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Abstract. We continue to consider the ordered lexicographic sequence, which is 

constructed according to the formal characteristics of a series of natural numbers.  

For analysis,  we selected balanced parentheses with zeros,  Motzkin words.  As 

you know, generating functions allow you to work with combinatorial objects by 

analytical methods.  Motzkin words are enumerated by Motzkin numbers, for the 

generation of which there is a corresponding generating function.  In our case,  

restrictions  are  imposed  on  Motzkin words,  for example, there  are  no leading  

zeros  in  bracket  sets.  The purpose of this article is to obtain the generating 

function of such modified Motzkin words.  

Keywords: Motzkin words, non-numerical sequence, lexicographic order, recur-

rence relation. 

A lexicographic series of ordered Motzkin words was introduced in  [Er19a, 

Er19b]. We continue to analyze this sequence. This paper describes a generating 

function that generates Motzkin difference numbers – ranges of a naturalized series. 

1 Introduction 

Interest in balanced parentheses is currently quite high. Note the articles [BP14, 

Fan19, GZ14], in which the authors consider the partial order in parentheses. For 

example, in [BP14] a specific distance is established between Motzkin words in the 

Tamari lattice.  

This article considers a naturalized non-numeric sequence, i.e. a sequence or-

ganized by formal attributes of a series of natural numbers. The total order allows 

us to introduce arithmetic, logical, and other operations for Motzkin words, up to 

derivatives and differential equations. As a result, we get a certain discrete ana-

logue of classical mathematical analysis, the rudiments of discrete calculus.  

The Motzkin word is assembled from three characters of the alphabet: zero, left 

(opening) parenthesis and right (closing) parenthesis. The Motzkin word can only 

include zeros. We will work with balanced parentheses in which a) the number of 

left and right parentheses is the same, and b) the number of left parentheses is not 

less than the number of right parentheses in every initial subword. The group of 

consecutive Motzkin words is the Motzkin word. 

mailto:ergenns@gmail.com
https://arxiv.org/abs/1911.01673
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http://jl.baril.u-bourgogne.fr/Motzkin.pdf
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Balanced parentheses of length n, n-words, are enumerated by Motzkin num-

bers, Mn. A sequence of Motzkin numbers A001006 is known [Slo20], in which 

the nth element, n ≥ 0, is equal to the number of Motzkin n-words. Here is the be-

ginning of the sequence A001006: 

(1.1)   1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, ... 

In (1.1), elements are indexed from zero, M0 = 1. Thus, a virtual empty word  of 

length 0, 0-word, is allowed. We know the recurrent relation for Motzkin numbers 

[Wei19]: 

(1.2)       M0 = 1,  Mn = Mn-1 +  ∑   
   
          ,  n ≥ 1. 

The Motzkin word of length n can start with either a left bracket or a zero 

(leading zero). Let's formulate a simple statement. 

Proposition 1.1. The number of Motzkin n-words, n ≥ 2, that begin with the lead-

ing zero, is Mn–1. 

Proof. If we add a leading zero to each Motzkin word of length n–1, n ≥ 2, we get 

Mn–1 Motzkin n-words. We can add a left (or right) parenthesis in front of the 

Motzkin (n–1)-word, but this will not be the Motzkin word due to the unbalance of 

parentheses.     □ 

Let's call balanced parentheses with leading zero inherited. The Motzkin words 

starting with the left bracket are called unique. The number of unique Motzkin n-

words will be denoted by Un. We will also consider unique a single word of length 

1, the Motzkin word “0”, so  U1 = 1.  An empty word cannot be unique,  therefore 

U0 = 0.  Based on (1.2),  we can write the Motzkin difference numbers as follows 

[Ber99]: 

(1.3)      U0 = 0, U1 = 1,  Un = Mn – Mn-1 =  ∑   
   
          ,  n ≥ 2. 

Many mathematicians consider zero to be a natural number. This suits us, be-

cause among the words there is an identical Motzkin 1-word. Based on the formal 

properties of natural numbers, as well as the order in the alphabet 0 < ( < ), we get 

the naturalized series of unique Motzkin words [Er19b]: 

𝔐 = {0,  ( ),  (0),  ( )0,  (00),  (0)0,  (( )),  ( )00,  ( )( ),  (000),  (00)0,  (0( )), …} 

Elements are indexed from zero and grouped by code length (initial words in 

ranges are highlighted in red):  𝔐1 = {0},  2 = {( )},  𝔐3 = {(0), ()0},  and so on. 

The power ranges are as follows:  #𝔐1 = U1 = 1,  #𝔐n = Un = Mn – Mn-1 , n > 1.  

We work with the real Motzkin words, therefore #𝔐0 = U0 = 0. The difference 

numbers Un for n = 0, 1, 2, ... form the sequence: 

http://oeis.org/A001006
http://mathworld.wolfram.com/MotzkinNumber.html
https://www.sciencedirect.com/science/article/pii/S0012365X99000540
https://arxiv.org/abs/1912.09693
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(1.4)   0, 1, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, …. 

In the next section, we calculate the generating function of the sequence (1.4), 

in other words, a formal power series whose coefficients are the difference num-

bers Un.  

2  The generating function for the Motzkin difference  

   numbers 

Generating functions allow you to work with combinatorial objects by analyti-

cal methods.  Often generating functions help to derive explicit formulas for the 

number of combinatorial objects [FS09, LM12, Lan03].  

2.1. In recent years, the symbolic method of constructing generating functions has 

been popular.  The feature of the symbolic method is the use of inference  rules for 

the language grammar.  

We will use a two-step procedure.  Let's start with the rules for deriving the 

Motzkin language. The Motzkin word is either 

– the empty word  of length 0, or 

– the word (a) b, where a and b are the Motzkin words, or 

– the word 0a, where a is the Motzkin word. 

The first two rules coincide the output rules of the Dyck language. Let M  be 

the set of all Motzkin words. Three rules correspond to the structural equation    

M  =   + (M
 

)M + 0M, 

where plus denotes the union of disjoint sets. Further, replacing the set M  by the 

generating function M (x), we get the functional equation [DS77]: 

(2.1)         M (x)  =  1 + x
2
M

 2
(x) + xM (x) 

          =  ∑ n ≥ 0 Mn x
n
  =  1 + x + 2x

2
 + 4x

3
 + 9x

4
 + 21x

5
 + 51x

6
 + … 

Note that in (2.1) the alphabet characters (, 0, and ) are replaced by x, and the 

empty word  corresponds to 1. An empty word is the only one, so the number of 

Motzkin words increases by exactly 1.  

When decomposing the generating function into a formal Taylor power series, 

we get Motzkin numbers, in other words, these numbers are generated by M (x). 

The solution for (2.1) is as follows [Wei19]: 

(2.2)   M (x)  =  
    √        

   
   =   

 

    √        
 ; 

http://algo.inria.fr/flajolet/Publications/book.pdf
https://lipn.univ-paris13.fr/~nicodeme/nablus14/nafiles/gentle.pdf
http://www.ams.org/books/stml/023/stml023-endmatter.pdf
https://www.sciencedirect.com/science/article/pii/0097316577900206
http://mathworld.wolfram.com/MotzkinNumber.html
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The latter expression is more convenient, because division by zero is eliminated (at 

the point x = 0). 

Let’s move on to the second stage, to our naturalized series 𝔐. We need to get 

a generating function for the difference numbers U0= 0, U1 = 1, and Un = Mn – Mn-1 , 

n > 1.  Recall that an empty word is not a unique Motzkin word, so U0= 0.  And 

this is logical, because we are building a sequence as close as possible to natural 

numbers,  and there is also no empty word of length 0 among natural numbers (for 

example, the smallest integer 0 is real and has a length of 1). 

In series 𝔐, there are no Motzkin words with leading (initial) zeros.  The only 

1-word "0" starts with zero. This single case resembles an empty Motzkin word 

(see the first rule in the Motzkin language), so it is logical to formulate a similar 

rule for unique Motzkin words. Other unique words begin with the left parenthesis, 

so it’s enough to repeat the second rule of Motzkin language.  

Thus, in the second stage, we formulate two additional rules: the unique 

Motzkin word is either 

– the word “0”,  or  

– the word (a) b, where a and b are ordinary Motzkin words.  

As a result, we obtain a structural equation for the set of unique Motzkin words   

𝔐 = ‘0’ + (M
 

) M . 

Then the generating function for the Motzkin difference numbers takes the form   

(2.3)  Nat (x) = x + x
2
M

 2
(x),  

where M (x) is the generating function of ordinary Motzkin words.  We again re-

placed the alphabet symbols (, 0, and ) with x. 

2.2. The required generating function (2.3) has been obtained,  and we could pro-

ceed to the calculations. But as it often happens, there is a desire to check at first 

glance an unusual and somewhat strange symbolic method of constructing generat-

ing functions. In this case, it is not difficult to get a duplicate of (2.3) in the tradi-

tional way. Let's use the formula (1.3) 

Nat (x) =  ∑ n ≥ 0 Un x
 n  =  U0 + U1 x + ∑ n ≥ 2 (Mn – Mn-1) x

 n   

     =  x + ∑ n ≥ 2 Mn x
 n – ∑ n ≥ 2 Mn-1 x

 n
 ; 

x + ∑ n ≥ 2 Mn x
 n  = x + M0 + M1 x + ∑ n ≥ 2 Mn x

 n  – M0 – M1 x   

          = x + ∑ n ≥ 0 Mn x
 n  – 1 – x  =  M (x) – 1; 

∑ n ≥ 2 Mn-1 x
 n

  = x ∑ n ≥ 2 Mn-1 x
 n–1

  =  x (M1 x + M2 x
2
 + … + M0 – M0)  

      = x (M (x) – 1). 
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As a result, we get   

(2.4)  Nat (x)  = M (x) – 1 – x (M (x) – 1) = x – 1 + (1– x) M (x).   

At first glance, the formulas (2.3) and (2.4) differ, but this is not so. It is enough to 

go back to (2.1) and get the obvious identity 

x – 1 + M (x) – xM (x)  =  x + x
2
M

 2
(x). 

2.3. In future calculations, we will use both formulas (2.3) and (2.4). After substi-

tution (2.2) we get  

(2.5)   Nat (x) =  x + x
2
 (

 

    √        
)
 
 =  x – 1 +  

      

    √        
  

            =  ∑ n ≥ 0 Un x
 n  = 0 + x + x

2
 + 2x

3
 + 5x

4
 + 12x

5
 + 30x

6
 + 76x

6
 + … 

From the first sum (two terms with squares), we obtain the initial coefficients 

U0= Nat (0) / 0! = 0 / 1 = 0,   U1= Nat' (0) / 1! = 1/ 1 = 1. 

The second option (the fraction without squares, three terms) is convenient for 

further calculations. Here it is enough to consider only the last term (the beginning 

of  x –1 is reset after the second derivative). Let's consider a small algorithm. 

Algorithm 2.1.  Let’s denote:  s  = 1–2x–3x
2
,  t = s ' / 2 = –1–3x,  √ = √ ,  √√ = s, 

√' = s ' /2√ = (–1–3x) /√ 
= t /√.  Obviously,  √√' = t.  Write the fraction as  

U/V  =  (2–2x)
 
/ (1 – x + √ )  =  (a + b √ ) / (с + d √), 

with initial polynomial values:  a = 2 – 2x,   b = 0,   с = 1 – x
 
,   d = 1.   

Then we calculate the first derivative  (U/V)' = (U' V – UV') / V
 2 

: 

U' V  =  V(a + b√)' =  Va' + Vb' √ + Vb√'  =  (с + d √ )a' + (с + d √ )b' √ + (с + d √ )b√'    

          = (a'c + b'ds + bdt) + (a'd + b'c)√ + bct √ 
–1 

; 

UV'   =  U(c + d √)' =  Uc' + Ud' √ + Ud√'  =  (a + b√)c' + (a + b√)d' √ + (a + b√ )d√'    

          = (ac' + bd's + bdt)  + (bc' + ad' ) √  + ad t √ 
–1 

; 

V 2 
 =  c

2
 + d 

2√√ + 2cd √  =  c
2
 + d 

2
s + 2cd √ . 

As a result, we get a new fraction  (U/V)' = (A + B √ ) / (С + D √),   where  

A =  (a'd + b'c – bc' – ad' ) s  + (bc– ad) t ;  B =  a'c – ac'  + (b'd  – bd' )s ;    

C =  2cds ;    D  =  c
2
 + d 

2
s. 

It remains for us to organize a cycle, i.e. repeat the calculations after updating the 

polynomials. In General, on the k-th pass of the cycle, k > 1, we get the coefficient: 

Uk  =  Nat
 (k)

 (0) / k!  =  (A| x = 0 + B| x = 0) / ((C| x = 0 + D| x = 0) k!) .    □ 
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The JScript program is available to the reader; you can check the calculations 

using the link  https://eremin.000webhostapp.com/arxiv/gener-fun.html.  

The usual bit grid of a computer allows you to get up to U12 = 9713. 

Acknowledgements. I would like to thank Sergey Kirgizov (LIB, Univ. Bour-

gogne Franche-Comté, France) for his help in calculating the generating functions.  
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