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Abstract

Let T be a tree (not necessarily locally finite). We give a classifi-
cation up to conjugacy of the closed subgroups G of AutpT q that have
Tits’ independence property pPq in terms of data called a local action
diagram, which is the quotient graph GzT decorated with the ‘local
actions’ of G. We then show how to determine whether the group has
certain properties, such as geometric density, compact generation and
simplicity, directly from the local action diagram.
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1 Introduction

Actions on trees have long played an important role in group theory. The
most well-established perspective is that of Bass–Serre theory and the theory
of ends of groups, in which actions on trees are interpreted as a generalization
of the free product and HNN constructions. In addition, a complementary
approach has emerged based on local actions, that is, the action of a vertex
stabilizer on the neighbouring vertices. In particular, two articles concerning
groups acting on trees have been very important for the recent development
of the theory of totally disconnected, locally compact (t.d.l.c.) groups: a
1970 article [12] of J. Tits, which introduced property pPq as a condition to
produce new examples of simple groups, showing for instance that the auto-
morphism group of a regular tree is virtually simple; and a 2000 article [2] of
M. Burger and Sh. Mozes, which rediscovered the approach of Tits and used
it to produce an interesting class of (virtually) simple t.d.l.c. groups acting
on trees with property pPq, which moreover arise naturally in the study of
lattices in products of trees. Since then, the majority of new constructions
of compactly generated simple t.d.l.c. groups have used the ideas of [12] and
[2]. More recently in [11], the second named author generalized the Burger–
Mozes construction to obtain a kind of product of permutation groups, often
resulting in a permutation group that is both primitive and simple; this was
used to show that there are 2ℵ0 isomorphism types of nondiscrete compactly
generated simple t.d.l.c. groups. Other authors have studied generalizations
of property pPq, for instance the properties pPkq introduced in [1], where
pP1q is just pPq. One can define the pPkq-closure of any action on a tree
for all k ě 1, to obtain a series of approximations to the original action
determined by how the original action behaves on balls of radius k, which
converge to the closure of the action; thus groups with pPkq are a general
tool to understand all actions on trees.

The goal of the present article is to develop a general method for describ-
ing and classifying actions of groups on trees with property pPq, or equiva-
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lently, to describe all possible pPq-closures of actions on trees, to serve as a
‘local action’ complement to classical Bass–Serre theory. The basic idea is
essentially the same as in [2], namely to describe the group in terms of its
local actions; but in contrast to [2] and [11], we make no assumptions about
the homogeneity of the local actions or the structure of the orbits of the
group on vertices or arcs of the tree. As a result, we need a slightly more
complicated way to describe the local actions.

Definition 1.1. A local action diagram ∆ “ pΓ, pXaq, pGpvqqq consists
of the following information:

• A connected graph Γ. (We define graphs in the sense of Serre, ex-
cept that a loop may or may not be equal to its own reverse: see
Section 2.1.)

• For each arc a of Γ, a nonempty set Xa (called the colour set of a).

• For each vertex v of Γ, a group Gpvq (called the local action at v)
with the following properties: write Xv to denote the disjoint unionŮ

aPo´1pvq Xa, then the group Gpvq is a closed subgroup of SympXvq
and the sets Xa are the orbits of Gpvq on Xv.

There is a natural notion of isomorphism of local action diagrams. For
actions on trees the natural way to define isomorphism is conjugacy, where
we say pT,Gq and pT 1, G1q are conjugate if there is a graph isomorphism
θ : T Ñ T 1 that intertwines the two actions. The central theorem of this
article, which we prove in Section 3, is as follows.

Theorem 1.2. There is a natural one-to-one correspondence between conju-
gacy classes of pPq-closed actions on trees and isomorphism classes of local
action diagrams.

There are no surprises in how a local action diagram is obtained from a
(pPq-closed) action of a group G on a tree T . The graph Γ is the quotient
graph GzT ; Gpvq represents the closure of the action of a vertex stabilizer
Gv˚ (where v˚ lies in the preimage of v) on the arcs o´1pv˚q of T origi-
nating at v˚; those arcs are partitioned into Gv˚-orbits, represented by the
colour sets, with the result that there is a natural one-to-one correspondence
between o´1pvq and Gv˚ -orbits on o´1pv˚q.

The significance of the correspondence, then, is in the following two
observations.

(1) The local action diagram exactly describes the pPq-closure of the origi-
nal action up to conjugacy. In particular, any ‘large-scale’ information
about the original group can be recovered from the quotient graph Γ
together with the local actions.
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(2) All possible local action diagrams arise in this manner. In particular, Γ
can be any connected graph in our sense, and apart from how Γ limits
the number of orbits of the local actions, there are no compatibility
conditions for which local actions can be combined.

For comparison, the Burger–Mozes framework corresponds to the case when
Γ is a single vertex with a set of loops, each of which is its own reverse; the
framework of [11] corresponds to the case that Γ has two vertices and no
loops.

As an example of what this means in practice, consider the class Cpn, dq
of pPq-closed actions on trees pT,Gq such that G has at most n orbits on
vertices and no vertex has degree greater than d. Theorem 1.2 immediately
shows that for given natural numbers n and d, there are only finitely many
conjugacy classes of actions in Cpn, dq; but because of all the possible graphs
and decorations, the number of conjugacy classes will grow quite rapidly
with n and d. Even when n “ 1, there are more than just the Burger–Mozes
groups: see Section 7.1.

The next part of the article is concerned with characterizing various
natural properties of interest for (topological) groups acting on trees in terms
of the local action diagram.

We recall that Tits’ main theorem on property pPq, ensuring that the
subgroup G` generated by arc stabilizers is trivial or simple, only applies
to pPq-closed actions that are geometrically dense, meaning that there is no
proper invariant subtree or fixed end. Fixed ends and invariant subtrees can
be recognized in the local action diagram, as follows.

Definition 1.3. Let ∆ “ pΓ, pXaq, pGpvqqq be a local action diagram. A
strongly confluent partial orientation (s.c.p.o.) of ∆ is a subset O of
AΓ such that:

(i) If a P O, then a R O and |Xa| “ 1;

(ii) For all v P V Γ, if O contains an arc a originating at v, then O contains
all arcs other than a that terminate at v.

Theorem 1.4 (See Section 5.1). Given a group G acting on a tree T , then
the invariant subtrees and fixed ends of the action naturally correspond to
s.c.p.o.s of the local action diagram, with the empty s.c.p.o. corresponding
to T itself.

In particular, the action pT,Gq is geometrically dense if its local action
diagram is irreducible, meaning that the only s.c.p.o. is the empty one.
Since s.c.p.o.s are quite special, it is easy to write down sufficient conditions
for a local action diagram to give rise to an action on the tree that is ge-
ometrically dense. Note also that the details of the local actions are not
important here, only the structure of the quotient graph Γ and the sizes of
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the colour sets. In the case that pT,Gq is not geometrically dense, we can
also describe which of the degenerate cases of actions on trees (if any) it
falls into using the local action diagram (see Section 5.2).

Given a group action on a tree pT,Gq, a quotient tree is a surjective
graph homomorphism θ : T Ñ T 1 together with a compatible action of
G on T 1. A natural example of such a quotient tree is the quotient map
π` : T Ñ pG`zT q of the action of G` on T . We say that θ is locally
surjective if for each v P V T and every arc a originating at θpvq, then a is
the image of some arc originating at v. We show a version of Tits’ simplicity
theorem for locally surjective quotient trees.

Theorem 1.5 (See Proposition 5.15). Let pT,Gq be a geometrically dense
pPq-closed action on a tree, and let θ : T Ñ T 1 be a quotient tree. Suppose
that θ is locally surjective and not injective. Then θ factors through π`.

In turn, π` is itself locally surjective, although it can be injective on T

or an invariant subtree of T , in the case that G` acts freely on the arcs
of that subtree. The quotient action pG`zT,G{G`q is free on arcs (hence
is pPq-closed) and has a natural description, either in terms of its local
action diagram, or as a fundamental group of a graph of groups in the sense
of Bass–Serre theory (see Theorem 5.16). This gives rise to the following
simplicity criterion for groups with faithful pPq-closed actions. It is almost
an exact characterization of simplicity in this context, except that we need
to exclude a few degenerate kinds of action that a simple group could have.

Definition 1.6. Say that G ď AutpT q is strongly closed if for every
G-invariant subtree T 1 of T , the action of G on T 1 is closed.

In particular, every closed geometrically dense action is strongly closed.

Theorem 1.7 (See Section 5.3). Let pT,Gq be a faithful pPq-closed and
strongly closed action on a tree. Then the following are equivalent:

(i) G is a simple group, G contains a translation, and there is no finite
set of vertices whose pointwise stabilizer is trivial.

(ii) There is an invariant subtree T 1 (possibly equal to T ) which is infinite
and on which G acts faithfully. Moreover, letting ∆ “ pΓ, pXaq, pGpvqqq
be the local action diagram of pT 1, Gq, then ∆ is irreducible; Γ is a tree;
and each of the groups Gpvq is closed and generated by point stabilizers,
with Gpvq ‰ t1u for some v P V Γ.

Note that the condition that there is no finite set of vertices whose point-
wise stabilizer is trivial is equivalent to saying that G is nondiscrete in the
permutation topology on T .

Next, we describe some topological properties of pPq-closed subgroups of
AutpT q with the permutation topology; these are already well-understood
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in the locally finite case, but in the present context we are making no as-
sumptions about the degree of T . We highlight the following special case.

Theorem 1.8 (See Section 6). Let ∆ “ pΓ, pXaq, pGpvqqq be a local action
diagram. Then the following are equivalent:

(i) Up∆q is compactly generated, locally compact and has geometrically
dense action on its associated tree;

(ii) ∆ is irreducible; Γ is finite; and each of the groups Gpvq is compactly
generated and subdegree-finite.

Moreover, if (i) and (ii) hold, then Up∆q is Polish, acting on a countable
tree.

Combining Theorems 1.7 and 1.8 yields the following, where S denotes
the class of nondiscrete compactly generated, topologically simple t.d.l.c.
groups. This generalizes the criterion used in [11] to construct 2ℵ0 noniso-
morphic groups in S .

Corollary 1.9. Let pT,Gq be a faithful pPq-closed and strongly closed action
on a tree. Then the following are equivalent:

(i) We have G P S and the action does not fix any vertex of T .

(ii) There is a unique smallest invariant subtree T 1 (possibly equal to T )
on which G acts faithfully. Moreover, letting ∆ “ pΓ, pXaq, pGpvqqq
be the local action diagram of pT 1, Gq, then ∆ is irreducible; Γ is a
finite tree; and each of the groups Gpvq is closed, compactly generated,
subdegree-finite and generated by point stabilizers, with Gpvq ‰ t1u for
some v P V Γ.

The final section is devoted to examples. We show how the local action
diagram can be used in for classifying group actions on trees by classifying
the 70 pPq-closed vertex-transitive actions on trees of degree 0 ď d ď 5,
and give a GAP ([5]) implementation due to S. Tornier that can be used to
classify vertex-transitive actions of larger degrees.

Finally, we give an example of how Corollary 1.9 can be used to produce
more groups in S , which demonstrates that within S , the groups Up∆q
have a certain universality property.

Theorem 1.10 (See Section 7.2). Let n be a positive integer and let G1, . . . , Gn

be nontrivial compactly generated t.d.l.c. groups, such that for each Gi there
is a compact open subgroup Ui such that Gi “ xgUig

´1 | g P Gy andŞ
gPG gUig

´1 “ t1u. For example, we can take Gi P S and Ui to be any
compact open subgroup. Then there exists Up∆q P S acting continuously
on a countable tree T , vertex stabilizers O1, . . . , On of Up∆q and compact
normal subgroups Ki of Oi, such that Oi – Ki ¸ Gi for 1 ď i ď n.
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2 Preliminaries

2.1 Graphs

A graph Γ “ pV,A, o, rq consists of a vertex set V “ V Γ, a set A “ AΓ of
arcs, a map o : A Ñ V assigning to each arc an origin (or initial) vertex,
and a bijection r : A Ñ A, denoted a ÞÑ a and called edge reversal (or
sometimes edge inversion), such that r2 “ id. The terminal vertex of
an edge is tpaq :“ opaq. A loop is an arc a such that opaq “ tpaq. If a is
a loop, it is important that we allow both a “ a and a ‰ a as possibilities.
We call the pair ta, au an edge between the vertices opaq and tpaq. Two
vertices are adjacent if there is an edge between them. A path (of length
n) in Γ is a sequence of vertices v1, . . . , vn`1 and edges ta1, a1u, . . . , tan, anu
such that tai, aiu is an edge in Γ between vi and vi`1 for all 1 ď i ď n. We
say this is a path between v1 and vn`1. The path is simple if all vertices
v1, . . . , vn`1 are unique. If v1 “ vn`1 and all vertices v1, . . . , vn are unique
then the path is called a cycle of length n. If there is a path between two
vertices v, w, then there is a shortest path, and the length of this shortest
path is the distance between v and w; if there is no path then the distance
is taken to be infinite.

The graph Γ is simple if the map A Ñ V ˆ V by a ÞÑ popaq, tpaqq is
injective and no arc is a loop. In this case, the arc a is sometimes identified
with the pair popaq, tpaqq. The graph is connected if there is a path between
any two distinct vertices. In a simple graph Γ a ray is a one-way infinite
simple path, and a double-ray is a two-way infinite simple path. The ends
of Γ are equivalence classes of rays, in which two rays R1, R2 lie in the
same end if and only if there is another ray R in Γ that contains infinitely
many vertices of R1 and infinitely many vertices of R2. A tree is a simple,
connected graph that contains no cycles.

The degree of a vertex v P V is degpvq :“ |o´1pvq|, and the graph is
locally finite if every vertex has finite degree. The degree of the graph is
defined to be

degpΓq :“ sup
vPV Γ

degpvq.

An automorphism of a graph Γ is a pair of permutations αV : V Ñ V

and αA : A Ñ A that respect origin vertices and edge reversal: αV popaqq “
opαApaqq and αApaq “ αApaq. The automorphisms of Γ form a group, de-
noted AutpΓq. When Γ is a simple graph, the automorphisms of Γ are
precisely the permutations of V that respect the edge relation in V ˆ V . In
this case we identify AutpΓq with the corresponding subgroup of SympV q.

If T is a tree, we say that g P AutpT q induces a non-trivial translation
on a double-ray R of T if and only if gR “ R and no vertex in R is fixed by
g; we then call R the axis of g, and say that g is hyperbolic. A group G

acting on a tree T is said to act without inversion if there is no pair a P AT
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and g P AutpT q such that ga “ a. We recall that every element g P AutpT q
satisfies precisely one of the following: it fixes a vertex or transposes two
adjacent vertices (in which case g is called elliptic) or it is a translation,
with a unique axis.

For G a group acting on a graph Γ and a vertex, arc or edge e of G, the
orbit of e under G is denoted Ge. The action of G gives a quotient graph
GzΓ as follows: the vertex set VG is the set of G-orbits on V and the edge set
AG is the set of G-orbits on A. The origin map õ : AG Ñ AG is defined by
õpGaq :“ Gopaq; this is well-defined since graph automorphisms send origin
vertices to origin vertices. The reversal r̃ : AG Ñ AG is given by Ga ÞÑ Ga;
this map is also well-defined. We will abuse notation and write o and r for
õ and r̃. We denote the quotient map of the action pΓ, Gq by πpΓ,Gq.

A subset of the vertices of a connected graph is bounded, respectively
unbounded, if it has finite, respectively infinite diameter in the graph
metric. Given a vertex v of a graph Γ, write Bnpvq (the ball of radius n)
for the induced subgraph formed by all vertices w such that dΓpv,wq ď n,
and Snpvq (the sphere of radius n) for the set of vertices w such that
dΓpv,wq “ n.

A graph homomorphism θ : Γ Ñ Γ1 is locally surjective if for each
v P V Γ, we have o´1

Γ1 pθpvqq “ θpo´1

Γ
pvqq.

Lemma 2.1. Let Γ be a graph and let G ď AutpΓq. Then πpΓ,Gq is locally
surjective.

Proof. Let π “ πpΓ,Gq and let Γ1 “ πpΓq. Let v P V Γ and a1 P o´1

Γ1 pπpvqq.
Since π is surjective, there exists a P AΓ such that πpaq “ a1, and hence

πpopaqq “ opπpaqq “ opa1q “ πpvq;

there is then g P G such that gopaq “ v, and hence ga P o´1pvq.
Thus πpgaq “ πpaq “ a1; in particular, a1 P πpo´1

Γ
pvqq. Given the choice

of v and a, we conclude that π is locally surjective.

2.2 The pPq-closure and property pPq

Given a set X, we equip SympXq with the permutation topology, that is,
the coarsest group topology such that the stabilizer of every x P X is open.
Given a tree T , we give AutpT q the subspace topology, regarding AutpT q
as a subgroup of SympV T q. Observe that in fact AutpT q corresponds to a
closed subgroup of SympV T q; if V T is countable, this ensures that AutpT q
is Polish (that is, separable and completely metrizable) and also totally
disconnected, but AutpT q is not necessarily locally compact. Assuming T

has no leaves, one could equivalently define the topology of AutpT q with
respect to the permutation topology on arcs or undirected edges, or the
permutation topology on one part of the natural bipartition of the vertices
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of T : this can be seen by noting that two undirected edges suffice to specify
a vertex, two vertices to specify an arc, and two vertices in one part of the
bipartition to specify a vertex in the other part.

Given G ď AutpT q and k ě 1, the pPkq-closure1 of G, denoted by GpPkq,
is the set of automorphisms g P AutpT q such that for all v P V T , and every
finite set of vertices X all of which are at distance at most k from v, there
exists gX P G such that gw “ gXw for every vertex w P X. We say G is
pPkq-closed if G “ GpPkq.

We will use some basic properties of the pPkq-closure. We include proofs
here because the approach of [1] implicitly assumes that trees are locally
finite.

For the rest of this article, we define GpXq :“ tg P G | @x P X : gx “ xu,
where X is a set of vertices of T .

Proposition 2.2 (See [1] Proposition 3.4). Let T be a tree, let G ď AutpT q
and let k P N.

(i) GpPkq is a closed subgroup of AutpT q.

(ii) GpPlq “ pGpPkqqpPlq whenever l ď k. In particular, pGpPkqqpPkq “ GpPkq,
so GpPkq is pPkq-closed.

Proof. (i) Write A :“ AutpT q. Let g, h P GpPkq, let v P V T and let X

be a finite set of vertices all of which are at distance at most k from v.
Then there exists hX P G such that hXw “ hw for all w P X. In turn,
hX :“ thw | w P Xu is a finite set of vertices, all of which are at distance
at most k from hv, so there exists ghX P G such that ghXw “ gw for all
w P hX. Thus ghXhX is an element of G such that ghXhXw “ ghw for all
w P X. We conclude that gh P GpPkq. Similarly, it is clear that GpPkq is
closed under inverses. Thus GpPkq is a subgroup of A.

Let Xk be the set of all finite sets X of vertices in T , such that there is a
vertex v at distance at most k from every vertex in X. Then ApXq is an open

subgroup of A for every X P Xk. Observe that given g P A r GpPkq, then
there exists Xg P Xk such that no element of G agrees with g on Xg, and
hence no element of GpPkq agrees with g on Xg, that is, G

pPkq XgApXgq “ H.

We can therefore express the complement of GpPkq as the following union of
open sets:

ArGpPkq “
ď

gPArGpPkq

gApXgq.

Hence GpPkq is closed in AutpT q.

1The notion of the pPkq-closure of a group acting on a tree was introduced in [1] where it
was simply called the k-closure; however the term k-closure has a well-established meaning
in permutation group theory due to Wielandt, so here we use the term pPkq-closure.
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(ii) Since G ď GpPkq then GpPlq ď pGpPkqqpPlq. Let g P pGpPkqqpPlq and
let X be a finite set of vertices of T , all of which are at distance at most l
from some vertex v. Then there exists gX P GpPkq such that gXw “ gw for
all w P X. But then all the vertices in X are at distance at most k from v,
so there exists g1

X P G such that g1
Xw “ gXw “ gw for all w P X. Hence

GpPlq “ pGpPkqqpPlq. The remaining conclusions are clear.

It is useful to note that the property of being pPkq-closed is inherited by
fixators of vertices and is stable under taking intersections of subgroups.

Lemma 2.3. Let T be a tree, let k be a positive integer and let G be a family
of pPkq-closed subgroups of AutpT q. Then H “

Ş
GPG G is pPkq-closed.

Proof. Let h P HpPkq and let G P G. Then for each v P V T and each finite
set X of vertices in Bkpvq, there is some gX P H such that gXw “ hw for
all w P X. In particular, gX P G. Since G is pPkq-closed, it follows that
h P G; since G P G was arbitrary, in fact h P H. Thus H “ HpPkq, so H is
pPkq-closed.

Lemma 2.4. Let T be a tree, let G ď AutpT q, let k ě 1 and let X be a set
of vertices of T . If G is pPkq-closed, then so is GpXq.

Proof. Suppose G is pPkq-closed, and let H “ pGpXqqpPkq. Given v P X and
g P H, we see from the definition of the pPkq-closure that g must fix v. So in
fact H is a subgroup of pGpPkqqpXq, which is just GpXq. Hence H “ GpXq.

We also recall Tits’ property pPq, introduced in [12].

Definition 2.5. Let T be a tree and let θ : G Ñ AutpT q be a group
homomorphism. Given a non-empty (finite or infinite) path L in T , let
πL : V T Ñ V L be the closest point projection of the vertices of T onto
L; observe that for each x P L, the set π´1

L pxq is a non-empty subtree of
T . Write θpGqpLq for the pointwise stabilizer of L (so θpGqpLq preserves

setwise each of the fibres π´1

L pxq of πL). Then for each vertex x P L, there
is a natural homomorphism φx : θpGqpLq Ñ Sympπ´1

L pxqq induced by the

action of θpGqpLq on π´1

L pxq. We can combine the homomorphisms φx in the
obvious way to obtain a homomorphism

φL : θpGqpLq Ñ
ź

xPV L

φxpθpGqpLqq.

In general, φL is injective but not necessarily surjective. We say G (or
more precisely, the action of G on T ) has property pPq (with respect to
a collection L of paths) if θpGq is closed in AutpT q and φL is surjective for
every possible choice of L (such that L P L).

A major motivation of [1] was to generalize Tits’ property pPq, and
indeed property pPq has a natural interpretation in terms of the pP1q-closure.
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Theorem 2.6 (See [1] Theorem 5.4 and Corollary 6.4). Let T be a tree and
let G be a closed subgroup of AutpT q. Then G “ GpP1q if and only if G
satisfies Tits’ property pPq. Furthermore, if G has property pPq with respect
to the edges of T , then G “ GpP1q, so G has property pPq with respect to all
paths.

Proof. Let L be a non-empty path in T , and let g P AutpT qpLq such that

φLpgq P
ź

vPV L

φvpGpLqq;

say φLpgq “ psvqvPV L. We now claim that g P GpP1q (indeed, g P pGpLqqpP1q).
Let X be a finite set of vertices, all adjacent to some vertex w of T . We
will show that there exists gX P GpLq such that g agrees with gX on X. We
may assume that X X V L “ H, since the vertices of L all are all fixed by
both g and GpLq. Let x “ πLpwq. We observe that since X is disjoint from
V L and the set X Y twu spans a subtree, any path from X to L must pass
through x, in other words X Ď π´1

L pxq. There is then gX P GpLq such that

φvpgXq “ sx, so that g agrees with gX on π´1

L pxq and in particular on X.
Given the freedom of choice of X, we conclude that g P GpP1q as claimed.
Thus if G “ GpP1q, then G has property pPq.

Conversely, suppose that G is closed and satisfies property pPq with
respect to the edges of T . Suppose that G ‰ GpP1q and let g P GpP1q

r G.
Since G is closed, the set GpP1q

r G is a neighbourhood of g in GpP1q, so
there is a finite set X of vertices such that gpGpP1qqpXq X G “ H. Let S be
the smallest subtree of T containing X; note that AutpT qpXq “ AutpT qpSq,
since every vertex of S lies on the unique path between a pair of vertices in
X. Let us suppose that X has been chosen so that |S| is minimized.

By the definition of GpP1q, we see that S is not a star, so for every x P S,
there is a vertex in S at distance 2 from x. Hence there exist adjacent
vertices x and y of S such that neither x nor y is a leaf of S. Let L be the
path consisting of the single arc px, yq. By the minimality of |S|, there is
some h P G such that gx “ hx and gy “ hy, so that h´1g fixes L pointwise.
Let

S1 “ pS X π´1

L pxqq Y tyu and S2 “ pS X π´1

L pyqq Y txu.

Note that for i “ 1, 2, then Si is the set of vertices of a subtree of S that
contains L. The condition that neither x nor y is a leaf of S ensures that
there is some neighbour of x in S that is not contained in S2, and similarly
there is some neighbour of y in S that is not contained in S1. Hence S1

and S2 are both proper subtrees of S, so by the minimality of |S|, there
exists h1, h2 P G such that hiwi “ h´1gwi for all wi P Si (i “ 1, 2). Indeed,
h1 and h2 are elements of GpLq, since h1 and h2 both agree with h´1g on
L. In particular, we see that the action of h´1g induces an element of
φxpGpLqq ˆ φypGpLqq. But then by (the restricted) property pPq, we have
h´1g P GpLq and hence g P G, a contradiction.
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From now on we can refer to the pPq-closure of an action, meaning the
smallest group with property pPq that contains it. We will use repeatedly
without comment the fact that pPq is equivalent to pP1q. We will also
describe an action as “pPq-closed” if it has property pPq.

Lemma 2.7. Let T be a tree, let G ď AutpT q and let T 1 be a G-invariant
subtree of T . Suppose that pT,Gq has property pPq and that the action of G
on T 1 is closed. Then pT 1, Gq also has property pPq.

Proof. Let L be a path in T 1. Since pT,Gq has property pPq, the natural
homomorphism

φL : GpLq Ñ
ź

xPV L

φxpGpLqq

is surjective, where φL and φx are defined with respect to T . Now consider
what happens if we replace φL and φx with φ1

L and φ1
x respectively, which

are now defined with respect to T 1. We also have closest point projections
πL for L as a path in T and π1

L for L as a path in T 1, but in fact πL and
π1
L agree on V T 1. If we choose gx P φ1

xpGpLqq for each x P V L, then there is
some hx P GpLq such that φ1

xphxq “ gx, and then by the surjectivity of φL,
there is g P GpLq such that φLpgq “ pφxphxqqxPV L. But then since

pπ1q´1

L pxq “ π´1

L pxq X V T 1 Ď π´1

L pxq,

we immediately see that

φ1
Lpgq “ pφ1

xphxqqxPV L “ pgxqxPV L.

Thus φ1
L is surjective, so G has property pPq on T 1.

2.3 Bass–Serre theory

Here we recall some standard results in Bass–Serre theory for groups acting
on trees. In this article we will not be using Bass–Serre theory to construct
the groups but we will use it occasionally to analyse them. Note that con-
ventional Bass–Serre theory considers only actions on trees without reversal,
whereas we allow reversal of edges; we keep track of these edge reversals in
the quotient graph by allowing a loop to be its own inverse. This added
generalization has no deep significance, since an action with reversal can
always be converted to an action without reversal by subdividing edges, but
it necessitates some adjustments to the statements.

Given a group G acting on a tree T , we define the reversal-free subdi-
vision T i by subdividing in two parts those edges a of T such that a P Ga.
Analogously, in the quotient graph Γ “ GzT , we define the reversal-free
subdivision of Γi of Γ by taking each loop a such that a “ a (with
opaq “ tpaq “ v, say), adding a new vertex va, and replacing a with the
geometric edge ta1, a1u where opa1q “ v and tpa1q “ va. The action of G on
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T i is then without reversal, and the quotient map from T to Γ naturally
gives rise to a quotient map from T i to Γi.

Lemma 2.8 ([9, I.3.1, Proposition 14]). Let G be a group acting without
reversal on a tree T . Then every subtree of GzT lifts to a subtree of T .

Theorem 2.9 ([9, I.5.4, Theorem 13]). (Bass–Serre structure theorem for
groups acting on trees) Let G be a group acting on a tree T . For the reversal-
free subdivision T i, let π : T i Ñ GzT i be the quotient map of pT i, Gq. Choose
a subtree T 1 of T i that is a lift of a maximal subtree of GzT i. Choose a subset
E` Ď AT i such that opaq P V T 1 for all a P E`, such that π is injective on
E` and πpEq is an orientation of GzT i and set E “ E` Y E`. For each
a P AT i let τa be the inclusion of Ga into Gtpaq. For each a P E` choose
sa P G so that s´1

a tpaq P V T 1, with sa “ 1 if a P AT 1, and set sa “ s´1
a .

Write F pEq for the free group over tsa | a P Eu. Then G has the form

F pEq ˚ ˚vPV T 1Gv

xxsaτapgqsaτapgq´1 pa P E, g P Gaq, sasa, sa pa P AT 1qyy
.

Definition 2.10. Retain the hypotheses and notation of the previous theo-
rem. Let c be a directed path inGzT i, that is, a sequence pv0, a1, v1, . . . , an´1, vnq
consisting alternately of vertices and arcs such that opaiq “ vi´1 and tpaiq “
vi. A word of type c is then a word w “ g0se1g1 . . . gn´1sengn over
E \

Ů
vPV T 1 Gv such that gi P Gv1

i
where πpv1

iq “ vi and πpeiq “ ai. Say that

w is reduced if it is of type c for some path c in GzT i, and satisfies the
following conditions:

If n “ 0 then g0 ‰ 1; if n ě 1, then for each index i such that ai`1 “ ai,
then gi R Gei .

Theorem 2.11 ([9, I.5.2, Theorem 11]). (Normal form theorem of Bass–
Serre theory) Under the hypotheses of Theorem 2.9, every reduced word eval-
uates to a nontrivial element of G.

The following corollary is valid without assuming that G acts without
reversal, since on the one hand, every group generated by vertex stabilizers
acts without reversal (since it preserves each part of the natural bipartition
of vertices of the tree) and on the other, if Γ “ GzT is a tree then Γ has no
loops, so certainly G acts on T without reversal.

Corollary 2.12 ([9, I.5.4, Exercise 2]). Let G be a group acting on a tree
T . Then GzT is a tree if and only if G is generated by vertex stabilizers.
Moreover, if G is generated by vertex stabilizers, then G “ xGv | v P V T 1y
where T 1 is a lift of a maximal subtree in GzT .

Lemma 2.13. Let T be a tree and let G be a compactly generated locally
compact subgroup of AutpT q, such that every element of G fixes a vertex of
T . Then G fixes a vertex of T .
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Proof. Note that the hypotheses imply that G acts without reversal.
In the case that G is finitely generated, the conclusion is [9, I.6.5, Corol-

lary 3].
It is a general fact (see [7, Lemma 2], for example) that given any com-

pactly generated t.d.l.c. group G and compact open subgroup U of G, there
is a finitely generated subgroup H of G such that G “ UH. Now H fixes a
vertex v of T , which means that the orbit of v under G “ UH is finite. Let
S be the smallest subtree of T spanned by Gv. Then S is a finite tree, so it
has a canonical centre, which is either a vertex or a pair of adjacent vertices.
Thus G either fixes a vertex or preserves a pair of adjacent vertices. Since
G acts without reversal, in fact G fixes a vertex.

3 A parametrization of pPq-closed groups

Definition 3.1. A local action diagram ∆ “ pΓ, pXaq, pGpvqqq consists
of the following information:

• A connected graph Γ.

• For each arc a of Γ, a nonempty set Xa (called the colour set of a).

• For each vertex v of Γ, a group Gpvq (called the local action at v)
with the following properties: write Xv to denote the disjoint unionŮ

aPo´1pvq Xa, then the group Gpvq is a closed subgroup of SympXvq
and the sets Xa are the orbits of Gpvq on Xv.

Definition 3.2. Let ∆ “ pΓ, pXaq, pGpvqqq and ∆1 “ pΓ1, pX 1
aq, pG1pvqqq be

local action diagrams.
An isomorphism from ∆ to ∆1 is an isomorphism θ : Γ Ñ Γ1 of graphs,

together with a bijection θv : Xv Ñ X 1
θpvq for each v P V Γ that restricts to a

bijection from Xa to Xθpaq for each a P o´1pvq, and such that θvGpvqθ´1
v “

G1pv1q.

Local action diagrams have the advantage of having a simple description
from a combinatorial perspective. In terms of the permutation groups Gpvq,
there are no interactions between them or compatibility conditions to check,
except that Gpvq should have the specified orbit structure. However, we
will see that they provide a parametrization of all pPq-closed groups of tree
automorphisms, taken up to isomorphisms of the tree. Our aim in this
section is to prove the following:

Theorem 3.3. There is a natural one-to-one correspondence between iso-
morphism classes of local action diagrams, and isomorphism classes of pairs
pT,Gq where T is a tree and G is a pPq-closed subgroup of AutpT q.
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Definition 3.4. Given a local action diagram ∆, a ∆-tree T is a tree
T together with a surjective graph homomorphism π : T Ñ Γ and a Γ-
colouring, that is, a map L : AT Ñ

Ů
aPAΓ

Xa, such that for each vertex
v P V T , and each arc a in o´1pπpvqq, the map L restricts to a bijection
Lv,a from tb P o´1pvq | πpbq “ au to Xa. Given v P V T , write Lv for the
restriction of L to a bijection from o´1pvq to Xπpvq.

Note that the groups Gpvq play no role in the definition of T.

Lemma 3.5. Let ∆ be a local action diagram. Then there exists a ∆-tree.
Moreover, given any two ∆-trees pT, π,Lq and pT 1, π1,L1q, there is a graph
isomorphism α : T Ñ T 1 such that π1 ˝ α “ π.

Proof. Choose a base vertex v0 P V Γ. We construct a ∆-tree T as follows.
Given v P V Γ and c P Xv, the type ppcq of c is the unique a P AΓ such

that c P Xa. A coloured walk (of length n) in Γ is a finite sequence
pc1, c2, . . . , cnq, where for each 1 ď i ă n, we have opppci`1qq “ tpppciqq. The
origin of the coloured walk is opppc1qq.

Vertices v P V T will be labelled by coloured walks with origin v0. For
vertex labels v “ pc1, c2, . . . , cnq and w “ pc1, c2, ¨ ¨ ¨ , cn, cn`1, ¨ ¨ ¨ , cmq we
say that v is a prefix of w. For each vertex label v “ pc1, c2, . . . , cnq, there
will also be a reverse label v “ pd1, d2, . . . , dnq of the same length, where di
is a colour such that ppdiq “ ppciq, and such that if v is a prefix of w, then v

is the corresponding prefix of w. We produce the vertices of V T inductively
starting at a root vertex pq.

Suppose we have defined a vertex v “ pc1, c2, . . . , cnq with reverse label
v “ pd1, d2, . . . , dnq. Then we define vertices v`cn`1

“ pc1, . . . , cn, cn`1q,
for all cn`1 such that opppcn`1qq “ tpppcnqq and cn`1 ‰ dn. We then set
v`cn`1

“ pd1, d2, . . . , dn`1q, where dn`1 is some element of X
ppcn`1q

(chosen

arbitrarily).
The set AT` of forward arcs of T consists of ordered pairs pv,wq, where v

is a prefix of w of length one less than w; then AT´ “: tpw, vq | pv,wq P AT`u
and AT :“ AT´ \ AT`. Origin and terminal vertices and edge reversal are
defined in the obvious way, and it is clear that we obtain a tree. The
colouring L is defined as follows: given pv,wq P AT`, then Lpv,wq is the
last entry of w and Lpw, vq is the last entry of w.

The graph homomorphism π : T Ñ Γ is given by πppqq “ v0 for the
base vertex; πpvq “ tpppcnqq for any vertex v “ pc1, . . . , cnq in V T ; and
πpaq “ ppLpaqq for a P AT . Given the way in which the entries ci and
di were chosen and used to define L, one sees that π is a surjective graph
homomorphism.

Given a vertex v “ pc1, . . . , cnq with reverse label v “ pd1, d2, . . . , dnq,
then v has one parent vertex pc1, . . . , cn´1q and a set of child vertices of the
form pc1, . . . , cn, c

1q, where c1 ranges over the set Xtpppcnqq r tdnu “ Xπpvq r

tdnu. The set o´1pvq is thus in a natural bijection with Xπpvq in a manner
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that respects the partition into sets Xa for a P o´1pπpvqq, and the colouring
produces the same bijection. In particular, for each arc a P o´1pπpvqq, we
see that L restricts to a bijection from tb P o´1pvq | πpbq “ au to Xa. Thus
the object T we have constructed is a ∆-tree.

Now suppose that we have two ∆-trees pT, π,Lq and pT 1, π1,L1q. We con-
struct a graph isomorphism α : T Ñ T 1 compatible with pπ, π1q inductively
as follows.

Choose v1 P V T and w1 P V T 1 such that πpv1q “ π1pw1q “ v0, and
set αpv1q “ w1. Suppose we have defined α for vertices and arcs in Bnpv1q
(n ě 0), let v be a vertex in T at distance n from v1 and let w “ αpvq.
Then πpvq “ π1pwq by the induction hypothesis. Given a P o´1pπpvqq, we
have bijections Lv,a : tb P o´1pvq | πpbq “ au Ñ Xa and L1

w,a :“ tb P
o´1pwq | π1pbq “ au Ñ Xa. In particular, the sets tb P o´1pvq | πpbq “ au
and tb P o´1pwq | π1pbq “ au have the same size, so we can extend α to
include o´1pvq in its domain, in such a way that it restricts to a bijection
from tb P o´1pvq | πpbq “ au to tb P o´1pwq | π1pbq “ au. The choice of
bijection is unimportant here, except in the case that π´1paq contains an
arc a1 starting at v in the direction of v1: in this case, αpa1q has already
been chosen, so we choose a bijection from tb P o´1pvq | πpbq “ a, b ‰ a1u
to tb P o´1pwq | π1pbq “ a, b ‰ αpa1qu. For b P t´1pvq and v1 “ opbq, we set

αpbq “ αpbq and αpv1q “ opαpbqq respectively. This extends the definition of
α to a ball of radius n ` 1 about v1; notice that α still produces a graph
isomorphism from Bn`1pv1q to Bn`1pw1q, completing the inductive step.
We can thus extend α to a graph isomorphism from T to T 1 such that
π1 ˝ α “ π.

Note: we do not claim that α can be chosen to map L to L1.

Definition 3.6. Let G be a group of automorphisms of a tree T . We define
an associated local action diagram ∆ and equip T with the structure of
a ∆-tree as follows.

• Γ is the quotient graph GzT , and π is the natural quotient map.

• For each v P V Γ, choose a vertex v˚ P π´1pvq; write V ˚ for the
set of vertices so obtained. Given a P AΓ such that v “ opaq, let
Xa “ tb P o´1pv˚q | πpbq “ au. The set Xv :“ o´1pv˚q is then
naturally partitioned as required. Define the group Gpvq to be the
permutation group induced on Xv by Gv˚ .

• For each w P V T , choose gw P G such that gww P V ˚. Then gw
also induces a bijection from o´1pwq to Xv. Given b P o´1pwq, set
Lpbq “ gwb.

The definition is such that given v,w P V T such that πpvq “ πpwq, the
maps Lv and Lw form two sides of a commuting triangle: if rv,w is the map
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from o´1pvq to o´1pwq induced by g´1
w gv, then

Lv “ Lwrv,w.

There are many choices for the associated local action diagram, but they
are all isomorphic, as we see in the following lemma.

Lemma 3.7. Let T be a tree and let G be a group of automorphisms of
T . Then any two local action diagrams ∆ “ pΓ, pXaq, pGpvqqq and ∆1 “
pΓ, pX 1

aq, pG1pvqqq associated to G are isomorphic, via an isomorphism θ that
is the identity map on the graph Γ.

Proof. Without loss of generality we can assume G is closed in AutpT q.
From the definition, we see that ∆ and ∆1 have the same associated graph
Γ “ GzT ; let θ be the trivial graph automorphism of Γ. Given v P V Γ,
say the chosen element of π´1pvq is v˚ in the construction of ∆, and v˚˚ in
the construction of ∆1. Then v˚˚ “ gvv

˚ for some gv P G, since πpv˚q “
Gv˚. We can thus define a bijection θv from Xv :“ o´1pv˚q to X 1

v :“
o´1pv˚˚q by setting θvpaq “ gva. Given that gvGv˚g´1

v “ Gv˚˚ , and Gpvq
and G1pvq are determined by the actions of the vertex stabilizers Gv˚ and
Gv˚˚ respectively, we see that θvGpvqθ´1

v “ G1pvq. In particular, θv sends
orbits of Gpvq to orbits of G1pvq, so it restricts to a bijection from Xa to
X 1

a for each a P o´1pvq. Thus pθ, θvq is an isomorphism of local action
diagrams.

Thus from now on, we can talk about the local action diagram ∆pT,Gq
associated to pT,Gq without ambiguity.

An automorphism of the ∆-tree T is a graph automorphism θ of T
such that π˝θ “ π. Write AutπpT q for the group of all such automorphisms.
Given g P AutπpT q, a vertex v P V T , and L the colouring associated to T,
we define the L-local action of g at v as follows:

σL,vpgq : Xπpvq Ñ Xπpvq σL,vpgqpcq :“ LgL|´1

o´1pvq
pcq.

We see that σL,vpgq is a permutation of Xπpvq. Finally, we define the uni-
versal group of T with respect to local actions pGpvqqvPV Γ to be the
set UpT, pGpvqqq of all elements g of AutπpT q such that for every v P V T ,
the permutation σL,vpgq belongs to Gpπpvqq.

Theorem 3.8. Let ∆ be a local action diagram, let T be a ∆-tree, and
let H “ UpT, pGpvqqq. Then H is a pPq-closed subgroup of AutpT q; ∆ is
isomorphic to a local action diagram associated to H; and for every vertex
v P V T and g P Gpπpvqq, there is h P Hv such that σL,vphq “ g.

Proof. Let g, h P UpT, pGpvqqq and let v P V T . It is clear that g´1, gh P
AutπpT q, so there is a fixed vertex w P V Γ such that w “ πpvq “ πphvq “
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πpgvq “ πpg´1vq. It is easily seen that σL,vpg´1q and σL,vpghq are given by
the following formulae:

σL,vpghq “ σL,hvpgqσL,vphq

σL,vpg´1q “
`
σL,g´1vpgq

˘´1

Since σL,hvpgq, σL,vphq and σL,g´1vpgq are all in the group Gpwq, we see that
σL,vpghq and σL,vpg´1q are also elements of Gpwq. This proves UpT, pGpvqqq
is closed under products and inverses. Since UpT, pGpvqqq clearly also con-
tains the trivial automorphism of T , we conclude that H :“ UpT, pGpvqqq is
a subgroup of AutπpT q.

Since H ď AutπpT q, certainly every orbit of H is contained in a fibre of
π. We claim that in fact H acts transitively on π´1prq where r is a vertex
or arc of Γ. It is enough to show that H is transitive when r is an arc of
Γ, as the vertex case will then follow by considering origin vertices of arcs.
So fix arcs a, b P π´1prq; we aim to construct g P H such that ga “ b. We
define g in stages on balls of radius n about v0 :“ opaq.

Let v1
0

“ opbq and let w “ πpv0q. Choose an element h0 P Gpwq such
that h0Lpaq “ Lpbq; this is possible since by definition, Lpaq and Lpbq must
lie in the same Gpwq-orbit. Then there is a unique graph isomorphism g1
from B1pv0q to B1pv1

0
q such that Lg1L|o´1pv0qpcq “ h0pcq for all c P Xw.

Let us also pause to note that by varying b, we can obtain every element
of Gpwq as a suitable h0 whilst also fixing v0: specifically, given h P Gpwq,
then hLpaq “ Lpbq for some unique b P o´1pv0q, and hence in this case we
can take h0 “ h. Thus, provided we can extend g1 to an element of H, we
will have shown that Hv0 achieves all possible values of σL,v0 at the vertex
v0. By varying a, the vertex v0 can also be made an arbitrary vertex of T .

Suppose we have defined a graph isomorphism gn from Bnpv0q to Bnpv1
0
q,

such that LgnL|o´1pvqpcq P Gpπpvqq for all v P V Bn´1pv0q. Let Snpv0q be the
sphere of radius n about v0 and let v P Snpv0q. We have already defined gnv

and also gnr for the unique arc r P o´1pvq in the direction of v0. Similar
to before, we see that Lprq and Lpgnrq lie in the same Gpπpvqq-orbit, so
there is hn P Gpπpvqq such that hnLprq “ Lpgnrq. There is then a unique
graph isomorphism h1pvq from B1pvq to B1pgnvq such that Lh1L|o´1pvqpcq “
hnpcq for all c P Xπpvq. Note the domains of the maps th1pvq | v P Snpv0qu
are pairwise disjoint; for each v P Snpv0q, the domains of gn and h1pvq
overlap only on a single edge and its endpoints, and for this overlap, gn
and h1pvq agree. We can thus combine gn with the set of maps th1pvq | v P
Snpv0qu to produce a graph isomorphism gn`1 from Bn`1pv0q to Bn`1pv1

0
q.

By construction, we see that Lgn`1L|o´1pvqpcq P Gpπpvqq for all v P V Bnpv0q,
completing the inductive step.

By combining the sequence pgnq of graph isomorphisms, we thus obtain
g P AutπpT q such that ga “ b and such that σL,vpgq P Gpπpvqq for all v P V T ,
so g P H.
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Now let ∆1 “ pΓ1, pX 1
aq, pHpvqqq be a local action diagram associated to

H. We aim to construct an isomorphism of local action diagrams from ∆1

to ∆. We have shown that H acts transitively on each fibre of π, so the
quotient graph Γ1 “ HzT can be naturally identified with Γ and θ can be
taken to be the trivial graph isomorphism on Γ. Given v P V Γ, let v˚ be the
chosen vertex of V T in the construction of ∆1. Then for each a P AΓ such
that v “ opaq, by definition X 1

a “ tb P o´1pv˚q | πpbq “ au. The definition of
T then provides a bijection Lv˚,a from X 1

a to Xa. We can thus construct a
bijection θv from X 1

v to Xv by setting θvpcq “ Lv˚,apcq. By definition, Hpvq
is just the group of permutations induced by Hv˚ on o´1pv˚q. As previously
observed, we obtain in this way the set of all permutations h of o´1pv˚q such
that the permutation induced by LhL|o´1pv˚q on Xv is an element of Gpvq.
Given c P Xv, we see from the definition of θv that

LhL|´1

o´1pv˚q
pcq “ θvhθ

´1

v pcq.

Thus θvHpvqθ´1
v “ Gpvq, completing the proof that pθ, pθvqq is an isomor-

phism of local action diagrams from ∆1 to ∆.
Finally, let g be an element of the pPq-closure of H. Then for every finite

subset Y of o´1pvq, there is some h P H such that gv “ hv and gy “ hy

for all y P Y . In other words, h is such that σL,vphqpcq “ σL,vpgqpcq for all
c P LpY q; note that by definition, σL,vphq P Gpπpvqq. Since Y can be any
finite subset of o´1pvq and Gpπpvqq is closed, it follows that σL,vpgq P Gpπpvqq
for all v P V T , and hence g P H. Thus H is pPq-closed.

Theorem 3.9. Let T be a tree, let G ď AutpT q, let ∆ “ ∆pT,Gq and
let T be an associated ∆-tree structure on T . Then UpT, pGpvqqq is the
pPq-closure of G.

Proof. It is clear that G and G have the same associated local action di-
agram, so we may assume G is closed. By Theorem 3.8, the set H “
UpT, pGpvqqq is a pPq-closed subgroup of AutpT q. Let V ˚ be the set of ver-
tices of T used to define the ∆-tree structure, and let v P V T . Then there is
some w P V ˚ such that πpvq “ πpwq. In particular, v and w lie in the same
G-orbit, and given the way in which T is constructed, there is some gv P G

such that gvv “ w and the colouring for b P o´1pvq is given by Lpbq “ gvb.
Let g P G. Then πpvq “ πpgvq “ πpwq, so ggvpgvq “ w where ggv is as

in the definition of the colouring. Let b P o´1pvq and let c “ Lpbq. Then
c “ gvb and Lpgbq “ ggvgb “ pggvgg

´1
v qc, so

σL,vpgqpcq “ pggvgg
´1

v qc.

We see that pggvgg
´1
v qw “ w, so ggvgg

´1
v P Gw. Thus by definition, the

permutation induced by ggvgg
´1
v on w is an element of Gpπpwqq “ Gpπpvqq,

that is, σL,vpgq P Gpπpvqq. Since this holds for all v P V T , we see that g P H.
Thus G ď H; since H is pPq-closed, in fact GpPq ď H.
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Conversely, let h P H. Then by the definition of H,

σL,vphq P Gpπpvqq.

Given the definition of Gpπpvqq, there is g1 P Gw such that for all c P o´1pwq,

g1c “ σL,vphqpcq.

Since h P AutπpT q we have πphvq “ πpvq, so we can write ghvphvq “ w.
Given b P o´1pvq, we have Lphbq “ σL,vphqpgvbq and also Lphbq “ ghvhb.
Thus

hb “ g´1

hv σL,vphqpgvbq “ g´1

hv g
1gvb.

Thus on the set o´1pvq, we see that h agrees with the element g´1

hv g
1gv of

G. Since this can be achieved at every vertex v P V T , we conclude that
h P GpPq. This proves that GpPq “ H as required.

Since the local action diagram can be recovered from the group UpT, pGpvqqq,
we have the following corollary.

Corollary 3.10. Let T be a tree, let G ď AutpT q and let ∆ be an associated
local action diagram. Then ∆ is also an associated local action diagram for
the action of GpPq on T .

We have now shown that the pPq-closed subgroups of AutpT q are exactly
the groups realizable as a group UpT, pGpvqqq definable from some local
action diagram. It remains to show that each local action diagram ∆ gives
rise to only one group UpT, pGpvqqq up to tree isomorphisms, in other words,
the choices made in defining the ∆-tree T are not significant.

Theorem 3.11. Let ∆ “ pΓ, pXaq, pGpvqqq be a local action diagram and
let T “ pT, π,Lq and T1 “ pT 1, π1,L1q be ∆-trees. Then there is a graph
isomorphism φ : T Ñ T 1 such that φUpT, pGpvqqqφ´1 “ UpT1, pGpvqqq.

Proof. Let G “ UpT, pGpvqqq and H “ UpT1, pGpvqqq. By Lemma 3.5, there
is a graph isomorphism α : T Ñ T 1 such that π1 ˝α “ π. Thus by applying α

to T and replacing G with αGα´1, we may assume that T “ T 1 and π “ π1,
in other words, G and H act on the same tree with the same orbits, in such
a way that the quotient graph can be naturally identified with Γ.

By Theorem 3.8, for every pair of vertices v,w P V T such that πpvq “
πpwq, we have

σL,vpGvq “ Gpπpvqq “ σL1,wpHwq.

Let G˚
v and H˚

w be the permutation groups induced by Gv on o´1pvq and
Hw on o´1pwq respectively. We see that G˚

v and H˚
w are both isomorphic to

Gpπpvqq as permutation groups; moreover, since π “ π1, given any element
g P G such that gv “ w, then the groups gG˚

vg
´1 and H˚

v also have the
same orbits on o´1pwq, with the same correspondence between orbits on
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o´1pwq and elements of o´1pπpvqq. There is thus a bijection ρv,w from o´1pvq
to o´1pwq such that πpρv,wpaqq “ πpaq for all a P o´1pvq and such that
ρv,wG

˚
vρ

´1
v,w “ H˚

w. Since G˚
v is transitive on each π-fibre in o´1pvq, for a

single given a P o´1pvq, we are free to choose ρv,wpaq from the set tb P
o´1pwq | πpbq “ πpaqu.

We now aim to construct φ P AutπpT q such that

φUpT, pGpvqqqφ´1 “ UpT1, pGpvqqq.

We construct φ successively on balls of radius n centred on some vertex
v0 P V T , starting with φpv0q “ v0, such that at each stage φ is a graph
automorphism on Bnpv0q that commutes with π. To define φ on B1pv0q, we
let it act as ρv0,v0 on o´1pv0q, and then extend to the remaining arcs and
vertices in B1pv0q via the equations φpaq “ φpaq and φptpaqq “ tpφpaqq. Now
suppose we have defined φ on Bnpv0q for some n ě 1, and let v P Snpv0q;
write φn for the automorphism of Bnpv0q. Let a be the unique arc in o´1pvq
in the direction of v0. Then we have already specified φpaq, and it has been
chosen in such a way that πpφpaqq “ πpaq; hence it is also the case that
πpφpaqq “ πpaq. We can thus choose ρv,φpvq so that ρv,φpvqpaq “ φpaq. There
is then a unique isomorphism φv from B1pvq to B1pφpvqq that is compatible
with both φn and with ρv,v0 . We then define φpeq for e a vertex or arc
of Bn`1pv0q to be φnpeq or φvpeq as applicable, and observe that we have
produced a graph automorphism of Bn`1pv0q that commutes with φ. By
induction, we produce φ P AutπpT q.

Now let v P V T , write w “ φpvq and consider φGvφ
´1. The construction

of φ was such that the permutation group induced by φGvφ
´1 on o´1pwq is

ρv,wGvρ
´1
v,w, or in other words, it is the same permutation group as the one

induced by Hw on o´1pwq. Thus σL1,wpφGvφ
´1q “ Gpπpwqq. By varying v

so that w ranges over V T , we see (from the definition of H “ UpT1, pGpvqqq)
that φGφ´1 ď H. On the other hand, we see by a similar argument that
φ´1Hφ ď G, so φGφ´1 ě H. So in fact φGφ´1 “ H, as required.

We can thus define the universal group of a local action diagram: Up∆q
is defined as UpT, pGpvqqq where T is some ∆-tree. Then Up∆q is defined
up to isomorphisms of the tree on which it acts; we write UTp∆q if we want
to impose a specific action on a specific tree.

To conclude the section, we now prove the correspondence theorem.

Proof of Theorem 3.3. Given a local action diagram ∆, we have an associ-
ated pair pT,Up∆qq, and by Theorem 3.11 the pair pT,Up∆qq is specified
uniquely up to isomorphisms; on the other hand, it is clear from the con-
struction that if ∆ and ∆1 are isomorphic as local action diagrams, then they
will produce isomorphic pairs pT,Up∆qq and pT 1, Up∆1qq. Thus we have a
well-defined mapping β from isomorphism classes of local action diagram to
isomorphism classes of pairs pT,Gq where T is a tree and G ď AutpT q is
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pPq-closed on T . Theorem 3.9 shows that β is surjective and Theorem 3.8
shows that β is injective. Thus we have a natural one-to-one correspondence
as claimed.

4 pPq-closed subgroups of pPq-closed groups

Let G be a pPq-closed group of automorphisms of the tree T . In this section,
we identify a natural class of pPq-closed groups related to G, namely: actions
of certain subgroups of G on subtrees of T . We reinterpret this class in terms
of local action diagrams.

4.1 Sufficient conditions for a subgroup to be pPq-closed

Lemma 4.1. Let G be a pPq-closed subgroup of AutpT q, and let H ď G.
Suppose that H contains an arc stabilizer of G. Then H is pPq-closed.

Proof. Suppose that H contains the arc stabilizer Gpx,yq of G. Note that
G must be a closed subgroup of AutpT q by Proposition 2.2. Since H is
an open subgroup of G, it is also a closed subgroup of AutpT q. Thus, by
Theorem 2.6, it suffices for us to show that H has property pPq with respect
to the edges of T .

Let pv,wq be an arc that is not px, yq or its reverse. Then there is a path
that passes through v and w in some order, and then later through x and
y in some order; without loss of generality, let us say that the path passes
through these points in the order v,w, x, y.

LetKw,v andKv,w be the fixators in G of π´1pvq and π´1pwq respectively.
Since G has property pPq, we have Gv,w “ Kv,wKw,v. For h P Hv,w we can
write h “ k1k2 with k1 P Kv,w ď Gx,y ď H and k2 P Kw,v. Hence k2 P H and
Hv,w ď Kv,wpKw,vXHq. On the other hand, if k1 P Kv,w and k2 P pKw,vXHq
then of course k1k2 P Hv,w. The arc stabilizer Hpv,wq therefore decomposes
as

Hpv,wq “ Kv,w ˆ pKw,v X Hq.

Thus H satisfies property pPq with respect to all edges in T .

Every vertex stabilizer contains the stabilizers of the arcs incident with
that vertex, so the following is a special case of Lemma 4.1.

Corollary 4.2. Let G be a pPq-closed subgroup of AutpT q, and let H ď G.
Suppose that H contains a vertex stabilizer of G. Then H is pPq-closed.

Any subgroup H of G containing an arc stabilizer is open. In the other
direction, we note in Proposition 4.3 that all ‘large’ open subgroups of G
contain an arc stabilizer, and hence inherit the pPq-closed property.
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Proposition 4.3. Let T be a tree, let G be a non-discrete pPq-closed sub-
group of AutpT q and let H be an open subgroup of G. Then exactly one of
the following holds:

(i) Every finitely generated subgroup of H fixes an edge.

(ii) H has a finitely generated subgroup that fixes exactly one vertex v and
|H : Hv| ď 2.

(iii) H contains an element g that is hyperbolic on T . For any such g, then
H contains Ge for every arc e along the axis of g. Consequently, H is
pPq-closed.

Proof. It is clear that the three given possibilities are mutually exclusive.
Let Hp be the subgroup of H that preserves the parts of the natural

bipartition of the vertices of T . Then |H : Hp| ď 2, so Hp is open in G;
moreover, H has an element with hyperbolic action on T if and only if H
does, and Hp acts on T without inversion.

Suppose that Hp does not contain any hyperbolic elements on T . Then
by Lemma 2.13, every finitely generated subgroup of Hp fixes a vertex.

Assume that (i) fails, so there is a finitely generated subgroup K of
H that does not fix any edge of T . Then there is a vertex v fixed by
Kp “ K X Hp, so that |Kv| ď 2. If kv ‰ v for some k P K, then the
midpoint of the shortest path from v to kv is fixed by K. This midpoint
is either a vertex or the midpoint of an edge. If it is the midpoint of an
edge, then the edge would be fixed by K which is impossible. Therefore
this midpoint must itself be a vertex. Thus K fixes a vertex; this ensures
K ď Hp. If K fixes more than one vertex, then it fixes every edge on the
shortest path between any two fixed vertices. Thus in fact K fixes exactly
one vertex v. By Lemma 2.13, for any g P Hp, the group xK, gy fixes some
vertex w; since K only fixes one vertex, we must have w “ v. Thus Hp fixes
v, showing that |H : Hv| ď 2, so (ii) holds.

Now suppose instead that there is g P Hp such that g is hyperbolic
on T . Since H is open, there is a finite tuple v “ pv1, . . . , vkq of vertices
such that the fixator Gv is contained in H. Let L be the axis of g, let ω

be the attracting end of L, and let e “ pv,wq be an arc along L directed
away from the attracting end. Let π be the closest point projection from
V T to tv,wu, and let Kw,v and Kv,w be the fixators in G of π´1pvq and
π´1pwq respectively. Then there exist m,n P Z such that πpgmviq “ v and
πpgnviq “ w for all 1 ď i ď k, so Kw,v ď gmGvg

´m and Kv,w ď gnGvg
´n.

Since g P H and Gv ď H, it follows that Kw,v and Kv,w are both subgroups
of H. Since G is pPq-closed, it has property pPq, so Ge “ Kw,v ˆ Kv,w, and
hence Ge ď H. We conclude by Lemma 4.1 that H is pPq-closed.

In the special case that G has compact arc stabilizers on AutpT q, we
have the following.
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Corollary 4.4. Let T be a tree and let G be a non-discrete pPq-closed sub-
group of AutpT q. Suppose that G has compact arc stabilizers. Let H be an
open subgroup of G. Then exactly one of the following holds:

(i) Every compactly generated closed subgroup of H is compact.

(ii) H has a non-compact, compactly generated closed subgroup that fixes
exactly one vertex v and |H : Hv| ď 2.

(iii) H contains an element g that is hyperbolic on T . For any such g, then
H contains Ge for every arc e along the axis of g. Consequently, H is
pPq-closed.

Proof. It is clear that no hyperbolic element of H can be contained in a
compact subgroup; from this fact, it easily follows that the three cases given
are mutually exclusive. Case (iii) is the same as in Proposition 4.3, so we may
assume it fails and that one of the cases (i) and (ii) in Proposition 4.3 holds.
Note also that the condition that G has compact arc stabilizers ensures that
G is a t.d.l.c. group.

Suppose case (i) of Proposition 4.3 holds, that is, every finitely generated
subgroup of H fixes an edge. Given a compactly generated subgroup K of
H, then in fact K “ UF , where U is a compact open subgroup of H and
F is finitely generated. There is thus an arc a such that |F : Fa| ď 2; since
Ga is compact, it follows that F has compact closure in G, and hence K is
compact. Thus (i) holds.

Now suppose case (ii) of Proposition 4.3 holds. There is then a vertex
v such that |H : Hv| ď 2. Given case (i) of the present corollary, we may
assume that there is a compactly generated closed subgroup K of H that
is not compact. It follows that Kv is also a compactly generated closed
subgroup of H that is not compact. In particular, Kv has infinite orbits on
the arcs of T , and hence cannot fix more than one vertex. Thus v is the
unique vertex fixed by Kv, so (ii) holds.

4.2 Vertex stabilizers and pPq-closure

Given a pPq-closed action of a group G on a tree T , then every vertex
stabilizer of G itself has pPq-closed action, by Corollary 4.2. In turn, pPq-
closed subgroups of AutpT q that fix a vertex have a special structure. This
generalizes the observation [11, Proposition 15] that the box product of two
permutation groups M and N contains isomorphic copies of M and N as
subgroups.

Proposition 4.5. Let G be a group acting on a tree T with property pPq,
let ǫ P V T and let Br be the closed ball of radius r around ǫ. Let Gr be
the pointwise stabilizer of Br in G. Then there is an increasing sequence
pCrqrě1 of subgroups of G0, each closed in AutpT q, such that G0 “ Gr ¸ Cr
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for all r ě 1. In particular, there is a permutational isomorphism between
the action of C1 on o´1pǫq and the corresponding vertex group Gpπpǫqq of
the local action diagram of G.

Proof. Let Γ “ GzT , let π “ πpT,Gq and let v0 “ πpǫq. Form the local action
diagram ∆ “ pΓ, pXaq, pGpvqqq for pT,Gq. If we replace G with G0 “ Gǫ,
then it will not affect the permutational isomorphism type of Gpv0q, nor the
structure of G0, so let us assume that G “ G0. Then we see that |Xa| “ 1
for all a P AΓ such that dΓptpaq, v0qq ă dΓpopaq, v0q. In other words, in any
colouring L such that T “ pT, π,Lq is a ∆-tree, and given a P AT such that
dptpaq, ǫq ă dpopaq, ǫq, then |Xπpaq| “ 1, so Lpaq must be the unique element
of Xπpaq. Fix such a colouring L and for r “ 1, set

Cr “ tg P G0 | @w P V T : dpw, ǫq ě r ñ σL,wpgq “ 1u.

Given that G0 preserves distance from ǫ, it is easy to see that Cr is a
subgroup of G0; Cr X Gr “ t1u; and Cr ď Cr1 whenever r ď r1. It is
also clear that Cr is determined as a subgroup of G0 by its orbits on arcs,
so Cr is closed in G0; since G0 is closed in AutpT q, it follows that Cr is
closed in AutpT q. To see that G0 “ GrCr, consider some r ě 1, an element
h P G0, and a vertex w P V T with dpǫ, wq “ r. Then h maps the arc in
o´1pwq directed towards ǫ to the arc in o´1phwq directed towards ǫ. This
corresponds to a fixed point for the permutation σL,wphq P Gpπpwqq. Of
course there is g P AutpT q that has the same action as h on Br, but has
trivial local action for every vertex w P V T such that dpw, ǫq ě r. We then
see that in fact g P Cr and h P Grg, showing that h P GrCr. In particular,
it is now clear that σL,ǫ restricts to a permutational isomorphism from C1

acting on o´1pǫq to Gpv0q acting on Xv0 .

Definition 4.6. Given G ď AutpT q, write G` for the subgroup of G gen-
erated by arc stabilizers in G.

Given a P AT , we define the associated half-tree to be the subgraph Ta

induced on the vertices v such that dptpaq, vq ă dpopaq, vq. Write G`` for
the closure of the subgroup of G generated by the pointwise stabilizers of
half-trees in G .

We note that for an arbitrary group action pT,Gq on a tree, the operation
of taking the pPq-closure behaves well with respect to the subgroup generated
by the arc stabilizers.

Proposition 4.7. Let G be a group acting on a tree T . Then

pGpPqq` “ pG`qpPq.

Proof. We see that pG`qpPq has the same orbits on arcs as G`, so pG`qpPq “

G`pG`q
pPq
a for any a P AT . In turn, it is clear that G` ď pGpPqq` and

pG`q
pPq
a ď pGpPqqa ď pGpPqq`, Thus pGpPqq` ě pG`qpPq.
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It remains to show that pGpPqq` ď pG`qpPq. In fact it suffices to show
that pGpPqqa ď pG`qpPq for a P AT . In other words we wish to show, for
all a P AT , v P V T , F finite subsets of o´1pvq and g P pGpPqqa, there exists
h P G` such that hg fixes F pointwise. For this discussion we fix a and g;
we will proceed by induction on d “ dpv, opaqq.

In the base case, d “ 0, in other words v “ opaq. Since g P GpPq there is
h P G such that hg fixes F pointwise; since g fixes a, in fact h P Ga ď G`.

From now on, we may assume d ą 0. Let b be the arc in o´1pvq pointing
towards opaq. Then by induction there is h1 P G` such that h1g fixes b P
o´1ptpbqq, and hence fixes b. In turn there is h P G such that hph1gq fixes F
pointwise. Since h1g fixes b, in fact h P Gb ď G`, and hence hh1 P G`. This
completes the inductive step and hence completes the proof.

5 Invariant structures

Let G be a group acting on a tree T . In this section, we describe how certain
kinds of G-invariant structure in T can be detected from the local action
diagram of the action.

Recall that a group action on a tree T is geometrically dense if it does
not preserve any end or proper subtree of T . Geometrically dense actions
often give rise to a simple normal subgroup. We recall two relevant theorems
from the literature.

Theorem 5.1 ([12] Théorème 4.5). Let T be a tree and let G be a geomet-
rically dense subgroup of AutpT q with property pPq. Then every non-trivial
subgroup of G normalized by G` contains G`. In particular, G` is trivial
or abstractly simple.

Theorem 5.2 ([8] Theorem 6). Let T be a tree and let G be a closed geomet-
rically dense subgroup of AutpT q. Then every non-trivial closed subgroup of
G normalized by G`` contains G``. In particular, G`` is trivial or topo-
logically simple.

Remark 5.3. Note that in general G`` ď G`; if G is pPq-closed, then
equality holds. Since every proper subtree is contained in a half-tree, another
way of expressing the condition that G`` is nontrivial is the following: there
exists g P G, such that the convex hull of tv P V T | gv ‰ vu is not the whole
of T .

5.1 Invariant partial orientations

Definition 5.4. An orientation of a graph Γ is a subset O of AΓ such
that for all a P AΓ, either a or a is in O, but not both. In particular, an
orientable graph is a graph in the sense of Serre, in other words, there
are no edges such that a “ a. More generally, a partial orientation is
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any (possibly empty) subset O of AΓ such that given a P AΓ, O does not
contain both of a and a, but it could contain neither of them. We say the
(partial) orientation is G-invariant if gO “ O for all g P G.

Every G-invariant partial orientation of T gives rise to a partial orienta-
tion of GzT , and conversely. In particular, the local action diagram provides
enough information to give a list of the G-invariant partial orientations of
T .

Lemma 5.5. Let Γ be a graph, let G ď AutpΓq, let Γ1 “ pGzΓq and let
π “ πpΓ,Gq. Then a subset O of AΓ is a G-invariant partial orientation of Γ
if and only if O “ π´1pO1q for some partial orientation O1 of Γ1. Moreover,
O is a full orientation of Γ if and only if O1 is a full orientation of Γ1.

Proof. Suppose O is a G-invariant partial orientation of Γ. Since O consists
of arcs and is G-invariant, we have O “ π´1pO1q for some subset O1 of AΓ.
Suppose O1 is not a partial orientation, that is, there is a P O1 such that
also a P O1. Let b P π´1paq. Then

πpbq “ πpbq “ a P O1,

so b P O contradicting the assumption that O is a partial orientation. Thus
every G-invariant partial orientation O of Γ arises as π´1pO1q where O1 is a
partial orientation of Γ1.

Conversely, suppose O1 is a partial orientation of Γ1 and let O “ π´1pO1q.
Then certainly O is a G-invariant set of arcs of Γ; moreover, given a P O,
then πpaq P O1, and hence

πpaq “ πpaq R O1,

so a R O. Thus O is a partial orientation of Γ.
If O1 is an orientation of Γ1, then for all a P AΓ, either πpaq P O1, in

which case a P O, or else πpaq “ πpaq P O1, in which case a P O; thus in this
case, O is an orientation of Γ. Conversely if O1 is not an orientation of Γ1,
say O1 X ta, au “ H for a P AΓ1, then for each b P π´1paq, neither b nor its
reverse is contained in O, so O is not an orientation of Γ.

More interesting is to determine, given a partial orientation O of the local
action diagram, what kind of invariant structure is being described in the
tree. Given Theorem 5.1, partial orientations of T that determine subtrees
or ends are of particular interest. Our goal in the rest of this subsection is
to use partial orientations to characterize the existence of invariant subtrees
or ends in terms of the local action diagram.

Definition 5.6. Say that a partial orientation O of a graph Γ is confluent
if for every vertex v P V Γ, we have |o´1pvqXO| ď 1. A strongly confluent
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partial orientation (s.c.p.o.) is a confluent partial orientation such that in
addition, for all v P V Γ, we have

|o´1pvq X O| “ 1 ñ @a P o´1pvq : |ta, au X O| “ 1.

or in words: if O includes any arc originating at v, then O is a full orientation
of the edges incident with v.

Since the quotient map πpT,Gq is locally surjective and the strongly con-
fluent property is defined using local information, we can easily identify the
G-invariant s.c.p.o.s of the tree from the local action diagram.

Lemma 5.7. Let T be a tree, let G ď AutpT q, let ∆ “ pΓ, pXaq, pGpvqqq
be the associated local action diagram and let π “ πpT,Gq. Let O be a par-
tial orientation of Γ. Then the preimage π´1pOq is confluent, respectively
strongly confluent, on T , if and only if O is confluent, respectively strongly
confluent, on Γ and |Xa| “ 1 for all a P O.

Proof. Let v P V T . We can calculate the size of o´1pvq Xπ´1pOq as follows:

|o´1pvq X π´1pOq| “
ÿ

t|Xa| | a P o´1pπpvqq X Ou.

In particular, we see that |o´1pvq X π´1pOq| ď 1 if and only if |o´1pπpvqq X
O| ď 1 and |Xa| “ 1 for all a P o´1pπpvqq XO. This establishes that π´1pOq
is confluent if and only if O is confluent and |Xa| “ 1 for all a P O.

Now suppose O and π´1pOq are both confluent and that |Xa| “ 1 for all
a P O. We see that

o´1pvq X π´1pOq ‰ H ô o´1pπpvqq X O ‰ H.

If o´1pvq X π´1pOq is empty, we do not need to check the strong confluence
condition at v or πpvq, so let us assume that o´1pvq X π´1pOq is nonempty.
Then for O to be strongly confluent, it must induce a full orientation of
the edges of Γ incident with πpvq. In fact, since π is locally surjective, this
is equivalent to the condition that π´1pOq induces a full orientation of the
edges of T incident with v. Thus O is strongly confluent if and only if
π´1pOq is strongly confluent.

Accordingly, given a local action diagram ∆ “ pΓ, pXaq, pGpvqqq, we de-
fine a (strongly) confluent partial orientation O of ∆ to be a (strongly)
confluent partial orientation of Γ such that |Xa| “ 1 for all a P O.

As we shall see, s.c.p.o.s of a graph only occur in a few special forms,
and in the tree case they correspond exactly to subtrees and ends.

Given a graph Γ, we say an induced subgraph Γ1 is a cotree if for all
v P V Γ r V Γ1, there is a unique path pv0, . . . , vnq in Γ such that v “ v0,
vn P V Γ1, and vi R V Γ1 for i ă n, with a unique arc from vi to vi`1 for
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0 ď i ă n. In other words, Γ becomes a tree if we collapse Γ1 to a single
vertex. Note that a cotree of a connected graph is connected.

A cycle graph is a finite connected graph in which all vertices have
degree 2. As conventions can differ here, we emphasize that the cycle graph
of order 1 consists of a vertex with a loop, but edge-reversal is nontrivial on
the loop; the cycle graph of order 2 consists of two vertices with two edges
between them. We say a graph is acyclic if it has no cycle subgraphs. In
particular, trees are precisely the orientable acyclic connected graphs.

We now define three kinds of s.c.p.o.s of the graph Γ.

(a) Given a cotree z of Γ, the associated partial orientation Oz consists of
all arcs a such that opaq R V z and a lies on the directed path from opaq
to z. (In particular, OΓ “ H.)

(b) Suppose z is a cycle graph equipped with one of its two cyclic orienta-
tions, such that z occurs as a cotree of Γ. Then the associated partial
orientation O`

z is the union of Oz with the cyclic orientation of z.

(c) If Γ is a tree and we are given an end z of Γ, then for each arc a P AT ,
exactly one of a and a is directed towards ξ, that is, it belongs to a ray
in the equivalence class z. The set Oz is then defined to be directed
towards z is thus an orientation of T .

Here are some observations on these partial orientations:

(i) The associated partial orientations of type (a), (b) and (c) are all
strongly confluent.

(ii) The partial orientations of types (b) and (c) are in fact full orientations
of Γ; a partial orientation of type (a) is full if and only if z consists of
a single vertex with no edges.

(iii) If z is a cotree or end of Γ and G is a group of automorphisms of Γ,
then z is G-invariant if and only if Oz is G-invariant.

Our next goal is to show that the types (a)–(c) actually account for all
s.c.p.o.s of graphs, so in particular, in the case of trees they correspond to
subtrees and ends.

A confluent partial orientation O of a graph Γ defines a map fO on V Γ,
as follows: if o´1pvq X O “ tau we set fOpvq “ tpaq, and if o´1pvq X O “ H
we set fOpvq “ v. The attractor KpOq of O is then defined to consist of
the following:

(i) All vertices of Γ belonging to periodic orbits of fO;

(ii) All ends of Γ defined by an aperiodic orbit pv, fOpvq, f2

Opvq, . . . q.
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Thus each v P V Γ defines a nonempty finite subset zOpvq of the attractor:
if pv, fOpvq, f2

Opvq, . . . q is eventually periodic then zOpvq is the associated
periodic orbit, whereas if pv, fOpvq, f2

Opvq, . . . q is aperiodic then zOpvq is the
associated end. We then have KpOq “

Ť
vPV Γ

zOpvq.
Attractors of s.c.p.o.s are of a special form, which allows us to recognize

the types (a)–(c).

Theorem 5.8. Let Γ be a connected graph, let O be a s.c.p.o. on Γ and let
K be the attractor of O. Then exactly one of the following occurs:

(a) There is a cotree Γ1 of Γ such that V Γ1 “ K and O “ OΓ1;

(b) There is a cotree Γ1 of Γ forming a cycle graph such that V Γ1 “ K and
O “ O`

Γ1 for one of the cyclic orientations of Γ1;

(c) There is an end ξ of Γ such that K “ tξu, Γ is a tree and O “ Oξ.

Most of the proof will consist of the next two lemmas.

Lemma 5.9. Let Γ be a graph and let O be a s.c.p.o. of Γ.

(i) If Γ1 is a subgraph of Γ, then O X AΓ1 is a s.c.p.o. of Γ1.

(ii) If Γ is a cycle graph, then O is either empty or it is one of the two
cyclic orientations of Γ.

Proof. (i) It is clear that any subset of O is a confluent partial orientation.
We also see that

o´1

Γ1 pvqXO “ tau ñ o´1

Γ
pvqXO “ tau ñ t´1

Γ
pvq Ď OYtau ñ t´1

Γ1 pvq Ď OYtau,

which ensures that O X AΓ1 is strongly confluent on Γ1.
(ii) It is easy to see that the two cyclic orientations of Γ1 are strongly

confluent.
Conversely, suppose thatO is nonempty, that is, there exists a P O. Then

the strong confluence condition means that we must also have spaq P O,
where spaq is the unique element of t´1popaqqrtau. We then have snpaq P O

for all n ě 0, and since Γ1 is finite, eventually the sequence repeats; without
loss of generality, skpaq “ a. The sequence of arcs a, sk´1paq, sk´2paq, . . . , spaq
then defines a directed path from opaq to opaq without backtracking; since
Γ1 is a cycle graph, we conclude that O “ ta, sk´1paq, sk´2paq, . . . , spaqu and
that O is a cyclic orientation of Γ1.

Lemma 5.10. Let Γ be a connected graph and let O be a s.c.p.o. on Γ.

(i) The attractor KpOq contains the vertices of every cycle subgraph of Γ
and the endpoint of every non-orientable loop of Γ.
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(ii) Suppose there exist v,w P V Γ such that zOpvq ‰ zOpwq. Then KpOq
consists exactly of those v P V Γ such that o´1pvq X O “ H.

Proof. (i) Let v be the endpoint of a loop, that is, there is a P AΓ such that
opaq “ tpaq “ v. If no arc of O originates at v, then fOpvq “ v. Otherwise
we see that O must contain one of a or a; we thus end up with an arc in O

originating at v that also terminates at v, so fOpvq “ v. In either case, we
see that v P KpOq.

Let Γ1 be a cycle subgraph of Γ of order ě 2. By Lemma 5.9, the
restriction O1 :“ OXAΓ1 is either empty or one of the two cyclic orientations
of Γ1. If O1 is a cyclic orientation of Γ1, we immediately see that Γ1 is a
periodic orbit of fO, so V Γ1 Ď KpOq. If instead O1 is empty, then for each
v P V Γ1, O is missing at least two of the arcs of Γ that terminate at v, and
hence O is disjoint from o´1

Γ
pvq; this means fOpvq “ v, so v P KpOq.

(ii) Let vi “ f i
Opvq and let wi “ f i

Opwq. Choose i, j P NˆN in such a way
that the distance dpvi, wjq is minimized; note that vi ‰ wj , so dpvi, wjq ą 0.
Let v1

0
“ vi and let pv1

0
, v1

1
, . . . , v1

nq be a path of minimal length from vi to wj.
Suppose that there is v1 P tvi, wju, say v1 “ vi, such that o´1pv1q X O ‰ H.
Then by strong confluence, O must include the arc from v1

1
to v1

0
, and then

from v1
2
to v1

1
and so on, up to the arc from v1

n “ wj to v1
n´1

. The definition
of fO then implies that wj`1 “ v1

n´1
. But this contradicts the choice of

pi, jq, which was supposed to minimize dpvi, wjq. Thus

o´1pviq X O “ o´1pwjq X O “ H.

In particular, vi and wj are both fixed by fO; hence zOpvq “ tviu and
zOpwq “ twju. We then see by the same argument that given any w1 P V Γ,
then zOpw1q “ tw2u for some w2 such that o´1pw2q X O “ H. Conversely,
if w2 is any vertex of Γ such that o´1pw2q XO “ H, then w2 is fixed by fO,
so w2 P KpOq.

Proof of Theorem 5.8. Suppose that K contains a vertex of Γ. Then by
Lemma 5.10(ii), we see that K consists solely of vertices of Γ, and by
Lemma 5.10(i), K is the set of vertices of a cotree Γ1 of Γ. There are then
two possibilities. If K consists of those v P V Γ such that o´1pvq X O “ H,
then we see that case (a) holds. Otherwise, by Lemma 5.10(ii), Γ1 is a cycle
graph and O X AΓ1 is a cyclic orientation of Γ1, and we see that case (b)
holds.

The remaining possibility is that K does not contain any vertex of Γ.
Then by Lemma 5.10(i), Γ is a tree; by Lemma 5.10(ii), we have K “ tξu
for a unique end ξ of Γ. It is then clear that case (c) holds.

5.2 Tits’ theorem revisited

Theorem 5.8 immediately provides a characterization of geometrically dense
action in terms of the local action diagram pΓ, pXaq, pGpvqqq: specifically,
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it should be irreducible, meaning that the only s.c.p.o. of ∆ is the empty
one. (In fact, we only need to know Γ and the colour sets Xa; the additional
information provided by the groups Gpvq is not needed.)

Corollary 5.11. Let T be a tree, let G ď AutpT q and let ∆ “ pΓ, pXaq, pGpvqqq
be the associated local action diagram. Then G is geometrically dense if and
only if ∆ is irreducible.

As stated, Theorem 5.1 leaves open the question of whether or not the
group G` generated by the arc stabilizers is simple or trivial. In fact, this
distinction is easy to detect in the local action diagram.

Say that a local action diagram ∆ “ pΓ, pXvq, pGpvqqq is free if for all
v P V Γ, Gpvq acts freely on Xv .

Lemma 5.12. Let T be a tree, let G ď AutpT q and let ∆ “ pΓ, pXvq, pGpvqqq
be the associated local action diagram. Then G` is trivial if and only if ∆
is free.

Proof. Let π “ πpT,Gq. Suppose that G` is trivial. Then for all a P AΓ, Ga

is trivial. Let v P V T . Then the action of Gv on o´1pvq is free, since the set
of stabilizers of this action is exactly tGa | a P o´1pvqu. Thus Gpπpvqq acts
freely on Xπpvq.

Conversely, suppose that for all v P V Γ, Gpvq acts freely on Xv. Let
a P AT and let g P Ga. Suppose g ‰ 1: then there is some arc b R ta, au
such that b is directed away from a, g fixes w “ opbq, but g does not fix b.
Then the action of Gw on o´1pwq corresponds as a permutation group to
the action of Gpπpwqq on Xπpwq; that is, the action is free modulo kernel.
If w P topaq, tpaqu, then clearly g fixes an element of o´1pwq; otherwise, g
fixes the unique arc in o´1pwq in the direction of topaq, tpaqu. Thus g is an
element of Gw fixing some element of o´1pwq; since the action of Gw on
o´1pwq is free modulo kernel, we conclude that gb “ b, contradicting the
choice of b. Thus in fact g “ 1, showing that Ga is trivial. Since this holds
for all a P AT , we conclude that G` is trivial.

For a more detailed version of Corollary 5.11, recall that possible struc-
tures of invariant subtrees and ends for a group G acting on a tree T fall
into a few cases:

(Fixed vertex) G fixes some vertex (not necessarily unique);

(Inversion) G preserves a unique undirected edge and includes a reversal
of that edge;

(Lineal) G fixes exactly two ends and includes a translation on the axis
between them;

(Horocyclic) G fixes a unique end, does not fix any vertices, and does not
include any translations;
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(Focal) G fixes a unique end and includes a translation towards this end;

(General type) G preserves a unique minimal subtree T 1 and acts geo-
metrically densely on T 1, where T 1 is the tree spanned by all axes of
hyperbolic elements of G.

From a geometric perspective, the fixed vertex and inversion cases can
be grouped together as ‘bounded’ (in other words, every orbit has finite
diameter), but from the perspective of local actions it is useful to dis-
tinguish them. We can recognize these cases from the local action di-
agram ∆ “ pΓ, pXaq, pGpvqqq as follows. Given a local action diagram
∆ “ pΓ, pXaq, pGpvqqq, we define a cotree of ∆ to be a cotree Γ1 of Γ
such that |Xa| “ 1 for all a P OΓ1 .

(Fixed vertex) If G fixes a vertex of T , then Γ is a tree. If Γ is a tree, the
fixed vertices of G on T (if there are any) correspond to cotrees Γ1 of
∆ consisting of a single vertex of Γ with no edges.

(Inversion) G preserves a unique undirected edge if and only if there is a
cotree Γ1 of ∆ consisting of a single vertex and a single non-orientable
loop a with |Xa| “ 1.

(Lineal) G fixes exactly two ends and includes a translation on the axis
between them if and only if there is a cotree Γ1 of ∆ that is a cycle
graph, such that additionally |Xa| “ 1 for all a P AΓ1.

(Horocyclic) Assuming that G does not fix any vertices, then G fixes a
unique end while not including any translations exactly in following
situation: Γ is a tree, and there is a unique end ξ of Γ such that
|Xa| “ 1 for every arc a directed towards ξ.

(Focal) The following characterizes the situation where G fixes a unique
end and includes a translation towards this end: There is a cotree Γ1

of ∆ that is a cycle graph, and a cyclic orientation O1 of Γ1, such that
|Xa| “ 1 for a P O1, but |Xa| ě 2 for some a P AΓ1

rO1.

(General type) In the remaining case, the unique minimal subtree T 1 on
which G acts geometrically densely corresponds to the unique small-
est cotree Γ1 of ∆, where Γ1 is not of the special form indicating a
bounded, lineal or focal action, and ∆ is not of the form prescribed
by a horocyclic action. The action of G on T is geometrically dense if
and only if Γ1 “ Γ.

In all cases except when G fixes a vertex, there are at most two invariant
ends, and the invariant ends are easily identified. If G fixes a vertex v of
T , then the invariant ends correspond to rays starting at v that are fixed
pointwise byG, so they are accounted for by invariant subtrees. We also note
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that for lineal and focal actions, there is a unique minimal invariant subtree
T 1 spanned by all axes of hyperbolic elements of G; the only distinction from
general type is the existence of one or two fixed ends of this subtree.

Note also the following: if Γ is a tree, then the action has a fixed vertex,
or is horocyclic or of general type; in particular, by Corollary 2.12, if G

is generated by vertex stabilizers then the action must be of one of these
types. If Γ is not a tree, then the possibilities are: inversion, lineal, focal
and general type.

We also have the following correspondence between types of s.c.p.o. given
by O ÞÑ πpT,GqpOq:

(i) Invariant subtrees of T , or equivalently, invariant s.c.p.o.s of T of type
(a), correspond to s.c.p.o.s of ∆ of type (a).

(ii) Inversion and general type actions do not have invariant ends. Other-
wise, there are two kinds of invariant end to consider:

(1) If Γ is a tree, the action could have a fixed vertex or be horocyclic,
with no translations. In this case invariant ends of T correspond
to s.c.p.o.s of ∆ of type (c).

(2) If Γ is not a tree, the action could be lineal or focal with a trans-
lation towards an invariant end. In this case invariant ends of T
correspond to s.c.p.o.s of ∆ of type (b), with the order of the asso-
ciated cycle graph in Γ corresponding to the minimal translation
length of a translation towards the fixed end.

5.3 Quotient trees

Given a group G acting on a tree T , a quotient tree of the action is a
surjective graph homomorphism θ : T Ñ T 1, such that the fibres of θ on
vertices and arcs form a system of imprimitivity for G, together with the
induced action ofG on T 1. Our methods are not sufficient to classify quotient
trees in general, even if the original action is pPq-closed. However, we can
say something in the case that θ is locally surjective.

Given a P AT , say that θ : T Ñ T 1 backtracks at a, or a is a back-
tracking for θ, if there exists b P AT such that

opaq ‰ opbq; tpaq “ tpbq; θpaq “ θpbq.

It is then easy to see that a graph homomorphism between trees is injective
if and only if it has no backtracking. Say that a P AT is pre-backtracking
for θ if there is a backtracking arc a1 such that Ta1 Ď Ta.

The locally surjective property is particularly useful for restricting the
possible images of half-trees.

Lemma 5.13. Let T and T 1 be trees and let θ : T Ñ T 1 be a locally surjective
graph homomorphism.
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(i) Given a1 P AT 1, then T 1
a1 Ď θpTaq, for all a P θ´1pa1q.

(ii) If a P AT is pre-backtracking for θ then θpTaq “ T 1.

Proof. (i) We see that T 1
a1 is the smallest subgraph Γ of T 1 with the properties

that a1 P AΓ and for all v1 P V Γ r ttpa1qu, then o´1

T 1 pv1q Ď AΓ. Consider
now the graph Γ “ θpTaq where a P θ´1pa1q. Clearly a P AΓ; given a vertex
v1 P V Γ r ttpa1qu, then there is v P V Ta r ttpaqu such that θpvq “ v1. We
then have o´1

T pvq Ď Ta and hence, by local surjectivity, o´1

T 1 pv1q Ď AΓ. Thus
T 1
a1 Ď Γ.
(ii) Since the half-tree defined by a pre-backtracking arc contains a half-

tree defined by a backtracking one, we may assume that a is backtracking.
Let v “ tpaq, let Γ “ θpTaq and let b P AT such that

opaq ‰ opbq; tpaq “ tpbq; θpaq “ θpbq.

Then Ta contains o´1

T pvq r tau, so in particular b P AΓ, and we have θpaq “
θpbq; thus

o´1

T 1 pvq “ θpo´1

T pvqq “ θpo´1

Ta
pvqq Ď AΓ,

since θ is locally surjective. By part (i), we also have o´1

T 1 pv1q Ď AΓ for all
other vertices v1 of Γ. Since T 1 is connected we conclude that Γ “ T 1.

Suppose now that we have an action pT,Gq on a tree and θ : T Ñ T 1 is
a quotient tree that is locally surjective. There are a few ways in which θ

can be ‘almost injective’, which are useful to distinguish.

Lemma 5.14. Let pT,Gq be an action on a tree and let θ : T Ñ T 1 be a
quotient tree. Then one of the following holds.

(a) There is a G-invariant subtree T0 of T , such that the restriction of θ to
T0 is injective.

(b) There is a G-invariant end ξ of T , such that a P AT is pre-backtracking
for θ if and only if a is oriented towards ξ.

(c) There is a G-invariant subtree T0 of T such that every a P AT0 is
pre-backtracking for θ, and for all arcs a P AT r AT0, then a is pre-
backtracking for θ if and only if a is oriented towards T0.

Proof. Let B be the set of pre-backtracking arcs for θ, and let C be the set
of vertices v P V T such that o´1pvq X B “ H. We see that B and C are G-
invariant. Moreover, C is convex as a subset of V T , and θ is injective on the
subgraph induced by C. Thus as soon as C is nonempty, C spans a subtree
T0 on which (a) holds. We may therefore assume that C is empty. From
this, we see that B contains an infinite forwards ray defining some end ξ. It
then follows that in fact, every arc pointing towards ξ is pre-backtracking;
in particular, B contains an orientation of T .
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Let B˚ be the set of a P AT such that ta, au Ď B. There are now two
cases. If B˚ is empty, then B is exactly the orientation of arcs of T towards
some unique end ξ, which is then G-invariant; thus (b) holds. Otherwise we
see that B˚ spans a G-invariant subtree T0 satisfying (c).

By analogy with the usual analysis of actions on trees, we can regard
cases (a) and (b) of Lemma 5.14 as degenerate cases of quotient trees; in
general there could be many such quotient trees arising from systems of
imprimitivity on sets of vertices at a given distance from the invariant tree,
or horospheres around the invariant end. In case (c), it makes sense to
focus on the restriction of θ to a map from T0 to θpT0q, considered as a
quotient tree of the action pT0, Gq. So by analogy with the definition of a
geometrically dense action, we will say that θ is densely non-injective
if case (c) of Lemma 5.14 holds with T “ T0, that is, every arc is pre-
backtracking. Note in particular that if pT,Gq is geometrically dense, then
it follows from Lemma 5.14 that every non-injective quotient tree is densely
non-injective. We then have the following consequence of the previous three
lemmas.

Proposition 5.15. Let pT,Gq be an action on a tree and let θ : T Ñ T 1 be a
quotient tree. Suppose that θ is locally surjective and densely non-injective.
Then G`` acts trivially on T 1; in particular, θ factors through the locally
surjective quotient tree π` :“ πpT,G``q.

Proof. By our hypotheses and Lemma 5.14, every a P AT is pre-backtracking
for θ, so by Lemma 5.13, we have θpTaq “ T 1 for every half-tree Ta of T . In
particular, the pointwise stabilizer of Ta must act trivially on T 1. Thus the
group G`` generated by pointwise stabilizers of half-trees acts trivially on
T 1, that is, for all g P G`` and e P V T \ AT , we have θpeq “ θpgeq. Thus
θ factors through π`. Since G`` is normal in G, it is clear that G``zT is
equipped with an action of G such that π` is G-equivariant. We see that
pG``zT q is a tree by Corollary 2.12, so π` is a quotient tree for G. By
Lemma 2.1, π` is locally surjective.

Thus if pT,Gq is an action on a tree with property pPq, then to de-
scribe the locally surjective, densely non-injective quotient trees of the ac-
tion, it is enough to describe the locally surjective quotient trees of the action
pG`zT,G{G`q, starting with pG`zT,G{G`q itself. In fact we can describe
the action pG`zT,G{G`q in general in terms of local action diagrams, with-
out assuming that the original action pT,Gq has property pPq.

Theorem 5.16. Let pT,Gq be an action on a tree, with local action diagram
∆ “ pΓ, pXaq, pGpvqqq. Then pG`zT,G{G`q is a pPq-closed action (indeed,
a free action on arcs) which depends only on pΓ, pXaq, pGpvqqq; in particular
it is unchanged if we replace G with GpPq. The action pG`zT,G{G`q admits
the following two equivalent descriptions:
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(i) It is the pPq-closed action admitting the local action diagram ∆˚ “
pΓ˚, pX˚

a q, pG˚pvqqq, where Γ˚ “ Γ; for each v P V Γ, G˚pvq “ Gpvq{Gpvq`

where Gpvq` is the subgroup of Gpvq generated by point stabilizers; and
each of the colour sets X˚

a is the regular Gpvq{Gpvq`-set obtained as
the set of orbits of Gpvq` on Xa.

(ii) It is the fundamental group of a graph of groups over the graph Γi,
arising as the quotient by the action of G on the reversal-free subdi-
vision T i of T , with the following data. Given v P V Γi, if v is the
image of a vertex of T , then the vertex group is G˚pvq as in (i) for the
corresponding vertex of Γ; if instead v is the centre of an edge of T that
is reversed by G, then the vertex group is C2 in its natural action on
two points. The edge groups and associated embeddings for the graph
of groups are all trivial.

Proof. We immediately see that in the action pG`zT,G{G`q, all arc stabi-
lizers are trivial; it is then clear that this action has property pPq. In this
context, it is easy to see how the notions of local action diagrams and graphs
of groups are equivalent in such a manner that (i) and (ii) are equivalent.

Let L “ GpPq. By Proposition 4.7 we have L` “ pG`qpPq. In particular,
L` and G` have the same orbits on arcs, so L`zT “ G`zT . Since G and L

have the same orbits on arcs, we have L “ GLa and in particular L “ GL`,
so for every element of L, there is an element of G with the same action on
L`zT . We can also take ∆ “ pΓ, pXaq, pGpvqqq as the local action diagram
of L; since point stabilizers in permutation groups are open, we see for all
v P V Γ that

Gpvq{Gpvq
`

“ Gpvq{Gpvq`

as permutation groups acting on Xv{Gpvq` “ Xv{Gpvq
`
. So for the rest of

the proof, it makes no difference if we replace G with L, so we may assume
that G is pPq-closed.

It is now clear that pG`zT,G{G`q has local action diagram pΓ,X˚
a , pG˚pvqqq

for some permutation groups G˚pvq “ Gpvq{Npvq and colour sets X˚
a “

NpopaqqzXa. All that remains is to derive the vertex groups G˚pvq and
their orbits from ∆.

Let π “ πpT,Gq. We may suppose that G “ UpT, pGpvqqq where T is T

equipped with some ∆-colouring L; we can moreover choose the colouring
L so that for each vertex v P V T , any two elements of t´1pvq of the same
type have the same colour. For each v P V Γ, let Gpvq` be the subgroup of
Gpvq generated by the point stabilizers. Let H be the set of g P G such that
σL,vpgq P Gpπpvqq` for all v P V T . Applying the usual product and inverse
formulae for σL,v, we see that H is in fact a subgroup of G; since each of the
groups Gpvq` is closed (indeed, open) in Gpvq, we also see that H is closed.

Our next aim is to show that G` ď H; since H is a group, it is enough
to show Ga “ Ha for each a P AT . It is easy to see that Ha is the product
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of the pointwise stabilizers of the two half-trees defined by a, from which we
conclude that H has property pPq. Write v0 “ opaq, let Br be the ball of the
radius r around v0 and let Gr, respectively Hr, be the pointwise stabilizer
of Br in G, respectively H. We see that σL,v0pHaq “ σL,v0pGaq “ GpvqLpaq,
so Ga “ HaG1. Suppose that Ga “ HaGr for some r ě 1, let g P Gr and let
v be a vertex at distance r from v0. By the same argument as for v0, we can
realise the action of g on o´1pvq (that is, we obtain an element of the same
left coset of the fixator of o´1pvq) using some element hv of Ha1 , where a1

is the element of o´1pvq contained in Br. By property pPq we can take hv
to lie in the pointwise stabilizer of Ta1 ; in particular, hv P Hr. By taking a
product of such elements as v ranges over the sphere of radius r around v0,
we in fact obtain h P Hr such that g P hGr`1. Thus by induction we have
Ga “ HaGr for all r ě 1. Since Ha is closed, we conclude that Ga “ Ha as
desired.

Thus G` ď H, and hence the local action of G` at each vertex is a
subgroup of Gpvq` for the appropriate v P V Γ. On the other hand, given v P
V T , we see that σL,vpG`

v q contains G`pπpvqq, by considering the subgroups
Ga of G`

v for a P o´1pvq. Thus in fact the local action of G` at each vertex is
exactly Gpvq`, which is the same as the local action of the vertex stabilizer
in G` at that vertex. Given that π` is locally surjective, we then see that
G˚pvq is exactly Gpvq{Gpvq` acting on the set of orbits of Gpvq` on Xv;
this set decomposes into regular Gpvq{Gpvq`-sets as described.

So far, in our effort to describe interesting quotient trees of a pPq-closed
action pT,Gq, we have reduced to an action pT 1, G1q “ pG`zT,G{G`q on a
tree in which arc stabilizers are trivial. In general, such an action can admit
further quotient trees, such as those arising from the quotient of the action
of some normal subgroup generated by vertex stabilizers. However, from
this point onwards, the local action diagram approach effectively reduces to
a well-known special case of classical Bass–Serre theory, so it is unlikely that
the methods developed in this article will give new insights. We therefore
leave any further investigation to the interested reader.

We can now derive Theorem 1.7.

Proof of Theorem 1.7. Suppose that (i) holds. We can rule out a lineal or
focal action by the fact that G is a simple group, and a bounded or horo-
cyclic action is ruled out since G contains a translation. Thus the action is
of general type, so there is a unique smallest G-invariant subtree T 1, which
has infinite diameter, and the action of G on T 1 is geometrically dense. In
particular, G acts nontrivially, hence faithfully on T 1. The action on G on
T 1 is pPq-closed by Lemma 2.7. From now on we focus on the action pT 1, Gq
and define subgroups of G relative to this action. Since the action is geomet-
rically dense, ∆ is irreducible by Theorem 1.4. Our hypotheses ensure that
all arc stabilizers in G are nontrivial. In particular, G` is nontrivial; since
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G is simple it follows that G “ G`. In the terminology of Theorem 5.16,
we then have t1u ‰ Gpvq “ Gpvq`, that is, Gpvq is generated by point
stabilizers; the group Gpvq is closed since G acts as a closed subgroup of
AutpT 1q. We also see that G is generated by vertex stabilizers, so Γ is a tree
by Corollary 2.12. Thus (i) implies (ii).

For the remainder of the proof we suppose that (ii) holds. The action on
G on T 1 is faithful by assumption; it is pPq-closed, in particular, closed, by
Lemma 2.7; and it is geometrically dense by Corollary 5.11. The fact that
G has a geometrically dense action on an infinite subtree ensures that the
original action is not bounded or horocyclic. Let v P V Γ be such that Gpvq ‰
t1u. Since we are assuming that Gpvq is generated by point stabilizers, there
is a nontrivial point stabilizer in Gpvq, which implies that there is a nontrivial
arc stabilizer Ga for some a P AT 1. By property pPq, the pointwise stabilizer
of one of the half-trees of T 1 defined by a, say T 1

a, is nontrivial. Since the
action of G on T 1 is geometrically dense, any half-tree of T 1 can be mapped
inside any other by the action of G, so in fact the pointwise stabilizer of
T 1
a is nontrivial for every a P AT 1. In particular, the pointwise stabilizer of

any finite set of vertices of T 1 is nontrivial. The stabilizer of a vertex of T
outside T 1 is just the stabilizer of the closest vertex in T 1, so we see that
there is no finite set of vertices of T whose pointwise stabilizer is trivial.

Define G` with respect to the action pT 1, Gq. We have seen that arc sta-
bilizers are nontrivial, so G` is nontrivial and hence simple by Theorem 5.1.
The fact that Gpvq is generated by point stabilizers for every v P V Γ implies,
by Theorem 5.16, that G acts freely on vertices of pG`zT 1q, in other words,
G` contains the vertex stabilizers of G. On the other hand, since Γ is a
tree, Corollary 2.12 implies that G is generated by vertex stabilizers. Thus
G “ G` and hence G is simple.

6 The group topology

Our definitions ensure that whenever G ď AutpT q is such that G “ GpPq,
then G is a closed subgroup of AutpT q in the permutation topology. In
particular, it follows that G is a non-Archimedean topological group in its
own right.

There are natural characterizations of when GpPq is Polish or locally
compact as a subgroup of AutpT q.

Lemma 6.1. Let T be a tree and let G ď AutpT q. Let a P AT and let B
be a bounded subtree of V T . Let S be the smallest subtree containing Ga;
suppose that S has no leaves. Then there exists g P G such that

0 ă dptpgaq, Bq ă dpopgaq, Bq.

Proof. Suppose a lies on the axis of some hyperbolic element g ofG. Without
loss of generality, we identify the vertices of the axis with Z, where opaq “ 1,

39



tpaq “ 0 and there is n P N such that gpvq “ v ` n for all v P Z. Let B1 be
the set of vertices on the axis that realise the minimum distance from the
axis to B. Then B1 is a finite set, since B is bounded. We then see that the
inequalities

0 ă dptpgmaq, B1q ă dpopgmaq, B1q.

are achieved for all sufficiently large m ą 0. Taking such an m, it then
follows (since all paths from the axis to B must pass through B1) that

0 ă dptpgmaq, Bq ă dpopgmaq, Bq.

In the remaining case, a does not lie on the axis of any hyperbolic element
of G. Since S has no leaves, it is unbounded, and hence Ga is unbounded.
Thus by replacing a with some G-translate of a, without loss of generality
we may assume that neither opaq nor tpaq is a vertex of B. Let ρ be the
projection of T onto the subgraph spanned by a. Then B lies in one of
the half-trees defined by a, in other words, either ρpBq “ topaqu or ρpBq “
ttpaqu. If ρpBq “ ttpaqu then the required inequalities hold for g “ 1,
so we may assume ρpBq “ topaqu. Consider now the tree T 1 spanned by
ρ´1popaqq Y tau. If Ga Ď T 1, then also S Ď T 1. But in that case, tpaq would
be a leaf of S, which is forbidden by hypothesis. Thus there exists g P G

such that ρpgaq “ ttpaqu. If dptpgaq, tpaqq ą dpopgaq, tpaqq, then we see from
the relative orientations of a and ga that both arcs lie on the axis of g, which
contradicts our assumptions. Thus dptpgaq, tpaqq ă dpopgaq, tpaqq. Since all
paths from ga to B must pass through tpaq, it then follows that

0 ă dptpgaq, Bq ă dpopgaq, Bq.

Here is the characterization of local compactness of the pPq-closure.

Proposition 6.2. Let T be a tree and let G ď AutpT q. Suppose that there
is a unique minimal G-invariant subtree T 1, such that |V T 1| ě 3. Then the
following are equivalent.

(i) The pPq-closure of G is locally compact.

(ii) For all a P AT 1, the stabilizer of a in the pPq-closure of G is compact.

(iii) Let ∆ “ pΓ, pXaq, pGpvqqq be the local action diagram for pT,Gq and
let Γ1 be the unique smallest cotree of ∆. Then for all a P AΓ such that
a R OΓ1 , every Gpopaqq-stabilizer of every point in Xa has finite orbits
on Xv.

Proof. The hypotheses ensure that T 1 has infinite diameter and is leafless.
Let Γ “ GzT and let π : T Ñ Γ be the quotient map.
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Suppose that (i) holds. Then there is some finite set B of vertices of T ,
such that the pointwise stabilizer H of B in GpPq is compact. Let a P AT 1.
Then the hypotheses of Lemma 6.1 hold; thus there is g P G such that

0 ă dptpgaq, Bq ă dpopgaq, Bq.

We now have
GpPq

ga “ R1 ˆ R2

where R1 fixes the half-tree Tga pointwise and R2 fixes the half-tree Tga

pointwise. Our choice of g ensures that B Ď Tga; thus R1 ď H, so R1 is

compact. In particular, G
pPq
ga has finite orbits on Tga. After conjugating by

g´1 we see that G
pPq
a has finite orbits on the half-tree Ta. A similar argument

using a in place of a shows that G
pPq
a “ G

pPq
a also has finite orbits on the

complementary half-tree Ta, so a satisfies (ii). Thus (i) implies (ii). It is
immediately clear that (ii) implies (i), so (i) and (ii) are equivalent.

We observe that any compact subgroup of AutpT q has finite orbits, and
that G is a subgroup of GpPq. Given these observations, it is immediate that
(ii) implies (iii).

Suppose (ii) holds; note that the unique smallest cotree Γ1 of the local
action diagram is the image of T 1. Let v P V T and a P o´1pvq such that
πpaq R OΓ1 . If πpaq R OΓ1 , then πpaq P AΓ1 and it is clear from (ii) that Ga

has finite orbits on V T . Otherwise, the fact that πpaq P OΓ1 ensures that

a points towards T 1. By property pPq the action of G
pPq
a on Ta is then the

same as the action of the pointwise fixator of Ta on Ta; since T 1 Ď Ta, it
follows from (ii) that Ga has finite orbits on Ta, and in particular on o´1pvq.
It follows that in the local action diagram, the action of Gpπpvqq on Xv is
such that every point stabilizer has finite orbits. Thus (ii) implies (iii).

Suppose (iii) holds. We can regard GpPq as the universal group of ∆ “
pΓ, pXaq, pGpvqqq. Then Γ1 is the unique smallest cotree of ∆ and we see
that Γ1 “ πpT 1q.

Consider a path pv0, . . . , vnq in V T ; let ai be the arc from vi´1 to vi and
suppose that a1 P AT 1. We then see that each arc ai is either contained
in T 1 or points away from it, so for all i we have πpaiq R OΓ1 . Thus for
each i ě 0, the stabilizer in Gpviq of any point in X

πpaiq
has finite orbits

on Xπpviq. Translating this information back to the tree: in the action of

the stabilizer in GpPq of ai, or equivalently of ai, the orbit of vi`1 is finite.

We conclude that in the action of G
pPq
a1 , the orbit of vn is finite. Given the

freedom of choice of the path pv0, . . . , vnq, we conclude that H “ G
pPq
a1 has

finite orbits on the half-tree Ta1 ; by replacing a1 with a1, a similar argument
shows that H has finite orbits on the complementary half-tree Ta1 . Since
H is also closed in AutpT q, it is compact. Moreover, a1 can be chosen to
be any arc of AT 1; thus every stabilizer in GpPq of an arc of T 1 is compact.
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Thus (iii) implies (ii), completing the proof that all three statements are
equivalent.

Corollary 6.3. Let T be a tree and let G be a closed subgroup of AutpT q
that does not fix any vertex or preserve any undirected edge. Suppose that
GpPq is locally compact, and let T 1 be a G-invariant subtree of T . Then the
kernel of the action of G on T 1 is compact.

Proof. Since G does not fix any vertex or preserve any undirected edge, we
are in the situation of Proposition 6.2: there is a unique G-invariant subtree
T 2, such that |V T 2| ě 3. In particular, T 2 Ď T 1.

LetK be the kernel of the action ofG on T 1. We see by Proposition 6.2(ii)
that K has finite orbits on V T . Since G is closed in AutpT q, we see that K
is also closed, so K is compact.

Here is a characterization of Polish pPq-closed groups. For clarity, we
note that the word ‘countable’ here is understood to allow finite sets as well
as countably infinite sets.

Let X be a set, let G act by permutations on X and let Y Ď X be G-
invariant. We say that the action of G on Y is strongly faithful (relative
to X) if for all x P X, there exists a finite subset ty1, . . . , ynu of Y such thatŞn

i“1
Gyi fixes x.

Lemma 6.4. Let X be a set and let G be a closed subgroup of SympXq.
Then G is Polish if and only if there is a countable subset Y of X on which
G acts strongly faithfully. Moreover, if Y is a countable strongly faithful
set for G, then the induced homomorphism θ : G Ñ SympY q is a closed
topological embedding.

Proof. We note first that SympXq is a non-Archimedean topological group,
that is, it has a base of neighbourhoods of the identity consisting of open sub-
groups. It follows that any subgroup of SympXq with the subspace topology
is also non-Archimedean.

Suppose Y is a countable strongly faithful set for G and let θ : G Ñ
SympY q be the natural homomorphism. Then θ is clearly injective and
continuous. To show that θ is a closed embedding, we need to show that
given a net pgiqiPI in G such that θpgiq converges to the identity, then pgiq
converges to the identity. Indeed, since θpgiq Ñ 1 as i Ñ 8, we see that
for all n ě 0, there exists in such that gi fixes y0, . . . , yn for all i ą in, so
gi P Gn; since Gn is a base of neighbourhoods of the identity, it follows that
gi Ñ 1 as i Ñ 8. Thus θ is a closed topological embedding as claimed.

In particular, we see from the previous paragraph that if a countable
strongly faithful set Y exists for G, then G is isomorphic to a closed subgroup
of the Polish group SympY q; thus G is Polish.

Conversely, suppose that G is Polish. In particular, G is separable, so all
open subgroups ofG have countable index; thusG has countable orbits onX.
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Since G is non-Archimedean and metrizable, there is a countable set of open
subgroups of G forming a base of neighbourhoods of the identity; recalling
the standard base of topology for SympXq, in fact there is a sequence pyiqiě0

of points such that tGn | n ě 0u is a base of neighbourhoods of the identity,
where

Gn “
nč

i“0

Gyi .

Given x P X, we then see that Gn ď Gx for some n, showing that the action
of G on Y is strongly faithful.

Proposition 6.5. Let T be a tree and let G ď AutpT q be pPq-closed. Then
the following are equivalent.

(i) The permutation topology on G is Polish.

(ii) There is a countable G-invariant subtree T 1 of T on which G acts
strongly faithfully.

(iii) There is a countable G-invariant subtree T 1 of T on which G acts
faithfully and such that for each v P V T 1, the action of Gv on o´1

T 1 pvq
is strongly faithful relative to o´1

T pvq.

(iv) The local action diagram ∆ “ pΓ, pXaq, pGpvqqq for pT,Gq is such that
all the colour sets Xa are countable and the permutation groups Gpvq
are Polish, and there exists a countable cotree Γ1 of ∆ such that Gpvq “
t1u whenever v P V Γr V Γ1.

Proof. Suppose (i) holds. Then by Lemma 6.4, there is a countable set Y

of vertices on which G acts strongly faithfully relative to V T . We then see
that the unique smallest subtree T 1 of T containing Y is countable; by the
construction, T 1 is G-invariant and G acts strongly faithfully on V T 1 relative
to V T . Thus (i) implies (ii).

Suppose (ii) holds; let v P V T 1 and let a P o´1pvq such that a R AT 1.
Since G acts strongly faithfully on T 1, there are vertices w1, . . . , wn in T 1

such that any element of G that fixes w1, . . . , wn also fixes tpaq. For each wi,
let ai be the first arc on the path from v to wi, and let g P Gv be such that
g fixes ai for 1 ď i ď n. Using property pPq and induction on n, we see that
there is g1 P G such that g1 fixes each of the half-trees Tai pointwise, but
has the same action as g on the vertices outside of

Ťn
i“1

Tai . In particular,
g1 fixes w1, . . . , wn, so g1 also fixes tpaq; since a R AT 1, we see that tpaq is
not contained in

Ťn
i“1

Tai , from which it follows that g also fixes tpaq, and
hence g fixes a. This proves that relative to the action on o´1

T pvq, the action
of Gv on o´1

T 1 pvq is strongly faithful. Thus (ii) implies (iii).
Suppose (iii) holds. Then every vertex stabilizer in G also has countable

orbits on T , ensuring that the colour sets Xa are countable. The countable
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G-invariant subtree T 1 gives rise to a countable cotree Γ1. Consider v0 P
V T r V T 1. Then there is a unique shortest path pv0, . . . , vnq from v0 to T 1;
in particular, Gv0 fixes the arc a from v0 to v1. Then T 1 is contained in the
half-tree Ta, so Ga acts faithfully on Ta. By property pPq, it follows that the
action of Ga on Ta is trivial; in particular, the action of Gv0 on Ta is trivial.
SinceGv0 also fixes a, we conclude that Gv0 fixes every neighbour of v0. Thus
Gpπpv0qq “ t1u and we see that |Xa| “ 1 whenever a P o´1pπpv0qq. Now
consider v P V T 1; we see that the condition that the action of Gv on o´1

T 1 pvq
is strongly faithful relative to o´1

T pvq translates exactly to the condition that
for the action of Gpπpvqq on Xπpvq, we have a strongly faithful action on the
subset

Y “
ğ

aPo´1

Γ1 pπpvqq

Xa

of X. We observe that Y is countable; since G is closed we see that Gpπpvqq
is closed, and hence Gpvq is Polish by Lemma 6.4; in particular, Gpπpvqq
has countable orbits, so |Xa| ď ℵ0 for all a P o´1pπpvqq. This completes the
proof that (iii) implies (iv).

Suppose (iv) holds. Consider the construction of a ∆-tree T starting
from a root vertex pq mapping to a base vertex v0 P V Γ1. The cotree Γ1

then gives rises to a G-invariant subtree T 1 of T ; the fact that both Γ1 and
the colour sets Xa are countable ensures that T 1 is countable. For each
v P V T 1, we add a countable union of Gv-orbits of neighbours of v to T 1

to produce a new tree T 2, such that the action of Gv on o´1

T 2 pvq is strongly
faithful relative to o´1

T pvq; this is possible by Lemma 6.4 since Gpπpvqq is
Polish, and we see that it can be done in such a way that T 2 is G-invariant.
Now let v0 P V T r V T 2 and let pv0, . . . , vnq be the shortest path from v0 to
T 1. Let a be the arc from vn to vn´1. Our choice of T 2 ensures that there
are arcs a1, . . . , am P o´1

T 2 pvnq such that given g P G that fixes a1, . . . , am,
or equivalently, given g P G that fixes tpa1q, . . . , tpamq, vn, then g fixes a,
and hence g fixes vn´1. In turn, using the fact that the local actions for
vertices outside of Γ1 are trivial, we see that Gvn´1

fixes each of the vertices
v0, . . . , vn´2. We have thus obtained a finite subset ttpa1q, . . . , tpamq, vnu of
V T 2 whose pointwise stabilizer also fixes v0. Since v0 P V T r V T 2 was
arbitrary, we conclude that G acts strongly faithfully on T 2. It then follows
by Lemma 6.4 that G is Polish. Thus (iv) implies (i) and the cycle of
implications is complete.

When G is locally compact, it is natural to ask if G is compactly gener-
ated. As in Proposition 6.2, for simplicity we will avoid the case when G fixes
a vertex or preserves an undirected edge. Excluding these degenerate cases,
compact generation of G is easily seen to be equivalent to compact gener-
ation of GpPq, so the question of whether or not G is compactly generated
can be reduced to the local action diagram.
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Proposition 6.6. Let T be a tree and let G ď AutpT q be closed with un-
bounded action. Let ∆ “ pΓ, pXaq, pGpvqqq be the local action diagram. Sup-
pose that there exists a P AT for which Ga is compact. Then G and GpPq

are locally compact, and the following are equivalent.

(i) G is compactly generated;

(ii) GpPq is compactly generated;

(iii) there is a unique smallest G-invariant subtree T 1 such that G has
finitely many orbits on V T 1 \ AT 1 and Gv is compactly generated for
each v P V T 1;

(iv) there is a unique smallest cotree Γ1 of ∆ such that Γ1 is finite and Gpvq
is compactly generated for each v P V Γ1.

Proof. Since Ga is open in G, we see that G is locally compact. We also

see that Ga has finite orbits on V T ; since G
pPq
a is closed and has the same

orbits it follows that G
pPq
a is compact, and hence GpPq is locally compact.

Since GpPq has the same orbits on AT as G does, we have GpPq “ GG
pPq
a , so

G is cocompact in GpPq. Thus G is compactly generated if and only if GpPq

is compactly generated, that is, (i) and (ii) are equivalent.
Suppose that the action is horocyclic with unique fixed end ξ. We see

that G preserves every horoball around ξ; in particular, there is no minimal
G-invariant subtree, so (iii) is false. For the same reason every cotree of
∆ is infinite, so (iv) is false. We also see that G acts without reversal and
every element of G fixes a vertex, and yet the action is unbounded; thus by
Lemma 2.13, G cannot be compactly generated, that is, (i) is false, so (ii)
is also false. So if the action is horocyclic then (i)–(iv) are all false, which
is consistent with them being equivalent.

For the remainder of the proof we may suppose that the action is not
horocyclic. It follows that G contains a translation, and hence there is a
unique smallest G-invariant subtree T 1 of T , which is spanned by the axes
of translations in T .

Suppose (i) holds. Choose a compact symmetric generating set S for
G and a vertex v P V T 1. Then the set tsv | s P Su is finite and for each
s P S, the path rv, svs from v to sv is contained in T 1. Let T 2 be the subtree
spanned by the paths rv, svs as s ranges over S. Then T 2 is finite and for
each s P S, the graph T 2 Y sT 2 is connected: specifically, both T 2 and sT 2

are connected and contain sv. From here, we see that the graph
Ť

gPG gT 2 is
also connected, and hence equal to T 1. This shows that G has finitely many
orbits on V T 1 \ AT 1.

The rest of the proof that (i) implies (iii) is [4, Proposition 4.1], however
for clarity we give a more elementary proof using Bass–Serre theory.

Write Γi for the quotient graph of the action of G on the reversal-free
subdivision of T 1. From the hypotheses, we see that G acts on T 1 with
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compact kernel; let G˚ be the group defined by this action. Recall the
decomposition of G˚ given by Theorem 2.9:

F pEq ˚ ˚vPV T˚G˚
v

xxsaτapgqsaτapgq´1 pa P E, g P Gaq, sasa, sa pa P AT ˚qyy
.

where now T ˚ is a lift in T 1 of a maximal subtree of Γi and E is a lift of the
arcs of Γi such that every arc in E is incident with T 1. We remark that this
decomposition is also well-behaved with respect to the topology of G˚, and
hence of G, since the factors are amalgamated along open subgroups.

We claim that Gv is compactly generated for all v P V T 1; it is enough to
show that G˚

v is compactly generated for each v P V T ˚. Fix v P V T ˚. We
have a compactly generated open subgroupH0 of G

˚
v generated by τapG˚

aq for
all a P E such that tpπpT 1,Gqpaqq “ πpT 1,Gqpvq. In particular, in the expression
for G˚, every element of G˚

v that is amalgamated with other vertex groups
is contained in H0.

Now write G˚
v as a directed union

Ť
iPI Hi, where each Hi is compactly

generated and 0 is the least element of I, and recall the normal form theorem
for graphs of groups (Theorem 2.11). Let Ki be the set of elements of
G˚ expressible as a reduced word (including the empty word), such that
all letters taken from G˚

v belong to Hi. Then G˚ “
Ť

iPI Ki; since G˚ is
compactly generated and H0 is open in G˚, in fact G1 “ Ki for some i. In
particular, every g P Hi is expressible as a reduced word using F pEq, Hi and
G˚

v1 for vertices v1 P V T ˚ other than v. Given the reduction rules for words
in a graph of groups, we conclude that g P Hi. Thus G˚ “ Him showing
that G˚ is compactly generated as required. This completes the proof that
(i) implies (iii).

Suppose now that (iii) holds. Then G˚
v is also compactly generated for

each vertex v of the reversal-free subdivision of T 1, and hence we see from
the free product decomposition that G˚ is compactly generated. Since G

acts on T 1 with compact kernel it follows that G is also compactly generated.
Thus (iii) implies (i) and hence (i), (ii) and (iii) are equivalent.

Note that Γ1 is finite if and only if G has finitely many orbits on V T 1 \
AT 1. We also see that, given v P V Γ1 and the chosen representative v˚ of
π´1

pT 1,Gqpvq, the local action map θ : Gv˚ Ñ Gpvq is a quotient homomorphism

with compact kernel: the kernel is compact since at least one of the arc
stabilizers Ga for a P o´1pv˚q is compact. It follows that Gv˚ is compactly
generated if and only if Gpvq is compactly generated, and in particular,
(iii) and (iv) are equivalent. This completes the proof that (i)–(iv) are
equivalent.

We can now deduce Theorem 1.8 and Corollary 1.9 as special cases of
the previous propositions.

Proof of Theorem 1.8. Let T be the defining tree of Up∆q.
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Suppose (i) holds. Then by Proposition 6.2, since Up∆q is locally com-
pact and the action is geometrically dense, all arc stabilizers of Up∆q acting
on T are compact. By Proposition 6.6 and the fact that Up∆q is locally com-
pact, Γ is finite and Gpvq is closed and compactly generated for all v P V Γ.
The fact that arc stabilizers are compact implies that each of the groups
Gpvq is subdegree-finite. Finally, ∆ is irreducible by Theorem 1.4. Thus (i)
implies (ii).

Conversely, suppose (ii) holds. Since ∆ is irreducible, pT,Up∆qq is geo-
metrically dense by Theorem 1.4. Since the local actions are all subdegree
finite, Up∆q has compact arc stabilizers and hence is locally compact. We
see that Up∆q is compactly generated by Proposition 6.6. Thus (ii) implies
(i).

Suppose (i) and (ii) hold. Taking v P V Γ, then as a permutation group,
Gpvq has finitely many orbits and is a compactly generated locally compact
group; it follows that Xv is countable. Since Γ is finite we conclude that T
is countable. Thus SympV T \ AT q is Polish, and hence its closed subgroup
Up∆q is Polish.

Proof of Corollary 1.9. Suppose (i) holds. By hypothesis the action does
not fix a vertex, and the fact that G is nondiscrete and simple rules out
actions that are of inversion, lineal or focal type. Proposition 6.6 then rules
out a horocyclic action. By process of elimination, the action is of general
type, with a unique smallest G-invariant subtree T 1 on which the action of G
is faithful and geometrically dense. In fact the action of G on T 1 is strongly
faithful: the topology of G is already σ-compact, so there is no coarser
locally compact group topology on G. Thus (via Lemma 2.7) we can regard
G as a pPq-closed, hence closed, subgroup of AutpT 1q as a topological group.
Since G is nondiscrete, there is no finite set of vertices whose pointwise
stabilizer is trivial. We then conclude by Theorem 1.7 that ∆ is irreducible,
Γ is a tree, and each of the groups Gpvq is closed and generated by point
stabilizers, with Gpvq ‰ t1u for some v P V Γ. By Theorem 1.8, Γ is finite
and each of the groups Gpvq is compactly generated and subdegree-finite.
This completes the proof that (i) implies (ii).

Conversely, suppose that (ii) holds; as before, we can regard G as a pPq-
closed, in particular closed, subgroup of AutpT 1q, and thus identify G with
Up∆q as a topological group. We see immediately by Theorem 1.7 that G

is a nondiscrete simple group, and it is clear that G does not fix any vertex
of T . By Theorem 1.8, Up∆q is compactly generated and locally compact.
Thus G P S , showing that (ii) implies (i).
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7 Examples

7.1 Vertex-transitive actions on trees of small degree

Since there is a one-to-one correspondence, isomorphism types of local action
diagrams can be used to classify isomorphism types of pPq-closed groups
acting on trees. This classification is most useful for families of groups
acting on trees where the associated local action diagram is ‘small’.

Let us consider the special case of a vertex-transitive pPq-closed group
G acting on a locally finite tree T . The tree is necessarily regular, of some
degree d; let us write T “ Td, to indicate that T is a regular tree of degree d.
In the local action diagram ∆ “ pΓ, pXaq, Gpvqq for pG,T q, the graph Γ has a
single vertex v; the set Xv has size d and there is a single permutation group
Gpvq, which is defined on Xv. The set tXa | a P AΓu is the partition of Xv

into Gpvq-orbits. The only remaining piece of information in the local action
diagram is the edge-reversal map r on Γ; since there is only one vertex, this
can be any permutation of AΓ whose square is the identity.

Thus, up to conjugacy in AutpTdq, there are only finitely many vertex-
transitive pPq-closed subgroups of AutpTdq. The relevant conjugacy classes
are in one-to-one correspondence with the set Vd of equivalence classes of
pairs pH, rq, where H is a subgroup of Sympdq and r is an orbit pairing for
H, meaning a permutation of the set Hzrds of H-orbits whose square is the
identity. Here we say two pairs pH1, r1q and pH2, r2q are equivalent if there
is g P Sympdq such that gH1g

´1 “ H2 and the map g1 : H1 r rds Ñ H2zrds
induced by g1 satisfies g1r1 “ r2g

1. Write UpH, rq for the subgroup of AutpTdq
associated to pH, rq (here UpH, rq should be understood as specified up to
conjugacy in AutpTdq). The orbit pairing captures the difference between
the number of arc-orbits of UpH, rq and the number of edge-orbits: the
arc-orbits of UpH, rq correspond to orbits of H, whereas the edge-orbits
correspond to orbits of r on Hzrds. The orbits of H fixed by r correspond
to those arc-orbits of UpH, rq that are closed under the reverse map on Td,
in other words, those arcs that are reversed by some element of UpH, rq.
We see that UpH, rq fixes an end exactly in the following situation: H has
a fixed point and acts transitively on the remaining points, and the orbit
pairing is nontrivial.

Let us first deal with the special case that H is a free permutation group,
that is, point stabilizers of H are trivial. In this case, UpH, rq acts freely on
the arcs of Td, and it follows by Theorem 2.9 that it can be expressed as a
free product of copies of H, Z and C2 with no amalgamation. Specifically,
writing K˚n to mean a free product of n copies of K, we have

UpH, rq – H ˚ C˚a
2 ˚ Z

˚b

where a is the number of fixed points of r (in other words, the number of
reversible arc orbits of UpH, rq on the tree) and b is the number of nontrivial
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orbits of r. In fact, in this case we see that every group acting on Td with
the same local action diagram as UpH, rq is AutpTdq-conjugate

For small values of d, it is feasible to list the conjugacy classes of vertex-
transitive 1-tree-closed subgroups of AutpTdq; we will describe the list for
d ď 5. The pairs pH, rq given below should be understood as being taken up
to equivalence. Where it is unambiguous we will indicate the orbit pairing
simply by the size of the paired orbits, so for instance r12, 22s indicates an
orbit pairing where an orbit of size 1 is paired with an orbit of size 2, another
orbit of size 2 is paired with a third orbit of size 2, and all other orbits are
fixed by r. This notation is especially convenient when d ď 5, as in this
case, for any H ď Sympdq, all the orbits of H of the same size lie in a single
orbit of the normalizer of H. For brevity we will write pH, idq as pHq. Write
Sn :“ Sympnq, An “ Altpnq, Cn for a cyclic group of order n and Dn for a
dihedral group of order n. We first recall the conjugacy classes of subgroup
of Sd.

In S0 and S1 there is only the trivial group 1.
In S2 there are two subgroups, namely 1 and S2 itself. (Below, S2 is the

group of order 2 acting as a local action at a vertex of degree 2, whereas C2

without further decoration will represent an edge-reversing involution.)
In S3 there are four conjugacy classes of subgroup, namely: 1; one class

C2`1 of subgroup of order 2; the alternating group A3 “ C3; and S3 itself.
In S4 there are 11 conjugacy classes of subgroup, namely: the trivial

group 1; two classes C´
2

and C`
2

of subgroup of order 2 (acting with two and
zero fixed points respectively); one class each of cyclic subgroups C3`1 and
C4 of orders 3 and 4; two classes V ´ and V ` of the Klein 4-group (the plus
sign denoting the regular action, and the minus sign the faithful intransitive
action); one class of point stabilizers S3`1; one class of the dihedral group
D8 of order 8; the alternating group A4; and the symmetric group itself S4.

In S5 there are 19 conjugacy classes of subgroup of S5. These are:
11 classes of subgroup that fix a point (corresponding to conjugacy

classes of subgroup of S4);
Three classes of subgroup with orbit partition p3, 2q, as follows:
cyclic group C3`2 of order 6; ‘twisted S3’, viz. S

˚
3

“ xp1, 2, 3q, p1, 2qp4, 5qy;
direct product S3`2 “ S3 ˆ S2.

Five classes of transitive subgroup, as follows:
cyclic group C5 of order 5; dihedral group D10 of order 10; general affine

group GAp1, 5q, a group of order 20; alternating group A5; S5 itself.
The number of conjugacy classes of Burger–Mozes subgroup in AutpTdq

is thus 1, 1, 2, 4, 11, 19 for d “ 0, 1, 2, 3, 4, 5 respectively. However, due to
nontrivial orbit pairings, the total number of conjugacy classes of pPq-closed
subgroup in AutpTdq is larger, starting from d “ 2: for d “ 2, 3, 4, 5 there
are a total of 3, 6, 19, 40 conjugacy classes.

Given G “ UpH, rq, we can determine the quotient G{G` as the fun-
damental group of a graph of groups with trivial edge groups by passing to
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the reversal-free subdivision of in Theorem 5.16. In particular, G{G` can
easily be written as a free product with no amalgamation.

In the tables below, a blank entry means a repeat of the previous entry.
Note that the same group may appear several times, but with different
actions on the tree. ‘l.p.c.’ stands for ‘local prime content’, in other words,
the primes p such that the p-Sylow subgroup of a compact open subgroup of
UpH, rq is infinite; in the present context, the local prime content is empty
if and only if UpH, rq is discrete.

d Local action orbit pairing l.p.c. fixed end G{G` G` local action

0 1 id H N/A 1 1

1 1 id H N/A C2 1

2 1 id H No C˚2

2
1

r11s Yes Z 1

S2 id H No S2 ˚ C2 1

3 1 id H No C˚3

2
1

r11s No C2 ˚ Z

S2 id t2u No C˚2

2
S2

r12s Yes Z

C3 id H No C3 ˚ C2 1

S3 id t2u No C2 S3

4 1 id H No C˚4

2
1

r11s No C˚2

2
˚ Z

r11, 11s No Z
˚2

C´

2
id t2u No C˚3

2
C´

2

r11s No C2 ˚ Z

r12s No C2 ˚ Z

C`

2
id H No C˚2

2
1

r22s No Z

C3 id t3u No C˚2

2
C3

r13s Yes Z

C4 id H No C4 ˚ C2 1

V ´ id t2u No C˚2

2
V ´

r22s No Z

V ` id H No V ` ˚ C2 1

S3 id t2, 3u No C˚2

2
S3

r13s Yes Z

D8 id t2u No S2 ˚ Z V ´

A4 id t3u No C2 A4

S4 id t2, 3u No C2 S4

Table 1: The 30 vertex-transitive pPq-closed actions on trees of degree d ď 4
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Local action orbit pairing l.p.c. fixed end G{G` G` local action
1 id H No C˚5

2
1

r11s No C˚3

2
˚ Z

r11, 11s No C2 ˚ Z
˚2

C´

2
id t2u No C˚4

2
C´

2

r11s No C˚2

2
˚ Z

r12s No C˚2

2
˚ Z

r11, 12s No C2 ˚ Z
˚2

C`

2
id t2u No C˚3

2
C`

2

r12s No C2 ˚ Z

r22s No C2 ˚ Z

C3 id t3u No C˚3

2
C3

r11s No C2 ˚ Z

r13s No C2 ˚ Z

C4 id t2u No C˚2

2
C4

r14s Yes Z

V ´ id t2u No C˚3

2
V ´

r12s No C2 ˚ Z

r22s No C2 ˚ Z

V ` id t2u No C˚2

2
V `

r14s Yes Z

S3 id t2, 3u No C˚3

2
S3

r11s No C2 ˚ Z

r13s No C2 ˚ Z

D8 id t2u No C˚2

2
D8

r14s Yes Z

A4 id t2, 3u No C˚2

2
A4

r14s Yes Z

S4 id t2, 3u No C˚2

2
S4

r14s Yes Z

C3`2 id t2, 3u No C˚2

2
C3`2

r23s No Z

S˚

3
id t2, 3u No C˚2

2
S˚

3

r23s No Z

S3`2 id t2, 3u No C˚2

2
S3`2

r23s No Z

C5 id H No C5 ˚ Z 1
D10 id t2u No C2 D10

GAp1, 5q id t2u No C2 GAp1, 5q
A5 id t2, 3u No C2 A5

S5 id t2, 3u No C2 S5

Table 2: The 40 vertex-transitive pPq-closed actions on trees of degree 5

We should remember that the list of groups we have obtained so far is up
to equivalence of action on the tree, not up to isomorphism as groups. For ex-
ample, the group Z˚C2 appears as a vertex-transitive 1-tree-closed subgroup
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of both AutpT3q and AutpT4q, but clearly the actions are not equivalent. It
is not clear what group isomorphisms could exist between the nondiscrete
groups in the list (that is, all the groups listed such that the local action is
not free).

Recall the class S of t.d.l.c. groups that are compactly generated, nondis-
crete and topologically simple. Of the 70 entries in the tables, only seven
have G` P S , namely the Burger–Mozes groups UpF q with transitive lo-
cal action for F P tS3, A4, S4,D10, GAp1, 5q, A5 , S5u. However, in a further
37(?) cases (those with nontrivial local prime content where G does not
fix an end), G` is nondiscrete and simple, but fails to be compactly gen-
erated. The latter simple groups have a complicated structure in general,
which may merit further investigation. For instance, by [3], in every nondis-
crete Burger–Mozes group there is a compactly generated closed subgroup
K (where without loss of generality K ď G`), and a discrete normal sub-
group D of K, such that K{D P S . We do not know if any of these 37
non-compactly generated simple groups G` are isomorphic to one another
as abstract or topological groups.

One motivation for studying vertex-transitive groups acting on trees of
small degree is to understand compactly generated t.d.l.c. groups in terms of
their degree. The degree degpGq of a compactly generated t.d.l.c. group G

is the smallest degree of a Cayley–Abels graph for G. The degree 0 groups
are the compact groups and the degree 2 groups are the compact-by-cyclic
groups, but even for degree 3 the structure is not well-understood, except
that the degree must be larger than the maximum of the local prime content.
What can be said in general, given a group G acting with kernel K on a
Cayley–Abels graph Γ of minimal degree d, is that the action lifts to an
action of a group rG acting vertex-transitively on Td, with an associated
homomorphism θ : rG Ñ G{K with discrete kernel. We can then consider
the pPq-closure rGpPq as a first step towards understanding rG and the original
group G. Both the local action and the orbit pairing for rGpPq come from
the action of G on Γ.

7.2 Building more compactly generated simple groups

Recall that Corollary 1.9 provides conditions that allow us to construct a
local action diagram that will yield a group in S . There are easy ways to
meet most of these conditions. For instance, to ensure ∆ is irreducible it is
sufficient to have |Xa| ą 1 for all a P AΓ, in other words, none of the groups
Gpvq has a fixed point. Given a compactly generated t.d.l.c. group G, then
every compact open subgroup U of G will give rise to a closed transitive
subdegree-finite action of G on G{U . The only difficulty is in making sure
that the action of G on G{U is generated by point stabilizers; but this will
certainly be the case if, for example, U ‰ t1u and G does not admit any
proper discrete quotient.
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As an illustration, we prove Theorem 1.10, which shows that we can
‘combine’ finitely many groups in S (chosen from S arbitrarily) to make
another group in S of the form Up∆q for a suitably chosen ∆.

Proof of Theorem 1.10. Define ∆ “ pΓ, pXaq, pGpvqqq as follows:
Γ is a star with central vertex v0, leaves v1, . . . , vn, and exactly one arc

ai from v0 to vi for 1 ď i ď n.
For 1 ď i ď n, set Xai “ t3i, 3i`1, 3i`2u and Xai is the left coset space

Gi{Ui.
Gpv0q is the direct product of n copies of Symp3q, where the i-th copy of

Symp3q acts naturally on Xai .
For 1 ď i ď n, Gpviq is Gi acting by left translation on Gi{Ui.
It is now easy to see that we have defined a valid local action diagram,

and taking the action of Up∆q on its defining tree, all the conditions of
Corollary 1.9(ii) are immediately apparent. Thus Up∆q P S .

Let pT, π,Lq be the ∆-tree defining Up∆q. For 1 ď i ď n let v˚
i P π´1pviq

and let Oi “ Up∆qv˚
i
. Then the action of Oi on o´1pv˚

i q is exactly Gpviq,
which is isomorphic to Gi; indeed, by Proposition 4.5, the action homomor-
phism of Oi on o´1pv˚

i q splits, so Oi – Ki ¸Gi where Ki is the kernel of the
action. In turn, Ki fixes an arc, hence is compact by Proposition 6.2.

This theorem suggests an interesting preorder on S : say that G1 ăOK

G2 if there is an open subgroupO ofG2 and a compact normal subgroupK of
O such that O{K – G1. The corollary shows that ăOK is a directed preorder
on S , that is, any finite subset has an upper bound, and moreover, within
S , the groups admitting faithful pPq-closed actions on trees are cofinal. On
the other hand, every element of S is ‘close to the bottom’ in the following
sense: given G P S , there are only ℵ0 compactly generated open subgroups,
each of which has at most finitely many quotients in S , so for each G P
S there are at most ℵ0 different isomorphism types of H P S such that
H ăOK G. On the other hand, by [11], S as a whole has 2ℵ0 isomorphism
classes. In particular, writing S {OK for the poset generated by ăOK , it
follows that S {OK has infinite ascending chains. We are naturally led to a
‘well-foundedness’ question:

Question 1. Does S {OK have infinite descending chains? That is, does
there exist a sequence G0, G1, . . . in S such that Gi`1 ăOK Gi but Gi ćOK

Gi`1 for all i?

It would also be interesting to find a non-trivial ăOK-equivalence class,
i.e. a set X of two or more pairwise non-isomorphic groups in S such that
for any G,H P X , then G can be realized as a quotient with compact kernel
of an open subgroup of H and vice versa.
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A A GAP implementation

The following GAP code [5] implements the classification of vertex-transitive
pPq-closed actions on regular trees explained in Section 7.1. Given d P Ně2

it outputs a list of representatives of all associated local action diagrams.
Here, a local action diagram takes the form

[local action, arcs, edge-reversal]

where the arcs are given as the list of orbits of the local action and the
edge-reversal as an element of order 2 of the symmetric group on said list.

1 LocalActionDiagrams:=function(d)

2 local list, G, cSubG, cGv, Gv, arcs, i, NGv, S, actNGv, R, cr,

r;

3 # list to contain all the relevant local action diagrams

4 list:=[];

5 # initialize Sym(d) and its subgroup conjugacy classes

6 G:=SymmetricGroup(d);

7 cSubG:=ConjugacyClassesSubgroups(G);

8 # for each conjugacy class of subgroups of G...

9 for cGv in cSubG do

10 # ...choose a representative and find orbits as a list

of sets

11 Gv:=cGv[1];

12 arcs:=ShallowCopy(Orbits(Gv,[1..d]));

13 for i in [1..Length(arcs)] do arcs[i]:=Set(arcs[i]); od

;

14
15 # initialize the normalizer of Gv in G

16 NGv:=Normalizer(G,Gv);

17
18 # choose edge-reversal, i.e. an element of order at

most 2 of Sym(arcs), up to the action of NGv on

arcs (Gv-orbits)

19 S:=SymmetricGroup(Size(arcs));

20 actNGv:=ActionHomomorphism(NGv,arcs,OnSets);

21 R:=Image(actNGv);

22 # in the line below, ’OrbitsDomain(R,S)’ returns the

list of orbits for the conjugation action of R on S

23 for cr in OrbitsDomain(R,S) do

24 r:=cr[1];

25 if not r*r=() then continue; fi;

26 Add(list,[Gv,arcs,r]);
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27 od;

28 od;

29 return list;

30 end;

For example, we obtain the following output for the case d “ 3, which
corresponds to the entries with d “ 3 in Table 1.

1 LocalActionDiagrams(3);

2 [ [ Group(()), [ [ 1 ], [ 2 ], [ 3 ] ], () ],

3 [ Group(()), [ [ 1 ], [ 2 ], [ 3 ] ], (2,3) ],

4 [ Group([ (2,3) ]), [ [ 1 ], [ 2, 3 ] ], () ],

5 [ Group([ (2,3) ]), [ [ 1 ], [ 2, 3 ] ], (1,2) ],

6 [ Group([ (1,2,3) ]), [ [ 1, 2, 3 ] ], () ],

7 [ Group([ (1,2,3), (2,3) ]), [ [ 1, 2, 3 ] ], () ] ]

The following table records the number of vertex-transitive pPq-closed
actions on the regular tree Td for d P t3, . . . , 11u in comparison to the num-
ber of conjugacy classes |SdzSubpSdq| of subgroups of Sd, which is also the
number of Burger–Mozes groups for Td.

d |SdzSubpSdq| vertex-transitive, pPq-closed actions on Td

3 4 6

4 11 19

5 19 40

6 56 125

7 96 285

8 296 904

9 554 2240

10 1593 7213

11 3094 19326

12 10723 ?

Table 3: Number of vertex-transitive pPq-closed actions up to degree 11

We remark that according to the Online Encyclopedia of Integer Se-
quences [10, A000638], the number of conjugacy classes of subgroups of Sd

has been calculated up to d ď 18, with the most recent reference being to
work of D. Holt [6].
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