorithm LRE sorts Rn in stages. It first transforms

Rn which is identical to K1,n into K2,n by executing an

E move. Subsequently, Ki+1,n is obtained from Ki,n by

executing the moves specified by Lemma 1. Thus, eventually

we obtain Kn,n which is identical to In. Pseudo Code for

the Algorithm LRE is shown below.

Algorithm LRE

Input: Rn. Output: In.

Initialization:∀i π[i] = Rn[i].
All moves are executed on π.

Algorithm 1 Algorithm LRE

1: for r ∈ (1, . . . , n− 2) do

2: if r = (n− 2) then

3: Execute R2

4: Execute E move

5: else

6: Execute (L)r−1

7: Execute E move

8: Execute (RE)r−1

9: end if

10: end for

A. Analysis

Lemma 1. The number of moves required to obtain Kr+1,n

from Kr,n∀r ∈ (1, . . . , n− 3) is 3r − 2.

Proof. According to the definition, Kr,n is

(n− (r − 1), n− (r− 2), . . . n− 1, n, n− r, n− (r + 1), n−
(r + 2), . . . 3, 2, 1).

Executing Lr−1 on Kr,n yields

(n, n− r, n− (r+ 1), n− (r+ 2), . . . 3, 2, 1, n− (r− 1), n−
(r − 2), . . . n− 1).
An E move is executed to obtain

(n− r, n, n− (r+ 1), n− (r+ 2), . . . 3, 2, 1, n− (r− 1), n−
(r − 2), . . . n− 1).
Finally, (RE)r−1 is executed to obtain

(n− r, n− (r− 1), n− (r − 2), . . . n− 1, n, n− (r + 1), n−
(r + 2), . . . 3, 2, 1) which is Kr+1,n.

Therefore, the total number of moves required to obtain

Kr+1,n from Kr,n is (r − 1) + 1 + 2(r − 1) = 3r − 2.

Lemma 2. The number of moves required to obtain Kn,n from

Kn−2,n is 3.

Proof. According to the definition, Kn−2,n is

(3, 4, . . . , n− 1, n, 2, 1). Executing R2 on Kn−2,n yields

(2, 1, 3, . . . , n − 1, n). Then executing an E move yields

(1, 2, 3 . . . , n − 1, n) which is Kn,n. Therefore, three moves

suffice to transform Kn−2,n into Kn,n.

Theorem 3. An upper bound for the number of moves required

to sort Rn with LRE is 3

2
n2.

Proof. Let J(n) be the number of moves required to sort Rn

with LRE. According to Lemma 1, the number of moves

required to obtain Kr+1,n from Kr,n is 3r − 2. Let A(n) be

the number of moves required to obtain Kn−2,n from K1,n

(which is Rn). Then

A(n) =

n−3
∑

r=1

(3r − 2)

= 3

n−3
∑

r=1

r − (2(n− 3))

=
3

2
(n− 2)(n− 3)− 2n+ 6

=
3

2
(n2 − 5n+ 6)− 2n+ 6

=
3

2
n2 −

15

2
n+ 9− 2n+ 6

=
3

2
n2 −

19

2
n+ 15

According to Lemma 2, the number of moves required to

obtain Kn,n from Kn−2,n is 3. Therefore,

J(n) = A(n) + 3

=
3

2
n2 −

19

2
n+ 18

Therefore, the total number of moves required to sort Rn with

LRE is 3

2
n2 − 19

2
n+ 18. Ignoring the lower order terms an

upper bound for number of moves required to sort Rn with

LRE is 3n2

2
. This is the first non-trivial upper bound for the

number of moves required to sort Rn with LRE.

III. ALGORITHM LRE1

We designed Algorithm LRE1 in order to obtain the



tighter upper bound for sorting Rn with LRE. We define a

permutation K
′

r,n ∈ Sn as follows. The largest r elements of

Σ i.e. n−(r−1), n−(r−2), . . . n are in sorted order. K
′

r,n is

obtained by concatenating sublists (n−r, n−(r+1), . . .3, 2, 1)
and (n− (r− 1), n− (r− 2), . . . n). Kr,n and K

′

r,n differ by

the starting position of sublist (n− (r− 1), n− (r− 2), . . .n).
The starting position of (n − (r − 1), n − (r − 2), . . . n) in

Kr,n is 1 whereas in K
′

r,n it is n− r + 1. Algorithm LRE1

first transforms Rn into K
′

⌊n

2
⌋,n. Then it transforms K

′

⌊n

2
⌋,n

into K
′

n,n which is In. Let k = ⌊n
2
⌋ and k′ = n − k. Let

J ′(n) be the number of moves executed by Algorithm LRE1
to sort Rn.

Input: Rn. Output: In.

Initialization:∀i π[i] = Rn[i]. k = ⌊n
2
⌋, k′ = n− k = ⌈n

2
⌉

All moves are executed on π.

A. Analysis

Lemma 4. The permutation obtained after executing D1 and

D2 of Algorithm LRE1 is

(n−1, n−2, . . . , ⌈n
2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . . 3, 2, 1, ⌈n

2
⌉+1)

and the number of moves executed is 2n− 6 when n is even

and 2n− 8 when n is odd ∀n ≥ 6.

Proof. Execution of E move on Rn in D1 yields

(n− 1, n, n− 2, . . . , 3, 2, 1).
Then executing (LE)k−2 in D2 yields

(⌈n
2
⌉+1, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . . 3, 2, 1, n−1, n−2, . . . , ⌈n

2
⌉+2).

Then executing (RE)k−2 in D2 yields

(⌈n
2
⌉+1, n−1, n−2, . . . , ⌈n

2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . . 3, 2, 1).

Then performing L in D2 move yields

(n−1, n−2, . . . , ⌈n
2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . .3, 2, 1, ⌈n

2
⌉+1).

Therefore, the total number of moves executed in step D1 and

D2 is

1+ 4 ∗ (⌊n
2
⌋− 2) + 1 = 4⌊n

2
⌋ − 6 =

{

2n− 6 if n is even

2n− 8 if n is odd
.

Lemma 5. The permutation obtained after D3 and D4 of

LRE1 algorithm are executed is K
′

⌊n

2
⌋,n and the number of

moves executed in the above two steps is 3n2−34n+112

8
when

n is even and 3n2−40n+149

8
when n is odd ∀n ≥ 8.

Proof. From Lemma 4, the permutation obtained after steps

D1 and D2 is

(n−1, n−2, . . . , ⌈n
2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . .3, 2, 1, ⌈n

2
⌉+1).

When i = 0 in step D3 only E move is executed and

permutation thus obtained is

(n−2, n−1, . . . , ⌈n
2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . .3, 2, 1, ⌈n

2
⌉+1).

When i = 1 in step D3 only L move is executed and

permutation thus obtained is

(n−1, . . . , ⌈n
2
⌉+2, n, ⌈n

2
⌉, ⌈n

2
⌉−1, . . . 3, 2, 1, ⌈n

2
⌉+1, n−2).

There after in each iteration in step D3, E move, (RE)i−1

and Li are executed so that the elements between π[1] and

π[n−i+2] are left rotated. Thus, the permutation obtained after

step D3 is (n−1, n, ⌈n
2
⌉, ⌈n

2
⌉−1. . . . , 2, 1, ⌈n

2
⌉+1, . . . , n−2)

Algorithm 2 Algorithm LRE1

1: D1:

2: if k 6= 1 then

3: Execute E move

4: end if

5: if k ≥ 3 then

6: D2:

7: Execute (LE)k−2

8: Execute (RE)k−2

9: Execute L move

10: D3:

11: if k ≥ 4 then

12: for i ∈ (0, . . . , k − 1) do

13: if π[1] = (n− 1) then

14: Execute E move

15: if i ≥1 then

16: Execute (RE)i−1

17: end if

18: end if

19: Execute (L)i

20: end for

21: end if

22: end if

23: D4:

24: if k 6= 1 then

25: Execute (L)2

26: else

27: Execute L move

28: end if

29: D5:

30: Execute E move

31: if k′ ≥ 3 then

32: D6:

33: Execute (LE)k
′−2

34: Execute (RE)k
′−2

35: if k′ ≥ 4 then

36: D7:

37: Execute L move

38: D8:

39: for i ∈ (0, . . . , k′ − 1) do

40: if π[1] = (k′ − 1) then

41: Execute E move

42: if i ≥1 then

43: Execute (RE)i−1

44: end if

45: end if

46: if i 6= (k′ − 3) then

47: Execute (L)i

48: end if

49: end for

50: D9:

51: Execute R move

52: end if

53: end if



and the number of moves executed in each iteration is

1 + 2(i− 1) + i = 3i− 1.

Therefore, the total number of moves executed in step D3 is

1 + 1 +
∑⌊n

2
⌋−3

j=2 (3j − 1)

= 2 +
∑⌊n

2
⌋−3

i=2 (3i− 1)

=

{

3n2−34n+96

8
if n is even

3n2−40n+133

8
if n is odd

Execution of L2 in step D4 yields

(⌈n
2
⌉, ⌈n

2
⌉ − 1. . . . , 2, 1, ⌈n

2
⌉ + 1, . . . , n − 2, n − 1, n) which

is K
′

⌊n

2
⌋,n. Therefore, the total number of moves executed in

steps D3 and D4 are

{

3n2−34n+112

8
if n is even

3n2−40n+149

8
if n is odd

.

Lemma 6. The permutation obtained after executing D5 and

D6 of LRE1 algorithm is

(1, ⌈n
2
⌉−1, ⌈n

2
⌉−2, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n)

and the number of moves executed in the above two steps is

2n− 7 when n is even and 2n− 5 when n is odd ∀n ≥ 5.

Proof. According to Lemma 5, the permutation obtained after

the steps D1 to D4 is

(⌈n
2
⌉, ⌈n

2
⌉−1, ⌈n

2
⌉−2, . . . , 2, 1, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n).

Now, executing E move in step D5 yields

(⌈n
2
⌉−1, ⌈n

2
⌉, ⌈n

2
⌉−2, . . . , 2, 1, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n).

Then executing (LE)k
′−2 in step D6 yields

(1, ⌈n
2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n, ⌈n

2
⌉−1, ⌈n

2
⌉−2, . . . , 2).

Then executing (RE)k
′−2 in step D6 yields

(1, ⌈n
2
⌉−1, ⌈n

2
⌉−2, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n).

Therefore, the total number of moves executed in steps D5 and

D6 is

1 + 4(k′ − 2) = 4k′ − 7 =

{

2n− 7 if n is even

2n− 5 if n is odd
.

Lemma 7. The permutation obtained after executing D7 and

D8 of LRE1 algorithm is (2, 3, . . . , n−1, n, 1) and the number

of moves executed in the above two steps is 3n2−38n+128

8
when

n is even and 3n2−32n+93

8
when n is odd ∀n ≥ 7.

Proof. According to Lemma 6, the permutation obtained after

steps D1 to D6 is

(1, ⌈n
2
⌉−1, ⌈n

2
⌉−2, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n).

L move is executed in step D7 and the permutation thus

obtained is

(⌈n
2
⌉−1, ⌈n

2
⌉−2, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n, 1).

When i = 0 in step D8, only E move is executed and the

permutation thus obtained is

(⌈n
2
⌉−2, ⌈n

2
⌉−1, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n, 1).

When i = 1 in step D8, only L move is executed and the

permutation thus obtained is

(⌈n
2
⌉−1, . . . , 2, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n, 1, ⌈n

2
⌉−2).

There after in each iteration in step D8 except when i =
(k′ − 3), E move, (RE)i−1 and Li are executed so that the

elements between π[1] and π[n− i+2] are left rotated. When

i = k′− 3 only E move and (RE)i−1 are executed. Thus, the

obtained permutation after step D8 is (2, 3, . . . , n − 1, n, 1).
The number of moves executed in step D8 is

1 + 1 + 1 +
∑⌈n

2
−4⌉

j=2 (3j − 1) + 1 + 2 ∗ ⌈n
2
− 4⌉

= 4 +
∑⌈n

2
−4⌉

j=2 (3j − 1) + 2 ∗ ⌈n
2
− 4⌉

=

{

3n2−38n+128

8
if n is even

3n2−32n+93

8
if n is odd

.

Lemma 8. Algorithm LRE1 is correct.

Proof. According to Lemma 7, the permutation obtained after

steps D1 to D8 is

(2, 3, . . . , ⌈n
2
⌉ − 1, ⌈n

2
⌉, ⌈n

2
⌉+ 1, ⌈n

2
⌉+ 2, . . . , n− 1, n, 1).

Executing R move in step D9 yields

(1, 2, 3, . . . , ⌈n
2
⌉−1, ⌈n

2
⌉, ⌈n

2
⌉+1, ⌈n

2
⌉+2, . . . , n−1, n) which

is In. Hence proves the lemma.

Theorem 9. The number of moves required to sort Rn with

LRE1 algorithm is

J’(n) =















































2 if n = 3

4 if n = 4

8 if n = 5

13 if n = 6

20 if n = 7
3n2−20n+72

4
if n ≥ 8 and n is even

3n2−20n+73

4
if n ≥ 8 and n is odd

.

Proof. Case-i: n is 3

When n=3, the values of k and k′ are 1 and 2 respectively.
So, only steps D1 and D4 are executed. Therefore, the
number of moves executed are 1 + 1 = 2.

Case-ii: n is 4

When n=4, the values of both k and k′ is 2, So only
steps D1, D4 and D5 are executed. Therefore, the total
number of moves executed are 1 + 2 + 1 = 4.

Case-iii: n is 5

When n=5, the values of k and k′ are 2 and 3 respectively.
So only steps D1, D4, D5 and D6 are executed. According
to Lemma 6, the number of moves executed by steps D5 and
D6 is 2n− 5 when n is odd. Therefore, the total number of
moves executed are 1 + 2 + 2n− 5 = 2n− 2 = 8.

Case-iv: n is 6

When n=6, the values of both k and k′ is 3. Therefore
steps D1, D2, D4, D5 and D6 are executed. According
to Lemma 4, the number of moves executed by steps D1
and D2 is 2n − 6 when n is even. According to Lemma
6, the number of moves executed by steps D5 and D6 is
2n− 7 when n is even. Therefore, the total number of moves
executed are 2n− 6 + 2 + 2n− 7 = 4n− 11 = 13.

Case-v: n is 7

When n=7, the values of k and k′ are 3 and 4 respectively.
Therefore steps D1, D2, D4, D5 and D6 are executed.
According to Lemma 4, the number of moves executed
by steps D1 and D2 is 2n − 8 when n is odd. The
number of moves executed by step D4 is 2. According
to Lemma 6, the number of moves executed by steps D5



and D6 is 2n − 5 when n is odd. According to Lemma
7, the number of moves executed by steps D7 and D8 is
3n2−32n+93

8
when n is odd. Number of moves executed

by step D9 is 1. Therefore, the total number of moves

executed is 2n − 8 + 2 + 2n − 5 + 3n2−32n+93

8
+ 1 =

4n− 11 + 3n2−32n+93

8
+ 1 = 20.

Case-vi: n ≥ 8 and n is even

In this case all steps from D1 to D9 are executed.
According to Lemma 4, the number of moves executed by
steps D1 and D2 is 2n − 6 when n is even. According to
Lemma 5, the number of moves executed by steps D3 and

D4 is 3n2−34n+112

8
when n is even. According to Lemma

6, the number of moves executed by steps D5 and D6 is
2n− 7 when n is even. According to Lemma 7, the number

of moves executed by steps D7 and D8 is 3n2−38n+128

8
when n is even. Number of moves executed by step D9 is 1.
Therefore, the total number of moves executed by Algorithm
LRE1 is

J
′(n) = 2n− 6 +

3n2 − 34n+ 112

8
+ 2n− 7 +

3n2 − 38n+ 128

8
+ 1

=
3n2 − 20n+ 72

4

Case-vii: n ≥ 8 and n is odd

In this case all steps from D1 to D9 are executed.
According to Lemma 4, the number of moves executed by
steps D1 and D2 is 2n − 8 when n is odd. According to
Lemma 5, the number of moves executed by steps D3 and

D4 is 3n2−40n+149

8
when n is odd. According to Lemma 6,

the number of moves executed by steps D5 and D6 is 2n− 5
when n is odd. According to Lemma 7, the number of moves

executed by steps D7 and D8 is 3n2−32n+93

8
when n is odd.

Number of moves executed by step D9 is 1. Therefore, the
total number of moves executed by Algorithm LRE1 is

J
′(n) = 2n− 8 +

3n2 − 40n+ 149

8
+ 2n− 5 +

3n2 − 32n+ 93

8
+ 1

=
3n2 − 20n+ 73

4

Therefore, ignoring the lower order terms the new tighter

upper bound for number of moves required to sort Rn with

LRE is 3n2

4
.

IV. EXHAUSTIVE SEARCH RESULTS

A branch and bound algorithm that employs BFS, i.e.

Algorithm Search, has been designed for computing the

minimum number of moves to sort Rn for a given n.

It yielded values of 43 for n = 10 and 53 for n = 11.

Thus, including the current values, the identified minimum

number of moves for for n = 1 . . . 11 are respectively

(0, 1, 2, 4, 8, 13, 19, 26, 34, 43, 53). A list of permutations

whose distance has been computed is maintained and the

execution in every branch terminates either upon reaching

In or exceeding a bound. E, L and R generators are

applied to each of the intermediate permutations yielding the

corresponding permutations. We avoid application of two

successive generators that are inverses of each other as such

a sequence cannot be a part of optimum solution. Notation:

Node contains a permutation ∈ Sn and its distance from Rn

corresponds to the minimum number of moves. With this

algorithm and better computational resources one will be able

to compute the corresponding values for larger values of n.

Algorithm Search

Initialization: The source vertex δ contains the permutation

Rn and its path is initialized to null. It is enqueued into BFS

queue Q.

Input:Rn. Output: Optimum number of moves to reach In
with LRE.

Algorithm 3 Algorithm Search

1: while (Q is not empty) do

2: Dequeue u from Q
3: if (u is visited) then

4: continue

5: end if

6: Mark u as visited

7: if (u is In) then

8: {Array is sorted}
9: return length of u.path

10: break

11: end if

12: if (Last move on u.path 6= E or u.path = null ) then

13: Execute E on u→ v
14: if v is not visited then

15: v.path← u.path followed by E

16: Enqueue v to Q

17: end if

18: end if

19: if (Last move on u.path 6= L or u.path = null ) then

20: Execute R on u→ v
21: if v is not visited then

22: v.path← u.path followed by R

23: Enqueue v to Q

24: end if

25: end if

26: if (Last move on u.path 6= R or u.path = null ) then

27: Execute L on u→ v
28: if v is not visited then

29: v.path← u.path followed by L

30: Enqueue v to Q

31: end if

32: end if

33: end while

V. RESULTS

Comparison of the number of moves required to sort Rn

with LRE by various algorithms. The first column shows n,

the size of permutation. Subsequent columns show the number

of moves required to sort Rn with Algorithms LRE, LRE1
and Search respectively.

CONCLUSION

The first known upper bound for sorting Rn with LRE
has been shown. A tighter upper bound has been derived. The



n LRE LRE1 Search(Optimal)

3 3 2 2
4 4 4 4
5 8 8 8
6 15 13 13
7 25 20 19
8 38 26 26
9 54 34 34
10 73 43 43
11 95 54 53

future work consists of identifying the exact upper bound for

sorting Rn with LRE. The identification of the diameter of the

LRE Cayley graph and the characterization of permutations

that are farthest from In in this Cayley graph are open

questions.
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