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Abstract. Using the combinatorial species setting, we propose two new operad struc-

tures on multigraphs and on pointed oriented multigraphs. The former can be con-

sidered as a canonical operad on multigraphs, directly generalizing the Kontsevich-

Willwacher operad, and has many interesting suboperads. The latter is a natural ex-

tension of the pre-Lie operad in a sense developed here and related to the multigraph

operad. We study some of the finitely generated suboperads of the multigraph operad

and establish links between them and the comutative operad and the commutative

magmatic operad.
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Introduction

Operads are mathematical structures which have been intensively studied in the context

of topology, algebra [11] but also of combinatorics [4] —see for example [7,13] for general

references on symmetric and non-symmetric operads, set-operads through species, etc.

In the last decades, several interesting operads on trees have been defined. Amongst

these tree operads, maybe the most studied are the pre-Lie operad PLie [5] and the

nonassociative permutative operad NAP [10].

However, it seems to us that a natural question to ask is what kind of operads can

be defined on graphs and what are their properties? The need for defining appropri-

ate graph operads comes from combinatorics, where graphs are, just like trees, natural

objects to study, but also from physics, where it was recently proposed to use graph

operads in order to encode the combinatorics of the renormalization of Feyman graphs

in quantum field theory [9].

Other graph operads have been defined for example in [6, 8, 12, 13, 15]. In this paper,

we go further in this direction and we define, using the combinatorial species [2] setting,

new graph operads. Moreover, we investigate several properties of these operads: we
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describe an explicit link with the pre-Lie tree operad mentioned above, and we study

interesting (finitely generated) suboperads.

This paper is organized as follows. Section 1 contains elementary definitions of

species and operads. In Section 2 we define and study the main operads of interest

of this paper. Section 3 is devoted to the study of finitely generated suboperads.

This text is an extended abstract. The long version of this work [1] contains a more

general definition of graph insertion operads as well as new operad constructions and

all the proofs of the results presented here.

1 Species, operads and graphs

Most definitions, results and proofs of this section can be found with more details in [13].

We refer the reader to [2] for the theory of species and to [11] for the theory of operads.

In all the following, K is a field of characteristic zero. For any positive integer n, [n]
stands for the set {1, . . . , n}.

Definition 1. A set species S consists of the following data. For each finite set V a set

S[V], and for each bijection of finite sets σ : V → V ′ a map S[σ] : S[V] → S[V ′]. These

maps should be such that S[σ ◦ τ] = S[σ] ◦ S[τ] and S[I ] = I , where I is the identity

map.

A morphism of set species f : R → S is a collection of maps fV : R[V] → S[V] such

that for each bijection σ : V → V ′, fV ′ ◦ R[σ] = S[σ] ◦ fV . A set species S is positive if

|S[∅]| = 0 and connected if |S[{v}]| = 1 for any singleton {v}.

Switching sets with vector spaces, maps to linear maps and cardinality to dimension

in the previous definition, we obtain the definitions of linear species, morphisms of linear

species, positive linear species, and connected linear species. The Hilbert series of a linear

species S is the formal series HS(t) = ∑n>0 dim S[[n]] xn

n! . For S a set species, we denote

by KS the linear species defined by (KS)[V] = KS[V], where KS[V] is the K-linear span

of S[V]. The linear space KS[V] is naturally equipped with a scalar product (−|−)S[V]

by setting that S[V] is an orthonormal basis. The support of x ∈ KS[V] is the set {y ∈
S[V] : (x|y)S[V] > 0}.

In all the following, V always denotes a finite set. Let R and S be two linear

species. We recall the classical constructions on species: (R + S)[V] = R[V]⊕ S[V] (sum),

(R · S)[V] =
⊕

V1⊔V2=V R[V1] ⊗ S[V2] (product), (R × S)[V] = R[V] ⊗ S[V] (Hadamard

product), R′[V] = R[V ⊔ {∗}] (derivative), R•[V] = R[V] × V (pointing), and E(R)[V] =
⊕

∼=

⊗

W∈V/∼= R[W] (assembly) where ∼= run over the set of the equivalence relations on V.

These definitions are compatible with the functor S 7→ KS, e.g., K(R + S) = KR ⊕ KS.

Let X be the set species defined by X[{v}] = {v} and X[V] = ∅ if V is not a singleton.
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Definition 2. A (symmetric) set (resp. linear) operad is a positive set (resp. linear) species

O together with a unit e : X → O (resp. e : KX → O) and a partial composition map

◦∗ : O′ · O → O, such that the following three diagrams commute

O′′ · O2 O′ · O

O′ · O O

◦∗1

◦∗2
◦I·τ ◦∗2

◦∗1

(1.1)

O′ · O′ · O O′ · O

O′ · O O

◦∗1
·I

I·◦∗2
◦∗2

◦∗1

(1.2)

O′ · KX O′ · O KX′ · O

O

O′ ·e

p
◦∗

e′·O

∼=

(1.3)

where τV : x ⊗ y ∈ O2[V] 7→ y ⊗ x ∈ O2[V], and pV : x ⊗ v 7→ O[∗ 7→ v](x) with ∗ 7→ v

the bijection that sends ∗ on v and is the identity on V \ {v}.

An operad morphism is a species morphism compatible with the units and the partial

composition maps.

Remark that if (S, e, ◦∗) is a set-operad, then extending e and ◦∗ linearly makes

(KS, e, ◦∗) a linear operad. In all the following, e will often be trivial and we will not

mention it. From now on all the considered species will be positive. Except for the set

operad ComMag (see Section 3), we will only consider linear operad, hence we will

write species and operad for linear species and linear opeard.

An ideal of an operad O is a subspecies S such that the image of the products O′ · S

and S′ · O by the partial composition maps are in S. The quotient species O/S defined by

(O/S)[V] = O[V]/S[V] is then an operad with the natural partial composition and unit.

We now need to recall the notion of free operad. For this we first introduce some

notations. For V a set, let T be the species of trees defined as follows. For any set V,

T [V] is the set such that

• if V = {v} is a singleton, then the sole element of T [V] is the tree reduced to a leaf

labelled by {v}.

• Otherwise, let π = (π1, . . . , πk) be a partition of V and t1, . . . , tk be respectively

elements of T [π1], . . . , T [πk]. Then the tree consisting in an internal node having

from left to right t1, . . . , tk as sub-trees is an element of T [V].

Let now G be a positive species. The free operad FreeG over G is defined as follows.

As a species, FreeG is such that for any set V, FreeG[V] is the set of labeled versions of

the trees of T [V]: any internal nodes having k children of a tree is labeled by an element

of G[[k]]. The partial composition of FreeG, denoted by ◦ξ is the grafting of trees: for

any disjoint sets V1 and V2 with ∗ ∈ V1, and t1 ∈ FreeG[V1] and t2 ∈ FreeG[V2], t1 ◦
ξ
∗ t2

is the tree obtained by grafting t2 on the leaf ∗ of t1. Moreover, for any k > 0, we denote

by Free
(k)
G the subspecies of FreeG of trees with k exactly internal nodes.

If R is a subspecies of FreeG, we denote by (R) the smallest ideal containing R and

write that (R) is generated by R.
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For any species S we denote by S∨ the species defined by S∨[V] = S[V]∗ and

S∨[σ](x) = sign(σ)x ◦ S[σ−1].

Definition 3. Let G be a positive species and R be a subspecies of FreeG. Let Ope(G, R) =
FreeG/(R). The operad Ope(G, R) is binary if the species G of generators is concentrated

in cardinality 2 (i.e., for all n 6= 2, G[[n]] = {0}). This operad is quadratic if R is a sub-

species of Free
(2)
G .

Definition 4. Let O = Ope(G, R) be a binary quadratic operad. Let us define the lin-

ear form 〈−,−〉 on Free
(2)
G∨ × Free

(2)
G as follows. For V = {a, b, c}, f1 ∈ G∨′[{a}], f2 ∈

G[{b, c}], x1 ∈ G′[{a}], and x2 ∈ G[{b, c}]:

〈 f1 ◦∗ f2, x1 ◦∗ x2〉 = f1(x1) f2(x2). (1.4)

The Koszul dual of O is then the operad O! = Ope(G∨, R⊥) where R⊥ is the orthogonal

of R for 〈−,−〉.

When O is quadratic and its Koszul complex is acyclic [11], O is a Koszul operad. In

this case, the Hilbert series of O and of its Koszul dual are related by the identity

HO(−HO!(−t)) = t. (1.5)

2 Graph operads

A multigraph on V is a multiset of unordered pairs in V2 which we call edges. In this

context, the elements of V are called vertices and the elements in V which are in no

edge are called isolated vertices. A multigraph on V is connected if for every vertices v

and v′, there is a sequence of edges e1, . . . , ek such that v ∈ e1, v′ ∈ ek and ei ∩ ei+1

for every 1 6 i < k. A graph on V is a multigraph on V which is a set and with no

edge in {{v, v} : v ∈ V}. We denote by MG the set species of multigraphs, by G its

set subspecies of graphs, and by MGc and Gc their connected counterparts. We finally

denote by T the set subspecies of Gc restricted to trees.

Let V1 and V2 be two disjoint sets such that ∗ ∈ V1. For any multigraphs g1 ∈
MG[V1] and g2 ∈ MG[V2], the insertion of g2 into g1 is the sum of all the multigraphs of

MG[V1 \ {∗} ⊔ V2] obtained by the following process:

1. Do the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with one (or two if ∗ has loops)

loose end(s);

3. Connect each loose end to any vertex in V2.
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For instance,

a ∗ ◦∗ b c = a b c + a b c + 2 a b c

+ 2 a b c + 2 a b c + 4 a b c

+ a b c + a b c + 2 a b c .

(2.1)

Theorem 2.1. The species KMG, endowed with the insertion as partial composition, is an

operad.

We call KMG the graph insertion operad. It is straightforward to observe that the

species KG and KMGc are suboperads of KMG, that KGc a suboperad of KG, and

that KT is a suboperad of KGc. In particular, this structure on KG is known as the

Kontsevich-Willwacher operad [12]. For KG, the insertion reformulates more formally

as follows. For any g1 ∈ G[V1] and g2 ∈ G[V2] such that V1 and V2 are two disjoint sets

and ∗ ∈ V1,

g1 ◦∗ g2 = ∑
f :N∗→V2

(g1 \ {∗}) ∪ g2 ∪
⋃

v∈N∗

{v, f (v)}, (2.2)

where N∗ is the set of neighbours of ∗ in g1. For instance,

a

∗

b

◦∗ c d =
a

b

c d +
a

b

c d +
a

b

c d +
a

b

c d . (2.3)

It is easy to observe that all graphs appearing in g1 ◦∗ g2 have 1 as coefficient.

While KMG has an involved structure we will see that it has many interesting sub-

operads. Let us start by giving some basic results on KG.

Let S be a species, I be a set, {Vi}i∈I be a family of finite sets, and xi ∈ S[Vi] for all

i ∈ I. We call subspecies of S generated by {xi}i∈I the smallest subspecies of S containing

the family {xi}i∈I. If S is furthermore an operad, we call suboperad of S generated by

{xi}i∈I the smallest suboperad of S containing the family {xi}i∈I . We write that x is

generated by {xi}i∈I if x is in the suboperad generated by {xi}i∈I.

These definitions given, it is natural to search for a smallest family of generators of

KG. The search of such a family is computationally hard. With the help of the computer,
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we obtain that the generators of KG of arity no more than 5 are

, , , , , , ,

, , , , , , , , , ,

, , , , .

(2.4)

Due to the symmetric group action on KG, only the knowledge of the shapes of the

graphs is significant. While (2.4) does not provide to us any particular insight on a

possible characterisation of the generators, it does suggest that any graph with enough

edges must be a generator. This is confirmed by the following lemma.

Lemma 2.2. Let {Vi}i∈I be a family of non empty finite sets, {gi}i∈I be a family of graphs such

that gi ∈ G[Vi], and let g be a graph in G[V] with at least (n−1
2 ) + 1 edges, where n = |V|.

Then g is generated by {gi}i∈I if and only if g = gi for some i ∈ I.

Sketch of proof. Remark that the number of edges of the graphs in the support of g1 ◦∗ g2

is the sum of the number of edges in g1 with the number of edges in g2. Hence graphs

with too many edges cannot appear in the support of a partial composition.

Proposition 2.3. The operad KG is not free and has an infinite number of generators.

Proof. The fact that KG has an infinite number of generators is a direct consequence of

Lemma 2.2. Moreover, the relation

a ∗ ◦∗ b c + c ∗ ◦∗ b a − b ∗ ◦∗ a c − 2 a b c

= a b c + b c a + c b a + b a c

− b a c − a c b − 2 a b c

= 0

(2.5)

shows that KG is not free.

As a consequence of Proposition 2.3, it seems particularly hard to further investigate

the structure of KG. Let us restrict further to its suboperad KT of trees. The generators

of KT until arity 6 are

, , , , , . (2.6)
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This operad KT has a non trivial link with the pre-Lie operad PLie [5]. To show this we

first need to introduce a new operad on oriented multigraphs.

An oriented multigraph on V is a graph where each edge end is either unlabelled or la-

belled with an arrow head. We denote by MGor the set species of oriented graphs, by Gor

the set species of oriented graphs, and by MGorc and Gorc their connected counterparts.

Let V1 and V2 be two disjoint sets such that ∗ ∈ V1. For any rooted oriented multi-

graphs (g1, v1) ∈ MG•
or[V1] and (g2, v2) ∈ MGor[V2]

•, the rooted insertion of (g2, v2) into

(g1, v1) is the sum of all the rooted multigraphs of MG•
or[V1 \ {∗} ⊔ V2] obtained by the

following process:

1. Do the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with a loose end;

3. Connect each non labelled loose end to v2;

4. Connect each labelled loose end to any vertex in V2;

5. The new root is v1 if v1 6= ∗ and is v2 otherwise.

For instance, by depicting by squares the roots of the graphs,

∗

a

b

◦∗ c a =

a

b

c d +

a

b

c d (2.7)

Theorem 2.4. The species KMG•
orc, endowed with the rooted insertion as partial composition,

is an operad.

This makes KG•
orc a suboperad of KMG•

orc.

In a rooted tree, each edge has a parent end and a child end. Given a rooted tree

t with root r, denote by tr the oriented tree where each parent end of t is labelled and

each child end is non labelled. Then, the monomorphism T• →֒ G•
orc which sends each

ordered pair (t, r), where t is a tree and r is its root, on (tr, r) induces an operad structure

on the species of rooted trees which is exactly the operad PLie.

Proposition 2.5. The monomorphism of species ψ : KT → KT• defined, for any tree t ∈ T[V]
by

ψ(t) = ∑
r∈V

(t, r), (2.8)

is a monomorphism of operads from KT to PLie.
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A natural question to ask is how to extend this morphism to KGc and KMGc. Let us

introduce some notations in order to answer this question. For g ∈ MGc[V], r ∈ V, and

t ∈ T[V] a spanning tree of g, let −→g (t,r) ∈ MGorc be the oriented multigraph obtained

by labelling the edges of g in t in the same way as the edges of tr, and by labelling

both ends of the edges in g not in t. More formally, we have: −→g (t,r) = tr ⊕ ιG(g \ t),
where ι : KMG → KMGor sends a multigraph to the oriented multigraph obtained by

labelling all the edges ends.

Define KO2 ⊂ KO1 ⊂ KST three subspecies of KMG•
orc by

ST[V] =
{

(−→g (t,r), r) : g ∈ MGc[V], r ∈ V and t a spanning tree of g
}

, (2.9)

O1[V] =

{

∑
r∈V

(−→g (t(r),r), r) : g ∈ MGc[V] and for each r, t(r) a spanning tree of g

}

,

(2.10)

O2[V] =
{

(−→g (t1,r), r)− (−→g (t2,r), r) : g ∈ MGc[V], r ∈ V,

and t1 and t2 two spanning trees of g} . (2.11)

Lemma 2.6. The following properties hold

• KST is a suboperad of KMG•
orc isomorphic to KMG × PLie,

• KO1 is a suboperad of KST,

• KO2 is an ideal of KO1.

We can see PLie as a suboperad of ST by the monomorphism (t, r) 7→ (tr, r). The

image of the operad morphism ψ of Proposition 2.5 is then KO1 ∩ PLie and we have

that KO2 ∩ PLie = {0} and hence KO1 ∩ PLie/KO2 ∩ PLie = KO1 ∩ PLie.

Proposition 2.7. The operad isomorphism ψ : KT → PLie extends into an operad isomorphism

ψ : KMGc → KO1/KO2 satisfying, for any g ∈ MGc[V],

ψ(g) = ∑
r∈V

−→g (t(r),r), (2.12)

where for each r ∈ V, t(r) is a spanning tree of g. Furthermore, this isomorphism restricts itself

to an isomorphism KGC → KO1 ∩ KGc/KO2 ∩ KGc.
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The last results are summarized in the following commutative diagram of operad

morphisms.

KT PLie ∩ KO1/KO2 PLie ∩ KO1 PLie

KGc KO1 ∩ KG•
orc/KO2 ∩ KG•

orc KG•
orc ∩ KO1 KG•

orc ∩ KST

KMGc KO1/O2 KO1 KMG × PLie

∼

∼

∼

(2.13)

3 Finitely generated suboperads

Let us now focus on finitely generated suboperads of KG. First remark that the sub-

operad of KG generated by { a b } is isomorphic to the commutative operad KCom.

Indeed,
a ∗ ◦∗ b c = a b c = ∗ c ◦∗ a b (3.1)

Recall that the set operad ComMag [3] is the free set operad generated by one binary

and symmetric element. More formally, ComMag[V] is the set of all nonplanar binary

trees with set of leaves equal to V. Let s be the connected set species defined by |s[V]| = 1

if |V| = 2, |s[V]| = 0 otherwise. The action of transposition on the sole element of

s[{a, b}] is trivial. Then KComMag = FreeKs.

Proposition 3.1. The suboperad of KG generated by { a b } is isomorphic to KComMag.

Proof. We know from Proposition 2.5 that the operad of the statement is isomorphic to

the suboperad of PLie generated by
{

a

b
+

b

a

}

(3.2)

Then [3] gives us that this suboperad is isomorphic to KComMag. This concludes the

proof

Now the fact that we can see both KCom and KComMag as suboperads of KG

gives us natural way to define the smallest operad containing these two as suboperads.

Let SP be the suboperad of KG generated by { a b , a b } This operad has some nice

properties.

Proposition 3.2. The operad SP is isomorphic to the operad Ope(G, R) where G is the subspecies

of KG generated by { a b , a b } and R is the subspecies of FreeG generated by

c ∗ ◦ξ
∗ a b − a ∗ ◦ξ

∗ b c , (3.3a)
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and

a ∗ ◦ξ
∗ b c − c ∗ ◦ξ

∗ a b − b ∗ ◦ξ
∗ a c . (3.3b)

Therefore, SP is a binary and quadratic operad.

For the readers familiar with Koszulity (see [11]), remark that SP is a Koszul operad.

Proposition 3.3. The operad SP admits as Koszul dual the operad SP! which is isomorphic to

the operad Ope(G∨, R) where G is the subspecies of KG generated by { a b
∨, a b

∨} and R

is the subspecies of FreeG∨ generated by

a ∗
∨ ◦ξ

∗ b c
∨, (3.4a)

a ∗
∨ ◦ξ

∗ b c
∨ + c ∗

∨ ◦ξ
∗ a b

∨ + b ∗
∨ ◦ξ

∗ a c
∨, (3.4b)

a ∗
∨ ◦ξ

∗ b c
∨ + c ∗

∨ ◦ξ
∗ a b

∨ + b ∗
∨ ◦ξ

∗ c a
∨. (3.4c)

Sketch of proof. Let us respectively denote by r1, r2, r′1, r′2, and r′3 the elements (3.3a),

(3.3b), (3.4a), (3.4b), and (3.4c). Denote by I the operad ideal generated by r1 and r2.

Then as a vector space, I[[{a, b, c}]] is the linear span of the set

{r1, r1 · (ab), r2, r2 · (abc), r2 · (acb)}, (3.5)

where · is the action of the symmetric group, e.g r1 · (ab) = FreeG[(ab)](r1). This space

is a sub-space of dimension 5 of FreeG[{a, b, c}, which is of dimension 12. Hence, since

as a vector space

FreeG∨ [{a, b, c}] ∼= FreeG∗ [{a, b, c}] ∼= FreeG[{a, b, c}], (3.6)

I⊥[{a, b, c}] must be of dimension 7.

Denote by J the ideal generated by r′1, r′2 and r′3. Then as a vector space J[{a, b, c}] is

the linear span of the set

{r′1, r′1 · (ab), r′1 · (ac), r′2, r′2 · (abc), r′2 · (acb), r′3}. (3.7)

This space is of dimension 7. Verifying that for any f ∈ J[{a, b, c}] and x ∈ I[{a, b, c}] we

have < f , x >= 0 concludes this proof.

Proposition 3.4. The Hilbert series of SP! is

HSP!(x) =
(1 − log(1 − x))2 − 1

2
. (3.8)
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The first dimensions dim SP![[n]] for n > 1 are

1, 2, 5, 17, 74, 394, 2484, 18108, 149904. (3.9)

This is sequence A000774 of [14]. This sequence is in particular linked to some pattern

avoiding signed permutations and mesh patterns.

Before ending this section let us mention the suboperad LP of KMG generated by

{

a
, a b

}

. (3.10)

This operad presents a clear interest since its two generators can be considered as mini-

mal elements in the sense that a partial composition with the two isolated vertices adds

exactly one vertex and no edges, while a partial composition with the loop adds exactly

one edge and no vertex. A natural question to ask at this point concerns the description

of the multigraphs generated by these two minimal elements.

Proposition 3.5. The following properties hold

• the operad SP is a suboperad of LP;

• the operad LP is a strict suboperad of KMG. In particular, the multigraph

a b c (3.11)

is in KMG but is not in LP.

Concluding remarks

We defined in this extended abstract a notion of graph insertion operad. In the complete

version [1] of this paper, we give an even more general definition of graph insertion

operads which also naturally extends to hypergraphs.

There are two main questions, with reciprocical goals, raised by this paper: the de-

scription of the multigraphs generated contained in LP and the description of the gener-

ators of the various operads defined here (as KG•
orc, KGc, KT, etc.). Another perspective

for future work is to study appropriate examples of algebras on SP and SP!.
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