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Abstract

We study new primality tests based on linear recurrent sequences of degree two exploiting
a matricial approach. The classical Lucas test arises as a particular case and we see how it
can be easily improved. Moreover, this approach shows clearly how the Lucas pseudoprimes
are connected to the Pell equation and the Brahamagupta product. We also introduce a new
specific primality test, which we will call generalized Pell test. We perform some numerical
computations on the new primality tests and, for the generalized Pell test, we do not any
pseudoprime up to 1010.
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1 Introduction

The Pell equation is one of the most famous and studied Diophantine equation, it is

x2 −Dy2 = 1

forD non–square integer. Recently, its properties have been exploited in cryptographic applications
for defining an RSA–like cryptosystem with multi–factor modulus [5]. In this paper, we show how
it is connected to primality tests, allowing to define new ones that appear to be very interesting.

One of the most classical primality test is based on the Little Fermat’s Theorem, i.e., the Fermat
test. It is known that there are infinitely many composite numbers that pass the test to every base
[1]. However, it is possible to define a stronger test considering that for p = 2rs+ 1 prime, then

as ≡ 1 (mod p) or a2
ks ≡ −1 (mod p)

for any a ∈ Z∗
p and some 0 ≤ k < r. An odd composite number satisfying this condition is a

strong pseudoprime to base a and it is known that there are no strong pseudoprimes to all bases.
See [17] for a classical study on these pseudoprimes. The Baillie–PSW primality test combines the
above test with the Lucas test [2]; an overlap between strong and Lucas pseudoprimes has not been
found so far. However, it is conjectured that there are infinitely many Baillie–PSW pseudoprimes
and Pomerance gave an idea for constructing them [15]. Some calculations about the search of
Baillie–PSW pseudoprimes can be also found in [6]. The Lucas test is based on some properties of
the Lucas sequence. Given two integers P and Q the Lucas sequence is defined by{

U0 = 0, U1 = 1

Uk = PUk−1 +QUk−2

for any k ≥ 2 and it can be evaluated by means of

Uk =
αk − βk

α− β
,

where α, β are the roots of the characteristic polynomial. The Lucas test is based on the fact that
when p is prime, we have

Up−1 ≡ 0 (mod p) or Up+1 ≡ 0 (mod p)

1

ar
X

iv
:2

00
2.

08
06

2v
1 

 [
m

at
h.

N
T

] 
 1

9 
Fe

b 
20

20



when

(
D

p

)
= 1 or

(
D

p

)
= −1 (Jacobi symbols), respectively, for D = P 2− 4Q. Thus, the Lucas

pseudoprimes, with parameters P and Q, are the odd composite integers n such that

Un−(D/n) ≡ 0 (mod n). (1)

The Lucas pseudoprimes have been widely studied, see, e.g., [7, 9, 16, 19, 20]. Some authors also
studied primilaty tests using more general linear recurrence sequences [10, 13].

In [8], the authors highlighted how the Lucas test can be introduced in an equivalent way by
means of the Brahmagupta product and the Pell equation. We recall here some facts.

It is well–known that given two solutions (x1, y1) and (x2, y2) of the Pell equation, then the
Brahmagupta product

(x1, y1)⊗ (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1)

yields to another solution of the Pell equation. For a complete survey, we refer the reader to [3].
Given a ring R, we can consider the Pell conic

C = {(x, y) ∈ R×R : x2 −Dy2 = 1}

and (C,⊗) is a group with identity (1, 0). Moreover, when R = Zp, the order of C depends on D
to be or not a quadratic residue. In particular, we have |C| = p− 1 if D is a quadratic residue in
Zp and |C| = p+ 1 if not, see, e.g., [14]. This property allows to construct a primality test. In [8],
the authors defined the Pell pseudoprimes, as the odd composite integers n such that

yn ≡ 0 (mod n)

with (xn, yn) = (x̃, ỹ)⊗n−(D/n), where D and (x̃, ỹ) ∈ C are the parameters of the test, for R = Zn.
With this definition, we have an equivalence between the Lucas and Pell test described in the
following theorem.

Theorem 1. On the one hand, if n is a Lucas pseudoprime with parameters P > 0 and Q = 1,
then n is a Pell pseudoprime with parameter x̃ ≡ P/2 (mod n), ỹ ≡ 1/2 mod n, and D = P 2 − 4.
On the other hand, if n is a Pell pseudoprime with parameter x̃, ỹ, and D, then n is a Lucas
pseudoprime with parameters P = 2x̃, and Q = 1 [8].

Considering the order of the Pell conic over finite fields Zp, we can clearly define a stronger
test. Hence, we define the strong Pell pseudoprimes as the odd composite integers n such that

(x̃, ỹ)⊗n−(D/n) ≡ (1, 0) (mod n),

where D and (x̃, ỹ) ∈ C are the parameters of the test, for R = Zn.

Remark 1. In [12], the author highlighted the properties of the Pell conic for constructing a
primality test, but only focused on a Pell conic of the kind x2 −Dy2 = 4, as well as in [11], where
the author focused on x2+3y2 = 4 for testing numbers of the form 3nh±1. Moreover, we would like
to point out that sometimes the term Pell pseudoprimes is used for the Lucas pseudoprimes with
parameters P = 2 and Q = −1, since for these parameters the sequence Un is known as the Pell
sequence (A000129 in OEIS [18]). We have also found a different definition of Pell pseudoprimes
that are the odd composite integers n such that

Un ≡

(
2

n

)
(mod n)

for P = 2 and Q = −1 (A099011 in OEIS).

In this paper, firstly, in section 2, we show how many primality tests based on linear recurrent
sequences of order 2 can be introduced from a matricial point of view. The Lucas test and the
Pell test, as well as their connection, arise as particular cases. Moreover, in this way, we are able
to introduce a generalized Pell test based on the quotient ring R[t]/(t2 − D), for D ∈ R, which
also has an analogue via Lucas sequence as we will see. Then, in section 3, we perform numerical
experiments and comparison between some primality tests with a special focus on the generalized
Pell test. In particular, we will show a method for the choice of the parameters, inspired to the
Selfridge method, that produces very promising results. Indeed, we did not found any composite
numbers that pass the generalized Pell test, with such method for the choiche of parameters, up
to 1010.
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2 Pseudoprimes with matrices

Given a matrix M ∈ Z2×2, we can consider the linear recurrence sequences (Ũk)k≥0 and (Ṽk)k≥0

defined by (
Ṽk
Ũk

)
:= Mk

(
1
0

)
.

The following lemma provides a primality test based on these sequences, the Lucas and strong Pell
tests arise for particular choices of M . Hence, this lemma will allow to highlight many primality
tests based on linear recurrence sequences of order 2 and the connection between the Lucas test
and the Pell conic.

Lemma 1. Let ∆ be the discriminant of the characteristic polynomial of M ∈ Z2×2, if p is prime
and detM 6= 0 (mod p), then

1. Ũp−1 ≡ 0 (mod p) and Ṽp−1 ≡ 1 (mod p), when
√

∆ ∈ Z∗
p;

2. Ũp+1 ≡ 0 (mod p) and Ṽp+1 ≡ detM (mod p), when
√

∆ 6∈ Z∗
p.

Proof. Let α, β be the roots of the characteristic polynomial of M , we have that M is similar to
the diagonal matrix (

α 0
0 β

)
.

Thus, when
√

∆ ∈ Z∗
p, we also have α, β ∈ Z∗

p and Mp−1 is the identity matrix modulo p by the
Little Fermat’s Theorem, then(

Ṽp−1

Ũp−1

)
= Mp−1

(
1
0

)
≡
(

1
0

)
(mod p).

When
√

∆ 6∈ Z∗
p, by the Frobenius morphism we have αp = β, βp = α and(

Ṽp+1

Ũp+1

)
= Mp ·M

(
1
0

)
≡ detM

(
1
0

)
(mod p)

In the following we see that the Lucas and Pell tests arise as particular cases of the previous
Lemma.

Lemma 2. Given

L =

(
P −Q
1 0

)
, C =

(
x̃ Dỹ
ỹ x̃

)
,

we have

Lk

(
1
0

)
=

(
Uk+1

Uk

)
, Ck

(
1
0

)
=

(
xk
yk

)
where (Uk)k≥0 is the Lucas sequence with characteristic polynomial t2 − Pt + Q, (x̃, ỹ) ∈ C (for
any ring R), and (xk, yk) = (x̃, ỹ)⊗k, for any k ≥ 0.

Proof. Let us denote with Lk
ij the entry (i, j) of the matrix Lk. It is well–known that the entries

of Lk are linear recurrence sequences that recur with the characteristic polynomial of L, i.e.,
t2 − Pt+Q. Observing that L0

11 = 1, L1
11 = P and L0

21 = 0, L1
21 = 1 , we have

Lk

(
1
0

)
=

(
Uk+1

Uk

)
for any k ≥ 0.

Given (x̃, ỹ) ∈ C, the sequences (xk)k≥0 and (yk)k≥0 defined by (xk, yk) = (x̃, ỹ)⊗k can be also
evaluated by

(x̃+
√
Dỹ)k = xk +

√
Dyk

3



from which it is straightforward to obtain{
xk+1 = x̃xk +Dỹyk

yk+1 = ỹxk + x̃yk
,

i.e., (
x̃ Dỹ
ỹ x̃

)(
xk
yk

)
=

(
xk+1

yk+1

)
.

Observing that (x0, y0) is the identity of (C,⊗), i.e., (1, 0), we have

Ck

(
1
0

)
=

(
xk
yk

)
for any k ≥ 0.

Now, we can see that the strong Pell test is connected with a stronger version of the Lucas test,
which we will call double Lucas test. Indeed, by Lemma 1 and Lemma 2, if p is prime, then

Up−1 ≡ 0 (mod p), Up ≡ 1 (mod p)

or
Up+1 ≡ 0 (mod p), Up+2 ≡ Q (mod p)

for
√
P 2 − 4Q ∈ Z∗

p or
√
P 2 − 4Q 6∈ Z∗

p, respectively. We call double Lucas pseudoprimes the odd
composite numbers that satisfy the above conditions.

Since detC = 1 and detL = Q, the matrices C and L are similar only if Q = 1. In this case,
we can consider the matrix

R1 =

(
1 P
0 2

)
,

and we have

R−1
1 LR1 =

(
P/2 P 2/2− 2
1/2 P/2

)
,

choosing x̃ = P/2, ỹ = 1/2, D = P 2−4, we get R−1
1 LR1 = C. In other words, if n is a double Lucas

pseudoprime, for parameters P and Q = 1, then n is a strong Pell pseudoprime, for parameters
x̃ = P/2, ỹ = 1/2, D = P 2 − 4. Let us note that 2 must be invertible in Zn.

On the other hand, given

R2 =

(
1 −x̃
0 ỹ

)
we have

R−1
2 CR2 =

(
2x̃ −x̃2 +Dỹ2

1 0

)
,

which is L for P = 2x1 andQ = 1. This means that if n is a strong Pell pseudoprime, for parameters
x̃, ỹ, D, then n is a double Lucas pseudoprime, for parameters P = 2x1 and Q = 1. Note that in
this case D is not necessarily equal to P 2 − 4 (the discriminant of the characteristic polynomial
of the Lucas sequence), this happens only for ỹ = ±1/2. However, since D = (x̃2 − 1)/ỹ2 and
P 2 − 4 = 4(x̃2 − 1), D is a quadratic residue in Zn if and only if P 2 − 4 is. We summarize this in
the following proposition.

Proposition 1. If n is a double Lucas pseudoprime for the parameters P and Q = 1, then n is a
strong Pell pseudoprime for the parameters x̃ = P/2, ỹ = 1/2, D = P 2 − 4.
If n is a strong Pell pseudoprime for the parameters x̃, ỹ and D, then n is a double Lucas pseudo-
prime for the parameters P = 2x̃ and Q = 1.

Let us note that, fixed the parameters P and Q = 1 for the Lucas test (for checking, e.g., the
primality of all the integers in a certain range), there is not a corresponding strong Pell test with
fixed parameters D, x̃ and ỹ as integer numbers. Indeed, given any P and Q = 1, we have seen
that x̃ = P/2, ỹ = 1/2, D = P 2 − 4 are the corresponding parameters of the strong Pell test,
but these values depend on the integer n we are testing (remember that in this context 1/2 is the
inverse of 2 in Zn).
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Moreover, in general, we are not able to fix the integer parameters D, x̃, ỹ in the strong Pell
test for checking the primality of all the integers in a given range, because it is necessary that
x̃2−Dỹ2 ≡ 1 (mod n) and this can not be true for any integer n. For overcoming these issues, the
use of a parametrization of the conic C can be helpful. In [4], the authors provided the following
map

Φ :


R∪ {α} → C

a 7→

(
a2 +D

a2 −D
,

2a

a2 −D

)
, a 6= α

α 7→ (1, 0)

where α 6∈ R is the point at the infinity of such a parametrization of C. When R is a field and
t2 − D is irreducible in R, the map is always defined, otherwise there are values of a such that
Φ(a) can not be evaluated. In this way, we can consider the strong Pell test with fixed parameters
D and a, in the sense that x̃ = (a2 +D)/(a2 −D) and ỹ = 2a/(a2 −D).

Example 1. Given P = 4 and Q = 1, the Lucas pseudoprimes up to 5000 are

65, 209, 629, 679, 901, 989, 1241, 1769, 1961, 1991, 2509, 2701, 2911, 3007, 3439, 3869,

whereas the double Lucas pseudoprimes are

209, 901, 989, 2701, 2911, 3007, 3439.

When P is even, we are always able to find an equivalent strong Pell test, providing all the same
pseudoprimes of the double Lucas test. Indeed, it is sufficient to choice D and a such that (a2 +
D)/(a2 − D) is the integer number P/2. For instance in this case, taking D = 3 and a = 3, we
have x̃ = 2 and ỹ = 1.

Remark 2. A double Lucas test with parameters P and Q = 1 is equivalent to the strong Pell test
with parameters D = P 2 − 4 and a = P + 2. Indeed, in this case, exploiting the parametrization
Φ, we get x̃ = P/2 and ỹ = 1/2. Note that using this method, the strong Pell test equivalent to
the double Lucas test considered in Example 1 has parameters D = 12 and a = 6. This means that
there are strong Pell tests with different parameters which are equivalent to each others.

We conclude observing that the double Lucas test for any value of P and Q can be described
in terms of the Barahmagupta product. The Pell equation can be introduced over a general ring
R considering the quotient ring A = R[t]/(t2 − D), for D ∈ R. The product of two elements
x1 + y1t, x2 + y2t ∈ A, i.e., (x1, y1), (x2, y2) ∈ A, coincide with the Brahmagupta product and
the elements of norm 1 define C. If we take (x1, y1) ∈ A with norm Q, considering (xn, yn) :=
(x1, y1)⊗n, we still have

Cn

(
1
0

)
=

(
xn
yn

)
and we can still use the matrices R1 and R2 for passing from L to C and viceversa, without any
restriction on the choice of Q. Hence the double Lucas test is connected with the Brahmagupta
product also for Q 6= 1. Hence, we define the generalized Pell pseudoprimes, for the parameters
D, x̃, ỹ, as the odd composite integers n such that

(x̃, ỹ)⊗n+1 ≡ (Q, 0) (mod n), if
D

n
= -1

(x̃, ỹ)⊗n−1 ≡ (1, 0) (mod n), if
D

n
= 1

.

3 Numerical experiments

In this section, we show the behaviour of some primality tests in terms of number of pseudoprimes
that pass them. In particular, we first focus on the classical Lucas test and we show how the use of
the double Lucas test decreases a lot of the number of composite integers that are stated primes.
Then, we see how the use of matrices introduced in the previous section allow the definition of
many new primality tests and we study them for some different values of the parameters. Similarly,
we also study the strong Pell test. In these experiments, we will see that the performances of the

5



Figure 1: Number of Lucas pseudoprimes up to 105 for different values of (P,Q).

above tests are very sensitive with respect to the values of the parameters. For this reason in
subsection 3.2 we study these tests setting the parameters by using methods à la Selfridge. In
facts, the Selfridge method was introduced for finding good values of the parameters of the Lucas
and strong Lucas tests, see [2] and observe that in OEIS the sequences of Lucas pseudoprimes
(A217120) and strong Lucas pseduoprimes (A217255) are defined by using the parameters P and
Q with the Selfridge method.

3.1 Tests with fixed parameters

The Lucas test depends on two parameters P and Q that determine the Lucas sequence (Uk)k≤0

used in equation (1) for testing the primality of an integer number. In Figure 3.1, we show the
number of Lucas pseudoprimes up to 105 for −3 ≤ P ≤ 3 and −3 ≤ Q ≤ 3, avoiding trivial choices
ot the parameters like, e.g., P = 1, Q = 1 or P = 2, Q = −1. For instance, we can see that
for P = −3, Q = −3 there are 45 Lucas pseudoprimes, for P = −3, Q = −2 there are 94 Lucas
pseudoprimes, and so on.

Similarly, the double Lucas test depends on the same two parameters P and Q, since the double
Lucas pseudoprimes are the odd composite integers n satisfying

Un−1 ≡ 0 (mod n) and Un ≡ 1 (mod n), if
D

n
= 1

Un+1 ≡ 0 (mod n) and Un+2 ≡ Q (mod n), if
D

n
= -1

.

In Figure 3.1, we can see how the double Lucas test decreases the number of pseudoprimes with
respect to the Lucas test. For instance, for P = −3 and Q = −3 there are only 2 double Lucas
pseudoprimes up to 105, against the 45 Lucas pseudoprimes; for P = −3 and Q = −2 there are
no double Lucas pseudoprimes (the first one is 220729 and the second one is 334153, no further
pseudoprimes are found up to 5 × 105), whereas we found 94 Lucas pseudoprimes. However, we
also have to observe that in some cases, the double Lucas test does not provide great improvements
in this sense, for example for P = −3 and Q = 1 we found 50 double Lucas pseudoprimes and 91
Lucas pseudoprimes; for P = −3 and Q = 2 we found the same number of pseudoprimes.

Thanks to Lemma 1, we are able to define primality tests based on linear recurrent sequences
of degree two, different from the Lucas sequences. Specifically, if we take the matrix(

P −Q
R 0

)

and consider the sequences (Ũk)k≥0 and (Ṽk)k≥0 defined by Mk

(
1
0

)
=

(
Ṽk
Ũk

)
, we deal with

6



Figure 2: Number of double Lucas pseudoprimes up to 105 for different values of (P,Q).

linear recurrent sequences with characteristic polynomial t2 − Pt + QR and initial conditions
Ũ0 = 0, Ũ1 = R and Ṽ0 = 1, Ṽ1 = P . Note that (Ṽk)k≥0 is the same sequence used in the double

Lucas test, whereas (Ũk)k≥0 is different due to the initial conditions. In this case the pseudoprimes
are the odd composite integers satisfying

Un−1 ≡ 0 (mod n) and Un ≡ 1 (mod n), if
D

n
= 1

Un+1 ≡ 0 (mod n) and Un+2 ≡ QR (mod n), if
D

n
= -1

. (2)

The corresponding primality test depends on the parameters P,Q,R. In Figure 3.1, we reported
the number of pseudoprimes up to 105 for different values of the parameters. In particular, we
used R = −3,−2,−1, 2, 3 (note that R = 1 corresponds to the double Lucas test) and random
values for P and Q between −9 and 9. We can observe that the results strongly depend on the
values of the parameters. For instance for R = −1, P = 1, Q = 2 we have no pseudoprimes up to
105 (the only psuedoprime up to 5× 105 is 226801), on the contrary for R = 2, P = 3, Q = 2 we
found 123 pseudoprimes.

Finally, we discuss the strong and generalized Pell pseudoprimes. As we have shown in the
previous section, they are connected to the double Lucas pseudoprimes. The strong Pell test with
parameters D and a is equivalent to the double Lucas test with parameters P = 2(a2+D)/(a2−D)
and Q = 1. The generalized Pell test depends on the parameters D, x̃, ỹ and there is not
an equivalent double Lucas test with fixed parameters P and Q. Thus, we only focus on some
numerical experiments regarding this test. In Figure 3.1, we show the number of generalized Pell
pseudoprimes up to 105 for −3 ≤ D ≤ 3 and x̃, ỹ randomly chosen between −9 and 9. Also in this
case, the performances are heavily affected by the choice of the parameters

7



Figure 3: Number of pseudoprimes up to 105 defined by (2) for different values of (P,Q,R).

Figure 4: Number of generalized Pell pseudoprimes up to 105 for different values of (x̃, ỹ, D).
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3.2 Tests with Selfridge method

In the previous section, we have seen that the performances of the studied primality tests are
heavily affected by the choice of the parameters. The Selfridge method is a standard way for
choosing the parameters of the Lucas test. Given the integer n to test, the parameters of the
Lucas test are chosen by the Selfridge method in the following way

• Set P = 1.

• Set D as the first integer in the sequence 5,−7, 9,−11, . . . such that

(
D

n

)
= −1.

• Set Q =
1−D

4
.

The sequence of Lucas pseudoprimes, using the Selfridge method, is

323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, 11419, 11663, 13919, 14839, . . .

see A217120 in OEIS. If we apply the Selfridge method for the choice of the parameters to the
double Lucas test, we find the following sequence of pseudoprimes

5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, . . .

which are the Frobenius pseudoprimes (A212423). Since the Selfridge method is a very standard
and useful techniques for choosing the parameters in these primality tests, here we adapt the
method to the new primality tests introduced previously. We will observe that the use of the
Selfridge method with the primality test defined by (2) and with the generalized Pell pseudoprimes
gives very interesting and powerful results. In the following we describe the adaptation of the
Selfridge method to these tests.

Given the integer n to test, for the primality test defined by (2), choose the parameters in the
following way:

• Set P = 1 and R = 2.

• Set D as the first integer in the sequence −7, 9,−15, 17,−23, 25,−31, 33 . . . such that

(
D

n

)
=

−1.

• Set Q =
1−D

8
.

Using this method for the choice of the parameters, we did not find any pseudoprime up to
107. Note that if we set R = ±1, we find the Frobenius pseudoprimes, thus we used R = 2 and we
modified the sequence where searching D in order to obtain an integer value for Q.

Given the integer n to test, for the generalized Pell test, choose the parameters in the following
way:

• Set x̃ = 3 and ỹ = 2.

• Set D as the first integer in the sequence 5,−7, 9,−11, . . . such that

(
D

n

)
= −1.

Using this method, we did not find any pseudoprime up to 1010.
In conclusion, the primality tests introduced in this paper, joint to the Selfridge method, appear

to be very promising in terms of finding good primality tests. Indeed, usually, in the Lucas test
and similar ones, there are small pseudoprimes (the first Lucas pseudoprime is 323 and the first
Frobenius pseudoprime is 5777), whereas, for the generalized Pell test, the first pseudoprime must
be greater than 1010. In future works, it should be interesting to find the first generalized Pell
pseudoprime, as well as investigating different choices for x̃ and ỹ. Moreover, it could be very
itneresting to find some theoretical results about the distribution of generalized Pell pseudoprimes.
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