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ABSTRACT In this work, we present an optimal mapper for OFDM with index modulation (OFDM-IM).
By optimal we mean the mapper achieves the lowest possible asymptotic computational complexity (CC)
when the spectral efficiency (SE) gain over OFDM maximizes. We propose the spectro-computational (SC)
analysis to capture the trade-off between CC and SE and to demonstrate that an N -subcarrier OFDM-IM
mapper must run in exact Θ(N) time complexity. We show that an OFDM-IM mapper running faster than
such complexity cannot reach the maximal SE whereas one running slower nullifies the mapping throughput
for arbitrarily largeN . We demonstrate our theoretical findings by implementing an open-source library that
supports all DSP steps to map/demap an N -subcarrier complex frequency-domain OFDM-IM symbol. Our
implementation supports different index selector algorithms and is the first to enable the SE maximization
while preserving the same time and space asymptotic complexities of the classic OFDM mapper.

INDEX TERMS Computational Complexity, Index Modulation, OFDM, Signal mapping, Software-
defined radio, Spectral Efficiency.

I. INTRODUCTION

INdex Modulation (IM) is a physical layer technique that
can improve the spectral efficiency (SE) of OFDM. IM’s

basic idea for OFDM [1], [2] consists in activating k ∈ [1, N ]
out of N subcarriers of the symbol to enable extra

(
N
k

)
=

N !/(k!(N − k)!) waveforms. Of these, OFDM-IM employs
2blog2 C(N,k)c to map P1 = blog2

(
N
k

)
c bits. Besides, mod-

ulating the k active subcarriers with an M -ary constellation,
the OFDM-IM symbol can transmit more P2 = log2M bits
along with P1. Thus, the OFDM-IM mapper takes a total of
m = P1 + P2 bits as input and gives k complex baseband
samples as output for the modulation of the k subcarriers.
In this process, the index selector (IxS) determines the k-
size list of indexes – out of 2P1 possibles – from the P1-bit
input. The remainder N − k subcarriers are nullified. The
other DSP steps follow as usual in OFDM, except for the
signal detector at the receiver. In this sense, several research
efforts have been done to improve the receiver’s bit error rate

at low computational complexity [3]–[7]. Since our focus is
on the OFDM-IM mapper, we refer the reader to the survey
works [8]–[11] for other aspects of the index modulation
technique.

A. PROBLEM

In this work, we concern about whether the OFDM-IM
mapper can reach the maximal SE gain over its OFDM coun-
terpart keeping the same computational complexity (CC)
asymptotic constraints. The SE maximization of OFDM-IM
over OFDM happens when the IM technique is applied on all
N subcarriers of the symbol with k = N/2 and the active
subcarriers are BPSK-modulated, i.e., M = 2 [12], [13]. We
refer to this setup as the optimal OFDM-IM configuration.

The computational complexity of the OFDM-IM mapper
under the optimal SE configuration has been conjectured
as an “impossible task” [9], [14]. This belief comes from
the fact that the number of mappable OFDM-IM waveforms

VOLUME xx, 2020 1

ar
X

iv
:2

00
2.

09
38

2v
2 

 [
ee

ss
.S

P]
  3

 A
pr

 2
02

0



Saulo Queiroz et al.: Optimal Mapper for OFDM with Index Modulation: A Spectro-Computational Analysis

NOTATION
ci: Index of the i-th active subcarrier in the symbol
g: Number of subblocks per symbol
k: Number of active subcarriers
m: Total number of bits per symbol

m(N): Asymptotic number of bits per symbol as function of N
n: Number of subcarriers per subblock
p: Total number of bits per subblock
p1: Number of index modulation bits per subblock
p2: Number of bits per active subcarriers in a subblock
δ: Half-width of the confidence interval
x: Number of samples of the steady-state mean
s: List of baseband samples per symbol

sβ : List of baseband samples in the β-th subblock
AN,k: N × k Johnson association scheme

I: List of active subcarrier indexes per symbol
Iβ : List of active subcarrier indexes in the β-th subblock
N : Number of subcarriers per symbol
M : Constellation size of the modulation diagram
P1: Number of index modulation bits per symbol
P2: Number of bits per active subcarriers in a symbol
X: Decimal representation of the P1-bit mapper input

T (N): (De)Mapper computational complexity as function of N
m(N)/T (N): (De)Mapper spectro-computational throughput(N

k

)
: N !/(k!(N − k)!)
κ: Wall-clock runtime of a computational instruction

o(f): Order of growth asymptotically smaller than f
ω(f): Order of growth asymptotically larger than f
O(f): Order of growth asymptotically equal or smaller than f
Ω(f): Order of growth asymptotically equal or larger than f
Θ(f): Order of growth asymptotically equal to f
ZT : Transpose of the matrix Z

grows as fast as O(
(
N
k

)
), which becomes exponential if the

optimal SE configuration is allowed. Indeed, according to
the theory of computation, a problem of size N is com-
putationally intractable if its time complexity lower bound
is Ω(2N ). Despite that, as far as we know, the CC lower
bound required to sustain the maximal SE gain of OFDM-IM
remains an open question across the literature. Consequently,
no prior work can answer whether the OFDM-IM mapper
indeed needs more asymptotic computational resources than
its OFDM counterpart to sustain the maximal SE gain.

B. RELATED WORK
In this subsection, we review the literature related to the
design and computational complexity of the OFDM-IM map-
per.

1) Early Attempt
The earliest mapper for OFDM-IM we find is due to [1].
The authors suggest a Look-Up Table (LUT) to map P1 bits
into one out of 2P1 unique waveforms for relatively small
P1. To avoid the exponential increase in storage implied by
the optimal SE configuration, the authors employ a Johnson
association scheme [15] to map P1 based on the recursive
matrix AN,k = [[1 0]T [AN−1,k−1 AN−1,k]T ], in which ZT

is the transpose of a given matrix Z. Those authors remark
that the matrix indexes decrease linearly with N towards
the base case of recursion. However, we remark that the
overall CC to write all rows of AN,k is exponential under
the optimal SE configuration. To verify that, consider firstly
that AN,k can be lower-bounded by Ak,k, since k ≤ N . To

build Ak,k, one needs at least two computational instructions
to write the numbers 1 and 0 and two other independent
and distinct recursive calls Ak−1,k−1 and Ak−1,k. In the
worst-case analysis, the number of computational steps T to
write all entries of Ak,k can be captured by the recurrence
T (k) = 2 + 2T (k − 1), which is trivially verified as Ω(2k).
Under the optimal SE setup, the proposed recursive scheme
is Ω(2N ).

2) Sub-block Partitioning
To handle the OFDM-IM mapping overhead, Basar et al. [2],
[7] propose the subblock partitioning (SP) approach. Accord-
ing to the survey work of [9], SP and the IxS algorithm
presented by [2], [7] were (along with a low complexity
detector) the distinctive methods responsible to release the
true potential of the IM scheme, thereby shaping the family of
index modulation waveforms as we know today. The key idea
of SP is to attenuate the mapper CC by restricting the appli-
cation of the IM technique to smaller portions of the symbol
called “subblocks”. The length n = bN/gc of each subblock
depends on the number g of subblocks, which is a config-
uration parameter of OFDM-IM. Increasing g, decreases n,
which causes the complexity of the IxS algorithm to decrease
too. This way, SP introduces a trade-off between SE and
CC, since the number of OFDM-IM waveforms increases for
lower g [2], [7]. Thus, setting g = 1 (i.e., deactivating SP)
means maximizing the SE efficiency. SP has represented the
state of the art approach to balance SE and CC across the
family of IM-based multi-carrier waveforms [8], [9], [12]–
[14], [16]–[31].

3) (Un)Ranking Algorithms
The IxS algorithm is a mandatory part for the asymptotic
analysis of the OFDM-IM mapper. As observed by authors
in [2], [7], the IxS task at the OFDM-IM transmitter (re-
ceiver) can be implemented as an unranking (ranking) al-
gorithm. By reviewing the literature in combinatorics, one
can find out several different (un)ranking algorithms, running
at different time complexities [32]–[40]. At a first glance,
building the optimal OFDM-IM mapper may just be a matter
of adopting the IxS algorithm that establishes the complexity
upper-bound for the (un)ranking problem, i.e., the fastest
currently known algorithm. However, in the particular do-
main of OFDM-IM, k represents a trade-off between SE
and CC. Thus, because the literature in pure combinatorics
does not concern about SE as a performance indicator, it
does not suffice to guide the design of an optimal OFDM-
IM mapper. Therefore, to the best of our knowledge, no prior
analysis concerns about the OFDM-IM mapper complexity
minimization under the constraint of the SE maximization.

4) Novel SP-Free OFDM-IM Mappers
In [41], the authors propose the concept of sparsely index-
ing modulation to improve the trade-off between SE and
energy efficiency of OFDM-IM. Because this concept im-
poses k to be much less than N , the authors rely on [37]
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to perform IxS in O(k logN) time. With the achieved
time complexity reduction, the authors present the first SP-
free OFDM-IM mapper. However, the constraint on the
value of k prevents the SE maximization. To identify
the largest tolerable computational complexity to support
the maximal SE, in a prior work [42] we present the
spectro-computational efficiency (SCE) analysis. We define
the SC throughput of an N -subcarrier mapper as the ra-
tio m(N)/T (N) (in bits per computational instructions1),
where T (N) is the mapper’s asymptotic complexity to map
m(N) bits into an N -subcarrier complex OFDM symbol.
From this, the largest computational complexity T (N) must
satisfy limN→∞m(N)/T (N) > 0, i.e., the SC throughput
must not nullify as the system is assigned an arbitrarily
large amount of spectrum. Based on that, in [43] we present
the first mapper that supports all 2blog2 ( N

N/2)c waveforms of
OFDM-IM in the same asymptotic time of the classic OFDM
mapper. However, that proposed mapper still requires an
extra space of Θ(N2) look-up table entries in comparison
to the classic OFDM mapper.

C. OUR CONTRIBUTION
In this work, we build upon [42] and [43] to demonstrate
the first asymptotically optimal OFDM-IM mapper. By op-
timal, we mean our mapper enables all 2blog2 ( N

N/2)c wave-
forms of OFDM-IM under the same asymptotic time and
space complexities of the classic OFDM mapper. Thus, we
enhance our prior work [43] by reducing the space com-
plexity of the mapper from Θ(N2) to Θ(N). Besides, we
enhance the upper-bound analysis of [42] by also showing
the corresponding asymptotic lower-bounds that holds for
any OFDM-IM implementation. In summary, we achieve the
following contributions:
• We derive the general OFDM-IM mapper lower-bound

Ω(k log2M + log2

(
N
k

)
+ k) and show it becomes the

same of the classic OFDM mapper under the optimal
configuration (i.e., g = 1, k = N/2, M = 2). This
formally proves that enabling all OFDM-IM waveforms
is not computationally intractable, as previously conjec-
tured [9], [14];

• Based on the upper and lower bound we identify, we
show that the optimal OFDM-IM mapper must run in
exact Θ(N) asymptotic complexity. An implementation
running above this complexity (i.e. T (N) = ω(N)) nul-
lifies the SC throughput for arbitrarily large N , whereas
one running below that (i.e., T (N) = o(N)) prevents
the SE maximization;

• We present the first worst-case computational complex-
ity analysis of the original OFDM-IM (de)mapper when
the maximal SE is allowed. In this context, we show that
the OFDM-IM mapper/demapper runs in O(N2) and
becomes more complex than the Inverse Discrete fast
Fourier Transform (IDFT)/DFT algorithm;

1or seconds, given the time each instruction takes in a particular compu-
tational apparatus e.g. FPGA, ASIC.

• We present an OFDM-IM mapper that runs in Θ(N)
time;

• We implement an open-source library that supports
all steps to map/demap an N -subcarrier complex
frequency-domain OFDM-IM symbol. In our library,
the IxS block is implemented with C++ callbacks to
enable flexible addition of other unranking/ranking al-
gorithms in the mapper. This facilitates the enhance-
ment of currently supported algorithms to consider as-
pects not studied in this work, e.g. equiprobable IM
waveforms [44], Hamming distance minimization [16].
Based on our theoretical findings, our OFDM-IM map-
per library is the first implementation that enables the
OFDM-IM SE maximization while consuming the same
time and space asymptotic complexities of the classic
OFDM mapper.

D. ORGANIZATION OF WORK
The remainder of this work is organized as follows. In
Section II, we present the system model and the assumptions
of our work. In Section III, we present the computational
complexity scaling laws of the OFDM-IM mapper, namely,
the lower and upper CC bounds under maximal SE. In Sec-
tion IV, we analyze the throughput of the original OFDM-IM
mapper. Because such analysis requires the IxS complexity,
in that section we also analyze the CC of the original IxS
algorithm and show how to achieve the lowest possible CC
under the maximal SE. In Section V, we present a practical
case study to validate our theoretical findings. Finally, in
Section VI, we conclude our work and point future directions.

II. SYSTEM MODEL AND ASSUMPTIONS
In this section, we review the OFDM-IM mapper (subsec-
tion II-A) and present its required design for SE maxi-
mization (subsection II-B). In subsection II-C, we present
the assumptions to determine the lower and upper bound
complexities for the OFDM-IM mapper.

A. OFDM-IM BACKGROUND
The SP mapping approach [2], [7] is responsible for the main
changes OFDM-IM causes to the classic OFDM transmitter
block diagram (as illustrated in Fig. 1a). SP is characterized
by the configuration parameter g ≥ 1, which stands for
the number of subblocks within the N -subcarrier OFDM-IM
symbol. Each subblock has n = bN/gc subcarriers out of
which k must be active. Considering an M -point modulator
for the active subcarriers, each subblock maps p = p1 +p2 =
k log2M + blog2

(
n
k

)
c bits and the entire symbol has gp bits.

The IxS algorithm of the β-th subblock (β = 1, . . . , g) is
fed with p1 = blog2

(
n
k

)
c bits and outputs vector Iβ , the

k-size vector containing the indexes of the subcarriers that
must be active in the β-th subblock. To modulate the k active
subcarriers, the “M -ary modulator” step takes the remainder
p2 = k log2M bits as input and outputs the vector sβ ,
which consists of k complex baseband signals taken from
an M constellation diagram. Then, each subblock forwards
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(a) OFDM-IM Waveform.
(b) Optimal Mapper: k = N/2 and g = 1.

FIGURE 1: The OFDM-IM block diagram (Fig. 1a) mitigates the mapping computational complexity by subdividing the symbol into g
small subblocks. To maxizimize the spectral efficiency (SE) gain over OFDM, the mapper has to set g = 1 and k = N/2 (Fig. 1b). We prove
such optimal mapper can be implemented under the same time and space asymptotic complexities of the classic OFDM mapper.

2k values (i.e., |sβ | + |Iβ | ) to the “OFDM block creator”,
which refers to sβ and Iβ to modulate the k active subcarriers
in each subblock and build the full N -subcarrier frequency
domain OFDM-IM symbol. The remaining steps proceed as
usual in OFDM [45].

B. OPTIMAL OFDM-IM MAPPER DESIGN
A requisite to maximize the OFDM-IM SE is to deactivate

SP (i.e., set g to 1) and k to N/2 [7]. In theory, achieving the
maximal SE is just a matter of setting OFDM-IM with the
proper parameters. Indeed, by setting g to 1 (i.e., deactivating
SP) and k to N/2, the resulting mapper (Fig. 1b) enables all
2P1 waveforms of OFDM-IM [7]. However, the authors of
the original OFDM-IM waveform recommend avoiding the
ideal setup because of the resulting computational complex-
ity (compared with the classic OFDM mapper). In fact, by
looking at Fig. 1b, one may observe that the ideal OFDM-
IM mapper can be seen as a classic OFDM mapper with
the addition of the IxS step. Because of this extra-step,
the optimal OFDM-IM mapper requires more computational
steps than its OFDM counterpart. However, our rationale is
that, if one can design an OFDM-IM mapper under the same
asymptotic computational complexity of the classic OFDM
mapper, then the extra computational operations required by
the OFDM-IM mapper (compared to OFDM’s) are bounded
by a constant even for arbitrarily large N . Since the IxS
complexity is not affected by M , without loss of generality,
in this work we adopt M = 2 to achieve the largest gain in
comparison to the OFDM counterpart [12], [13]. We refer to
this as the optimal OFDM-IM setup.

C. ASYMPTOTIC ANALYSIS OF MULTICARRIER
MAPPERS
We study the scaling laws of the OFDM-IM mapper as a

function of the number N of subcarriers. In particular, for
an N -subcarrier OFDM-IM symbol, we study the number
m(N) of bits per symbol and the mapper’s computational
complexity T (N) to map these bits intoN complex baseband
samples. We concern about the minimum and maximum

asymptotic number of computational instructions required
by any OFDM-IM mapper implementation. For this end, we
employ the asymptotic notation as usual in the analysis of
algorithms [46]. Our asymptotic analysis assumes the classic
Random-Access Machine (RAM) model which is shown to
be equivalent to the universal Turing machine [47]. The
RAM model focus on counting the amount of basic compu-
tational instructions (e.g., data reading, data writing, basic
arithmetic, data comparison) regardless of the technology of
the underlying computational apparatus. For example, based
on the RAM model, one verifies that a classic N -subcarrier
BPSK-modulated OFDM mapper needs to perform N basic
computational instructions of data reading, each as wide as
log2 2 bits. This imposes a minimum of Ω(N) basic reading
operations, regardless of a serial or parallel implementation.
Of course, performing these instructions in parallel yields
more efficient runtime than performing them on a single
processor. Anyway, the resources consumed by the parallel
solution must scale on the derived computational complexity.
Besides, for each reading, N independent baseband samples
must feed N variables in the input of the IDFT DSP block,
demanding a minimum space of Ω(N) complex variables.

III. INDEX MODULATION MAPPING COMPLEXITY
BOUNDS
In this section, we derive the CC lower and upper bounds for
an OFDM-IM mapper implementation through asymptotic
analysis as a function of the number of subcarriers N .

A. OFDM-IM MAPPING TIME COMPLEXITY LOWER
BOUND

To derive the general asymptotic lower bound for any
OFDM-IM implementation, we refer to Fig. 1b. Recall we
are considering an SP-free mapper design (i.e., g = 1) to
enable the IM principle on the entire N -subcarrier OFDM-
IM symbol. In this case, the lower bound is readily derived
by observing that any implementation needs at least m basic
computational steps to read the binary input to be mapped.
Also, O(k) basic computational steps are required to write
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the baseband samples in the mapper’s output. Based on this,
in Lemma 1 we derive the general CC lower bound for any
OFDM-IM mapper implementation.

Lemma 1 (OFDM-IM Mapper General CC Lower Bound).
The minimum number of computational steps of any OFDM-
IM mapper implementation is Ω(k log2M+blog2

(
N
k

)
c+k).

Proof. In the optimal OFDM-IM mapper, g = 1. Thus,
the minimum number of computational steps to read the
input is m = P1 + P2 = blog2

(
N
k

)
c + k log2M . Fur-

ther, the OFDM-IM mapper must feed the “OFDM block
creator” DSP step with the vectors of the active subcarriers
indexes Iβ and their corresponding baseband samples sβ
(β = 1, . . . , g). Since the optimal mapper requires g = 1,
there is only a single k-size vector I1 and another k-size
vector s1, yielding to the total output size of 2k = O(k).
Thus, any OFDM-IM mapper implementation must write at
least O(k) units of data in its output. Therefore, because of
the computational effort to read (input) and write (output)
units of data, any OFDM-IM mapper solution will demand at
least Ω(k log2M+blog2

(
N
k

)
c+k) computational steps.

When the optimal OFDM-IM setup is allowed, the general
asymptotic lower bound of Lemma 1 becomes Ω(N) (Corol-
lary 1). This stems from the fact that the number of index
modulated bits P1 approaches N − log2

√
N as N → ∞

(Lemma 2). Therefore, although the number of waveforms
of the optimal OFDM-IM setup grows exponentially on N ,
the CC of the IM mapping problem is not intractable (i.e.,
Ω(2N )) as previously conjectured [9], [14].

Lemma 2 (Maximum Number P1 of Index Modulation Bits).
The maximum number of index modulated bitsP1 approaches
N − log2

√
N for arbitrarily large N .

Proof. By definition, P1 = blog2

(
N
k

)
c. If the maximum SE

gain of OFDM-IM over OFDM is allowed,
(
N
k

)
becomes

the so-called central binomial coefficient
(
N
N/2

)
, whose well-

known asymptotic growth is O(2N/
√
N) [48]. From this,

it follows that P1 approaches log2(2NN−0.5) = N −
log2

√
N = O(N) as N →∞.

Corollary 1 (OFDM-IM Mapper CC Lower Bound under
Maximal Spectral Efficiency). Under the optimal spectral
efficiency setup, the general mapping CC lower bound of
OFDM-IM (Lemma 1) becomes Ω(N + P1), which is the
same of OFDM, i.e., Ω(N).

Proof. Since P1 approaches N − log2

√
N = O(N) for

arbitrarily largeN (Lemma 2), the general asymptotic lower-
bound Ω(N + P1) becomes Ω(N), which is the minimum
asymptotic number of computational steps performed by the
classic OFDM mapper.

Lemma 1 and Corollary 1 imply that it is not possible
to implement an OFDM-IM mapper with less than Ω(N)
computational steps without sacrificing the SE optimality
(Corollary 2). The corollary 2 states that any OFDM-IM

mapper running in sub-linear complexity, i.e., k = o(N)
(which excludes the ideal k = N/2), prevents the maximal
SE gain over OFDM. However, sub-optimal SE setups can
be useful for sparse OFDM-IM systems, in which one gives
up the maximal throughput on behalf of energy consumption
minimization [41].

Corollary 2 (OFDM-IM Mapper Spectro-Computational
Lower-Bound Trade-Off). No OFDM-IM mapper imple-
mentation can maximize the spectral efficiency (SE) gain over
OFDM while running in o(N) computational steps.

Proof. The asymptotic number of steps of any OFDM-
IM mapper is subject to the general lower bound of
Ω(k log2M+blog2

(
N
k

)
c+k) (Lemma 1). Thus, the only way

to improve that bound consists of changing the OFDM-IM
configuration parameters M and k. Out of all possible values
ofM and k, the maximum SE gain of OFDM-IM over OFDM
is achieved only when M = 2 and k = N/2 [12], [13]. Also,
under such optimal SE configuration, the general CC lower
bound becomes Ω(N) (Corollary 1). Therefore, an OFDM-
IM implementation cannot run bellow this bound (i.e., in sub-
linear time) unless a non-optimal SE configuration is adopted
for k.

B. OFDM-IM MAPPING TIME COMPLEXITY UPPER
BOUND
The CC upper bound of a problem is usually defined as
the complexity of the fastest currently known algorithm that
solves it [49]. This definition does not suffice to our study
because our asymptotic analysis is further constrained by the
SE maximization. In fact, if the fastest known algorithm does
not suffice to avoid an increasing bottleneck in the mapping
throughput as N grows, then its complexity cannot be con-
sidered suitable to scale the mapper throughput on N . From
this, we define the spectro-computational mapper throughput
(Def. 1) and, based on its condition of scalability (Def. 2), we
derive the required computational complexity upper bound
for any OFDM-IM mapper implementation (Lemma 3).

Definition 1 (The Spectro-Computational (SC) Throughput).
Let T (N) be the computational complexity (CC) to map
m(N) input bits into an N -subcarrier OFDM-IM symbol.
We define m(N)/T (N) in bits per computational steps (or
seconds), as the spectro-computational (SC) throughput of
the mapper.

Definition 2 (Spectro-Computational Throughput Scalabil-
ity). The SC throughput m(N)/T (N) of a mapper is not
scalable unless the inequality (1) does hold.

lim
N→∞

m(N)

T (N)
> 0 (1)

As a side note about our Def. 2, we call attention to the
fact that it consists of the asymptotic analysis. As such, “time
complexity” means “amount of computational instructions”
which can be translated to (but does not necessarily mean)
wall clock runtime. That said, we recognize that a radio
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implementation that does not meet our Def. 2 can achieve the
same wall clock runtime of another one that does. However,
in this case, the CC T (N) will translate into other relevant
radio’s design performance indicators. For example, suppose
that the largest complexity T (N) to satisfy our Def. 2 in a
particular DSP study is O(N). A design that violates such a
requirement by employing a more complex algorithm, let us
say O(N2), can still reach the same wall clock runtime of a
design that does not. However, since the overall number of
performed computational instructions depends on the algo-
rithm’s CC rather than the hardware technology, the average
wall clock time to run a single computational instruction must
be (much) lower in the O(N2) solution in comparison to
the O(N) counterpart. This pushes the algorithm’s CC to
the hardware design rather than to the wall clock runtime.
Therefore, the SC throughput of a radio design that violates
our Def. 2 can scale with N but at the expense of impairing
other relevant design performance indicators, such as the
number of hardware components (e.g., logic gates), circuit
area, energy consumption and manufacturing cost [50].

C. REQUIRED COMPLEXITY FOR MAXIMAL SE
Based on Def. 2, in Lemma 3 we show that the upper
bound complexity any OFDM-IM mapper implementation
must meet to ensure the optimal SE configuration is O(N).

Lemma 3 (OFDM-IM Mapper Upper Bound under Optimal
SE Configuration). Under the optimal SE configuration, the
OFDM-IM mapper CC must be upper bounded by O(N).

Proof. To meet the inequality 1 of Def. 2, T (N) must
be asymptotically less or equal than m(N), i.e., T (N) =
O(m(N)) = O(P1 + P2). Under the optimal SE config-
uration, k = N/2 and P1 = log2

(
N
N/2

)
= O(N) bits

(Lemma 2). Therefore, T (N) must be O(N).

Based on the fact that the required OFDM-IM mapper
upper bound complexity matches its lower bound order of
growth in the optimal SE configuration, Theorem 1 tells us
that the OFDM-IM mapper must run in Θ(N) time. A so-
lution requiring more asymptotic steps (i.e., ω(N)) nullifies
the mapper throughput as N grows, whereas one requiring
fewer steps (i.e., o(N)) prevents the SE gain maximization
(Corollary 2).

Theorem 1 (Required OFDM-IM Mapping Complexity).
If the configuration that maximizes the OFDM-IM spectral
efficiency gain over OFDM is allowed (i.e., g = 1, k = N/2,
M = 2), the OFDM-IM mapper block of [2], [7] must run in
Θ(N) computational steps.

Proof. Corollaries 1 and 2 show that any OFDM-IM mapper
implementation running with less than Ω(N) computational
steps cannot achieve the optimal SE gain over OFDM. In
turn, Lemma 3 tells us that the mapper throughput nullifies
for arbitrarily large N if its complexity requires more than
O(N) steps. Therefore, the exact asymptotic number of com-

putational steps for any OFDM-IM mapper implementation
under the optimal SE configuration must be Θ(N).

IV. THROUGHPUT ANALYSIS
Our theoretical findings summarized in Theorem 1, disclose
the conditions for the computational feasibility of the optimal
OFDM-IM mapper. The theorem requires exactly Θ(N)
steps for the mapper. Since the M -ary LUT block of the
OFDM-IM mapper (Fig. 1b) already runs in N/2 = O(N)
computational steps, to meet the theorem we just need to
demonstrate the IxS block can be implemented with Θ(N)
computational steps.

By relying on the literature in combinatorics, one can
achieve (un)ranking complexities faster than the Θ(N) time
required by our Theorem 1 e.g., [32], [33]. Such a per-
formance, however, demands k = o(N). Translated to
the OFDM-IM domain, this means such algorithms prevent
the SE maximization (Corollary 2). We identify that the
original OFDM-IM mapper (and its variants) refer to the
(un)ranking algorithm named “Combinadic” [34], [40]2. In
Subsection IV-A, we analyze the OFDM-IM SCE having
Combinadic as the IxS block. We show that the Combinadic
algorithm not only prevents the mapper to meet our Theo-
rem 1 but also surpasses the O(N log2N) complexity of the
IDFT DSP algorithm. In Subsection IV-B, we propose an
optimal OFDM-IM mapper by adapting Combinadic to run
in linear rather than quadratic complexity.

A. OFDM-IM MAPPER WITH COMBINADIC
We start this subsection by explaining how the Combinadic

algorithm works. Then, we analyze its CC when the optimal
SE configuration of OFDM-IM is allowed. Based on that, we
conduct the spectro-computational analysis of the OFDM-IM
mapper.

1) Combinadic Terminology
The Combinadic algorithm relies on the fact that each deci-
mal numberX in the integer range [0,

(
N
k

)
−1] has an unique

representation (ck, · · · , c2, c1) in the combinatorial number
system [52] (Eq. 2). For OFDM-IM, X represents the P1-
bit input (in base-10) and the coefficients ck > · · · > c2 >
c1 ≥ 0 represent the indexes of the k subcarriers that must be
active in the subblock.

X =

(
ck
k

)
+ · · ·+

(
c2
2

)
+

(
c1
1

)
(2)

Combinadic may refer to two distinct tasks, namely, un-
ranking and ranking. The Combinadic unranking (shown in
Alg. 1) consists in computing the array of coefficients ci,
i ∈ [1, k], of Eq. (2) from the input X (along with N and
k). The Combinadic unranking takes place in the IxS of the
OFDM-IM transmitter. The reverse process, i.e., computing
X given all k coefficients ci, i ∈ [1, k], is known as ranking
and is performed by the IxS of the OFDM-IM receiver
(Alg. 2).

2In [51], the author points a fix to the algorithm of [40].
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2) Combinadic Unranking Functioning
The Combinadic unranking is shown in Alg. 1. It takes
N , k and X as input parameters and outputs the array ci,
i ∈ [1, k] such that X =

∑k
i=1

(
ci
i

)
(Eq. 2). The candidate

values for the coefficients ci considered by the algorithm
are 0, 1, · · · , N − 1, which represent the indexes of the N
subcarriers. The coefficients are determined from ck until c1
and the variable cc (line 3) stores the next candidate value for
the current coefficient being computed. The first coefficient
to be computed is ck and its first candidate is N − 1. This is
the value of cc in the very first execution of line 6. For every
candidate value cc, the corresponding binomial coefficient(
cc
i

)
is computed and stored in the variable ccBinCoef

(line 7). If condition ccBinCoef ≤ X is satisfied (line 8),
then the candidate value cc is confirmed as the value of ci
(line 9) and X is updated accordingly (line 10). This entire
process repeats until all the remainder k − 1 coefficients are
determined.

3) Combinadic Unranking Complexity
In a particular worst-case instance of Combinadic unranking
(Alg. 1), the logic test of the inner loop (line 8) fails for
cc = N − 1, N − 2, · · · , k in the first iteration of the outer
loop, i.e. when the first coefficient ck is being determined.
Thus, ck is assigned to k − 1. This narrows the list of
candidates (for the remainder k−1 coefficients) to the values
k − 2, k − 3, · · · , 1, 0 . Since the combinatorial number
system ensures that all k coefficients are distinct and that ck
is the largest one, a candidate value that fails for ck can be
discarded for ck−1 and so on. Thus, after ck is determined,
there must be at least k−1 candidate values for the remainder
k−1 coefficients. Because of this, there is only one logic test
per candidate value in the inner loop regardless of the number
of coefficients. Since there are N candidate values, the inner
loop takes O(N) time regardless of the outer loop. In each
test of the inner loop, Combinadic relies on the multiplicative
identity (Eq. 3) to compute the binomial coefficient value in
O(k) time. (

N

k

)
=

k∏
i=1

N − i+ 1

i
(3)

Therefore, the overall CC of the Combinadic unranking algo-
rithm is O(Nk). Considering the optimal SE configuration,
k = N/2 and the complexity becomes O(N2), which is
asymptotically higher than the O(N logN) complexity of
the IDFT block.

4) Combinadic Ranking Functioning and Complexity
The Combinadic ranking is shown in Alg. 2. It takes the array
of coefficients ci, i ∈ [1, k] from the OFDM-IM detector
and performs a summation of the k binomial coefficients(
c1
1

)
+
(
c2
2

)
+· · ·+

(
ck
k

)
(Eq. 2). Since each binomial coefficient(

ci
i

)
can be calcuated in O(i) time by the multiplicative

formula (Eq. 3), and i ranges from 1 to k, the total number of
multiplications performed by the algorithm is 1+2+· · ·+k =

k(k + 1)/2 = O(k2). Considering the optimal OFDM-IM
setup, k = N/2, the overall complexity becomes O(N2) as
with Combinadic unranking.

5) OFDM-IM Mapper Throughput with Combinadic

We now analyze the SC throughput of the OFDM-IM mapper
assuming the IxS block is implemented by the Combinadic
algorithm [34], [40] as in the original OFDM-IM design [7].
Considering the optimal OFDM-IM setup, the total number
of bits per symbol is N/2 + blog2

(
N
N/2

)
c, whereas the

IxS complexity is O(N2), as previously analyzed. Thus,
according to Def. 2, the resulting SC throughput must satisfy
Ineq. (4) as follows, otherwise it nullifies over N .

lim
N→∞

N/2 + blog2

(
N
N/2

)
c

O(N2)

?
> 0 (4)

According to the theory of computational complexity, the
wall-clock time taken by a particular implementation of a
O(N2) algorithm is bounded by the function κN2, in which
the constant κ > 0 captures the wall-clock runtime taken by
the asymptotic dominant instruction of the algorithm3 on a
real machine. In turn, the number of index modulated bits
tends to N − log2

√
N as N grows (Lemma 2). With basic

calculus, one can verify that the limit in Ineq. (4) tends to
zero for arbitrarily large N regardless of the value of κ, as
follows.

lim
N→∞

N/2 +N − log2

√
N

κ ·N2
= 0 (5)

Therefore, referring to the original Combinadic algorithm
to implement the IxS block in the optimal SE configuration
causes the SC throughput of the OFDM-IM mapper to nullify
as N grows.

B. OPTIMAL SPECTRO-COMPUTATIONAL MAPPER
To avoid the asymptotic nullification of the OFDM-IM

mapper throughput while assuring the maximal SE, the IxS
(un)ranking algorithm must run nor faster nor slower than
Θ(N) (Thm. 1). In [37], the author presents four unrank-
ing algorithms, out of which one (called “unranking-comb-
D”) can meet that requirement. Therefore, one can consider
that algorithm to validate our theoretical findings. However,
we remark that the Combinadic algorithm (referred to by
the original OFDM-IM design) can benefit from the same
properties of unranking-comb-D to run in Θ(N) rather than
O(N2) under the optimal OFDM-IM setup. Similarly, the
ranking algorithm (not proposed in [37]) can also run in
O(N) as well. Next, we explain how to adapt Combinadic
to enable the minimum possible CC when the maximal SE is
allowed.

3The instruction we choose to count in the analysis. Mostly, real or
complex arithmetic instructions for DSP algorithms.
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Algorithm 1 Combinadic Unranking (OFDM-IM IxS
Transmitter).

1: {Inputs: X , N , and k ∈ [1, N ]}
2: {Output: Array ci (i ∈ [1, k]) such that X =∑k

i=1

(
ci
i

)
(Eq. 2)}

3: cc← N ;{the current next candidate for ci};
4: for i from k downto 1 do
5: repeat
6: cc← cc−1; {the first candidate for ck isN−1};

7: ccBinCoef ←
(
cc
i

)
;

8: until ccBinCoef ≤ X
9: ci ← cc;

10: X ← X − ccBinCoef ;
11: end for
12: return array c;

Algorithm 2 Combinadic Ranking (OFDM-IM IxS Re-
ceiver).

1: {Inputs: Array ck > · · · > c2 > c1 ≥ 0, N > ck, and
k ∈ [1, N ]}

2: {Output: X =
∑k
i=1

(
ci
i

)
(Eq. 2)};

3: X ← 0;
4: for i from 1 to k do
5: X ← X +

(
ci
i

)
;

6: end for
7: return X;

Combinadic unranking and ranking algorithms referred to by the IxS block of original OFDM-IM mapper. In the maximal spectral efficiency
OFDM-IM mapper (Fig. 1b), these algorithms run in O(N2), surpassing the computational complexity of the Fourier transform algorithm.

1) Linear-time Combinadic Unranking
The main bottleneck in the time complexity of Combinadic
(un)ranking (Alg. 1) is the inner loop. As previously ex-
plained, the inner loop takes k iterations, each of which
demands further O(i) iterations to compute the binomial
coefficients

(
ci
i

)
. Since i ranges from k to 1 and the op-

timal OFDM-IM setup imposes k = O(N), this yields
k ·O(i) = N/2×O(N/2) = O(N2). To improve this com-
plexity, note that only the first candidate binomial coefficient(
ck
k

)
=
(
N−1
N/2

)
needs to be computed from scratch (in O(k)

time). Thus, such computation can be performed outside
both loops of Combinadic (Alg. 1) and stored in a variable
we refer to as ccBinCoef . The resulting modification is
shown in line 4 of the Linear-time Combinadic unranking
(Alg. 3). In this algorithm, the variables cc and ccBinCoef
denote the candidate values for ci and

(
ci
i

)
, respectively.

Following ccBinCoef =
(
ck
k

)
, the next candidate binomial

coefficient, either
(
N−1
N/2−1

)
or
(
N−2
N/2−1

)
, can be computed

from ccBinCoef itself in O(1) time. In general, one can
calculate

(
ci−1
i

)
and

(
ci−1
i−1

)
from

(
ci
i

)
by relying on the

following respective equations [37]:(
ci − 1

i

)
= ((ci − i) ∗

(
ci
i

)
)/ci (6)(

ci − 1

i− 1

)
= (i ∗

(
ci
i

)
)/ci (7)

The Eqs. (6) and (7) are exploited by lines 9 and 18 of
Alg. 3, respectively. Thus, all remainder binomial coefficients
within the logic test of the inner loop are computed in O(1)
time. Therefore, the complexity of Combinadic unranking
improves from k · O(i) = N/2 × O(N/2) = O(N2) to
O(k) + k · O(1), yielding N/2 + N/2 × O(1) = O(N) in
the optimal OFDM-IM configuration.

2) Linear-time Combinadic Ranking

As with the Combinadic unranking, one can also reduce the
time complexity of the Combinadic ranking (Alg. 2) from
O(N2) to O(N) by computing

(
ci+1
i

)
and

(
ci+1
i+1

)
from

(
ci
i

)
in O(1) time rather than from scratch in O(i) time with
the multiplicative formula (Eq. 3). However, theseO(1)-time
properties require the values in the array c to be consecutive,
which can not be the case of OFDM-IM because these
values depend on the data the user transmits. One can avoid
calculating all k binomial coefficients from scratch by relying
on the fact that the values ck > · · · > c2 > c1 are restricted
to the integer range [0, N − 1]. Based on this, the linear-
time Combinadic ranking (Alg. 4) computes from scratch
only one binomial coefficient (we refer to as ccBinCoef ,
line 10) from which at most N − 1 other coefficients can
be computed sequentially in O(1) time each. Since the value
of all other coefficients is computed from ccBinCoef , this
variable cannot be initialized with null binomial coefficients
i.e.,

(
ci
i

)
such that ci < i. Thus, from lines 4 to 9, Alg. 4

looks for the largest i in the range [0, · · · , i, · · · , N −1] such
that ci ≥ i. These lines take O(k) iterations. In line 10,
ccBinCoef is initialized as

(
ci
i

)
in O(i) time, yielding a

cumulative complexity of O(k) + O(k) = O(k). From this,
any consecutive binomial coefficient (either

(
ci+1
i

)
or
(
ci+1
i+1

)
)

can be computed in O(1) time from ccBinCoef =
(
ci
i

)
as in the linear-time unranking algorithm. Since the total
number of remainder binomial coefficients ranges from i
to N − 1, the loop in line 11 computes all of them in
O(N − i) = O(N) time. Therefore, the overall complexity
is O(k) + O(k) + O(N) which becomes O(N) under the
optimal OFDM-IM setup (i.e., k = N/2).
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Algorithm 3 Linear-time Combinadic Unranking
(OFDM-IM Index Selector Transmitter).

1: {Inputs: X , N , and k ∈ [1, N ]}
2: {Output: Array ci (i ∈ [1, k]) such that X =∑k

i=1

(
ci
i

)
(Eq. 2)}

3: cc← N − 1; {largest candidate for ci};
4: ccBinCoef ←

(
cc
k

)
; {candidate value for

(
ck
k

)
};

5: for i from k downto 1 do
6: ci ← cc;
7: while ccBinCoef > X do
8: {Below,

(
ci−1
i

)
is computed from

(
ci
i

)
in O(1)};

9: ccBinCoef←((ci−i)*ccBinCoef)/ci;
10: ci ← ci − 1;
11: end while
12: X ← X − ccBinCoef ;
13: {Below,

(
ci−1
i−1

)
is computed from

(
ci
i

)
in O(1)};

14: cc← ci − 1;
15: if cc = 0 then
16: return array c
17: end if
18: ccBinCoef ← (i ∗ ccBinCoef)/ci;
19: end for
20: return array c

Algorithm 4 Linear-time Combinadic Ranking (OFDM-
IM Index Selector Receiver).

1: {Inputs: Array ck > · · · > c2 > c1 ≥ 0, N > ck, and
k ∈ [1, N ]}

2: {Output: X =
∑k
i=1

(
ci
i

)
(Eq. 2)};

3: i← 1;
4: while i ≤ k and ci < i do
5: i← i+ 1;
6: end while
7: if i > k then
8: return 0;
9: end if

10: ccBinCoef ←
(
ci
i

)
; X ← 0;

11: for cc from ci to N − 1 do
12: if ci = cc then
13: X ← X + ccBinCoef ;
14: ccBinCoef ← (ccBinCoef∗(ci+1))/(i+1);
15: i← i+ 1;
16: else
17: ccBinCoef← (ccBinCoef ∗(cc+1))/(cc+1−

i);
18: end if
19: end for
20: return X;

Adaptation of the Combinadic algorithms (unranking 1 and ranking 2) referred to by the original OFDM-IM mapper to run in O(N) time.
We prove these adaptations enable the overall OFDM-IM mapper to maximize the spectral efficiency gain over OFDM while consuming the
same time and space computational complexities of the classic OFDM mapper.

3) Scalable OFDM-IM Mapper Throughput
We now proceed with the SC analysis of the optimal OFDM-
IM mapper (Fig. 1b) considering an IxS implementation that
meets our Theorem 1. The analysis is as in subsection IV-A5,
except for the fact that the IxS algorithm runs in Θ(N) time
complexity. Thus, the SC throughput is given by

lim
N→∞

N/2 +N − log2

√
N

κ ·N
(8)

As N grows, the time complexity is bounded by κN for
some constant κ > 0. Similarly, the SC throughput of the
mapper results in a non-null constant κ > 0, meeting the
Def. 2. As explained in the subsection IV-A5, κ > 0 is
constant that depends on the computational apparatus run-
ning the algorithm. Under the linear-time IxS complexity,
the throughput of the OFDM-IM mapper does not nullify for
arbitrarily large N ,

lim
N→∞

N/2 +N − log2

√
N

κ ·N
=

3

2κ
> 0 (9)

Note also that the throughput can increase with N if
one achieves a o(N) mapper. However, as demonstrated in
Corollary 2, this conflicts with the optimal SE setup, thereby
preventing the SE maximization.

V. IMPLEMENTATION AND EVALUATION
In this section, we present a practical case study to validate
our theoretical findings. In subsection V-A, we introduce
the open-source library we develop for the case study. In
subsection V-B, we describe the methodology to assess and
reproduce the empirical values of our experiments. Finally,
in subsection V-C, we present the results of our practical case
study that validate our theoretical findings.

A. OPEN-SOURCE OFDM-IM MAPPER LIBRARY
We wrote a C++ library that implements all OFDM-IM steps
to map/demap an N -subcarrier complex frequency-domain
symbol. We implement the IxS block with C++ callbacks
to enable flexible addition of novel (un)ranking algorithms.
In the released version, we implement the original IxS al-
gorithm [7] and all the algorithms presented in this work
(Algs. 3 and 4). We do not implement (un)ranking algo-
rithms that can reach a complexity that is asymptotically
faster than required by our Theorem 1 e.g. [32], [33]. As
previously explained (Corollary 2), performing (un)ranking
faster than Θ(N) would require k 6= N/2, thereby preventing
the SE maximization (Corollary 2). However, future works
may implement IxS algorithms that improve the original
OFDM-IM using other criteria (e.g. BER [16], [44].) than
CC and SE. These and other IxS algorithms can also be
included/evaluated in our library. The entire source code of
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our library, as well as detailed instructions on how to enhance
it with novel IxS algorithms, are publicly available under the
GPLv2 license in [53].

B. PERFORMANCE ASSESSMENT METHODOLOGY
We assess the runtime T (N) (in secs.) and the through-
put m(N)/T (N) (in megabits per seconds, Def. 1) for both
the original OFDM-IM mapper and our proposed mapper
under the optimal SE configuration (i.e., g = 1, k = N/2
and M = 2). For each mapper, we assess the performance
indicators at both the transmitter (mapper) and the receiver
(demapper) on a 3.5-GHz Intel i7-3770K processor.

We sampled the wall-clock runtime T (N) of each map-
per with the standard C++ timespace library [54] under
the profile CLOCK_MONOTONIC. In each execution, we as-
signed our process with the largest real-time priority and em-
ployed the isolcpus Linux kernel directive to allocate one
physical CPU core exclusively for each process. We generate
the input for the mappers with the standard C++ 64-bit ver-
sion of the Mersenne Twistter (MT) 19937 pseudo-random
number generator [55]. We set up three independent instances
of MT19937_64 with seeds 1973272912, 1822174485 and
1998078925 [56]. Every iteration, three sampled T (N) are
forwarded to the Akaroa-2 tool [57] for statistical treatment.
Akaroa-2 determines the minimum number of samples re-
quired to reach the steady-state mean estimation of a given
precision. In our experiments, this precision corresponds to a
relative error below 5% and a confidence interval of 95%.
Besides, in all experiments the highest observed variance
was below 10−3 and the average number of samples in the
transient state was about 300.

Table 1 reports all assessed results for both the original
OFDM-IM mapper and the proposed mapper at the trans-
mitter (mapper). The table 2 reports the analogous results
assessed at the receiver (demapper). From left to right, the
tables present the following columns: the number N of
symbol’s subcarriers, the number m(N) of bits per symbol,
the SE gain of the original OFDM-IM waveform against
the classic OFDM mapper4, the assessed (de)mapper, the
assessed runtime T (N), the half-width of the confidence
interval δ for T (N), the achieved (de)mapping throughput,
and the number x of samples needed to achieve the required
precision. The source-code of all our experiments is publicly
available under GPLv2 license in [53].

C. RESULTS
In Fig. 2a and Fig. 2b, we respectively plot the runtime

and the throughput performances of the compared mappers
for N = 2, 4, . . . , 62. Although only particular values of N
verify in industry standards (e.g.N = 48 [58],N = 52 [59]),
we range it from small to large values to illustrate the asymp-
totic shape predicted by our throughput analysis. Detailed
information about these plots are reported on the Table 1.
As predicted by our theoretical analysis (Subsections IV-A5

4The maximum SE gain is m(N)/N [13].

and IV-B), in the ideal setup, the runtime order of growth
of the original OFDM-IM mapper is asymptotically larger
than our proposed mapper (Fig. 2a). From the theoretical
analysis, we know these complexities are O(N2) and O(N),
respectively. Naturally, the runtime curves of both mappers
increase monotonically towards infinite as the number N of
subcarriers grows. However, because the runtime order of
growth of the original OFDM-IM mapper is larger than the
number m(N) = N/2 + log2

(
N
N/2

)
= O(N) of bits per

symbol, the throughputm(N)/T (N) of this mapper nullifies
as N grows (Fig. 2b). This validates the theoretical analysis
we show in subsection IV-A5.

By contrast, when our proposed mapper takes place, both
the resulting computational complexity T (N) and the total of
bits m(N) per symbol increases in the same order of growth.
Thus, the throughput m(N)/T (N) tends to a non-null con-
stant. In particular, according to our theoretical analysis in
subsection IV-B3, this ism(N)/T (N) = 3/(2κ). Recall that
the constant κ > 0 captures the wall-clock runtime taken by
the asymptotic dominant instruction of the algorithm on a real
machine. However, in our practical case study, the assessed
runtime T (N) encompasses all computational instructions
performed by each (de)mapper. Thus, κ represents an average
of the runtime taken by each kind of instruction on the
machine of our testbed i.e., the Intel i7-3770K processor.
From the assessed throughput m(N)/T (N), the average
value of κ can be computed based on Eq. (9), which is
κ = 3/2 · 1/(m(N)/T (N)). In our testbed, the average
runtime per computational instruction was 0.02 µs.

In Fig. 3a and Fig. 3b, we respectively plot the runtime and
the throughput performances of the compared demappers for
different values of N . Detailed informations of these plots
are reported on the Table 2. As in the mapper analysis, the
throughput of the original OFDM-IM demapper tends to zero
as N grows whereas the throughput of our proposed demap-
per tends to a non-null constant under the same conditions.
If compared against its corresponding mapper, we verify
that our proposed demapper presents larger throughput. This
means that, although both our mapper and demapper have the
sameO(N) asymptotic complexity, the demapper implemen-
tation is less complex concerning the constant κ. Indeed, we
verify an average κ = 0.015 µs for the demapper in contrast
with the 0.02 µs for the mapper.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this work, we studied the trade-off between spectral ef-
ficiency (SE) and computational complexity (CC) T (N) of
an N -subcarrier OFDM with Index Modulation (OFDM-
IM) mapper. We identified that the CC lower bound to
map any of all 2blog2 ( N

N/2)c OFDM-IM waveforms is Ω(N).
With this, we formally proved that enabling all OFDM-
IM waveforms is not computationally intractable, as previ-
ously conjectured [9], [14]. Besides, we showed that any
algorithm running faster than this lower bound prevents the
OFDM-IM SE maximization. We also presented the spectro-
computational efficiency (SCE) metric both to analyze the
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FIGURE 2: Mapper performance: Proposed vs. OFDM-IM.
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FIGURE 3: Demapper performance: Proposed vs. OFDM-IM.

mapper’s throughput and identify an upper bound for the
mapper’s complexity T (N) under the maximal SE. In this
context, we proved that the worst tolerable CC for the mapper
is O(N) otherwise, the mapper’s throughput nullifies as the
system is assigned more and more subcarriers. We showed
that this is the case of the original OFDM-IM mapper [7],
in which the O(N2) CC surpasses the O(N log2N) CC of
the IDFT/DFT algorithm. Then, we presented an OFDM-
IM mapper that enables the largest SE under the minimum
possible CC.

We demonstrate our theoretical findings by implement-
ing an open-source library that supports all DSP steps
to map/demap an N -subcarrier complex frequency-domain
OFDM-IM symbol. Our implementation supports different
index selector algorithms and is the first to enable the SE
maximization while preserving the same time and space
asymptotic complexities of the classic OFDM mapper. With
our library, we showed that the OFDM-IM mapper does not
need compromise approaches that prevail in the OFDM-IM
literature such as subblock partitioning (SP) [7]–[9], [13],
[25], adoption of few active subcarriers [41] or extra space
complexity [43].

Future works may consider extra performance indicators
in the analysis (in addition to CC and SE) such as bit-error
rate [16], [44]. Moreover, our mapper can be directly applied
to other IM systems that rely on the same index selector of
the original OFDM-IM mapper such as spatial modulation
systems [60] and dual mode OFDM-IM [25]. Besides, our
methodology can guide the activation of all waveforms in
other variants of OFDM-IM such as multiple mode OFDM-
IM [26].
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TABLE 1: Mapper performance: Proposed (“Prop.”) vs. original
OFDM-IM (“Orig.”)

N
m(N)

bits
IM

Gain
IM

Mapper
Runtime

(µs)
±δ

(µs)
Through

put (Mbps) x

2 2 1.00 Prop. 0.08 0.004 26.08 3792
Orig. 0.07 0.002 29.15 2358

4 4 1.00 Prop. 0.12 0.001 32.81 1854
Orig. 0.10 0.002 40.86 1710

6 7 1.17 Prop. 0.14 0.003 49.23 1704
Orig. 0.13 0.003 53.48 1656

8 10 1.25 Prop. 0.17 0.001 57.84 1686
Orig. 0.18 0.001 55.40 1602

10 12 1.20 Prop. 0.21 0.001 56.29 1536
Orig. 0.24 0.002 49.65 2208

12 15 1.25 Prop. 0.26 0.002 57.78 1614
Orig. 0.32 0.003 47.47 1872

14 18 1.28 Prop. 0.30 0.002 59.21 1524
Orig. 0.41 0.003 43.99 1542

16 21 1.31 Prop. 0.34 0.002 62.39 1728
Orig. 0.50 0.004 41.92 1476

18 24 1.33 Prop. 0.39 0.002 62.03 1596
Orig. 0.62 0.005 38.85 1494

20 27 1.35 Prop. 0.43 0.002 63.45 1524
Orig. 0.75 0.007 36.18 1554

22 30 1.36 Prop. 0.48 0.002 62.10 1884
Orig. 0.90 0.008 33.46 1518

24 33 1.38 Prop. 0.51 0.002 64.31 1554
Orig. 1.05 0.043 31.35 1512

26 36 1.38 Prop. 0.56 0.001 64.61 1560
Orig. 1.21 0.007 29.70 1470

28 39 1.39 Prop. 0.60 0.002 64.55 1536
Orig. 1.40 0.012 27.92 1512

30 42 1.40 Prop. 0.64 0.003 65.19 1518
Orig. 1.59 0.016 26.43 1476

32 45 1.41 Prop. 0.69 0.010 65.43 1524
Orig. 1.79 0.012 25.07 1548

34 48 1.41 Prop. 0.73 0.003 65.93 1560
Orig. 2.03 0.018 23.70 1518

36 51 1.42 Prop. 0.78 0.008 65.47 1500
Orig. 2.25 0.015 22.63 1482

38 54 1.42 Prop. 0.82 0.002 65.96 1608
Orig. 2.50 0.017 21.57 1776

40 57 1.42 Prop. 0.86 0.002 66.16 1524
Orig. 2.78 0.027 20.51 1530
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Orig. 3.05 0.019 19.33 1458

44 62 1.41 Prop. 0.95 0.003 65.02 1686
Orig. 3.37 0.027 18.41 1518
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Orig. 3.68 0.055 17.68 1548
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Orig. 4.70 0.022 15.75 1494
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Orig. 5.04 0.025 15.28 1500

56 80 1.43 Prop. 1.23 0.002 65.31 1440
Orig. 5.44 0.026 14.71 1536

58 83 1.43 Prop. 1.27 0.004 65.42 2064
Orig. 5.82 0.035 14.27 1512

60 86 1.43 Prop. 1.31 0.003 65.42 1614
Orig. 6.27 0.073 13.72 1476

62 89 1.43 Prop. 1.36 0.003 65.45 1548
Orig. 6.70 0.027 13.28 1500

...
...

...
...

...
...

...
...

∞ Θ(N) 1.5 Prop. Θ(N) 0 3/(2κ) ∞
Orig. Θ(N2) 0 0 ∞

TABLE 2: Demapper performance: Proposed (“Prop.”) vs. original
OFDM-IM (“Orig.”).

N
m(N)

bits
IM

Gain
IM

Mapper
Runtime

(µs)
±δ

(µs)
Through

put (Mbps) x

2 2 1.00 Prop. 0.05 0.001 44.35 1644
Orig. 0.04 0.001 47.85 1680

4 4 1.00 Prop. 0.06 0.001 65.25 1674
Orig. 0.06 0.000 69.57 1620

6 7 1.17 Prop. 0.08 0.001 85.26 1758
Orig. 0.07 0.001 94.85 1746

8 10 1.25 Prop. 0.11 0.001 88.11 2208
Orig. 0.10 0.001 102.99 1626

10 12 1.20 Prop. 0.15 0.002 80.16 1518
Orig. 0.13 0.001 91.67 1704

12 15 1.25 Prop. 0.19 0.002 78.70 1524
Orig. 0.17 0.002 90.53 1536

14 18 1.28 Prop. 0.22 0.001 81.63 1536
Orig. 0.21 0.001 86.00 1614

16 21 1.31 Prop. 0.25 0.002 84.58 1512
Orig. 0.26 0.001 81.87 1758

18 24 1.33 Prop. 0.29 0.003 84.18 1536
Orig. 0.30 0.002 79.68 1524

20 27 1.35 Prop. 0.31 0.002 88.32 1542
Orig. 0.36 0.001 75.74 1614

22 30 1.36 Prop. 0.34 0.004 89.13 1596
Orig. 0.42 0.002 70.99 1542

24 33 1.38 Prop. 0.37 0.003 90.11 1488
Orig. 0.49 0.007 68.03 1704
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Orig. 1.54 0.051 40.27 2259
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...
...

...
...

...
...

...
...

∞ Θ(N) 1.5 Prop. Θ(N) 0 3/(2κ) ∞
Orig. Θ(N2) 0 0 ∞
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