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Abstract

The classical rearrangement inequality provides bounds for the sum of products of two sequences un-

der permutations of terms and show that similarly ordered sequences provide the largest value whereas

opposite ordered sequences provide the smallest value. This has been generalized to multiple sequences

to show that similarly ordered sequences provide the largest value. However, the permutations of the

sequences that result in the smallest value is in general not known. We show a variant of the rearrange-

ment inequality for which a lower bound can be obtained and conditions for which this bound is achieved

for a sequence of permutations. We also study another variation of the rearrangement inequality where

the permutations of terms can be across the various sequences.

1 Introduction

The rearrangement inequality [1] states that given two finite sequences of real numbers the sum of the
product of pairs of terms is maximal when the sequences are similarly ordered and minimal when oppositely
ordered. More precisely, suppose x1 ≤ x2 · · · ≤ xn and y1 ≤ y2 · · · ≤ yn, then for any permutation σ in the
symmetric group of permutation on {1, · · · , n},

xny1 + · · ·+ x1yn ≤ xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·xnyn (1)

The dual inequality is also true [2], albeit only for nonnegative numbers in general (i.e. x1 ≥ 0, y1 ≥ 0):

(x1 + y1) · · · (xn + yn) ≤ (xσ(1) + y1) · · · (xσ(n) + yn) ≤ (xn + y1) · · · (x1 + yn) (2)

Eq. (2) says that similarly ordered terms minimize the product of sums of pairs, while opposite ordered
terms maximize the product of sums.

In Ref. [3], these inequalities are generalized to multiple sequences of numbers:

Lemma 1. Consider a set of nonnegative numbers {aij}, i = 1, · · · , k, j = 1, · · · , n. For each i, let
a′i1, a

′

i2, · · · , a
′

in be the numbers ai1, ai2, · · · , ain reordered such that a′i1 ≥ a′i2 ≥ · · · ≥ a′in. Then

n
∑

j=1

k
∏

i=1

aij ≤

n
∑

j=1

k
∏

i=1

a′ij

n
∏

j=1

k
∑

i=1

aij ≥
n
∏

j=1

k
∑

i=1

a′ij
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Note that only half of the rearrangement inequality is generalized. In particular, the rightmost inequality
(the upper bound) in Eq. (1) and the leftmost inequality (the lower bound) in Eq. (2) are generalized in
Lemma 1 by showing that similarly ordered sequences maximizes the sum of products and minimizes the
product of sums. No such generalization is known for the other half. This note is an attempt to provide
results for the other direction.

Eq. (1) can be used to prove the AM-GM inequality which states that the algebraic mean of nonnegative
numbers are larger than or equal to their geometric mean. We will rewrite it in the following equivalent
form.

Lemma 2. For n nonnegative real numbers xi,
∑n

i=1 xi ≥ n n
√

∏n
i=1 xi and

∏n
i=1 xi ≤

(∑
n
i=1

xi

n

)n

with

equality if and only if all the xi are the same.

This allows us to give the following bounds on the other direction of Lemma 1.

Lemma 3. Consider a set of nonnegative numbers {aij}, i = 1, · · · , k, j = 1, · · · , n. Then

n n

√

∏

ij

aij ≤

n
∑

j=1

k
∏

i=1

aij

(

∑

ij aij

n

)n

≥
n
∏

j=1

k
∑

i=1

aij

In addition, Lemma 2 implies that if there exists k permutations σi on {1, · · · , n} such that
∏k

i=1 aiσi(j) =
∏k

i=1 aiσi(1) for all j, then this set of permutations will minimize the sum of products, i.e.

n
∑

j=1

k
∏

i=1

aiσi(j) ≤

n
∑

j=1

k
∏

i=1

aij

Similarly, if there exists permutations σi such that
∑k

i=1 aiσi(j) =
∑k

i=1 aiσi(1) for all j, then this set of
permutations will maximize the product of sums, i.e.

n
∏

j=1

k
∑

i=1

aiσi(j) ≥
n
∏

j=1

k
∑

i=1

aij

In the next section we consider scenarios where these conditions can be satisfied for some sequence of
permutations of terms and thus supply the other directions of Lemma 1.

2 Sums of products of permuted sequences

Instead of considering multiple sequences, we restrict ourselves to permutations of the same sequence and
look at sum of products of these sequences.

Definition 1. Let 0 ≤ a1 ≤ a2 · · · ≤ an be a sequence of nonnegative numbers. Consider k permutations
of the integers {1, · · · , n} denoted as {σ1, · · · , σk} and define the value v(n, k) =

∑n
i=1

∏k
j=1 aσj(i). The

maximal and minimal value of v among all k-sets of permutations are denoted as vmax(n, k) and vmin(n, k)
respectively.

An immediate consequence of Lemma 1 is that vmax(n, k) =
∑n

i=1 a
k
i and is achieved when all the k

permutations σi are the same.
vmin(n, k) and vmax(n, k) can be determined explicitly for small value of n or k.
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Lemma 4. • v(1, k) = aki ,

• v(n, 1) =
∑n

i=1 ai,

• vmax(2, k) = ak1 + ak2 .

• vmin(2, 2m) = 2am1 am2

• vmin(2, 2m+ 1) = (a1 + a2)a
m
1 am2

• vmax(n, 2) =
∑n

i=1 a
2
i

• vmin(n, 2) =
∑n

i=1 aian−i+1

Proof. For k = 1 there is only one sequence and v(n, 1) =
∑n

i=1 ai. For n = 1, the only permutation is (1), so
v(1, k) = ak1 . When n = 2, there are only two permutations on the integers {1, 2}, and vmax(2, k) = ak1 + ak2 .
If k = 2m, vmin(2, k) = 2am1 am2 is achieved with m of the permutations of one kind and the other half the
other kind. If k = 2m+ 1, vmin(2, k) = (a1 + a2)a

m
1 am2 is achieved with m of the permutations of one kind

and m+ 1 of them the other kind.
The rearrangement inequality (Eq. (1)) implies that for k = 2, vmax(n, 2) =

∑n
i=1 a

2
i and vmin(n, 2) =

∑n
i=1 aian−i+1 by choosing both permutations to be (1,2,· · · , n) for vmax(n, 2) and choosing the two permu-

tations to be (1,2,· · · , n) and (n,n− 1,· · · , 2, 1) for vmin(n, 2).

Our next result is a lower bound on vmin:

Lemma 5. vmin(n, k) ≥ n
∏

i a
k/n
i .

Proof. The product
∏

ij aσi(j) is equal to
∏

i a
k
i . Thus by Lemma 2, v(n, k) ≥ n n

√

∏

i a
k
i = n

∏

i a
k/n
i .

Our main result is that this bound is tight when k is a multiple of n.

Theorem 1. If n divides k, then vmin(n, k) = n
∏n

i=1 a
k/n
i and is achieved by using each cyclic permutation

k/n times..

Proof. By Lemma 5 v(n, k) ≥ n
∏n

i=1 a
k/n
i . Consider the n cyclic permutations r1 = (1, 2, ..., n), r2 =

(2, ..., n, 1), ..., rn = (n, 1, ..., n − 1). It is clear that using k/n copies of each permutation ri to form k

permutations results in v(n, k) = n
∏n

i=1 a
k/n
i .

3 The dual problem of product of sums

Definition 2. Let 0 ≤ a1 ≤ a2 · · · ≤ an be a sequence of nonnegative numbers. Consider k permutations
of the integers {1, · · · , n} denoted as {σ1, · · · , σk} and define the value w(n, k) =

∏n
i=1

∑k
j=1 aσj(i). The

maximal and minimal value of v among all k-sets of permutations are denoted as wmax(n, k) and wmin(n, k)
respectively.

Analogous to Section 2 the following result can be derived regarding wmax and wmin.

Lemma 6. • wmin(n, k) =
∏n

i=1 kai = kn
∏

i ai

• wmax(1, k) = ka1

• wmax(n, 1) =
∏

i ai

• wmin(2, k) = k2
∏

i ai.

• wmax(2, 2m) = (a1 + a2)
2m2.
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• wmax(2, 2m+ 1) = (ma1 + (m+ 1)a2)(ma2 + (m+ 1)a1).

• wmin(n, 2) = 2n
∏

i ai.

• wmax(n, 2) =
∏

i(ai + an−i+1).

• wmax(n, k) ≤
(

k
∑

i
ai

n

)n

with equality if n divides k.

4 The special case where ai is an arithmetic progression

Consider the special case where the elements ai form an arithmetic progression, i.e. ai are equally spaced
where ai+1 − ai is constant and does not depend on i. Even though vmin are difficult to compute in general,
explicit forms for wmax can be found for many values of n and k.

Theorem 2. If k = 2t+ nu for nonnegative integers t and u, then wmax(n, k) =
(

k(a1+an)
2

)n

.

Proof. It is easy to see that
∑

i ai = n(a1+an)/2. By Lemma 6 wmax(n, k) ≤
(

k(a1+an)
2

)n

. By using t copies

of the permutation (1, · · · , n) and t copies of the permutation (n, · · · , 1) followed by u copies each of the
cyclic permutations ri, we see that

∑

j σj(i) = t(a1+an)+un(a1+an)/2 = (t+un/2)(a1+an) = k(a1+an)/2

for all i and thus w(n, k) =
(

k(a1+an)
2

)n

.

Corollary 1. If k is even, then wmax(n, k) =
(

k(a1+an)
2

)n

.

Corollary 2. If n is odd and k ≥ n− 1, then wmax(n, k) =
(

k(a1+an)
2

)n

.

The case when k is odd and n is even is more involved. Let ai = a1 + (i − 1)d = (a1 − d) + id for

i = 1, · · · , n and d ≥ 0. Given a k-set of permutations σj define wi as wi =
∑k

j=1 σj(i). This implies that
∑k

j=1 aσj(i) = k(a1 − d) +wid. Next we show there is a sequence of permutations for which wi −wj ≤ 1 for
all i, j when k ≥ n− 1.

Lemma 7. If n is even, there exists a sequence σj of n− 1 permutations of {1, · · ·n} such that wi =
n2

2 − 1

for i = 1, · · · n2 and wi =
n2

2 for i = n
2 + 1, · · · , n.

Proof. Recall the cyclic permutations denoted as ri. Consider the index set S = {i : 2 ≤ i ≤ n, i 6= n/2+1}.

Let us compute
∑

j∈S rj(i). Since r1(i) = (1, 2, ..., n) and rn/2+1 = (n/2 + 1, n/2+ 2, ..., n/2),
∑n−1

j∈S rj(i) =

n(n+1)/2− r1(i)− rn/2+1(i) is equal to n(n+1)/2− i− (n/2+ i) = n2/2− 2i for i = 1, · · · , n/2 and equal
to n(n+ 1)/2− i− (i− n/2) = n2/2− (2i− n) for i = n/2 + 1, · · · , n. Let σ̃ be the permutation defined as
σ̃(i) = 2i− 1 for i = 1 · · ·n/2 and σ̃(i) = n− 2i for i = n/2+1 · · · , n. Define the (n− 1)-set of permutations

{σi} as σ̃ plus the cyclic permutations with index in S, we get
∑n−1

j=1 σj(i) = n2/2− 1 for i = 1, · · · , n/2 and
∑

j σj(i) = n2/2 for i = n/2 + 1, . . . , n.

Corollary 3. If n is even and k is odd, there does not exists a k-set of permutations such that wi = wj for
all i, j. If k ≥ n− 1, then there exists k permutations such that wi − wj ≤ 1 for all i, j.

Proof. If n is even and k is odd,
∑

iwi = kn(n + 1)/2 is not divisible by n as k and n + 1 are both odd.
This means it is not possible for wi = wj for all i, j. If n is odd, the case k = n− 1 can be achieved with k/2
permutations (1, · · · , n) and k/2 permutations (n, n− 1, . . . , 1). If n is even, the case k = n− 1 follows from
Lemma 7. If k > n, it follows by induction from the k − 2 case and adding the two permutations (1, · · · , n)
and (n, n− 1, . . . , 1).

Lemma 8. If w1 + w2 = v1 + v2 and |w2 − w1| ≥ |v2 − v1|, then (x + w1)(x + w2) ≤ (x + v1)(x + v2).
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Proof. Let y = w1 +w2. Then (x+w1)(x+w2) = x2 + yx+ w1(y −w1). Since the function x(y − x) has a
maximum at y

2 , this implies that (x+ w1)(x+ w2) is maximized when w1 = w2.

Lemma 9. If k ≥ n − 1, then for the set permutations σj that maximizes w(n, k), the corresponding wi

must satisfy wi − wj ≤ 1 for all i, j. If in addition, n is odd or k is even, then wi = wj for all i, j.

Proof. If wi −wj > 1 for some pair (wi, wj), by Lemma 8 we can reduce wi and increase wj by 1 repeatedly

until wi −wj ≤ 1 for all i, j without increasing wmax(n, k) =
∏n

i=1

∑k
j=1 aσj(i) =

∏n
i=1 k(a1 − d) +wid. If n

is even and k is odd,
∑

iwi is not divisible by n and the only set of wi such that wi − wj ≤ 1 for all i, j is
the one described in Lemma 7. If n is odd or k is even, there exists a set of permutations corresponding to
wmax(n, k) such that wi = wj by Theorem 2.

Theorem 3. If n is even and k is odd such that k ≥ n− 1, then

wmax(n, k) =

(

ka1 +

(

k(n− 1)− 1

2

)

d

)n/2(

ka1 +

(

k(n− 1) + 1

2

)

d

)n/2

Proof. Note that k can be written as k = 2t+(n−1). As a consequence of Lemmas 7, 9, the value wmax(n, k)
is achieved with t copies of (1, ..., n), t copies of (n, ..., 1), σ̃ and the cyclic permutations with index in S.

Then wi = t(n+1)+n2/2−1 = k(n+1)−1
2 for i = 1, · · · , n/2, and wi = t(n+1)+n2/2 = k(n+1)+1

2 for i = n/2+

1, · · · , n. Thus wmax(n, k) =
∏n

i=1 k(a1−d)+wid =
(

k(a1 − d) + d(k(n+1)−1)
2

)n/2 (

k(a1 − d) + d(k(n+1)+1)
2

)n/2

and the conclusion follows.

Theorems 2 and 3 show that the value ofwmax(n, k) and the corresponding maximizing set of permutations
can be explicitly found when k ≥ n− 1 or k is even. It is clear that we get analogous results for vmin if the
sequence ai is a geometric progression, i.e. it is defined as ai = cbi for some constant c ≥ 0 and an arithmetic
progression bi of (not necessarily nonnegative) numbers.

4.1 The special case ai = i

Consider the special case where the sequence ai is just the first n positive integers, i.e. v(n, k) =
∑n

i=1

∏k
j=1 σj(i)

and w(n, k) =
∏n

i=1

∑k
j=1 σj(i). The values of vmin(n, k) and wmax(n, k) can be found in OEIS [4] sequence

A260355 (https://oeis.org/A260355) and sequence A331988 (https://oeis.org/A331988) respectively.

Theorem 4. If k = 2t+ nu for nonnegative integers t and u, then wmax(n, k) =
(

k(n+1)
2

)n

. In particular,

if k is even or if n is odd and k ≥ n− 1, then wmax(n, k) =
(

k(n+1)
2

)n

.

Theorem 5. If n is even and k is odd such that k ≥ n− 1, then wmax(n, k) =
(

k2(n+1)2−1
4

)n/2

.

For example, Theorem 4 shows that wmax(3, k) = 8k3 for k > 1. More details about vmin and wmax for
this special case, including tables of values, can be found in Ref. [5].

5 Another variation of the rearrangement inequality

In Ref. [6], Eqs (1-2) are generalized as follows:

Theorem 6. Let f be real valued function of 2 variables defined on Ia × Ib. If

f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1) ≥ 0

5
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for all x1 ≤ x2 in Ia and y1 ≤ y2 in Ib, then

∑

i

f(ai, bn−i+1) ≤
∑

i

f(ai, bσ(i)) ≤
∑

i

f(ai, bi) (3)

for all sequences a1 ≤ a2 · · · ≤ an in Ia, b1 ≤ b2 · · · ≤ bn in Ib, and all permutation σ of {1, · · · , n} .

Theorem 6 implies Eq. (1) and Eq. (2) by choosing f(x, y) = xy and f(x, y) = − log(x+ y) respectively.
In Theorem 6, the sequences ai and bi are separate and the permutation σ acts on bi only. We next introduce
a variant of the rearrangement inequality where the permutation acts on the union of ai and bi.

Theorem 7. Let f be real valued function of 2 variables defined on I × I. Let ai be a set of 2n numbers in
I and let bi be the numbers ai sorted in increasing order, i.e., b1 ≤ b2 · · · ≤ b2n. If

f(x1, x2) ≤ f(x2, x1) (4)

and
f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1) ≥ 0 (5)

for all x1 ≤ x2 and y1 ≤ y2 in I, then

n
∑

i=1

f(bi, b2n−i+1) ≤
n
∑

i=1

f(a2i−1, a2i) (6)

If in addition,
f(x, y) = f(y, x) (7)

for all x, y in I, then
n
∑

i=1

f(a2i−1, a2i) ≤

n
∑

i=1

f(b2i−1, b2i) (8)

Proof. Let ci be a permutation of ai such that v =
∑n

i=1 f(ci, c2n−i+1) is minimized. Then by Theorem 6,
ci can be chosen such that ci ≤ ci+1 for 1 ≤ i ≤ n− 1 and for n+ 1 ≤ i ≤ 2n− 1. Suppose cn+1 < cn. By
Eq. (4) we can swap these two terms without increasing the value of v. Again by Theorem 6, we can reorder
ci for 1 ≤ i ≤ n such that they are nondecreasing and also reorder ci for n+ 1 ≤ i ≤ 2n such that they are
nondecreasing. If cn+1 < cn we repeat the process again. It’s clear that this needs to be repeated at most a
finite number of times and eventually we have cn+1 ≥ cn. Thus we have a sequence of ci such that ci ≤ ci+1

for 1 ≤ i ≤ n− 1 and for n+ 1 ≤ i ≤ 2n− 1, in addition to cn ≤ cn+1, i.e., c1 ≤ c2 · · · ≤ c2n.
Next, let di be a permutation of ai such that v =

∑n
i=1 f(d2i−1, d2i) is maximized. Then by Theorem

6, di can be chosen such that d2i−1 ≤ d2i+1 and d2i ≤ d2i+2 for 1 ≤ i ≤ n − 1. Furthermore, by repeated
use of Theorem 6 and Eq. (7) we can assume d2i−1 ≤ d2i as well. Suppose d2n−1 < d2(n−1). Then
d2(n−1)−1 < d2(n−1) and by Eq. (7) we can swap d2(n−1) and d2(n−1)−1 without decreasing the value of v.
Again by repeated application of Theorem 6 and Eq. (7) we can reorder d2i for 1 ≤ i ≤ n such that they are
nondecreasing and also reorder d2i−1 for 1 ≤ i ≤ n such that they are nondecreasing in addition to ensuring
d2i−1 ≤ d2i without decreasing v. It is easy to see that after this reordering d2n−1 ≥ d2(n−1). Applying this
procedure for j = n− 1, ..., 3, 2 sequentially shows that for each 2 ≤ j ≤ n, d2j−1 ≥ d2(j−1). This in addition
with the fact that d2i ≥ d2i−1 shows that d1 ≤ d2 · · · ≤ d2n.

By choosing f(x, y) = xy or f(x, y) = − log(x+ y), we have the following result.

Corollary 4. Let ai be a set of 2n numbers and let bi be the numbers ai sorted such that b1 ≤ b2 · · · ≤ b2n.
Then

n
∑

i=1

bib2n−i+1 ≤

n
∑

i=1

a2i−1a2i ≤

n
∑

i=1

b2i−1b2i

6



. If in addition ai ≥ 0, then

n
∏

i=1

(b2i−1 + b2i) ≤

n
∏

i=1

(a2i−1 + a2i) ≤

n
∏

i=1

(bi + b2n−i+1)

.

In Ref. [7] the following result was shown which generalizes the rightmost inequality in Eq. (3).

Theorem 8. Consider a set of numbers {aij} ∈ I, i = 1, · · · , k, j = 1, · · · , n. For each i, let bi1, bi2, · · · , bin
be the numbers ai1, ai2, · · · , ain sorted such that bi1 ≤ bi2 ≤ · · · ≤ bin. Let f(x1, · · · , xk) be a real-value
function defined on Ik such that Eq. (5) is satisfied for each pair of arguments xi and xj. Then

n
∑

j=1

f(a1j , a2j , · · · , akj) ≤
n
∑

j=1

f(b1j , b2j , · · · , bkj)

Similarly, we can generalize Eq. (8) to multiple sequences when the permutation is among all kn numbers
{aij}.

Theorem 9. Consider a sequence of kn numbers ai in I. Let bi be the numbers ai sorted such that b1 ≤
b2 ≤ · · · ≤ bkn. Let f(x1, · · · , xk) be a real valued function defined on Ik such that Eq. (7) and Eq. (5) are
satisfied for each pair of arguments xi and xj. Then

n
∑

j=1

f(a(j−1)k+1, a(j−1)k+2, · · · , ajk) ≤
n
∑

j=1

f(b(j−1)k+1, b(j−1)k+2, · · · , bjk)

Proof. The proof is similar to Theorem 7. Let di be a permutation of ai such that

v =
n
∑

j=1

f(d(j−1)k+1, d(j−1)k+2, · · · , djk)

is maximized. Then by Theorem 8, di can be chosen such that d(j−1)k+i ≤ djk+i for 1 ≤ i ≤ k and
1 ≤ j ≤ n− 1. Furthermore, by Eq. (7) we can also assume that d(j−1)k+i ≤ d(j−1)k+i+1 for 1 ≤ i ≤ k − 1
and 1 ≤ j ≤ n. Suppose dk(n−1)+1 < dk(n−1). By Eq. (7) we can swap dk(n−2)+1 and dk(n−1) without
decreasing the value of v. Again by repeated application of Eq. (7) and Theorem 6, we can reorder di
such that d(j−1)k+i ≤ djk+i for 1 ≤ i ≤ k and 1 ≤ j ≤ n − 1 without decreasing v while ensuring
d(j−1)k+i ≤ d(j−1)k+i+1 for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n. If dk(n−1)+1 < dk(n−1) we repeat this process
(which terminates after a finite number of times) until dk(n−1)+1 ≥ dk(n−1). Applying this procedure for
j from n − 1, · · · , 3, 2 sequentially shows that for each 2 ≤ j ≤ n, d(j−1)k+1 ≥ dk(j−1). This along with
d(j−1)k+i ≤ d(j−1)k+i+1 for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n shows that d1 ≤ d2 · · · ≤ dkn.

We get the following result when we set f(x1, · · · , xk) =
∏k

i=1 xi or f(x1, · · · , xk) = − log
(

∑k
i=1 xi

)

.

Corollary 5. Let ai be a set of kn numbers and let bi be the numbers ai reordered such that b1 ≤ b2 · · · ≤ bkn.
Then

n n

√

√

√

√

kn
∏

i=1

ai ≤

n
∑

j=1

k
∏

i=1

a(j−1)k+i ≤

n
∑

j=1

k
∏

i=1

b(j−1)k+i

. Suppose there exists ci, a reordering of the numbers ai such that
∏k

i=1 c(j−1)k+i =
∏k

i=1 c(l−1)k+i for all
1 ≤ j, l ≤ n. Then

n
∑

j=1

k
∏

i=1

c(j−1)k+i ≤

n
∑

j=1

k
∏

i=1

a(j−1)k+i

7



If in addition ai ≥ 0, then

n
∏

j=1

k
∑

i=1

b(j−1)k+i ≤

n
∏

j=1

k
∑

i=1

a(j−1)k+i ≤

(

∑kn
i=1 ai
n

)n

. Suppose there exists ci, a reordering of the numbers ai such that
∑k

i=1 c(j−1)k+i =
∑k

i=1 c(l−1)k+i for all
1 ≤ j, l ≤ n, then

n
∏

j=1

k
∑

i=1

a(j−1)k+i ≤
n
∏

j=1

k
∑

i=1

c(j−1)k+i

The bounds n n

√

∏kn
i=1 ai and

(∑
kn
i=1

ai

n

)n

in Corollary 5 are due to the AM-GM inequality (Lemma 2).

5.1 The special case when ai is an arithmetic progression

Definition 3. For a permutation σ of {1, · · · , kn}, define v(n, k) =
∑n

i=1

∏k
j=1 aσ((i − 1)k + j). Let

vmin(n, k) and vmax(n, k) be the minimal and maximal values respectively of v(n, k) among all permutations
σ of {1, · · · , kn}.

Definition 4. For a permutation σ of {1, · · · , kn}, define w(n, k) =
∏n

i=1

∑k
j=1 aσ((i−1)k+j). Let wmin(n, k)

and wmax(n, k) be the minimal and maximal values respectively of w(n, k) among all permutations σ of
{1, · · · , kn}.

Suppose ai ≥ 0 is an arithmetic progression, with ai = a1 + (i − 1)d, for i = 1, · · · , kn, d ≥ 0. Corollary
5 implies that

Theorem 10. • vmin(n, k) ≥ ndk n

√

Γ( a1

d
+nk)

Γ( a1

d )
.

• vmax(n, k) =
∑n

i=1

∏k
j=1 a(i−1)k+j = dk

∑n
i=1

Γ( a1

d
+ik)

Γ( a1

d
+(i−1)k)

.

• wmax(n, k) ≤
(

k(a1+akn)
2

)n

.

•

wmin(n, k) =

n
∏

i=1

k
∑

j=1

a(i−1)k+j = kn
n
∏

i=1

(

a1 +

(

ik −
k + 1

2

)

d

)

= k2ndn
Γ
(

n+ 2a1+(k−1)d
2kd

)

Γ
(

2a1+(k−1)d
2kd

)

.

Theorem 11. If k = 2t+ nu for nonnegative integers t and u, then wmax(n, k) =
(

k(a1+akn)
2

)n

.

Proof. The proof is similar to the proof of Theorem 2. Instead of using cyclic permutations ri of {1, · · · , n}
and the permutation (n, n − 1, · · · , 1), we apply them to ((j − 1)n + 1, (j − 1)n + 2, · · · , jn) and this is
equivalent to adding (j − 1)n to each term of the j-th permutation. For instance, for n = k = 3, w(n, k) is
maximized by (a1, a5, a9, a2, a6, a7, a3, a4, a8).

This implies that if n is odd and k ≥ n− 1 or if k is even, then wmax(n, k) =
(

k(a1+akn)
2

)n

.

Theorem 12. If n is even and k is odd such that k ≥ n− 1, then

wmax(n, k) =

(

ka1 +

(

k(kn− 1)− 1

2

)

d

)n/2(

ka1 +

(

k(kn− 1) + 1

2

)

d

)n/2
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Proof. The proof is similar to the proof of Theorem 3, except that we add (j − 1)n to each term of the j-th

permutation in the k-set of permutations of {1, · · · , n}. This adds an additional
∑k

j=1(j−1)n = (k−1)kn/2

to each wi and thus wi =
k(kn+1)−1

2 for i = 1, · · · , n/2, and wi =
k(kn+1)+1

2 for i = n/2 + 1, · · · , n. Thus

wmax(n, k) =
∏n

i=1 k(a1 − d) + wid =
(

k(a1 − d) + d(k(kn+1)−1)
2

)n/2 (

k(a1 − d) + d(k(kn+1)+1)
2

)n/2

and the

conclusion follows.

5.2 The special case ai = i

Definition 5. For a permutation σ of {1, · · · , kn}, define v(n, k) =
∑n

i=1

∏k
j=1 σ((i−1)k+j). Let vmin(n, k)

and vmax(n, k) be the minimal and maximal values respectively of v(n, k) among all permutations σ of
{1, · · · , kn}.

Definition 6. For a permutation σ of {1, · · · , kn}, define w(n, k) =
∏n

i=1

∑k
j=1 σ((i−1)k+j). Let wmin(n, k)

and wmax(n, k) be the minimal and maximal values respectively of w(n, k) among all permutations σ of
{1, · · · , kn}.

We have vmin(n, 1) = wmax(1, n) = n(n + 1)/2, vmin(1, k) = wmax(k, 1) = k!, vmin(n, k) ≥ n n
√

(kn)!.

Furthermore, wmax(n, k) ≤
(

k(nk+1)
2

)n

with equality if k = 2t+ nu for nonnegative integers t and u.

Theorem 13. vmin(n, 2) = n(n+ 1)(2n+ 1)/3, wmax(n, 2) = (2n+ 1)n.

Proof. By Corollary 5, vmin(n, 2) =
∑n

i=1 i(2n− i+1) = (2n+1)
∑n

i i−
∑n

i i
2 = n(n+1)(2n+1)/2−n(n+

1)(2n+ 1)/6 = n(n+ 1)(2n+ 1)/3. Similarly, wmax(n, 2) =
∏n

i=1(i + (2n− i+ 1)) = (2n+ 1)n.

Theorem 12 implies that

Corollary 6. If n is even and k is odd such that k ≥ n− 1, then wmax(n, k) =
(

k2(kn+1)2−1
4

)n/2

.

The value of vmin(n, 3) can be found in OEIS [4] sequence A072368 (https://oeis.org/A072368).
The values of vmin(n, k) can be found in sequence A331889 (https://oeis.org/A331889). The values
of wmax(n, k) can be found in sequence A333420 (https://oeis.org/A333420). The values of wmin(n, k)
can be found in sequence A333445 (https://oeis.org/A333445). The values of vmax(n, k) can be found in
sequence A333446 (https://oeis.org/A333446).

6 Conclusions

We consider several variants of the rearrangement inequality for which we can generalize to multiple sequences
and find both the set of permutations that maximizes or minimizes the sum of products or product of sums
of terms and where the permutation can be chosen across sequences.
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