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SOLUTIONS OF φpnq “ φpn ` kq AND σpnq “ σpn ` kq

KEVIN FORD

ABSTRACT. We show that for some even k ď 3570 and all k with 442720643463713815200|k, the equation

φpnq “ φpn ` kq has infinitely many solutions n, where φ is Euler’s totient function. We also show that for a

positive proportion of all k, the equation σpnq “ σpn ` kq has infinitely many solutions n. The proofs rely on

recent progress on the prime k-tuples conjecture by Zhang, Maynard, Tao and PolyMath.

1. INTRODUCTION

We partially solve a longstanding conjecture about the solubility of

(1.1) φpn ` kq “ φpnq,
where φ is Euler’s function and k is a fixed positive integer.

Hypothesis Sk. The equation (1.1) holds for infinitely many n.

Ratat and Goormaghtigh in 1917–18 (see [5], p. 140) listed several solutions when k “ 1. Erdős

conjectured in 1945 that for any m, the simultaneous equations

(1.2) φpnq “ φpn ` 1q “ ¨ ¨ ¨ “ φpn ` m ´ 1q
has infinitely many solutions n. If true, this would immediately imply hypothesis Sk for every k. However,

there is only one solution of (1.2) known when m ě 3, namely n “ 5186, m “ 3. In 1956, Sierpiński [26]

showed that for any k, (1.1) has at least one solution n (e.g. take n “ pp´1qk, where p is the smallest prime

not dividing k). This was extended by Schinzel [24] and by Schinzel and Wakulicz [25], who showed that

for any k ď 2 ¨ 1058 there are at least two solutions of (1.1). In 1958, Schinzel [24] explicitly conjectured

that Sk is true for every k P N. There is good numerical evidence for Sk, at least when k “ 1 or k is even

[1, 2, 3, 15, 9, 13]. Information about solutions for k P t1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12u can also be found

in OEIS [20] sequences A001274, A001494, A330251, A179186, A179187, A179188, A179189, A179202,

A330429, A276503, A276504 and A217139, respectively. Below 1011 there are very few solutions of (1.1)

when k ” 3 pmod 6q [9], e.g. only the two solutions n P t3, 5u for k “ 3 are known. A further search by

G. Resta (see [20], sequence A330251) reveals 17 more solutions in r1012, 1015s.
There is a close connection between Hypothesis Sk for even k and generalized prime twins.

Hypothesis Ppa, bq: there are infinitely many n P N such that both an ` 1 an bn ` 1 are prime.

Hypothesis Ppa, bq is believed to be true for any pair of positive integers a, b, indeed this is a special

case of Dickson’s Prime k-tuples conjecture [4]. Klee [14] and Moser [18] noted that Hypothesis Pp1, 2q
immediately gives S2, and Schinzel [24] observed that Hypothesis Pp1, 2q implies Sk for every even k. The

proof is simple: if n ` 1 and 2n ` 1 are prime and larger than k, then φpkp2n ` 1qq “ φppn ` 1q2kq.

Graham, Holt and Pomerance [9] generalized this idea, showing the following.
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Lemma 1 ([9, Theorem 1]). For any k and any number j such that j and j `k have the same prime factors,

Hypothesis Pp j
pj,j`kq ,

j`k
pj,j`kqq implies Sk.

This also has an easy proof: if j
pj,j`kqr ` 1 and j`k

pj,j`kqr ` 1 are both prime, then n “ jp j`k
pj,j`kqr ` 1q

satisfies (1.1). Note that for odd k there are no such numbers j, and for each even k there are finitely many

such j (see [9], Section 3). Extending a bound of Erdős, Pomerance and Sárkőzy [8] in the case k “ 1,

Graham, Holt and Pomerance showed that the solutions of (1.1) not generated from Lemma 1 are very rare,

with counting function Okpx expt´plog xq1{3uq. Pollack, Pomerance and Treviño [22] proved a version

uniform in k, and Yamada [28] sharpened this bound to Okpx expt´p1{
?
2 ` op1qq

?
log x log log log xuq.

Assuming the Hardy-Littlewood conjectures [10], when k is even we conclude that there are „ Ckx{ log2 x
solutions n ď x of (1.1), where Ck ą 0.

At present, Hypothesis Ppa, bq is not known to hold for any pair a, b. However, the work of Zhang,

Maynard, Tao and the PolyMath8b project allow us to conclude Ppa, bq for some pairs a, b from a given

collection of pairs. To set things up, we say that a collection of linear forms pa1n ` b1, . . . , akn ` bkq
is admissible if ai ą 0 for each i, the forms ain ` bi are distinct and there is no prime dividing pa1n `
b1q ¨ ¨ ¨ pakn ` bkq for every integer n.

Lemma 2. For any m ě 2, there is a constant Km so that if k ě Km and pa1n` b1, . . . , akn` bkq is set of

admissible linear forms, then for some distinct i1, . . . , im P t1, . . . , ku, there are infinitely many r such that

the m numbers ai1r ` bi1 , . . . , aimr ` bim are simultaneously prime. Moreover, K2 “ 50 is admissible.

The case m “ 2 is a generalization of the celebrated theorem of Yitang Zhang [29], while Maynard

[16, 17] proved the existence of Km for any m. We note that K2 ď 50 and Km ! exptp4 ´ 28
15

qmu by the

collaborative PolyMath8b project [23]1. If a1, . . . , ak are distinct, then the set of forms pain`1, . . . , akn`1q
are always admissible. Thus, given any set ta1, . . . , a50u of positive integers, there is an i ‰ j so that

Ppai, ajq holds. In fact [17, Theorem 3.4], the number of such r ď x in Lemma 2 is "a x{ logk x.

Theorem 1. We have

(a) For any k that is a multiple of 442720643463713815200, Sk is true;

(b) There is some even ℓ ď 3570 such that Sk is true whenever ℓ|k; consequently, the number of k ď x

for which Sk is true is at least x{3570.

Using Lemma 2, we also make progress toward Erdős’ conjecture that (1.2) has infinitely many solutions.

Theorem 2. For any m ě 3 there is a tuple of distinct positive integers h1, . . . , hm so that for any ℓ P N,

the simultaneous equations

φpn ` ℓh1q “ φpn ` ℓh2q “ ¨ ¨ ¨ “ φpn ` ℓhmq
have infinitely many solutions n.

Maynard [16, 17] showed that K2 ď 5 under the assumption of the Elliott-Halberstam Conjecture. Im-

provements to K2 allow us to improve significantly on Theorem 1.

Theorem 3. If K2 ď 5, then Sk is true for all k with 30|k. If K2 ď 4, then Sk is true for all k with 6|k.

The author recently learned that Sungjin Kim [12] proved weaker statements in the direction of Theorem

1. He used Lemma 2 to show that Sk holds for some k P tB, 2B, . . . , 50Bu, with B “ ś

pď50 p. He also

proved that the set of k for which Sk holds has counting function " log log x.

1We utilize the “general linear forms” version of Maynard [17, Theorem 3.1]. Although the results of [23] are not stated with

this generality, they hold with trivial modifications to the proof; see [17], [23, Theorem 3.2 (i), Theorem 3.13] for details.
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On can ask analogous questions about the sum of divisors function σpnq. As σppq “ p`1 vs φppq “ p´1,

oftentimes one can port theorems about φ over to σ. This is not the case here, since our results depend

heavily on the existence of solutions of

aφpbq “ bφpaq,
which is true if and only if a and b have the same set of prime factors. The analogous equation

aσpbq “ bσpaq ô σpaq
a

“ σpbq
b

has more sporadic solutions, e.g. if a, b are both perfect numbers or multiply perfect numbers.

Theorem 4. For a positive proportion of all k P N, the equation

σpnq “ σpn ` kq

has infinitely many solutions n.

Unfortunately, our methods cannot specify any particular k for which the conclusion holds. Our method

requires finding, for t “ K2, numbers a1, . . . , at so that

(1.3)
σpa1q
a1

“ ¨ ¨ ¨ “ σpatq
at

“ y.

Such collections of numbers are sometimes referred to as “friends” in the literature, e.g. [21]. Finding larger

collections of ai satisfying (1.3) leads to stronger conclusions.

Theorem 5. Let m ě 2, let t “ Km and assume that there is a y and positive integers a1, . . . , at satisfying

(1.3). Then there are positive integers h1 ă h2 ă ¨ ¨ ¨ ă hm so that for a positive proportion of integers ℓ,

there are infinitely many solutions of

σpn ` ℓh1q “ ¨ ¨ ¨ “ σpn ` ℓhmq.

It is known [19] that for y “ 9, there is a set of 2095 integers satisfying (1.3). Also K2 ď 50 [23], and

hence Theorem 4 follows from the case m “ 2 of Theorem 5. Even the weaker bound K2 ď 105 from [16]

suffices. We cannot make the conclusion unconditional when m ě 3, since the best know bounds for K3 is

K3 ď 35410 [23, Theorem 3.2 (ii)].

Conjecture A. For any t, there is an y such that σpaq{a “ y has at least t solutions. That is, there are

arbitrarily large circles of friends.

Clearly, Conjecture A implies the conclusion of Theorem 5 for all m. In [7], Erdős mentions Conjecture

A and states that he doesn’t know of any argument that would lead to its resolution. In the opposite direction,

Hornfeck and Wirsing [11] showed that for any y, there are ď zop1q solutions of σpaq{a “ y with a ď z;

this was improved by Wirsing [27], who showed that the counting function is Opzc{ log log zq for some c,

uniformly in y. Pollack and Pomerance [21] studied the solutions of (1.3), gathering data on pairs, triples

and quadruples of friends, but did not address Conjecture A.

Using (1.3) and prime pairs an ´ 1 and bn ´ 1, one can generate many solutions of σpnq “ σpn ` kq,

analogous to Lemma 1; see Yamada [28, Theorem 1.1]. For example, if σpmq{m “ σpm ` 1q{pm ` 1q
(the ratios need not be integers as claimed in [28]), r ą m ` 1, and rm ´ 1 and rpm ` 1q ´ 1 are both

prime, then σpmprpm` 1q ´ 1qq “ σppm` 1qpmr ´ 1qq. Yamada [28, Theorem 1.2] showed that there are

! x expt´p1{
?
2 ` op1qq

?
log x log log log xu solutions n ď x not generated in this way.
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2. PROOFS

Throughout, 1 ď a ă b are integers. We first show that Ppa, bq implies Sk for certain k, inverting

Lemma 1. Define

(2.1) κpa, bq “ pb1 ´ a1q
ź

p|a1b1

p, a1 “ a

pa, bq , b
1 “ b

pa, bq .

We observe that κpa, bq is always even.

Lemma 3. Assume Ppa, bq. Then Sk holds for every k which is a multiple of κpa, bq.

Proof. Define a1 “ a
pa,bq , b

1 “ b
pa,bq and observe that Ppa, bq ñ Ppa1, b1q. Let s “ ś

p|a1b1 p, and suppose

that r ą maxpa1, b1q such that a1r ` 1 and b1r ` 1 are both prime. Let ℓ P N and set

m1 “ b1ℓspa1r ` 1q, m2 “ a1ℓspb1r ` 1q.
As all of the prime factors of a1b1 divide ℓs, we have φpb1ℓsq “ b1φpℓsq and φpa1ℓsq “ a1φpℓsq, and it

follows than φpm1q “ φpm2q. Finally, m1 ´ m2 “ pb1 ´ a1qℓs “ ℓκpa, bq. �

Proof of Theorem 1. Let

ta1, . . . , a50u “ t1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 56u,

By Lemma 2, for some i, j with 1 ď i ă j ď 50, Ppa1, ajq is true. We compute

lcmtκpai, ajq : 1 ď i ă j ď 50u “ 442720643463713815200 “ 253352
ź

7ďpď47

p,

and thus (a) follows from Lemma 3.

For part (b), we take

ta1, . . . , a50u “ t15, 20, 30, 36, 40, 45, 60, 72, 75, 80, 90, 96, 100, 108, 120, 135, 144, 150, 180, 192, 200,
216, 225, 240, 250, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 450, 480, 500, 540, 600,

720, 750, 810, 900, 960, 1080, 1200, 1440, 1500, 1800u,
numbers that only have prime factors 2, 3, 5. We also compute that

max
1ďiăjď50

κpai, ajq “ 3570,

and again invoke Lemma 3. This proves (b). �

Remarks. For any choice of a1, . . . , a50, 442720643463713815200
6

|Lpaq, where Lpaq “ lcmtκpai, ajq :

i ă ju. Without loss of generality, assume pa1, . . . , a50q “ 1. For a prime 7 ď p ď 47, if p|ai for some

i then p ∤ aj for some j and thus p|κpai, ajq. If p ∤ ai for all i, by the pigeonhole principle, there are

two indices with ai ” aj pmod pq. Again, p|κpai, ajq. Thus, p|Lpaq. Now we show that 52|Lpaq. Let

Sb “ tai : 5b}aiu for b ě 0. Then |S0| ě 1. If |Sb| ě 1 for some b ě 2, then there are i, j with 52|ai
and 5 ∤ aj , and then 52|κpai, ajq. Otherwise, we have |Sb| ě 21 for some b P t0, 1u. By the pigeonhole

principle, there is i ‰ j with 5b}ai, 5b}aj and 5b`2|pai ´ ajq. This also implies that 52|κpai, ajq. Simlarly,

let Tb “ tai : 3b}aiu. Then we have either |Tb| ě 1 for some b ě 2, or |Ti| ě 7 for some i P t0, 1u.

Either way, 32|Lpaq. Let Ub “ tai : 2b}aiu. Then either |Ub| ě 1 for some b ě 4 or |Ub| ě 9 for some

b P t0, 1, 2, 3u. Either way, 24|Lpaq. It is easy to construct a “ pa1, . . . , a50q such that 33 ∤ Lpaq and

25 ∤ Lpaq. However, such constructions seem to always produce q|Lpaq for some prime q ą 50.
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We likewise believe that 3570 is ths smallest number than can be produced for Theorem 1 (b). Using

numbers divisible by 4 or more primes always produces some very large κpa, bq, thus we limitied our search

with numbers composed only of the primes 2,3,5. For a given finite set of integers tb1, . . . , bru, the problem

of minimizing maxi,jPI κpbi, bjq over all 50-element subsets I Ă t1, . . . , ru, is equivalent to that of finding

the largest clique in a graph. Take vertex set t1, . . . , ru and draw an edge from i to j if κpbi, bjq ď t. Using

the Sage routing clique number() with t “ 3569 and tb1, . . . , bru being the smallest 800 numbers

composed only of primes 2,3,5 (the largest being 12754584), we find that the largest clique has size 49.

Proof of Theorem 2. Let m ě 2, k “ Km and consider any set ta1, a2, . . . , aku of k positive integers.

By Lemma 2, there are 1 ď i1 ă i2 ă ¨ ¨ ¨ ă im ď k such that for infinitely many r, the m numbers

ai1r ` 1, . . . , aimr ` 1 are all prime. Let r be such a number. Define

hj “ pai1 ¨ ¨ ¨ aimq2
aij

p1 ď j ď mq.

Let ℓ P N and set n “ ℓpai1 ¨ ¨ ¨ aimq2r. Then, since aij |hj for all j, it follows that for any j,

φpn ` ℓhjq “ φpℓhjpaijr ` 1qq “ φpℓhjqaijr “ φpℓhjaij qr. �

Proof of Theorem 3. Same as the proof of Theorem 1 (a), but take ta1, a2, a3, a4, a5u “ t1, 2, 3, 4, 6u if

K2 ď 5 and ta1, . . . , a4u “ t1, 2, 3, 4u if K2 ď 4. �

Proof of Theorem 5. Let t “ Km and a1, . . . , at satisfy (1.3). Put A “ lcmra1, . . . , ats and for each i define

bi “ A{ai. By Lemma 2 applied to the collection of linear forms bin ´ 1, 1 ď i ď t, there exist i1, . . . , im
such that for infinitely many r P N, the m numbers bijr ´ 1 are all prime. Let r ą A be such a number, and

let ℓ P N such that pℓ,Aq “ 1 (this holds for a positive proportion of all ℓ). Let

tj “ ℓaij pbijr ´ 1q “ Aℓr ´ ℓaij p1 ď j ď mq.
By (1.3), for every j we have

σptjq “ σpℓqσpaij qbijr “ yσpℓqAr. �
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[21] P. Pollack and C. Pomerance, Some problems of Erdős on the sum-of-divisors function, Trans. Amer. Math. Soc. Ser. B 3

(2016), 1–26.

[22] P. Pollack, C. Pomerance and E. Treviño, Sets of Monotonicity for Eulers Totient Function, Ramanujan J. 30 (2013), 379–398.

[23] D. H. J. Polymath, Variants of the Selberg sieve, and bounded gaps between primes, Res. Math. Sci. 1 (2014), Art. 12, 83 pp.

Erratum: ibid. 2 (2015), Art. 15, 2 pp.

[24] A. Schinzel, Sur l’équation φpx ` kq “ φpxq.. (French) Acta Arith 4 (1958), 181–184.

[25] A. Schinzel and A. Wakulicz, Sur l’équation φpx ` kq “ φpxq. II. (French) Acta Arith. 5 (1959), 425–426.
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