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MULTIPLICATIVE FUNCTIONS WITH

f(p+ q − n0) = f(p) + f(q)− f(n0)

POO-SUNG PARK

Abstract. Let n0 be 1 or 3. If a multiplicative function f satisfies f(p+ q −

n0) = f(p)+f(q)−f(n0) for all primes p and q, then f is the identity function

f(n) = n or a constant function f(n) = 1.

1. Introduction

In 2016 Chen, Fang, Yuan, and Zheng showed that if a multiplicative function

f satisfies f(p + q + n0) = f(p) + f(q) + f(n0) with 1 ≤ n0 ≤ 106 then f is the

identity function provided f(p0) 6= 0 for some prime p0 [1]. This is a variation of

Spiro’s paper in 1992 in which she dealt multiplicative functions satisfying f(p +

q) = f(p) + f(q) [7]. She called the set of primes an additive uniqueness set for

multiplicative functions f with f(p0) 6= 0 for some prime p0.

A natural question follows about n0 being negative for Chen et al.’s paper. It is

natural to consider the condition f(p+q−n0) = f(p)+f(q)−f(n0) with n0 = 1, 2, 3

because a multiplicative function is defined on positive integers.

The author already studied a multiplicative function satisfying f(p + q − 2) =

f(p) + f(q)− f(2), which also yields that the set of numbers 1 less than primes is

an additive uniqueness set for multiplicative functions [5].

In this article we classify multiplicative functions satisfying f(p + q − n0) =

f(p) + f(q) − f(n0) with n0 = 1, 3. For consistency we state the classification for

n0 = 2 as well.

Theorem 1.1. If a multiplicative function f satisfies f(p+q−1) = f(p)+f(q)−f(1)

for all primes p and q, then f is the identity function f(n) = n or a constant

function f(n) = 1.
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Theorem 1.2 ([5]). If a multiplicative function f satisfies f(p+ q − 2) = f(p) +

f(q) − f(2) for all primes p and q, then f is the identity function f(n) = n, a

constant function f(n) = 1, or f(n) = 0 for n ≥ 2 unless n is odd and squareful.

Theorem 1.3. If a multiplicative function f satisfies f(p+q−3) = f(p)+f(q)−f(3)

for all primes p and q, then f is the identity function f(n) = n or a constant

function f(n) = 1.

Theorem 1.2 for n0 = 2 has one more option. We give a proof for Theorem 1.3.

The proof of Theorem 1.1 is similar and the proof of Theorem 1.2 is given in [5,

§4].

2. Lemmas

Lemma 2.1. Assume a multiplicative function f satisfies f(p + q − 3) = f(p) +

f(q)− f(3) for all primes p and q. Then, f(n) = 1 or f(n) = n for n = 2, 3, 5, 7,

and 11.

Proof. Note that f(1) = 1 and the equalities

f(1) = f(2 + 2− 3) = f(2) + f(2)− f(3),

f(7) = f(5 + 5− 3) = f(5) + f(5)− f(3),

f(10) = f(2) f(5)

= f(11 + 2− 3) = f(11) + f(2)− f(3),

f(11) = f(7 + 7− 3) = f(7) + f(7)− f(3),

f(15) = f(3) f(5)

= f(11 + 7− 3) = f(11) + f(7)− f(3).
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Let a = f(2), b = f(3), c = f(5), d = f(7), e = f(11). Then,

1 = 2a− b(1)

d = 2c− b(2)

ac = e+ a− b(3)

e = 2d− b(4)

bc = e+ d− b.(5)

The equation (3) becomes

ac = 4c− 7a+ 4

by the equations (1), (2), and (4). Also, the equation (5) becomes

2ac = 7c− 10a+ 5.

So, c = 4a− 3 and we obtain an equation a2 − 3a+ 2 = 0.

Thus, a = 1 or a = 2 and it follows that

f(2) = 1, f(3) = 1, f(5) = 1, f(7) = 1, f(11) = 1;

f(2) = 2, f(3) = 3, f(5) = 5, f(7) = 7, f(11) = 11.

�

Lemma 2.2. The results in Lemma 2.1 can be extended up to n odd and n < 1010.

Proof. We use induction. Let n be odd and 11 < n < 1010.

If n is prime, then n = 6k − 1 or n = 6k + 1. Suppose n = 6k − 1. Note that

f(n+ 4) = f(6k + 3) = f(n+ 7− 3) = f(n) + f(7)− f(3).

Since 6k+3 can be factored into the product of two smaller integers, f(6k+3) = 1

or f(6k + 3) = 6k + 3 by induction hypothesis. Thus, f(n) = 1 or f(n) = n when

n = 6k − 1 is prime.

Similarly, if n is a prime of the form 6k + 1, then f(n) = 1 or f(n) = n by

f(n+ 2) = f(6k + 3) = f(n+ 5− 3) = f(n) + f(5)− f(3).
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If n is not a prime, n is either a product of two relatively prime integers or a

power of a prime. The first case is easy by the multiplicity of f . So the second case

remains.

Now, assume that n is a power of a prime with exponent ≥ 2. Then, n + 3 is

even and can be written as a sum of two primes p and q with 5 ≤ p, q < n by the

numerical verification of the Goldbach Conjecture up to 4× 1018 [4].

Then, since f(n) = f(n+ 3− 3) = f(p+ q − 3) = f(p) + f(q)− f(3), we obtain

that f(n) = 1 or f(n) = n by the induction hypothesis. �

Indeed, those can be extended up to n ≤ 4× 1018 − 3.

Lemma 2.3. The results in Lemma 2.1 can be extended up to n even and n < 1010.

Proof. It is enough to investigate f(2r) with r ≤ 33. Note that k ·2r+1 with k < 2r

is called Proth number. If a Proth number is prime, it is called a Proth prime. It

is verified that there exists an odd integer k ≤ 4141 such that k · 2r + 1 is a Proth

prime for 1 ≤ r ≤ 1000 in The On-Line Encyclopedia of Integer Sequences (OEIS,

https://oeis.org/A057778), although the infinitude of Proth primes is not yet

proved [6].

Then, k · 2r + 1 is an odd prime and

f(k) f(2r) = f
(

(k · 2r + 1) + 2− 3
)

= f(k · 2r + 1) + f(2)− f(3).

Thus, we are done by Lemmas 2.1 and 2.2. �

If the Goldbach Conjecture and the infinitude of Proth primes for all exponents

were proved, Theorem 1.3 could be easily proved. But, neither of them has not

yet been proved, so that we need other strategy. In the following lemma, vp(n)

means the exponent of p in the prime factorization of n when p is a prime and n is

a positive integer. The set H was defined by Spiro and the numerical verification

of the Goldbach Conjecture was up to 2× 1010 at that time. We would call the set

H in the lemma the Spiro set.

Lemma 2.4. Let

H = {n | vp(n) ≤ 1 if p > 1000; vp(n) ≤ ⌊9 logp 10⌋ − 1 if p < 1000}.

https://oeis.org/A057778
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For any integer m > 1010, there is an odd prime q ≤ m− 1 such that m+ q ∈ H.

Proof. This lemma is the consequence of [1, Lemma 2.4] which follows the proof of

[7, Lemma 5]. �

Lemma 2.5 ([2, 3, 8]). Almost every even positive integer is expressible as the sum

of two primes.

Lemma 2.6. The restricted function f |H is the identity function or a constant

function on H.

Proof. Assume f(n) = n for n = 2, 3, 5, 7, 11. If n < 1010, then f(n) = n from

Lemmas 2.2 and 2.3. Let n ∈ H with n ≥ 1010 and assume that f(m) = m for all

m ∈ H with m < n. If n is not a prime power, then f(n) = f(a)f(b) with (a, b) = 1

and a, b > 1. Since f(a) = a and f(b) = b by the induction hypothesis, f(n) = n.

Now, if n is a prime power, then n is a prime by the definition ofH . If n = 6k−1,

then consider n+ 7− 3 = 6k + 3. Since

f(n+ 4) = f(6k + 3) = f(n+ 7− 3) = f(n) + f(7)− f(3)

and 6k + 3 can be factored into the product of two smaller integers, f(n) = n.

Similarly, if n = 6k + 1, then

f(n+ 2) = f(6k + 3) = f(n+ 5− 3) = f(n) + f(5)− f(3)

yields f(n) = n.

By the same reasoning, we can conclude that f(n) = 1 if f(2) = f(3) = f(5) =

f(7) = f(11) = 1.

�

Lemma 2.7 ([7, Lemma 7]). For any positive integer n, put

Hn =











{mn : m ∈ H, (m,n) = 1} if 2 | n;

{2mn : 2m ∈ H, (m,n) = 1} if 2 ∤ n.

Then Hn satisfies the following properties:

(1) Every element of Hn is even.

(2) The set Hn has positive lower density.
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3. Proofs of Theorems

Let us start to prove Theorem 1.3. Suppose that there exists n for which f(n) 6=

n. For kn ∈ Hn, we have that

f(kn) = f(k) f(n) = k f(n).

If f(kn) = kn, then f(n) = f(kn)/k = kn/k = n, which contradicts. So f(kn) 6=

kn for every kn ∈ Hn.

But, if kn + 3 with k odd can be represented as a sum of two primes p and q,

then

f(kn) = f(p+ q − 3) = f(p) + f(q)− f(3) = p+ q − 3 = kn.

Thus, this implies that there exist many counterexamples to the Goldbach Con-

jecture whose density is positive. But, this contradicts Lemma 2.5. Therefore,

f(n) = n for all n.

We can prove Theorem 1.1 in the similar way. First, we have that

f(3) = f(2 + 2− 1) = f(2) + f(2)− f(1),

f(5) = f(3 + 3− 1) = f(3) + f(3)− f(1),

f(6) = f(2) f(3)

= f(5 + 2− 1) = f(5) + f(2)− f(1).

Let a = f(2), b = f(3), and c = f(5). Then,

b = 2a− 1, c = 2b− 1, ab = c+ a− 1.

Thus,

a(2a− 1) =
(

2(2a− 1)− 1
)

+ a− 1

and it becomes

a2 − 3a+ 2 = 0.

Hence, a = 1 or a = 2.

Next, we should check f(2r) as in Lemma 2.3. We can use k · 2r − 1 in-

stead of k · 2r + 1. The list of prime k · 2r − 1 with 0 ≤ r ≤ 10000 is in OEIS

(https://oeis.org/A126717). See also [6].

https://oeis.org/A126717
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[8] J. G. van der Corput, Sur l’hypothèse de the Goldbach, Proc. Akad. Wet. Amsterdam 41

(1938), 76–80.

E-mail address: pspark@kyungnam.ac.kr

Department of Mathematics Education, Kyungnam University, Changwon-si, 51767,

Republic of Korea

http://www.prothsearch.com

	1. Introduction
	2. Lemmas
	3. Proofs of Theorems
	Acknowledgment
	References

