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ON TRIANGULAR SIMILARITY OF NILPOTENT

TRIANGULAR MATRICES

MING-CHENG TSAI, MEAZA BOGALE, AND HUAJUN HUANG*

Abstract. Let Bn (resp. Un, Nn) be the set of n×n nonsingular (resp. unit,

nilpotent) upper triangular matrices. We use a novel approach to explore the

Bn-similarity orbits in Nn. The Belitskĭı’s canonical form of A ∈ Nn under

Bn-similarity is in QUn where Q is the subpermutation such that A ∈ BnQBn.

Using graph representations and Un-similarity actions stabilzing QUn, we ob-

tain new properties of the Belitskĭı’s canonical forms and present an efficient

algorithm to find the Belitskĭı’s canonical forms in Nn. As consequences, we

construct new Belitskĭı’s canonical forms in all Nn’s, list all Belitskĭı’s canon-

ical forms for n = 7, 8, and show examples of 3-nilpotent Belitskĭı’s canonical

forms in Nn with arbitrary numbers of parameters up to O(n2).

1. Introduction

Let F be a fixed field. Let Mm,n (resp. Mn, GLn) be the set of m × n (resp.

n × n, n × n nonsingular) matrices over F. Let Bn (resp. Un, Nn) be the set of

n×n nonsingular (resp. unit, nilpotent) upper triangular matrices, and Dn the set

of n× n nonsingular diagonal matrices, over F.

The main goal of this paper is to describe the Bn-similarity orbits in Nn through

the Belitskĭı’s canonical forms. We link a Bn-similarity orbit to the corresponding

(Bn, Bn) double coset. Given A ∈ Nn, let Q be the unique subpermutation such

that A ∈ BnQBn. The Belitskĭı’s canonical form of A under Bn-similarity is in

QUn. We improve the Belitskĭı’s algorithm to efficiently search for the Belitskĭı’s

canonical forms using graph representations and graph operations on matrices in

QUn. As a consequence, all indecomposable Belitskĭı’s canonical forms for n = 7

and n = 8 are given, which extends the works of D. Kobal [10] and Y. Chen et al

[5]. Moreover, we discover a way to obtain new indecomposable Belitskĭı’s canonical

forms of any order n; we also present examples of 3-nilpotent Belitskĭı’s canonical

forms in Nn with arbitrary number of parameters up to O(n2), which improves the

O(n) result in [5].

The Bn-similarity orbits in Nn is a special case of the Λ-similarity matrix prob-

lem explored by V. Sergeichuk in [15]. Sergeichuk showed how the Λ-similarity
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can be used to formulate the representations of quivers and matrix problems [15,

Examples 1.1, 1.2], and presented the Belitskĭı’s algorithm to obtain so called the

Belitskĭı’s canonical form under Λ-similarity. The strengthen Tame-Wild theorem

for matrix problem ([15, Theorem 3.1]) and the existing classification on the Be-

litskĭı’s canonical forms with two parameters [5] indicate that the Bn-similarity

problem on Nn is of wild type.

In 1978, M. Roitman discovered that if F is infinite, the number of Bn-similarity

orbits in Nn is infinite for n ≥ 12 [14]. D. Djoković and J. Malzan improved the

result to n ≥ 6 in 1980 [7]. D. Kobal in 2005 listed all Belitskĭı’s canonical forms

of the Bn-similarity orbits in Nn for n ≤ 5 [10]. P. Thijsse showed in 1997 that ev-

ery upper triangular matrix is Bn-similar to a generalized direct sum of irreducible

blocks, and gave a classification of indecomposable (non-Belitskĭı’s) canonical forms

for n ≤ 6 [16]. Besides, Thijsse showed that if an upper triangular matrix A is non-

derogatory or A has Jordan block sizes no more than 2, then A is Bn-similar to

a generalized Jordan canonical form. In 2016, Y. Chen et al classified the inde-

composable Belitskĭı’s canonical forms for n = 6 and for n = 7 which admits a

parameter, and showed that there exists an indecomposable Belitskĭı’s canonical

form which admits at least ⌊n
2 ⌋ − 2 parameters [5].

When F = C or R, the conjugacy orbits on nilpotent matrices or Lie algebra

elements were also intensively investigated by Lie theorists and representation the-

orists. In the book [6] of D. Collingwood and W. McGovern, nilpotent G-orbits in

semisimple Lie algebras g are bijectively corresponding to the G-orbits of the stan-

dard sl2-triples, and are parameterized by weighted Dynkin diagrams. L. Fresse

gave sufficient and necessary conditions for the intersection of a nilpotent GLn-

orbit with Nn to be a union of finitely many Bn-orbits [8]. A. Melnikov described

the Bn-orbits and their geometry on upper triangular 2-nilpotent matrices by link

patterns in [11, 12, 13]. M. Boos and M. Reineke described the Bn-orbits and

their closure relations of all 2-nilpotent matrices [4]. N. Barnea and A. Melnikov

described the Borel orbits of 2-nilpotent elements in nilradicals for the symplectic

algebra in 2017 [1]. M. Boos et al described the parabolic orbits of 2-nilpotent

elements for classical groups [2, 3].

The structure of this paper is as follows.

In Section 2, we review the classification and invariants of (Bn, Bn) double cosets

and the Belitskĭı’s algorithm for the Bn-similarity. We show that the Belitskĭı’s

canonical form of A ∈ Nn is necessarily in QUn in which Q is the subpermutation

such that A ∈ BnQBn (Theorem 2.5). As a by product, we can construct new

Belitskĭı’s canonical forms
[
A1 Q12

A2

]
when A1 ∈ Q1Up and A2 ∈ Q2Uq are Belitskĭı’s

canonical forms and
[
Q1 Q12

Q2

]
is a subpermutation in Np+q (Theorem 2.7). The

criteria for Dn-similarity is given in Theorem 2.9. Finally, every matrix in BnQBn

for a subpermutation Q ∈ Nn can be transformed via Bn-similarity to a matrix in
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QUn, and this matrix can be transformed via elementary Un-similarity operations

(ESOs) stablizing QUn to a matrix which is Dn-similar to the Belitskĭı’s canonical

form (Theorem 2.16).

Section 3 introduces the graph representations of matrices, and the graph oper-

ations corresponding to ESOs stabilizing QUn. The graph operations visualize the

Un-similarity reduction process on QUn and help obtain the Belitskĭı’s canonical

forms efficiently.

Section 4 is devoted to explore the properties of the Belitskĭı’s canonical form

through its graph. The graph of a Belitskĭı’s canonical form inNn withm connected

components and N arcs has exactly m indecomposable components and N −n+m

parameters (Theorem 4.1). Theorem 4.4 determines the places of parameters in

a Belitskĭı’s canonical form. Theorems 4.6 and 4.9 prove that some entries in a

Belitskĭı’s canonical form must be zero, and Theorem 4.8 describes the possible

places of nonzero entries. Finally, Theorem 4.11 constructs indecomposable 3-

nilpotent Belitskĭı’s canonical forms with r parameters for all r ≤ 1
2⌊

n−2
3 ⌋(⌊n−2

3 ⌋−1)

if n ≡ 0, 2 mod 3, and r ≤ 1
2⌊

n−2
3 ⌋(⌊n−2

3 ⌋ − 1)− 1 if n ≡ 1 mod 3.

In Section 5, we give an efficient graphical algorithm to search for the Belitskĭı’s

canonical forms based on Theorems 4.8 and 4.9. The algorithm significantly im-

proves the Belitskĭı’s algorithm. The indecomposable Belitskĭı’s canonical forms

for n = 7 is given in Theorem 5.4, and those for n = 8 is given in Theorem 5.5

and the Appendix. Examples of the algorithm, graph illustrations of Theorem 2.7,

and connections to the Bn-similarity orbits of upper triangular matrices are also

included in this section.

2. Preliminary

2.1. Bn × Bn action on Nn. Given a subgroup G of GLn, two matrices A,C ∈

Mn are called G-similar, denoted by A
G
∼ C, if there exists B ∈ G such that

C = BAB−1. The A and C are in the same (Bn, Bn) double coset if there exist

B,B′ ∈ Bn such that C = BAB′. The Bn-similarity orbit of A ∈ Mn is contained

in the (Bn, Bn) double coset of A:

{BAB−1 | B ∈ Bn} ⊆ BnABn := {BAB′ | B,B′ ∈ Bn}.

The (Bn, Bn) double cosets on Mn are well classified as an extension of both the

Bruhat decomposition in semisimple Lie groups and Gelfand-Naimark decomposi-

tion in matrix theory. We review the results here.

Definition 2.1. A matrix Q ∈ Mm,n is called a subpermutation if each of the rows

and columns of Q has at most one nonzero entry, which equals 1.

Let [n] := {1, 2, . . . , n}. Given i, j ∈ [n], let E
(n)
i,j ∈ Mn (or E

(n)
ij for simplicity)

be the matrix that has 1 on the (i, j) entry and 0’s elsewhere, and let e
(n)
i ∈ Fn

be the vector that has 1 on the ith entry and 0’s elsewhere. They are abbreviated
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as Ei,j (or Eij for simplicity) and ei, respectively, if the size n is clear. Every

subpermutation Q ∈ Mn can be determined by a bijective map σ : I → σ(I)

between two subsets I and σ(I) of [n] of the same cardinality:

(2.1) Q =
∑

i∈I

Ei,σ(i); Q := 0 if I = ∅.

Given A ∈ Mn and I, J ⊆ [n], let A[I, J ] denote the submatrix of A with rows

indexed by I and columns indexed by J . Moreover, given i, j ∈ [n], let

(2.2) ri,j(A) := rank A[[n] \ [n− i], [j]] = rank A[{n− i+ 1, . . . , n}, {1, . . . , j}]

be the rank of the lower left i× j submatrix of A; define r0,j(A) = ri,0(A) := 0.

The following characterization of (Bn, Bn) double cosets on Mn is classical. Ana-

logic double coset results on GLn can be found in [9, Theorem 3.5.14].

Lemma 2.2. The (Bn, Bn) double coset of A ∈ Mn is completely determined by

the set of invariants:

(2.3) {ri,j(A) : i, j ∈ [n]}.

There is a unique subpermutation Q ∈ Mn such that A ∈ BnQBn. The entries of

Q = [qij ] are determined by:

(2.4) qn−i+1,j = ri,j(A)− ri−1,j(A)− ri,j−1(A) + ri−1,j−1(A), i, j ∈ [n].

Proof. Given arbitrary B,B′ ∈ Bn and i, j ∈ [n], we look at BAB′ from the

following partitions:

BAB′ =

[n− i i

n− i B11 B12

i 0 B22

] [ j n− j

n− i A11 A12

i A21 A22

] [ j n− j

j B′
11 B′

12

n− j 0 B′
22

]

=

[ j n− j

n− i ⋆ ⋆

i B22A21B
′
11 ⋆

]
.

Both B22 ∈ Mi and B′
11 ∈ Mj are nonsingular. Therefore, ri,j(BAB′) = ri,j(A).

Next, we illustrate how to transform A = [aij ] ∈ Mn to a subpermutation Q

through elemantary row and column operations associated with muliplications of

matrices in Bn.

(1) Start from the last row of A. If it is a zero row, we are done for the row.

Otherwise, let σ(n) ∈ [n] such that anσ(n) is the first nonzero entry of the

row. For each j ∈ [n] \ [σ(n)], add a multiple (−anj/anσ(n)) of the σ(n)th

column of A to the jth column of A. These elementary column operations

result in multiplying A from the right by a matrix B′
(1) ∈ Bn. Denote

A′
1 = AB′

(1). Then for each i ∈ [n− 1], add a multiple (−aiσ(n)/anσ(n)) of

the nth row of A′
1 to the ith row of A′

1. These elementary row operations
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result in multiplying A′
1 from the left by a matrix B(1) ∈ Bn. Denote a

new matrix A1 = [a
(1)
ij ] = B(1)A

′
1 = B(1)AB

′
(1). Then a

(1)
nσ(n) = anσ(n) is the

only nonzero entry of its row and column in A1.

(2) Repeat the same strategy on the other rows of the new matrix in the re-

versing row order until all rows are done.

The above process produces a matrix Q′ = B∗AB
′′
∗ in which each of the rows and

columns has at most one nonzero entry. By multiplying an appropriate nonsingular

diagonal matrix D′ from the right, we get a subpermutation Q = B∗AB
′′
∗D

′ =

B∗AB
′
∗ for some B∗, B

′
∗ ∈ Bn.

Clearly, ri,j(Q) = ri,j(A) for i, j ∈ [n] ∪ {0}. Moveover, given i, j ∈ [n], Q[[n] \

[n− i], [j]] has exactly one of the following forms (k ∈ [j − 1], l ∈ [i− 1]):
[

0 1

Q[[n] \ [n− i+ 1], [j − 1]] 0

]
,

[
(e

(j−1)
k )T 0

Q[[n] \ [n− i+ 1], [j − 1]] 0

]
,

[
0 0

Q[[n] \ [n− i+ 1], [j − 1]] e
(i−1)
l

]
,

[
0 0

Q[[n] \ [n− i+ 1], [j − 1]] 0

]
.

In all cases, the entries of subpermutation Q = [qij ] can be obtained by:

(2.5) qn−i+1,j = ri,j(Q)− ri−1,j(Q)− ri,j−1(Q) + ri−1,j−1(Q), i, j ∈ [n].

Therefore, the set of invariants {ri,j(A) : i, j ∈ [n]} completely determines the

unique subpermutation Q and the corresponding (Bn, Bn) double coset of A. �

If two matrices are similar and in the same (Bn, Bn) double coset, are they

necessarily Bn-similar? The answer is no.

Example 2.3. Let A =

[
0 1 1 0 0
0 0 0 1
0 1 0
0 0
0

]
and B =

[
0 1 0 0 0
0 0 0 1
0 1 0
0 0
0

]
. Both A and B have

the only eigenvalue 0, and rank (Am) = rank (Bm) for all m ∈ Z+. So A and B

are similar. They are also in the same (Bn, Bn) double coset represented by the

subpermutation B. However, A and B are not Bn-similar [10, Theorem 2].

The (Bn, Bn) double coset provides a good direction to explore the Bn-similarity

orbits it includes. Suppose A = BQB′ ∈ Nn where B,B′ ∈ Bn and Q ∈ Nn is a

subpermutation. Then A
Bn∼ QB′B. Write B′B = DU for D ∈ Dn and U ∈ Un.

Since Q ∈ Nn, there exists D′ ∈ Dn such that D′QD(D′)−1 = Q. Then

A
Bn∼ QB′B = QDU

Dn∼ D′QDU(D′)−1 = QD′U(D′)−1 ∈ QUn.

The coset QUn takes the following form.

Lemma 2.4. Suppose Q =
∑

i∈I Ei,σ(i) ∈ Mn is a subpermutation. Then A =

[aij ] ∈ QUn if and only if A meets the following conditions:

(1) A and Q have the same places of nonzero rows indexed by I;
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(2) A and Q have the same places and values of the first nonzero entry in each

nonzero row; precisely, for each i ∈ I, ai,σ(i) = 1 is the first nonzero entry

of the ith row of A.

The proof can be done by direct computation.

2.2. The Belitskĭıs algorithm for the Bn-similarity in Nn. V. Sergeichuk

presented the Belitskĭı’s algorithm to find a canonical form, the Belitskĭı’s canonical

form, for the Λ-similarity matrix problem [15]. On the Bn-similarity of A ∈ Nn,

the algorithm can be described as follows.

(1) List the matrix entry positions above the diagonal in a reversal row lexico-

graphical order “≺” called the Belitskĭı’s order:

(2.6) (n− 1, n) ≺ (n− 2, n− 1) ≺ (n− 2, n) ≺ (n− 3, n− 2) ≺ · · · ≺ (1, n).

The strictly upper triangular entries will be normalized throughBn-similarity

one-by-one in this order.

(2) (Normalizing the first entry) Let (A(0), B(0)) := (A,Bn). Find A(1) in the

B(0)-similarity orbit of A(0) = [aij ] such that the (n− 1, n) entry of A(1) is

either 0 or 1. For example,

A(1) :=




A if an−1,n = 0,

(In−1 ⊕ [an−1,n])A(In−1 ⊕ [an−1,n])
−1 if an−1,n 6= 0.

Denote the group

B(1) := {g ∈ B(0) | gA(1)g−1 fixes the value of the (n− 1, n) entry of A(1)}.

(3) (Normalizing the consequent entries) Suppose (A(k), B(k)) has been deter-

mined, and the group B(k) fixes the first k entries of A(k) = [a′ij ] in the

Belitskĭı’s order. Let (p, q) be the (k+1)th entry position. There are three

situations for the (p, q) entry of matrices C = [ci,j ] in the B(k)-similarity

orbit of A(k):

(a) cp,q is always 0, or cp,q could take any value of F: we find A(k+1) =

[a′′i,j ]
B(k)

∼ A(k) such that a′′p,q = 0;

(b) cp,q could take any value of F \ {0}: we find A(k+1) = [a′′i,j ]
B(k)

∼ A(k)

such that a′′p,q = 1;

(c) otherwise, cp,q ≡ λ for a fixed λ ∈ F \ {0}: we choose A(k+1) = A(k)

with a′′p,q = λ.

Let B(k+1) denote the subgroup of B(k) that fixes the (k+1)th entry value

as well as the first k entry values of A(k+1).

(4) Repeat the preceding step until the last position in the Belitskĭı’s order

is reached. Denote the last pair (A∞, B∞). The matrix A∞ is called the

Belitskĭı’s canonical form of A under the Bn-similarity.
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The above algorithm shows that each upper triangular entry of the Belitskĭı’s

canonical form A∞ is 0 or 1 or a parameter λ in which different λ values correspond

to different Bn-similarity orbits. This property is similar to that of a Jordan canon-

ical form. Moreover, the Belitskĭı’s canonical form A∞ has the following connection

to the subpermutation Q in the (Bn, Bn) double coset of A and A∞.

Theorem 2.5. Given a Belitskĭı’s canonical form A ∈ Nn, if A ∈ BnQBn in which

Q is a subpermutation, then A ∈ QUn.

Proof. The proof is done by induction on n. n = 1 is obviously true. Suppose the

statement holds for all n < m. Given A ∈ BmQBm where Q ∈ Nm is a subper-

mutation, write A =

[
0 aT

A1

]
for A1 ∈ Nm−1 and a ∈ Fm−1. By the Belitskĭı’s

algorithm, A1 is a Belitskĭı’s canonical form in Nm−1. Write Q =

[
0 bT

Q1

]
in

which Q1 is a subpermutation in Nm−1 and b ∈ Fm−1. Then A1 ∈ Bm−1Q1Bm−1.

So by induction hypothesis A1 = Q1Û for Û ∈ Um−1.

(1) If a = 0, then Lemma 2.2 implies that Q =

[
0 0

Q1

]
. Hence

A =

[
0 0

Q1

][
1 0

Û

]
∈ QUm.

(2) If a 6= 0, let A = [aij ] and let a1q (q ∈ {2, . . . ,m}) be the leading nonzero

entry in the first row of A. Then

A
Bm∼

[
a1q 0

Im−1

]−1

A

[
a1q 0

Im−1

]
=

[
0 a−1

1q a
T

A1

]

in which the last matrix has the leading entry 1 on the (1, q) position. By

the Belitskĭı’s algorithm a1q = 1. We claim that there is no p ∈ {2, . . . ,m}

such that apq is the leading nonzero entry of the pth row of A (i.e. the

(p− 1)th row of A1). Otherwise,

A
Bm∼

[
1 1

apq
(e

(m−1)
p−1 )T

Im−1

]−1 [
0 aT

A1

] [
1 1

apq
(e

(m−1)
p−1 )T

Im−1

]

=

[
0 aT − 1

apq
(e

(m−1)
p−1 )TA1

A1

]

where the first row of the last matrix has at least q leading zeros; contra-

dicting the Belitskĭı’s algorithm. By Lemma 2.4, the (q − 1)th column of

Q1 is zero. Using (2.4), we have Q =

[
0 (e

(m−1)
q−1 )T

Q1

]
. Let Û(aT ) denote
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the matrix obtained by replacing the (q − 1)th row of Û by aT . Then

Û(aT ) ∈ Um−1 and

A =

[
0 (e

(m−1)
q−1 )T

Q1

][
1 0

Û(aT )

]
∈ QUm.

Overall, the statement holds for n = m and the induction process is completed. �

Remark 2.6. A Belitskĭı’s canonical form needs not be in UnQ or BnQ. See the

examples in Theorems 5.2, 5.4, and 5.5.

The direct sums of Belitskĭı’s canonical forms are obviously Belitskĭı’s canonical

forms. Moreover, Theorem 2.5 implies a way to combine Belitskĭı’s canonical forms

together through certain subpermutations to form a new Belitskĭı’s canonical form,

as shown below.

Theorem 2.7. Suppose A1 ∈ Np and A2 ∈ Nq are Belitskĭı’s canonical forms, in

which A1 ∈ Q1Up and A2 ∈ Q2Uq for subpermutations Q1 ∈ Np and Q2 ∈ Nq.

If Q12 ∈ Mp,q such that

[
Q1 Q12

0 Q2

]
is a subpermutation, then

[
A1 Q12

0 A2

]
is a

Belitskĭı’s canonical form in Np+q.

Proof. Let A =

[
A11 A12

0 A22

]
(A11 ∈ Np) be the Belitskĭı’s canonical form of A′ :=

[
A1 Q12

0 A2

]
. Then A22 = A2 by the Belitskĭı’s algorithm.

Let Q :=

[
Q1 Q12

0 Q2

]
. Write A1 = Q1U

′ and A2 = Q2U
′′ for U ′ ∈ Up and

U ′′ ∈ Uq. Then the nonzero rows of A′ =

[
Q1U

′ Q12

0 Q2U
′′

]
have the same places

and values (i.e., 1) of leading nonzero entries as the nonzero rows ofQ do. Therefore,

A′ ∈ QUp+q by Lemma 2.4, and A ∈ QUp+q by Theorem 2.5.

Now consider A11 and A12. One one hand, each nonzero entry of the subper-

mutation Q12 equals the corresponding row leading nonzero entry of A12. On the

other hand, A′ Bp+q

∼ A implies that A1
Bp

∼ A11; A11 cannot be further reduced from

the Belitskĭı’s canonical form A1 in the Belitskĭı’s algorithm. Therefore, A11 = A1

and A12 = Q12 by the Belitskĭı’s algorithm, so that A =

[
A1 Q12

0 A2

]
is a Belitskĭı’s

canonical form. �

Remark 2.8. In Theorem 2.7, the form of the Belitskĭı’s canonical form

[
A1 Q12

0 A2

]

could have more parameters in nonzero entries of A1 and A2 than in the original

Belitskĭı’s canonical forms A1 and A2. For an example, see the case A1 = A2 =[
0 1 1 0
0 0 0
0 1
0

]
and Q12 =

[
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

]
in Example 5.6.
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2.3. Bn, Dn, and Un similarities. On the group level, Bn = Dn ⋉ Un. Two

matrices A
Bn∼ C if and only if C = BAB−1 for B ∈ Bn and B = UD such that

D ∈ Dn and U ∈ Un, so that A
Dn∼ DAD−1 Un∼ C. The Dn-similarity on Mn is easy

to classify.

In this paper, A ∈ Mn is called indecomposable if no permutation matrix P ∈

Mn satisfies that PAPT can be written as a direct sum of two proper principal

submatrices. The notation is different from that in [5], but they are identical when

referring to an indecomposable Belitskĭı’s canonical form.

Given A ∈ Mn and i, j ∈ [n], let us define

(2.7) fij(A) :=





aij if aij 6= 0,

1
aji

if aij = 0 but aji 6= 0,

0 if aij = aji = 0.

Theorem 2.9. Two matrices A = [aij ], C = [cij ] ∈ Mn have A
Dn∼ C if and only

if the following two conditions hold:

(1) A and C have the same places of nonzero entries, namely, aij 6= 0 if and

only if cij 6= 0; and

(2) for every sequence (i1, . . . , ip) of distinct elements in [n] such that at least

one of aikik+1
and aik+1ik is nonzero for each k ∈ [p] (let ip+1 := i1), we

have the identity

(2.8) fi1i2(A) · · · fip−1ip(A)fipi1(A) = fi1i2(C) · · · fip−1ip(C)fipi1(C).

Proof. Suppose C = DAD−1 where D = diag (d1, . . . , dn) is nonsingular. Then

cij =
di

dj
aij for i, j ∈ [n]. Conditions (1) and (2) in the theorem obviously hold.

Conversely, we use induction on n to prove that (1) and (2) imply A
Dn∼ C.

n = 1 is true. Suppose the claim holds for all cases of n < m. Now for n = m,

let A,C ∈ Mn satisfy (1) and (2). If A is not indecomposable, then there is a

permutation matrix P such that PAPT and PCPT are direct sums of respective

proper principal submatrices. So by induction hypothesis PAPT Dn∼ PCPT and

A
Dn∼ C. Otherwise, A is indecomposable. We find d1, . . . , dn ∈ F \ {0} as follows

such that cij =
di

dj
aij for i, j ∈ [n]. Let S0 := {1} and d1 := 1.

(1) Since A is indecomposable, there are j ∈ [n] \ S0 such that a1j 6= 0 or

aj1 6= 0, in which we define

(2.9) dj :=




d1

a1j

c1j
if a1j 6= 0,

d1
cj1
aj1

if a1j = 0, aj1 6= 0.

In the case a1j 6= 0 and aj1 6= 0, (2.8) gives a1jaj1 = c1jcj1 so that the dj

defined by (2.9) satisfies both c1j =
d1

dj
a1j and cj1 =

dj

d1
aj1. Let

S1 := S0 ∪ {j ∈ [n] \ S0 : a1j 6= 0 or aj1 6= 0}.
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Then S1 ) S0 and cij =
di

dj
aij for i, j ∈ S1.

(2) If S1 6= [n], then A being indecomposable implies that aij 6= 0 or aji 6= 0

for some (i, j) ∈ S1 × ([n] \ S1), in which we define

(2.10) dj :=




di

aij

cij
if aij 6= 0,

di
cji
aji

if aij = 0, aji 6= 0.

Let

S2 := S1 ∪ {j ∈ [n] \ S1 : aij 6= 0 or aji 6= 0 for some i ∈ S1}.

Then S2 ) S1 and cij =
di

dj
aij for i, j ∈ S2 by (2.8).

(3) Repeat the process until we reach Sm = [n], where all dj for j ∈ [n] are

well-defined. Let D := diag (d1, . . . , dn) then C = DAD−1 as desired. �

Theorem 2.9 shows that: if A ∈ Mn is transformed via a Bn-similarity action

to C ∈ Mn, the zero places of C are determined by the associated Un-similarity

transformation. The identities (2.8) in Theorem 2.9 will also be used to determine

the places of parameters in a Belitskĭı’s canonical form.

The matrix group Un is generated by

(2.11) {In + λEpq : λ ∈ F, p, q ∈ [n], p < q}.

Definition 2.10. Given λ ∈ F, (p, q) ∈ [n]× [n] and p < q, we define an elementary

Un-similarity operation (ESO) to be the function Oλ
p,q : Nn → Nn such that for

A = [aij ] ∈ Nn:

Oλ
p,q(A) := (In + λEpq)A(In + λEpq)

−1

= (In + λEpq)(

n∑

i,j=1

aijEij)(In − λEpq)

= A+
∑

j∈[n]
aqj 6=0

λaqjEpj −
∑

i∈[n]
aip 6=0

λaipEiq.(2.12)

Each Oλ
p,q is also called an Op,q-operation.

The ESOs will be described by graph operations in Section 3.

Lemma 2.11. Given U ∈ Un, write U = In +
∑m

k=1 uikjkEikjk where (i1, j1) ≺

(i2, j2) ≺ · · · ≺ (im, jm) in the Belitskĭı’s order (2.6). Then

(2.13) U = (In + ui1j1Ei1j1) · · · (In + uimjmEimjm).

Proof. Left multiply (In+ui1j1Ei1j1)
−1 onto U . The matrix (In+ui1j1Ei1j1)

−1U =

(In − ui1j1Ei1j1)U is the one that eliminates the (i1, j1) entry of U . Keep left

multiplying (In + ui2j2Ei2j2)
−1, . . . , (In + uimjmEimjm)−1 in order. We will have

(In + uimjmEimjm)−1 · · · (In + ui1j1Ei1j1)
−1U = In.

So (2.13) holds. �
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Remark 2.12. Given U ∈ Un, if we write U−1 = In −
∑m

k=1 u
′
ikjk

Eikjk where

(i1, j1) ≺ (i2, j2) ≺ · · · ≺ (im, jm), then (2.13) implies that

U−1 = (In − u′
i1j1

Ei1j1) · · · (In − u′
imjm

Eimjm)

so that

(2.14) U = (In + u′
imjm

Eimjm) · · · (In + u′
i1j1

Ei1j1).

Lemma 2.13. Let S ⊆ {(i, j) ∈ [n]× [n] : i < j} such that

(2.15) US := {In +
∑

(i,j)∈S

aijEij : aij ∈ F}

is a subgroup of Un. Then US is generated by {In + λEij : (i, j) ∈ S, λ ∈ F}, and

each element of US can be written as a product of no more than |S| elements in

{In + λEij : (i, j) ∈ S, λ ∈ F}.

Proof. It is a direct consequence of Lemma 2.11. �

Given a subpermutation Q, the coset QUn is not closed under the Un-similarity.

However, the following result indicates that Un-similar matrices in QUn can be

transformed to each other via finitely many ESOs stabilizing QUn.

Theorem 2.14. Let Q ∈ Nn be a subpermutation. Let A,C ∈ QUn such that

A
Un∼ C. Then there exist a sequence of ESOs {Oλ1

i1,j1
, . . . ,Oλm

im,jm
}, λk ∈ F and

1 ≤ ik < jk ≤ n for k ∈ [m], such that the followings conditions hold:

(1) (i1, j1) ≺ (i2, j2) ≺ · · · ≺ (im, jm) in the Belitskĭı’s order (2.6).

(2) Let A0 := A and for k ∈ [m]:

(2.16) Ak := Oλk

ik,jk
(Ak−1) = (In + λkEikjk)Ak−1(In + λkEikjk)

−1.

Then A0, A1, . . . , Am ∈ QUn and Am = C.

Proof. Let Q =
∑

i∈I Ei,σ(i) as in (2.1). Let A = QU ′ and C = UAU−1 =

UQU ′U−1 for U,U ′ ∈ Un. Write U = In + [uij ] where [uij ] ∈ Nn. By direct

computation, C ∈ QUn if and only if UQ ∈ QUn, if and only if the nonzero uij

entries have the pairs (i, j) in the set

(2.17) SQ := {(i, j) ∈ I × I : i < j, σ(i) < σ(j)} ∪ {(i, j) ∈ [n]× ([n] \ I) : i < j}.

Therefore, the group {T ∈ Un : TAT−1 ∈ QUn} = USQ
which is generated by

{In + λEij : (i, j) ∈ SQ, λ ∈ F} according to Lemma 2.13. Moreover, U−1 ∈ USQ
.

If we write

U−1 = In −
m∑

k=1

λkEikjk ,

in which λk ∈ F \ {0}, (ik, jk) ∈ SQ and (i1, j1) ≺ · · · ≺ (im, jm) in the Belitskĭı’s

order, then by Lemma 2.11, U−1 = (In − λ1Ei1j1) · · · (In − λmEimjm) and

C = (In + λmEimjm) · · · (In + λ1Ei1j1)A(In + λ1Ei1j1)
−1 · · · (In + λmEimjm)−1.
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So Theorem 2.14 (1) and (2) are proved. �

Remark 2.15. Theorem 2.14 also holds if we replace condition (1) by the condition:

(i1, j1) ≻ (i2, j2) ≻ · · · ≻ (im, jm) in the Belitskĭı’s order (2.6).

Theorem 2.16. If A ∈ QUn and Q ∈ Nn is a subpermutation, then A can be

transformed via a finite number of ESOs stabilizing QUn to a matrix Ã∞ ∈ QUn

which is Dn-similar to the Belitskĭı’s canonical form A∞ ∈ QUn.

Proof. Since Bn = Dn ⋉ Un, there exist D ∈ Dn and U ∈ Un such that A∞ =

(DU)A(DU)−1 = D(UAU−1)D−1. Let Ã∞ := UAU−1. We first prove that Ã∞ ∈

QUn. Notice that A∞ ∈ QUn by Theorem 2.5, and Ã∞ and A∞ = DÃ∞D−1 have

the same places of nonzero entries by Theorem 2.9. Using Lemma 2.4, it suffices

to show that the leading nonzero entry of each nonzero row of Ã∞ equals 1. Let

Ri(C) denote the ith row of a matrix C. By A ∈ QUn, we have AU−1 ∈ QUn so

that all nonzero rows Ri(AU
−1) have distinct places of leading nonzero entries 1.

Let U := [ui,j ]. Then Ã∞ = U(AU−1) implies that for i ∈ [n]:

Ri(Ã∞) = Ri(AU
−1) + ui,i+1Ri+1(AU

−1) + · · ·+ ui,nRn(AU
−1).

Suppose Ri(Ã∞) is a nonzero row for a given i. Then Ri(Ã∞), Ri(A
∞), and

Ri(AU
−1) have the same places of leading nonzero entries as Q does. Moreover,

every ui,j 6= 0 for i < j ≤ n implies that either Rj(AU
−1) is zero or the place

of leading nonzero entry of Rj(AU
−1) is after that of Ri(AU

−1). Therefore, the

leading nonzero entry of Ri(Ã∞) equals that of Ri(AU
−1), namely 1. We get

Ã∞ ∈ QUn.

Finally, Theorem 2.14 shows that A can be transformed via a finite number of

ESOs stabilizing QUn to Ã∞, and Ã∞ is Dn-similar to A∞. �

In summary, here is a simplification process to get the Belitskĭı’s canonical form

A∞ of a given A ∈ Nn under the Bn-similarity:

(1) Use elementary row and column operations (cf. the proof of Lemma 2.2)

to factorize A = BQB′ for B,B′ ∈ Bn and Q ∈ Nn is the subpermutation

determined by {ri,j(A) : i, j ∈ [n]}. Then A
Bn∼ QB′B.

(2) Write B′B = DU for D ∈ Dn and U ∈ Un. Find D′ ∈ Dn such that

D′QD(D′)−1 = Q. Then

QB′B = QDU
Dn∼ D′QDU(D′)−1 = QD′U(D′)−1 ∈ QUn.

(3) Use a sequence of ESOs stabilizing QUn to simplify QD′U(D′)−1 to a ma-

trix Ã∞ which is Dn-similar to A∞ (cf. Theorem 2.14 and Theorem 2.16).

Then determine A∞ (cf. Theorem 2.9).

We will explore the details of step (3) above in the coming sections.
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3. Graph representations and graph operations

In this section, given a subpermutation Q ∈ Nn, we use graph representations to

visualize matrices in QUn, then use graph operations to visualize ESOs on matrices

in QUn.

3.1. Graph representation of matrices in QUn. Every A = [aij ] ∈ Mn is

the adjacency matrix of a directed graph GA = (VA, EA) with a weight function

wA : [n]× [n] → F \ {0} whose support is EA. Precisely,

(3.1) VA = [n]; EA = {(i, j) ∈ [n]× [n] : aij 6= 0}; wA(i, j) = aij .

Each element of VA (resp. EA) is called a vertex (resp. an arc) of the graph GA.

Each arc (i, j) ∈ EA is visualized as i → j, in which i (resp. j) is called the tail

(resp. the head) of the arc (i, j), and wA(i, j) is called the weight of the arc (i, j).

Call GA = (VA, EA) the graph of A, and G̃A = (VA, EA, wA) the weighted graph of

A, respectively.

When A ∈ Nn, the graph of A is simple and it consists of some arcs (i, j) ∈

[n]× [n] with i < j.

A partition of [n] has the form [n] = S1 ∪ · · · ∪ Sm where each partition subset

Si 6= ∅. For the uniqueness of expression, we assume that the minimal elements of

S1, . . . , Sm are in ascending order, and write the partition as S̃1| · · · |S̃m where S̃i

is the list of elements of Si in ascending order. For example, the parition {5, 6} ∪

{7, 3}∪ {2, 4, 1} of [7] will be expressed as 124|37|56 (for n > 9, we will add spaces

between neighboring numbers).

Lemma 3.1. Given a subpermutation Q ∈ Nn, the graph GQ of Q consists of finite

connected components, each of which is a directed path of the form:

(3.2) i1 −→ i2 −→ · · · −→ ip, i1 < · · · < ip, p ∈ Z+.

There is a bijective correspondence between the set of all subpermutations in Nn

and the set of all paritions of [n], in which Q corresponds to the partition PQ of the

union of the sets {i1, . . . , ip}, namely, the (i, j) entry of Q is nonzero if and only

if i < j are sequential elements in a partition subset of PQ.

Proof. Since Q ∈ Nn, the graph GQ only contains arcs (i, j) with i < j. Since Q is

a subpermutation, each row and column of Q has at most one nonzero entry, so that

each vertex i of GQ is the head (resp. the tail) of at most one arc. Therefore, each

connected component of GQ must have the form (3.2). The rest is obvious. �

We call each connected component subgraph (3.2) of GQ a chain of GQ. So the

graph GQ is a union of finite disconnected chains. GQ is connected if and only if

Q is indecomposable. When Q is fixed, in the chain (3.2):

• i1 (resp. ip) is called the chain tail (resp. the chain head) of the chain (3.2);
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• for each k ∈ [p − 1], ik+1 is called the chain successor of ik, denoted by

ik
+ = ik+1; and ik is called the chain predecessor of ik+1, denoted by

ik+1
− = ik.

We call the partition PQ in Lemma 3.1 the partition of Q. PQ also determines the

permutation matrices P in which each PQPT is a direct sum of indecomposable

submatrices.

Lemma 2.4 for a subpermutation Q ∈ Nn can be rephrased in graphs as follows.

Lemma 3.2. A ∈ Mn is in QUn for a subpermutation Q ∈ Nn if and only if the

weighted graph of A satisfies the following conditions:

(1) EA ⊇ EQ and the weights wA(i, j) = wQ(i, j) = 1 for all (i, j) ∈ EQ;

(2) each (i, j) ∈ EA \ EQ satisfies that i is not the chain head of any chain of

GQ, and i < i+ < j where (i, i+) ∈ EQ.

Proof. Suppose A ∈ QUn in which Q ∈ Nn is a subpermutation. Write Q =∑
i∈I Ei,σ(i) for I ⊆ [n]. Then i+ = σ(i) for all i ∈ I. Moreover, i is a chain head

of GQ if and only if i ∈ [n] \ I. Lemma 2.4 (2) shows that G̃A contains G̃Q as

a weighted subgraph. Given (i, j) ∈ EA \ EQ, Lemma 2.4 (1) shows that i is not

a chain head of GQ, and Lemma 2.4 (2) and the assumption Q ∈ Nn show that

i < σ(i) = i+ < j.

The converse statement also holds by Lemma 2.4. �

In Lemma 3.2, GA contains GQ as a subgraph. When A ∈ QUn for a subper-

mutation Q, we call each element of EA \ EQ an extra arc of GA. We denote the

graph type of A as PQ : i1j1| · · · |itjt where PQ is the partition corresponding to Q

and (i1, j1), . . . , (it, jt) are the extra arcs of GA listed in ascending Belitskĭı‘s order

(2.6). If A has no extra arc (i.e. A = Q), its graph type is denoted as PQ : ∅. The

graph type of A is a concise expression of the graph GA.

Example 3.3. Let n = 7. Let

Q =




0 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1
0 0 0 0
0 1 0
0 0
0


 ∈ N7, A = Q




1 ∗ ∗ ∗ ∗ ∗ ∗
1 0 3 −2 0 1
1 ∗ ∗ ∗ ∗
1 −1 0 0

1 ∗ ∗
1 0
1


 =




0 1 0 3 −2 0 1
0 0 1 −1 0 0
0 0 0 0 1
0 0 0 0

0 1 0
0 0
0


 .

The subpermutation Q corresponds to the partition PQ = 124|37|56 of [7]. The

graph of Q is GQ = ([7], EQ) in which EQ = {(1, 2), (2, 4), (3, 7), (5, 6)}. The graph

of A is GA = ([7], EA) in which EA = EQ∪{(1, 4), (1, 5), (1, 7), (2, 5)}. So the graph

type of A is 124|37|56 : 25|14|15|17.

In the graph on the right, G̃Q consists of three

chains formed by black arcs with weights 1, and

G̃A has the extra arcs with weights marked in

red. By Lemma 3.2, an arc like (4, 7) or (3, 5)

cannot be an extra arc of GA.

1 2

3

4

5 6

7
−1

1

3

−2
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3.2. The elementary Un-similarity graph operations on QUn. The ESO in

Definition 2.10 can be rephrased using graph operations. Let λ ∈ F and (p, q) ∈

[n]× [n] with p < q. For A = [aij ] ∈ Nn, (2.12) shows that

Oλ
p,q(A) = A+

∑

j∈[n]
aqj 6=0

λaqjEpj −
∑

i∈[n]
aip 6=0

λaipEiq .

Let A′ = [a′ij ] := Oλ
p,q(A). The changes made by Oλ

p,q from G̃A to G̃A′ are below:

(1) whenever (i, p) ∈ EA (i.e. aip 6= 0),

wA′(i, q) = a′iq = aiq − λaip = wA(i, q)− λwA(i, p);

(2) whenever (q, j) ∈ EA (i.e. aqj 6= 0),

wA′(p, j) = a′pj = apj + λaqj = wA(p, j) + λwA(q, j).

These changes are visualized as follows, in which a red arc indicates a change of

the weight, and a dashed arc indicates that the weight may be zero:

(3.3)

G̃A

Oλ
p,q

=⇒ G̃A′

i p

q j

<

aip

aqj

aiq

apj

Oλ
p,q

=⇒

i p

q j

<

aip

aqj

aiq − λaip

apj + λaqj

By abuse of language, we also call transformation (3.3) the elementary Un-similarity

operation (ESO) Oλ
p,q on the weighted graph G̃A, denoted by Oλ

p,q(G̃A) = G̃A′ .

Given a matrix A = [aij ] ∈ QUn where Q ∈ Nn is a subpermutation, Theorem

2.16 shows that A could be transformed via a sequence of ESOs stabilizing QUn

to a matrix Ã∞ ∈ QUn which is Dn-similar to the Belitskĭı’s canonical form A∞.

By Theorem 2.9, Ã∞ and A∞ have the same places of nonzero entries, that is,

G
Ã∞

= GA∞ , and the relation of weight functions (2.8) holds on each undirected

cycle of G
Ã∞

. Therefore, we will use ESOs (3.3) to eliminate “redundant arcs” on

G̃A following the Belitskĭı’s order until we reach G̃
Ã∞

; then we adjust the weights

on undirected cycles of G̃
Ã∞

following the Belitskĭı’s order and get G̃A∞ .

Lemma 3.4. Let A = [aij ] ∈ Nn. An arc (i, j) of G̃A = ([n], EA, wA) can be

eliminated by an ESO only if one of the following two cases happens:

(1) there is p such that i < p < j and (i, p) ∈ EA, in which Oλ
p,j(G̃A) for

λ =
aij

aip
has no arc (i, j);

(2) there is q such that i < q < j and (q, j) ∈ EA, in which Oλ
i,q(G̃A) for

λ = − aij

aqj
has no arc (i, j);

Proof. The statement is a direct consequence of (3.3). �
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By Theorem 2.16, when A ∈ QUn for a subpermutation Q ∈ Nn, we should try

to eliminate the extra arcs of G̃A by ESOs stabilizing QUn. So in practice, not

every ESO satisfying conditions in Lemma 3.4 will be considered.

Example 3.5. Let subpermutation Q ∈ N7 and matrix A ∈ QU7 be given in

Example 3.3. The extra arcs in G̃A sorted by the Belitskĭı’s order are: (2, 5) ≺

(1, 4) ≺ (1, 5) ≺ (1, 7). We test and eliminate them by ESOs stabilizing QU7 in

this order. The first arc (2, 5) cannot be eliminated, since the only type of ESOs

that can modify the weight of (2, 5) is O4,5 which creates the arc (4, 6) and does

not stabilize QU7. Then:

1 2

3

4

5 6

7−1

1

3

−2
O3

2,4
=⇒

1 2

3

4

5 6

7−1

1

−2

O−2
2,5

=⇒

1 2

3

4

5 6

7−1

1

−2

O−2
4,6

=⇒

1 2

3

4

5 6

7−1

1

O1
2,7

=⇒

1 2

3

4

5 6

7−1

Hence O1
2,7O

−2
4,6O

−2
2,5O

3
2,4(A) = Ã∞ in which G̃

Ã∞
is the last weight graph above.

There is no undirected cycle on G̃
Ã∞

. So Ã∞ is D7-similar to the Belitskĭı’s canon-

ical form A∞ whose weighted graph has weight 1 on the arc (2, 5). In other words,

A
U7∼ Ã∞ = Q− E2,5

D7∼ A∞ = Q+ E2,5.

The elimination process in Example 3.5 may be roughly abbreviated as changes

on graph types as below, where an appropriate operation on the first row causes

the changes of arcs listed on the second row.

(3.4)
O2,4 O2,5 O4,6 O2,7

124|37|56 : 25|14|15|17 −14 −15 + 26 −26 −17 = 25

So the Belitskĭı’s canonical form of A has the type 124|37|56 : 25. A process like

(3.4) only works for generic cases, since the process omits all weight information; for

some specific matrix, an ESO on its weighted graph may eliminate several extra arcs

simultaneously and lead to a different type. However, we will see that a graphical

version of process (3.4) is powerful in classifying the forms of the Belitskĭı’s canonical

forms under Bn-similarity.

Another observation about Example 3.5 is that: unlike those ESOs in Theorem

2.14, in O1
2,7O

−2
4,6O

−2
2,5O

3
2,4(A) = Ã∞, the pairs (2, 4), (2, 5), (4, 6), (2, 7) do not com-

pletely follow the Belitskĭı’s order ≺. However, we check and (if possible) eliminate



ON TRIANGULAR SIMILARITY OF NILPOTENT TRIANGULAR MATRICES 17

the extra arcs of G̃A following the Belitskĭı’s order; the success of this process is

guaranteed by the combination of the Belitskĭı’s algorithm and Theorem 2.14.

4. Properties of the Belitskĭı’s canonical forms under Bn-similarity

Given a matrix A ∈ BnQBn or QUn where Q ∈ Nn is a subpermutation, Theo-

rem 2.5 shows that the Belitskĭı’s canonical form A∞ ∈ QUn. Here we investigate

the nonzero entries in A∞, or equivalently, what extra arcs and weights could be

in G̃A∞ . For simplicity, we assume that A is already a Belitskĭı’s canonical form.

4.1. Characterization of the Belitskĭı’s canonical form. The (2.8) in Theo-

rem 2.9 indicates that if the graph of a Belitskĭı’s canonical form has an undirected

cycle, then at least one arc of this undirected cycle has a parameter weight. It

derives the following results.

Theorem 4.1. Let A ∈ Nn be a Belitskĭı’s canonical form. If GA has m connected

components and |EA| = N , then A has m indecomposable components and N−n+m

parameters.

Proof. If GA has m connected components, then the vertex sets of these m con-

nected subgraphs form a partition of [n]. For each permutation matrix P ∈ Mn,

the graphs GPAPT and GA are isomorphic. There is a permutation matrix P such

that the vertex set of each connected component of GPAPT contains sequential in-

teger(s). Then PAPT is a direct sum of m principal submatrices, each of which is

indecomposable. In other words, A has m indecomposable components.

If a connected component of GA has n1 vertices and r1 arcs, then r1 ≥ n1 − 1.

When r1 = n1 − 1, the connected component contains no undirected cycle so that

all weights of its arcs are 1 by Theorem 2.9 and the Belitskĭı’s algorithm. When

r1 > n1−1, the connected component can be obtained by adding r1−n1+1 arcs to

a connected subgraph with n1 − 1 arcs, and adding each arc creates an undirected

cycle on the union of this arc and the subgraph. Therefore, by Theorem 2.9, there

are r1 − n1 + 1 parameter weights on the arcs of this connected component.

Summing over all m connected components of GA, we see that A has N −n+m

parameters. �

Remark 4.2. In matrix way, Theorem 4.1 says that: if a Belitskĭı’s canonical

form A ∈ Nn is permutation similar to a direct sum of m indecomposable squared

submatrices, and A has N nonzero entries, then A has N − n+m parameters.

The following two results describe an indecomposable Belitskĭı’s canonical form

and its graph. They show that if the graph type or the places of nonzero entries of

a Belitskĭı’s canonical form are known, then we can determine the amount and the

places of parameters among these nonzero entries.
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Corollary 4.3. Let A ∈ Nn be a Belitskĭı’s canonical form. Then A is indecom-

posable if and only if the graph GA = ([n], EA) is connected. Moreover, if A is

indecomposable with N nonzero entries, then A has N − n+ 1 parameters.

Theorem 4.4. Let A ∈ QUn be an indecomposable Belitskĭı’s canonical form in

which Q ∈ Nn is a subpermutation. List the extra arcs of GA (i.e. the elements of

EA \ EQ) in the Belitskĭı’s order:

(4.1) (i1, j1) ≺ (i2, j2) ≺ · · · ≺ (it, jt).

Then the places of parameters of A (if any) correspond to the marked extra arcs

determined by the following steps, starting at the graph G := GQ in which all arcs

in EQ are unmarked:

(1) add the extra arcs of GA one at a time to G according to the Belitskĭı’s

order (4.1).

(2) when adding an extra arc (i, j) to G creates an undirected cycle in which

none of the arcs is marked, mark the extra arc (i, j) and continue;

(3) repeat the steps (1) and (2) until all extra arcs of GA are gone through.

Proof. Since A ∈ QUn, the parameters ofA appear only in the entries corresponding

to extra arcs.

In step (2), when adding an extra arc (i, j) results in an undirected cycle in which

none of the arcs is marked, we may assume that the undirected cycle has distinct

vertices by removing redundant subcycles. By Theorem 2.9 (2), the undirected

cycle contains at least one arc with a parameter weight to represent the scalar in

(2.8). Moreover, (i, j) is the last arc in the Belitskĭı’s order in this undirected cycle.

So by the Belitskĭı’s algorithm, the parameter weight in the undirected cycle should

be on (i, j).

After step (3), if we remove all marked arcs fromGA then the remaining subgraph

does not have any undirected cycle. By Theorem 2.9, A is Dn-similar (and thus

Bn-similar) to a matrix whose unmarked arcs have weights 1 and marked arcs have

parameter weights.

The normalization steps (1), (2), (3) allow us to place the parameters of A in

accordance with the Belitskĭı’s algorithm. So these steps determine the places of

parameters. �

Example 4.5. An analysis similar to Example 3.5 shows that: every matrix

A ∈ QU8 of the graph type 123678|45 : 46|24|14 has no extra arc in GA that

can be eliminated by ESOs stablizing QU8. So A is a Belitskĭı’s canonical form,

which is indecomposable since GA is connected. Corollary 4.3 shows that A has 2

parameters, and Theorem 4.4 shows that the parameters appear in the (2, 4) and

(1, 4) entries. So G̃A and A have the forms (λ, µ ∈ F \ {0}):
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G̃A : 1 2 3

4 5

6 7 8
1λ

µ A =




0 1 0 µ 0 0 0 0
0 1 λ 0 0 0 0
0 0 0 1 0 0

0 1 1 0 0
0 0 0 0
0 1 0
0 1
0




All such Belitskĭı’s canonical forms may be represented by the graph type with ad-

ditional underlines indicating parameters, namely 123678|45 : 46|24|14.

4.2. Extra arcs in the graph of the Belitskĭı’s canonical form. Fix a sub-

permutation Q =
∑

i∈I Ei,σ(i) ∈ Nn. Using the notations in Section 3.1, the graph

GQ consists of n − |I| chains in which the set Sh of chain heads and the set St of

chain tails are

(4.2) Sh = [n] \ I, St = [n] \ σ(I).

We also denote the maps

(4.3) I → σ(I), i 7→ i+ := σ(i), and σ(I) → I, j 7→ j− := σ−1(j).

Given a Belitskĭı’s canonical form A ∈ QUn, Lemma 2.4 and its graph version

Lemma 3.2 give a description of the entries of A. In this subsection, we further

explore what entries of A should be zero, namely, what extra arcs should not be in

GA.

Theorem 4.6. Let A = [aij ] ∈ QUn be a Belitskĭı’s canonical form in which

Q =
∑

i∈I Ei,σ(i) ∈ Nn is a subpermutation. Then for i ∈ I, (i, j) 6∈ EA (i.e.

aij = 0) when one of the following situations happen:
(1) i+ < j ∈ Sh;

i i+

j

<

· · ·· · ·

· · · ∈ Sh

(2) j 6∈ St and i < j−.

i i+

j− j

<

· · ·· · ·

· · · · · ·

In particular, if i and j are on the same chain of GQ but j 6= i+, then (i, j) 6∈ EA.

Proof. We prove by contradictions that A cannot be a Belitskĭı’s canonical form if

an arc (i, j) ∈ EA satisfies (1) or (2) of Theorem 4.6. The idea is to find a matrix

A′ ∈ QUn such that A′ Un∼ A and

(4.4) EA′ ⊆ (EA \ {(i, j)}) ∪ {(i′, j′) ∈ [n]× [n] : i′ < j′, (i, j) ≺ (i′, j′)},

which contradicts the Belitskĭı’s algorithm to get the Belitskĭı’s canonical form A.

(1) Suppose (i, j) ∈ EA such that i+ < j ∈ Sh. By Lemma 3.4, there is λ1 ∈ F

such that the graph of A1 := Oλ1

i+,j
(A) contains no arc (i, j). By Lemma

3.2 (2), j ∈ Sh is not the tail of any arc of G̃A. Thus by (3.3), EA1 \ EA

only contains some (i1, j) in which (i1, i
+) ∈ EA and i1 6= i so that i1 ∈ I
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and i+1 < i+ by Lemma 3.2 (2).

The changes from GA to GA1 are illus-

trated on the right, in which the dashed

blue arc is removed and some solid blue

arcs are added.

i i+

j

i1 i+1

∈ Sh

Similarly, for each (i1, j) ∈ EA1 \ EA, an appropriate Oi+1 ,j-operation

will remove the arc (i1, j) from the graph and add the arcs (i2, j) in which

(i2, i
+
1 ) ∈ EA1 and i2 6= i1 so that i2 ∈ I and i+2 < i+1 . Repeating the process

results in i+ > i+1 > i+2 > · · · . However, the process cannot go on forever.

Hence by a finite steps of ESOs we can remove (i, j) from GA as well as

all arcs created by these ESOs. In other words, we get A′ = A − aijEij

such that A′ Un∼ A. This contradicts the assumption that A is a Belitskĭı’s

canonical form. Therefore, (i, j) 6∈ EA.

(2) Suppose (i, j) ∈ EA such that j 6∈ St and i < j−. By Lemma 3.4, there

is λ ∈ F such that the graph of A′ := Oλ
i,j− (A) contains no arc (i, j). By

(3.3), EA′ \ EA only contains the following possible arcs:

i i+

j− j

h k

(a) (h, j−) ∈ EA′ \ EA in which (h, i) ∈ EA. In such a case, h < i so that

(h, j−) ≻ (i, j) in the Belitskĭı’s order.

(b) (i, k) ∈ EA′ \ EA in which (j−, k) ∈ EA and k 6= j. In such a case,

j− < j < k by Lemma 3.2 (2) so that (i, k) ≻ (i, j) in the Belitskĭı’s

order.

Overall, we get A′ Un∼ A in which EA′ satisfies (4.4). It contradicts

the assumption that A is a Belitskĭı’s canonical form. Therefore, (i, j) 6∈

EA. �

The less intuitive matrix version of Theorem 4.6 is as follows.

Theorem 4.7. Let A = [aij ] ∈ QUn be a Belitskĭı’s canonical form where Q =∑
i∈I Ei,σ(i) ∈ Nn is a subpermutation. Then aij = 0 whenever:

(1) j ∈ [n] \ (I ∪ {σ(i)}), or

(2) j ∈ σ(I) and i < σ−1(j).

In particular, aij = 0 if j = σk(i) for some integer k > 1.

Theorem 4.6 is equivalent to the following result which gives a characterization

of the possible arcs in a Belitskĭı’s canonical form.

Theorem 4.8. Let A = [aij ] ∈ QUn be a Belitskĭı’s canonical form in which

Q =
∑

i∈I Ei,σ(i) ∈ Nn is a subpermutation. Then (i, j) ∈ EA (i.e. aij 6= 0)

implies i ∈ I = [n] \ Sh and one of the following:



ON TRIANGULAR SIMILARITY OF NILPOTENT TRIANGULAR MATRICES 21

(1) j = i+ (where aij = 1). i i+ = j

(2) j ∈ St \ Sh and i+ < j.

i i+

j j+
∈ St \ Sh

<

(3) j 6∈ St ∪ Sh and j− < i < i+ < j.
i i+

j− j
< <

6∈ St ∪ Sh

In particular, given i ∈ I, there is at most one vertex j in each chain of GQ such

that (i, j) ∈ EA.

Proof. The case (1) is (i, j) ∈ EQ. The cases (2) and (3) cover those extra arcs

(i, j) not included in Theorem 4.6 (1) and (2).

It remains to prove the last claim. Suppose (i, j) ∈ EA and the vertex j is in a

chain G′ of GQ. If the chain G′ contains the vertex i, then j = i+. Otherwise, j is

the lowest vertex number in the chain G′ such that j > i+. �

Theorem 4.9. Let A = [aij ] ∈ QUn be a Belitskĭı’s canonical form in which Q =∑
i∈I Ei,σ(i) ∈ Nn is a subpermutation. Given (i, j) ∈ [n]× [n] with i < j, suppose

there exist m ∈ N and sequences i0 = i, i1, . . . , im ∈ [n] and j0 = j, j1, . . . , jm ∈ [n]

such that all of the following conditions hold for p ∈ [m]:

i0i = i1 i2 im−1 im

j0j = j1 j2 jm−1 jm

· · · · · ·

· · · · · ·

(1) (ip−1, ip) is the only arc in GA whose head is ip.

(2) (jp−1, jp) = (jp−1, j
+
p−1) is the only arc in GA whose tail is jp−1.

(3) ip < jp−1.

(4) im 6∈ Sh but jm ∈ Sh.

Then (i, j) 6∈ EA.

Proof. Suppose on the contrary (i, j) = (i0, j0) ∈ EA. There exists λ1 ∈ F such

that the graph of A1 := Oλ1

i1,j0
(A) does not contain the arc (i, j). Then either EA1 =

EA\{(i, j)} or EA1 = (EA\{(i, j)})∪{(i1, j1)}. However, EA1 = EA\{(i, j)} is im-

possible since A is a Belitskĭı’s canonical form. So EA1 = (EA \{(i, j)})∪{(i1, j1)}.

Similarly, applying a sequence of appropriate Oi2,j1 , . . . ,Oim,jm−1 operations to A1,

we will get Am
Un∼ A1

Un∼ A such that

EAm
= (EA \ {(i, j), (i1, j1), . . . , (im−1, jm−1)}) ∪ {(im, jm)}.

Since im 6∈ Sh and jm ∈ Sh, the proof of Theorem 4.6 indicates that there is

Am+1
Un∼ Am

Un∼ A such that

EAm+1 = EAm
\ {(im, jm)} = EA \ {(i, j), (i1, j1), . . . , (im, jm)}.

It contradicts the assumption that A is a Belitskĭı’s canonical form. �
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Example 4.10. Let Q ∈ N8 be the subpermutation with PQ = 12368|457. Con-

sider the possible Belitskĭı’s canonical forms A ∈ QU8. Theorem 4.8 implies that

the possible extra arcs in EA \ EQ are (1, 4), (2, 4), and (4, 6). By Theorem 4.9,

neither (4, 6) nor (1, 4) can be in a Belitskĭı’s canonical form. Therefore, the only in-

decomposable Belitskĭı’s canonical form in QU8 is of the graph form 12368|457 : 24.

A =




0 1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0
0 0 1 0
0 0 1
0 0
0




1 2 3

4 5

6

7

8

4.3. Possible numbers of parameters in a Belitskĭı’s canonical form. In [5,

Theorem 2.4], Chen et al showed that for n ≥ 6, there exists an indecomposable

Belitskĭı’s canonical form in Nn which admits at least ⌊n
2 ⌋ − 2 parameters. Note

that a matrix in Nn has up to n(n−1)
2 nonzero entries. We show below the existence

of indecomposable 3-nilpotent Belitskĭı’s canonical forms with arbitrary number of

parameters up to O(n2).

Theorem 4.11. Let n, r ∈ N such that n ≥ 6 and

(4.5) r ≤





1
2⌊

n−2
3 ⌋(⌊n−2

3 ⌋ − 1) if n ≡ 0, 2 mod 3,

1
2⌊

n−2
3 ⌋(⌊n−2

3 ⌋ − 1)− 1 if n ≡ 1 mod 3.

Then there exists an indecomposable Belitskĭı’s canonical form A ∈ Nn with r

parameters, and A has the minimal polynomial x3.

Proof. We construct the desired Belitskĭı’s canonical forms for n ≥ 6 according to

n mod 3:

(1) When n = 3m, choose the subpermutation Q ∈ N3m with

(4.6) PQ = 1 2m 2m+ 1 | 2 2m− 1 2m+ 2 | · · · | m m+ 1 3m.

Let G = ([3m], E) be the graph containing GQ as a subgraph and

(4.7) E \ EQ = {(i, j) ∈ [3m]× [3m] : 2 ≤ i ≤ m, 2m+ 2− i ≤ j ≤ 2m}.

The graph G is illustrated as below (1 ≤ i1 < i2 < i3 < . . . ≤ n):

i1

i2

i3

i4 i5

i6

i7

i8 i9

i10

i11

i12

Let A ∈ QUn such that GA = G and the places of parameters in A are

given by Theorem 4.4. We claim that A is a Belitskĭı’s canonical form.

By (2.17), the ESOs stabilizing QUn are those Oλ
p,q in which either

(a) (p, q) ∈ [m]× ([2m] \ [m]), or
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(b) p < q and q ∈ [3m] \ [2m].

In both cases, these ESOs only changes the weights of (i, j) such that i < j

and j ∈ [3m] \ [2m]. None of the weights of extra arcs in E \ EQ can be

modified by the ESOs stabilizing QUn. So A is a Belitskĭı’s canonical form.

The number of extra arcs of A is 1+ 2+ · · ·+(m− 1) = 1
2 (m− 1)m. By

Theorem 4.1, The number of parameters in A is

1

2
(m− 1)m+ 2m− 3m+ 1 =

1

2
(m− 1)(m− 2).

Given r ∈ {0, 1, . . . , 1
2 (m− 1)(m− 2)− 1}, we can remove 1

2 (m− 1)(m−

2)−r extra arcs from the graph G = GA and keep the remaining graph con-

nected. The resulting graph is the graph of an indecomposable Belitskĭı’s

canonical form with r parameters. So (4.5) is true for n ≡ 0 mod 3.

(2) When n = 3m − 1, let G be the subgraph of the graph in n = 3m case,

obtained by removing the vetex 3m and the arc (m + 1, 3m). See the

illustrated graph below. Similar argument shows that there is a Belitskĭı’s

canonical form A with GA = G, and (4.5) is true for n ≡ 2 mod 3.

i1

i2

i3

i4 i5

i6

i7

i8 i9

i10

i11

(3) When n = 3m− 2, let G be the subgraph of the graph in n = 3m− 1 case,

obtained by removing the vetex 3m− 1 and the arcs (m + 2, 3m− 1) and

(m,m+2). See the illustrated graph below. Similarly, there is a Belitskĭı’s

canonical form A with GA = G, and (4.5) is true for n ≡ 1 mod 3.

i1

i2

i3

i4 i5

i6

i7

i8 i9

i10

The graphs of the above Belitskĭı’s canonical forms show that the minimal poly-

nomials of these Belitskĭı’s canonical forms are x3. �

5. Searches of the Belitskĭı’s canonical forms

5.1. Algorithms to search for the Belitskĭı’s canonical forms. We apply

the results in Sections 2-4 to get the following efficient algorithm to obtain the

Belitskĭı’s canonical forms under the Bn-similarity for a given n.

Algorithm:

(1) List all subpermutations Q in Nn (by the set partitions PQ of [n]).
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(2) For each subpermutation Q, apply Theorems 4.8 and 4.9 to filter out a set

S of possible extra arcs of the Belitskĭı’s canonical forms in QUn and list

them in the Belitskĭı’s order, say, S := {(i1, j1) ≺ · · · ≺ (im, jm)}.

(3) Explore all possible combinations of the above extra arcs that produce

Belitskĭı’s canonical forms. To do this, let S0 := ∅ and start at p = 1:

(a) Determine whether there exists an Un-similarity operation g composed

by ESOs stabilizing QUn such that g changes the graph ([n], EQ ∪

Sp−1 ∪ {(ip, jp)}) to a graph ([n], E′) where

E′ ⊆ EQ ∪ Sp−1 ∪ {(i, j) ∈ S : (i, j) ≻ (ip, jp)}.

If such a g exists, then the arc (ip, jp) can be removed by the g op-

eration from the graph of any A ∈ QUn whose set of extra arcs no

greater than (ip, jp) is Sp−1 ∪{(ip, jp)}; we let Sp := Sp−1. Otherwise,

divide the upcoming process into two cases Sp := Sp−1∪{(ip, jp)} and

Sp := Sp−1.

(b) Increase p by 1. If p ≤ m, repeat the preceding process.

(c) The outcoming sets Sm are the sets of extra arcs of all Belitskĭı’s

canonical forms in QUn. Apply Theorem 4.4 to determine the places

of parameters for each graph type of the Belitskĭı’s canonical forms.

The above algorithm can be restricted to search for only the indecomposable

Belitskĭı’s canonical forms. Moreover, the algorithm can be slightly modified to

obtain the Belitskĭı’s canonical form of a given matrix A ∈ Nn after finding A′ ∈

QUn such that A
Un∼ A′ by steps (1) and (2) of the simplification process at the end

of Section 2. It is much more efficient than the Belitskĭı’s algorithm.

Example 5.1. Let us search the Belitskĭı’s canonical forms in QU8 in which

PQ = 123|478|56. By Theorems 4.8 and 4.9, the possible extra arcs of a Belit-

skĭı’s canonical form in QU8 are listed in the Belitskĭı’s order as follows:

(5, 7) ≺ (2, 4) ≺ (2, 5) ≺ (1, 4) ≺ (1, 5).

Let S be the set of these arcs. The graph

GQ (in solid arcs) and the set S (in dashed

arcs) are shown on the right.

1 2 3

4

5 6

7 8

Let S0 := ∅. The arc (5, 7) cannot be removed by a composition of ESOs

stabilizing QU8, since the only type of ESOs that changes the weight of the arc

(5, 7) is O6,7 which does not stabilize QU8. There are two cases S1 := {(5, 7)}

and S1 := ∅. Consider the case S1 := {(5, 7)}. Similarly, we can reach one of the

outcoming cases S2 := {(5, 7), (2, 4)} and S3 := {(5, 7), (2, 4), (2, 5)}. The next arc

in consideration is (1, 4), which can be removed as illustrated below (cf. (3.4)):

O12 O23

PQ : 57|24|25|14| · · · −14 + 13 + 15 −13 = 57|24|25|15.
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Note that (1, 5) created in the above process satisfies (1, 5) ≻ (1, 4). Now S4 :=

{(5, 7), (2, 4), (2, 5)}. The next arc (1, 5) can be removed as below:

O25 O36 O47 O78 O68

PQ : 57|24|25|15 −15 + 26 + 27 −26 −27 + 48 −48 + 58 −58 = 57|24|25.

So S5 := {(5, 7), (2, 4), (2, 5)}. We get a Belitskĭı’s canonical form of the type

PQ : 57|24|25 in which the underline indicates the place of a parameter. Explicitly,

the 8× 8 Belitskĭı’s canonical form is:

E12 + E23 + E47 + E78 + E56 + E57 + E24 + λE25.

The table on the right lists

the forms of Belitskĭı’s canon-

ical forms in QU8 for PQ =

123|478|56. We use “Y” (resp.

“N”) to mark the presence

(resp. absence) of an extra arc,

and “–” to indicate that the

arc can be removed given the

combination of preceding extra

arcs. Totally there are 10 forms

of Belitskĭı’s canonical forms in

the double coset B8QB8, and 5

of them are indecomposable.

The Belitskĭı’s canonical forms for

PQ = 123|478|56

57 24 25 14 15 type indecomp.

Y Y Y – – 57|24|25 Yes

Y Y N – – 57|24 Yes

Y N Y – – 57|25 Yes

Y N N – Y 57|15 Yes

Y N N – N 57 No

N Y Y – – 24|25 Yes

N Y N – – 24 No

N N Y – – 25 No

N N N Y – 14 No

N N N N – ∅ No

5.2. The indecomposable Belitskĭı’s canonical forms for n ≤ 8. In this sub-

section, we describe the indecomposable Belitskĭı’s canonical forms in Nn under the

Bn-similarity for n ≤ 8 using their graph types together with underlines indicating

nonzero parameters (see Example 5.1). The classifications for n ≤ 6 have been done

by Kobal [10] and Chen et al [5] (see Theorem 5.2). We apply MAPLE programs

to filter out possible extra arcs using the algorithm in the preceding subsection and

obtain all classifications for n ≤ 8.

Theorem 5.2 (Kobal [10], Chen et al [5]). The indecomposable Belitskĭı’s canon-

ical forms in Nn under the Bn-similarity for n ≤ 6 are listed by their graph types

together with underlines indicating nonzero parameters as follows (29 forms, sepa-

rated by commas):

1 : ∅,

12 : ∅,

123 : ∅,

1234 : ∅,

12|34 : 13,

12345 : ∅,

123|45 : 24,

125|34 : 13,

145|23 : 24,

12|345 : 13,

123456 : ∅,

1234|56 : 35,

1236|45 : 24,

1256|34 : 35|13, 35, 13,

1456|23 : 24,
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134|256 : 35,

145|236 : 24,

156|234 : 35,

123|456 : 24, 14,

124|356 : 13,

125|346 : 13,

126|345 : 13,

12|3456 : 13,

12|34|56 : 35|13,

12|36|45 : 13|14,

14|23|56 : 25|15.

Remark 5.3. For n = 6, Theorem 5.2 lists 19 forms instead of 18 forms shown in

[5, Theorem 2.2], since we use nonzero parameters in our classifications.

The results for n = 7 are as follows, including the 8 forms with a parameter

discovered in [5, Theorem 2.3].

Theorem 5.4. The indecomposable Belitskĭı’s canonical forms in Nn under the

Bn-similarity for n = 7 are of the graph types (85 forms in 58 subpermutations,

separated by commas):

1234567 : ∅,

14567|23 : 24,

12567|34 : 35|13, 35, 13,

12367|45 : 46|24, 46, 24,

12347|56 : 35,

12345|67 : 46,

1567|234 : 35, 25,

1467|235 : 24,

1457|236 : 24,

1456|237 : 24,

1367|245 : 46,

1347|256 : 35,

1345|267 : 46,

1267|345 : 46|13, 46, 13,

1257|346 : 13,

1256|347 : 35|13, 35, 13,

1247|356 : 13,

1245|367 : 46,

1237|456 : 24, 14,

1236|457 : 24,

1235|467 : 24,

1234|567 : 35, 25,

123|4567 : 24, 14,

124|3567 : 13,

125|3467 : 13,

126|3457 : 13,

127|3456 : 13,

134|2567 : 35,

145|2367 : 46|24, 46, 24,

156|2347 : 35,

167|2345 : 46,

123|45|67 : 46|24, 46|14,

123|47|56 : 24|25,

124|35|67 : 36|13,

125|34|67 : 36|26|13,

36|26, 36|13, 26|13,

126|34|57 : 35|13,

127|34|56 : 35|13,

127|36|45 : 13|14,

134|25|67 : 36|26,

145|23|67 : 46|24, 24|16,

146|23|57 : 24|15,

147|23|56 : 24|25|15,

24|25, 24|15, 25|15,

156|23|47 : 24|25,

167|23|45 : 46|24,

167|25|34 : 36|26,

12|34567 : 13,

15|234|67 : 36|16,

14|237|56 : 25|15,

13|247|56 : 25|15,

13|267|45 : 46|14,

12|345|67 : 46|13,

12|347|56 : 35|13, 35|15,

12|367|45 : 46|13|14,

46|13, 46|14, 13|14,

12|37|456 : 13|14,

12|36|457 : 13|14,

12|35|467 : 13|14,

12|34|567 : 35|13, 13|15,

14|23|567 : 25|15.

Theorem 5.5. For n = 8, there are 481 forms (in 245 subpermutations) of inde-

composable Belitskĭı’s canonical forms in Nn under the Bn-similarity. The graph

types of these forms will be listed in the Appendix section.

The number of subpermutations in Nn equals the number of partitions of [n],

which is called a Bell or exponential number. The first few Bell numbers starting
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at n = 1 are:

1, 2, 5, 15, 52, 203, 877, 4140, 21147, . . .

Many properties of the Bell numbers have been studied (cf. http://oeis.org). Both

Theorem 2.7 and the Bell numbers imply that the numbers of indecomposable Be-

litskĭı’s canonical forms in Nn grow in a rate greater than any exponential function

of n.

5.3. Create new Belitskĭı’s canonical forms. Theorem 2.7 can be used to ob-

tain new Belitskĭı’s canonical forms. Let A1 ∈ Q1Up and A2 ∈ Q2Uq be Belitskĭı’s

canonical forms. Theorem 2.7 claims that if

[
Q1 Q12

0 Q2

]
∈ Np+q is a subpermu-

tation, then

[
A1 Q12

0 A2

]
is a Belitskĭı’s canonical form in Np+q. Here we rephrase

Theorem 2.7 in the language of graphs. Let GA2 + p denote the graph with the

vertex set {1 + p, . . . , q + p} and the edge set {(i + p, j + p) : (i, j) ∈ EA2}. If we

add some arcs from chain heads of GA1 to chain tails of GA2 + p such that each

involving vertex is on at most one such arc, then the resulting graph represents a

Belitskĭı’s canonical form in Np+q. The following are two examples.

Example 5.6. Let A1 = A2 be the Belitskĭı’s canonical forms of the graph type

12|34 : 13. So PQ1 = PQ2 = 12|34. By Theorem 2.7, we can obtain Belitskĭı’s

canonical forms by adding to the graph GA1 ∪ (GA2 + 4) some arcs from the chain

heads 2 and 4 of GA1 to the chain tails 5 and 7 of GA2 + 4 such that each vertex

is on at most one arc. The illustrated graph is as below, in which dashed arcs are

possible arcs added to the graph GA1 ∪ (GA2 + 4):

1 2

3 4

5 6

7 8

There are 6 indecomposable Belitskĭı’s canonical forms obtained from this way:

1256|34|78 : 57|13, 1278|34|56 : 57|13, 12|3456|78 : 57|13, 12|3478|56 : 57|13,

1256|3478 : 57|13, 1278|3456 : 57|13. All of them can be found in Theorem 5.5.

Note that a parameter is added in each of the last two cases for the general forms.

The direct sum A1 ⊕A2 is the only non-indecomposable Belitskĭı’s canonical form

given by Theorem 2.7 here.

Example 5.7. Let A1 ∈ Q1U6 and A2 ∈ Q2U3 be the Belitskĭı’s canonical forms

of the graph types 12|36|45 : 13|14 and 13|2 : ∅, respectively. The Belitskĭı’s

canonical forms

[
A1 Q12

A2

]
constructed in Theorem 2.7 are constructed by adding

the following possible dashed arcs to the graphGA1∪(GA2+6) such that each vertex

is on at most one such arc:

http://oeis.org
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1 2

3

4 5

6
7

8

9

There are 6 indecomposable Belitskĭı’s canonical forms constructed in this way:

1279|368|45 : 13|14, 1279|36|458 : 13|14, 128|3679|45 : 13|14, 128|36|4579 : 13|14,

12|3679|458 : 13|14, 12|368|4579 : 13|14.

Similarly, the Belitskĭı’s canonical forms

[
A2 Q′

12

A1

]
constructed in Theorem 2.7

are constructed by adding the following possible dashed arcs to the graph GA2 ∪

(GA1 + 3) such that each vertex is on at most one such arc:

1

2

3
4 5

6

7 8

9

There are also 6 indecomposable Belitskĭı’s canonical forms constructed in this way:

1345|269|78 : 46|47, 1345|278|69 : 46|47, 1369|245|78 : 46|47, 1369|278|45 : 46|47,

1378|245|69 : 46|47, 1378|269|45 : 46|47.

5.4. The Bn-similarity of upper triangular matrices. Sylveseter’s theorem

(cf. [9, Theorem 2.4.4.1]) says that if M ∈ Mp and N ∈ Mq have no eigenvalue in

common, then the equation MX − XN = R has a unique solution X ∈ Mp,q for

each R ∈ Mp,q, that is,

(5.1)

[
M R

0 N

]
=

[
Ip X

0 Iq

]−1 [
M 0

0 N

][
Ip X

0 Iq

]
Up+q

∼

[
M 0

0 N

]
.

Similarly, every n×n upper triangular matrix A = [aij ] is Bn-similar to the matrix

C = [cij ] such that cij = aij if aii = ajj , and cij = 0 otherwise; C is permutation

similar to a direct sum of matrices of the form λIk + C′ for k ∈ [n] and C′ ∈ Nk.

See [14] or [16, Section 1] for more details. The Bn-similarity problem of upper

triangular A is transformed to the upper triangular similarity problems of nilpotent

upper triangular matrices.

In [16, Theorem 1.5], Thijsse showed that if an n×n upper triangular matrix A

satisfies one of the following two conditions:

(1) A is nonderogatory;

(2) dim ker(A− λI)2 = dimker(A− λI)3 for each λ ∈ C.

Then A is Bn-similar to a matrix which is permutation similar to a direct sum of

Jordan blocks. We provide a new proof here. By the argument in the preceding

paragraph, it suffices to consider the case A ∈ Nn:
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• Condition (1) means that A ∈ JUn where J is the nilpotent Jordan block

of size n. The only Belitskĭı’s canonical form in JUn is J .

• Condition (2) means that each Jordan block of A has size no more than 2.

So A
Bn∼ A′ ∈ QUn in which Q ∈ Nn is a subpermutation, A2 = (A′)2 = 0,

and each extra arc (i, j) ∈ EA′ \ EQ of A′ has j a chain head of a chain of

GQ. So (i, j) is not in the Belitskĭı’s canonical form of A. Therefore, the

Belitskĭı’s canonical form of A is exactly Q, which is permutation similar

to a direct sum of nilpotent Jordan blocks of sizes one or two.

Another observation is [9, 2.5.P49] which states that: an n× n upper triangular

matrix A is similar to a diagonal matrix if and only if it is Bn-similar to a diagonal

matrix. In particular, if A has distinct diagonal entries, then A is Bn-similar to

its diagonal. However, the result is not quite useful for nilpotent upper triangular

matrices since the only diagonalizable nilpotent upper triangular matrix is the zero

matrix.

Appendix

As a complement to Theorem 5.5, the list of indecomposable Belitskĭı’s canonical

forms in Nn under the Bn-simlarity for n = 8 is as follows (481 forms in 245

subpermutations):

12345678 : ∅,

12|345678 : 13,

145678|23 : 24,

125678|34 : 35|13, 35, 13,

123678|45 : 46|24|14,

46|24, 46, 24,

123478|56 : 57|35, 57, 35,

123458|67 : 46,

123456|78 : 57,

123|45678 : 24, 14,

124|35678 : 13,

125|34678 : 13,

126|34578 : 13,

127|34568 : 13,

128|34567 : 13,

134|25678 : 35,

145|23678 : 46|24, 46, 24,

156|23478 : 57|35, 57, 35,

167|23458 : 46,

178|23456 : 57,

15678|234 : 35, 25,

14678|235 : 24,

14578|236 : 24,

14568|237 : 24,

14567|238 : 24,

13678|245 : 46,

13478|256 : 57|35, 57, 35,

13458|267 : 46,

13456|278 : 57,

12678|345 : 46|13, 46,

36|13, 36, 13,

12578|346 : 35|13, 35, 13,

12568|347 : 35|13, 35, 13,

12567|348 : 35|13, 35, 13,

12478|356 : 57|13, 57, 13,

12458|367 : 46,

12456|378 : 57,

12378|456 : 57|24, 57|14,

57, 24, 14,

12368|457 : 24,

12367|458 : 46|24, 46, 24,

12358|467 : 24,

12356|478 : 57,

12348|567 : 35, 25,

12347|568 : 35,

12346|578 : 35,

12345|678 : 46, 36,

1234|5678 : 35, 25, 15,

1235|4678 : 24, 14,

1236|4578 : 24, 14,

1237|4568 : 24, 14,

1238|4567 : 24, 14,

1245|3678 : 46, 13,

1246|3578 : 13,

1247|3568 : 13,

1248|3567 : 13,

1256|3478 : 57|35|13,

57|35, 57|13, 57, 35|13,

35, 13,

1257|3468 : 13,
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1258|3467 : 13,

1267|3458 : 46|13, 46, 13,

1268|3457 : 13,

1278|3456 : 57|13, 57, 13,

1345|2678 : 46, 36,

1346|2578 : 35,

1347|2568 : 35,

1348|2567 : 35,

1356|2478 : 57,

1367|2458 : 46,

1378|2456 : 57,

1456|2378 : 57|24, 57, 24,

1457|2368 : 24,

1458|2367 : 46|24, 46, 24,

1467|2358 : 24,

1478|2356 : 57,

1567|2348 : 35, 25,

1568|2347 : 35,

1578|2346 : 35,

1678|2345 : 46, 36,

12|34|5678 : 35|13, 13|15,

12|35|4678 : 13|14,

12|36|4578 : 13|14,

12|37|4568 : 13|14,

12|38|4567 : 13|14,

12|3678|45 : 46|13|14,

46|13, 46|14, 13|14,

12|3478|56 : 57|35|13,

57|35|15, 57|13, 57|15,

35|13, 35|15,

12|3458|67 : 46|13, 46|16,

12|3456|78 : 57|13,

12|345|678 :

46|13, 36|13, 36|16,

12|346|578 : 35|13, 35|15,

12|347|568 : 35|13, 35|15,

12|348|567 :

35|13, 35|15, 13|15,

12|356|478 : 57|13, 57|14,

12|358|467 : 13|14,

12|367|458 : 46|13|14,

46|13, 46|14, 13|14,

12|368|457 : 13|14,

12|378|456 : 57|13|14,

57|13, 57|14, 13|14,

13|2678|45 : 46|14,

13|2478|56 : 57|25|15,

57|15, 25|15,

13|2458|67 : 46|16,

13|245|678 : 26|16,

13|246|578 : 25|15,

13|247|568 : 25|15,

13|248|567 : 25|15,

13|256|478 : 57|14,

13|267|458 : 46|14,

13|278|456 : 57|14,

14|23|5678 : 25|15,

14|2378|56 : 57|25|15,

57|15, 25|15,

14|2358|67 : 36|16,

14|235|678 : 26|16,

14|236|578 : 25|15,

14|237|568 : 25|15,

14|238|567 : 25|15,

15|2348|67 : 36|16,

15|234|678 : 36|16, 26|16,

16|2345|78 : 47|17,

1678|23|45 : 46|24, 26|24,

1578|23|46 : 24|25,

1568|23|47 : 24|25,

1567|23|48 : 24|25,

1478|23|56 : 57|24|25|15,

57|24|25, 57|24|15, 57|24,

57|25|15, 57|25, 24|25|15,

24|25, 24|15, 25|15,

1468|23|57 : 24|15,

1467|23|58 : 24|15,

1458|23|67 : 46|24|16,

46|24, 46|26, 24|16,

1457|23|68 : 24|16,

1456|23|78 : 57|24, 24|17,

145|23|678 : 46|24,

24|26|16, 24|26, 24|16,

26|16,

146|23|578 : 24|25|15,

24|25, 24|15, 25|15,

147|23|568 : 24|25|15,

24|25, 24|15, 25|15,

148|23|567 : 24|25|15,

24|25, 24|15, 25|15,

156|23|478 : 57|24|25,

57|24, 57|25, 24|25,

167|23|458 : 46|24, 46|26,

178|23|456 : 57|24,

1378|24|56 : 57|25,

1358|24|67 : 36|26,

156|24|378 : 57|25,

167|24|358 : 36|26,

1678|25|34 : 36|26,

1348|25|67 : 36|26,

134|25|678 : 36|26,

167|25|348 : 36|26,

1345|26|78 : 47|27,

178|26|345 : 47|27,

1278|34|56 : 57|35|13,

57|35, 57|13|15, 57|13,

35|13, 37|15,

1268|34|57 : 35|13,

1267|34|58 : 35|36|13,

35|36, 35|13,

1258|34|67 : 35|36|26|13,

35|36|26, 35|36|13, 35|36,

35|26|13, 35|26, 36|26|13,

36|26, 36|13, 26|13,

1257|34|68 : 35|26|13,

35|26, 36|13,

1256|34|78 : 57|35|13,

57|35, 57|13, 35|27|13,

35|27, 37|13,

125|34|678 : 36|26|13,
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36|26, 36|13, 26|13, 13|16,

126|34|578 : 35|13, 13|15,

127|34|568 : 35|13, 13|15,

128|34|567 : 35|13, 13|15,

156|278|34 : 57|35,

158|267|34 : 35|36,

167|258|34 : 35|36|26,

35|36, 35|26, 36|26,

168|257|34 : 35|26,

178|256|34 : 57|35, 35|27,

1278|35|46 : 47|13|14,

47|13, 37|14,

1248|35|67 : 36|13,

124|35|678 : 36|13,

126|35|478 : 13|14,

35|127|468 : 13|14,

35|128|467 : 13|14,

1278|36|45 : 47|37|13|14,

47|37|13, 47|37|14, 47|37,

47|13|14, 47|13, 37|13|14,

37|14, 13|14,

1245|36|78 : 47|37,

127|36|458 : 13|14,

128|36|457 : 13|14,

145|278|36 : 47|37,

178|245|36 : 47|37,

128|37|456 : 13|14,

1238|45|67 : 46|24, 46|14,

1237|45|68 : 46|24,

1236|45|78 : 47|37|24,

47|37, 47|24, 37|24,

123|45|678 : 46|24, 46|14,

24|26,

126|378|45 : 47|13|14,

47|13, 47|14, 13|14,

127|368|45 : 46|13|14,

46|13, 46|14, 13|14,

128|367|45 : 46|13|14,

46|13, 46|14, 13|14,

136|278|45 : 47|37|14,

47|37, 47|14, 37|14,

137|268|45 : 46|14,

138|267|45 : 46|14,

167|238|45 : 46|24,

168|237|45 : 46|24,

178|236|45 : 47|37|24,

47|37, 47|24, 37|24,

1235|46|78 : 47|24,

123|46|578 : 24|25,

125|378|46 : 47|14,

135|278|46 : 47|14,

178|235|46 : 47|24,

1238|47|56 : 24|25,

123|568|47 : 24|25,

156|238|47 : 24|25,

123|48|567 : 24|25, 24|15,

1234|56|78 : 57|35, 57|25,

123|478|56 : 57|24|25,

57|24, 57|25, 57|15, 24|25,

124|378|56 : 57|25, 57|15,

127|348|56 : 35|13,

128|347|56 : 35|13, 35|15,

134|278|56 : 57|35, 57|15,

138|247|56 : 25|15,

147|238|56 : 24|25|15,

24|25, 24|15, 25|15,

148|237|56 : 25|15,

178|234|56 : 57|35, 57|25,

126|348|57 : 35|13,

146|238|57 : 24|15,

1234|58|67 : 35|36,

123|467|58 : 25|14,

124|367|58 : 25|13,

134|267|58 : 35|36,

167|234|58 : 35|36,

123|458|67 : 46|24,

46|26|14, 46|26, 46|14,

26|14,

124|358|67 : 36|26|13,

36|26, 36|13, 26|13,

125|348|67 : 36|26|13,

36|26, 36|13, 26|13,

128|345|67 : 46|13,

134|258|67 : 35|36|26,

35|36, 35|26, 36|26,

145|238|67 : 46|24, 24|16,

158|234|67 : 35|36|16,

35|36, 35|16, 36|16,

123|457|68 : 26|14,

124|357|68 : 26|13,

125|347|68 : 26|13,

127|345|68 : 46|13,

134|257|68 : 35|26,

145|237|68 : 46|24,

157|234|68 : 35|16,

123|456|78 : 57|24, 57|14,

27|14,

124|356|78 : 57|13, 27|13,

125|346|78 : 47|13, 27|13,

126|345|78 : 47|27|13,

47|27, 47|13, 27|13,

134|256|78 : 57|35, 35|27,

136|245|78 : 47|37,

145|236|78 : 47|37|24,

47|37, 47|24, 37|24, 24|17,

146|235|78 : 47|24,

156|234|78 : 57|35, 57|25,

35|17,

12|34|56|78 : 57|35|13,

12|34|58|67 : 35|36|13,

35|36|16,

12|35|46|78 : 47|13|14

12|36|45|78 : 47|37|13|14,

47|37|13, 47|37|14,

47|13|14, 37|13|14,

12|37|45|68 : 46|13|14,

12|38|45|67 : 46|13|14,

12|38|47|56 : 13|14|15,

13|24|58|67 : 25|26|16,

13|26|45|78 : 47|27|14,
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14|23|56|78 : 57|25|15,

25|15|17,

14|23|57|68 : 25|15|16,

14|23|58|67 : 25|26|15|16,

25|26|15, 25|26|16,

25|15|16, 26|15|16,

15|23|48|67 : 24|26|16,

16|23|45|78 : 47|24|17,

16|25|34|78 : 37|27|17.
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