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SOLUTIONS OF ¢(n) = ¢(n + k) AND o(n) = o(n + k)
KEVIN FORD

ABSTRACT. We show that for some even k < 3570 and all k with 442720643463713815200|k, the equation
¢(n) = ¢(n + k) has infinitely many solutions n, where ¢ is Euler’s totient function. We also show that for a
positive proportion of all k, the equation o(n) = o(n + k) has infinitely many solutions n. The proofs rely on
recent progress on the prime k-tuples conjecture by Zhang, Maynard, Tao and PolyMath.

1. INTRODUCTION

We partially solve a longstanding conjecture about the solubility of

(1.1) ¢(n + k) = ¢(n),
where ¢ is Euler’s function and £ is a fixed positive integer.
Hypothesis S;.. The equation (L.I) holds for infinitely many n.

Ratat and Goormaghtigh in 1917-18 (see [5], p. 140) listed several solutions when k& = 1. Erd&s
conjectured in 1945 that for any m, the simultaneous equations

(12) B(n) = d(n+1) =+ = $(n+m 1)

has infinitely many solutions n. If true, this would immediately imply hypothesis Sy, for every k. However,
there is only one solution of (I.2)) known when m > 3, namely n = 5186, m = 3. In 1956, Sierpinski [26]]
showed that for any &, (1)) has at least one solution n (e.g. take n = (p— 1)k, where p is the smallest prime
not dividing k). This was extended by Schinzel [24] and by Schinzel and Wakulicz [25], who showed that
for any k < 2 - 10°8 there are at least two solutions of (I.I). In 1958, Schinzel [24] explicitly conjectured
that Sy, is true for every k € N. There is good numerical evidence for Si, at least when k = 1 or k is even
(1,2,13,15,19,13]. Information about solutions for k € {1,2,3,4,5,6,7,8,9,10,11, 12} can also be found
in OEIS [20] sequences A001274, A001494, A330251, A179186, A179187, A179188, A179189, A179202,
A330429, A276503, A276504 and A217139, respectively. Below 10'! there are very few solutions of (I.I)
when k£ = 3 (mod 6) [9], e.g. only the two solutions n € {3,5} for k = 3 are known. A further search by
G. Resta (see [20], sequence A330251) reveals 17 more solutions in [1012, 1015].

There is a close connection between Hypothesis Sy, for even k and generalized prime twins.
Hypothesis & (a,b): there are infinitely many n € N such that both an + 1 an bn + 1 are prime.

Hypothesis & (a,b) is believed to be true for any pair of positive integers a, b, indeed this is a special
case of Dickson’s Prime k-tuples conjecture [4]. Klee [14] and Moser [18] noted that Hypothesis P(1, 2)
immediately gives Sy, and Schinzel [24] observed that Hypothesis P(1,2) implies Sy, for every even k. The
proof is simple: if n + 1 and 2n + 1 are prime and larger than k£, then ¢(k(2n + 1)) = ¢((n + 1)2k).
Graham, Holt and Pomerance [9]] generalized this idea, showing the following.

Date: March 10, 2020.
The author is supported in part by National Science Foundation grant DMS-1802139.
The author thanks Paul Pollack for bringing papers [7], [11] and [21] to his attention, Sungjin Kim for sharing the preprint [12],
and Chandra Chekuri for helpful discussion about graph algorithms.
1


http://arxiv.org/abs/2002.12155v3

2 KEVIN FORD

Lemma 1 ([9, Theorem 1]). For any k and any number j such that j and j + k have the same prime factors,
Hypothesis P ( (j,jj gt (j?j++kk)) implies Sy,

This also has an easy proof: if ﬁr +1and %r + 1 are both prime, then n = j( (j{]:kk)r +1)
satisfies (I.I). Note that for odd & there are no such numbers j, and for each even k there are finitely many
such j (see [9], Section 3). Extending a bound of Erdds, Pomerance and Sarkézy [8] in the case & = 1,
Graham, Holt and Pomerance showed that the solutions of not generated from Lemmal(I]are very rare,
with counting function Oy, (x exp{—(logx)'/3}). Pollack, Pomerance and Trevifio [22] proved a version
uniform in k, and Yamada [28]] sharpened this bound to Oy, (z exp{—(1/4/2 + o(1))+/log x log log log z}).
Assuming the Hardy-Littlewood conjectures [10], when £ is even we conclude that there are ~ Cyx/ log? =
solutions n < x of (I1), where C}, > 0.

At present, Hypothesis & (a, b) is not known to hold for any pair a,b. However, the work of Zhang,
Maynard, Tao and the PolyMath8b project allow us to conclude &(a,b) for some pairs a, b from a given
collection of pairs. To set things up, we say that a collection of linear forms (ayn + by, ...,axn + bg)
is admissible if a; > 0 for each i, the forms a;n + b; are distinct and there is no prime dividing (a1n +

bi) - - (agn + by) for every integer n.

Lemma 2. For any m > 2, there is a constant K, so that if k > K, and (a1n+b1,...,apn+ by) is set of
admissible linear forms, then for some distinct iy, ..., i, € {1,..., k}, there are infinitely many r such that
the m numbers a;;r + b, ..., a;, v+ b; are simultaneously prime. Moreover, Ko = 50 is admissible.

The case m = 2 is a generalization of the celebrated theorem of Yitang Zhang [29], while Maynard
[16,17] proved the existence of K, for any m. We note that Ky < 50 and K,,, < exp{(4 — %—g)m} by the

collaborative PolyMath8b project [23ﬂ Ifaq,...,ay are distinct, then the set of forms (a;n+1, ..., axn+1)
are always admissible. Thus, given any set {aq,...,as0} of positive integers, there is an ¢ # j so that
Z(ai,aj) holds. In fact [17, Theorem 3.4], the number of such r < z in LemmaRlis », =/ log” z.

Theorem 1. We have

(a) For any k that is a multiple of 442720643463713815200, Sy, is true;
(b) There is some even £ < 3570 such that Sy, is true whenever l|k; consequently, the number of k < x
for which Sy, is true is at least x/3570.

)

Using Lemmal2] we also make progress toward Erdds’ conjecture that has infinitely many solutions.

Theorem 2. For any m > 3 there is a tuple of distinct positive integers hq, ..., hy, so that for any £ € N,
the simultaneous equations

d(n+Lhy) = ¢(n+ Lhy) = -+ = ¢p(n + Lhy,)
have infinitely many solutions n.

Maynard [16, [17]] showed that Ko < 5 under the assumption of the Elliott-Halberstam Conjecture. Im-
provements to K allow us to improve significantly on Theorem 11

Theorem 3. If Ky < 5, then Sy, is true for all k with 30|k. If Ko < 4, then Sy, is true for all k with 6|k.

The author recently learned that Sungjin Kim [12] proved weaker statements in the direction of Theorem
He used Lemma 2l to show that Sy, holds for some k € {B,2B,...,50B}, with B = HpSSO p. He also
proved that the set of k for which Sy, holds has counting function » log log z.

IWe utilize the “general linear forms” version of Maynard [17, Theorem 3.1]. Although the results of [23] are not stated with
this generality, they hold with trivial modifications to the proof; see [17], [23, Theorem 3.2 (i), Theorem 3.13] for details.
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On can ask analogous questions about the sum of divisors function o(n). As o(p) = p+1vs ¢(p) = p—1,
oftentimes one can port theorems about ¢ over to ¢. This is not the case here, since our results depend
heavily on the existence of solutions of

ap(b) = bg(a),
which is true if and only if a and b have the same set of prime factors. The analogous equation

ac(b) = bo(a) < @ _ %b)

has more sporadic solutions, e.g. if a, b are both perfect numbers or multiply perfect numbers.
Theorem 4. For a positive proportion of all k € N, the equation

o(n) =o(n+k)
has infinitely many solutions n.

Unfortunately, our methods cannot specify any particular k& for which the conclusion holds. Our method
requires finding, for ¢ = K5, numbers a, ..., a; so that
o(a1) o(ar)

(1.3) L _.
aq o7

Such collections of numbers are sometimes referred to as “friends” in the literature, e.g. [21]. Finding larger
collections of a; satisfying (L.3) leads to stronger conclusions.

Theorem 5. Let m > 2, let t = K, and assume that there is a y and positive integers a1, . . ., a; satisfying
(L3). Then there are positive integers hy < ho < --- < hy, so that for a positive proportion of integers ¢,
there are infinitely many solutions of

o(n+Lthy) =---=0o(n+Lhy).

It is known [19] that for y = 9, there is a set of 2095 integers satisfying (L3). Also K5 < 50 [23]], and
hence Theorem [ follows from the case m = 2 of Theorem[3l Even the weaker bound K5 < 105 from [16]]
suffices. We cannot make the conclusion unconditional when m > 3, since the best know bounds for K3 is
K3 < 35410 [23, Theorem 3.2 (i1)].

Conjecture A. For any ¢, there is an y such that o(a)/a = y has at least ¢ solutions. That is, there are
arbitrarily large circles of friends.

Clearly, Conjecture A implies the conclusion of Theorem [3for all m. In [7]], Erd6s mentions Conjecture
A and states that he doesn’t know of any argument that would lead to its resolution. In the opposite direction,
Hornfeck and Wirsing [11]] showed that for any v, there are < z°() solutions of o(a)/a =y witha < z;
this was improved by Wirsing [27], who showed that the counting function is O(zc/ loglog 2) for some c,
uniformly in y. Pollack and Pomerance [21] studied the solutions of (I.3), gathering data on pairs, triples
and quadruples of friends, but did not address Conjecture A.

Using (L3)) and prime pairs an — 1 and bn — 1, one can generate many solutions of o(n) = o(n + k),
analogous to Lemma I} see Yamada [28| Theorem 1.1]. For example, if o(m)/m = o(m + 1)/(m + 1)
(the ratios need not be integers as claimed in [28]), 7 > m + 1, and 7m — 1 and 7(m + 1) — 1 are both
prime, then o(m(r(m +1) —1)) = o((m + 1)(mr —1)). Yamada [28| Theorem 1.2] showed that there are
« zexp{—(1/v/2 + o(1))/log x log log log } solutions n < x not generated in this way.
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2. PROOFS

Throughout, 1 < a < b are integers. We first show that %?(a,b) implies Sy for certain k, inverting
Lemmal[Il Define

2.1 k(a,b) = (V' —a’) H P, a = Y =

We observe that x(a, b) is always even.

Lemma 3. Assume & (a,b). Then Sy, holds for every k which is a multiple of k(a, b).

Proof. Define a’ = @ b = ﬁ and observe that &(a,b) = Z(d,V'). Let s = [ [,y p, and suppose
that > max(a’, ') such that a’r + 1 and b'r + 1 are both prime. Let £ € N and set

my = bls(a'r +1), mg=dls('r+1).
As all of the prime factors of '’ divide ¢s, we have ¢(b'ls) = b'¢p(¢s) and ¢(a’'ls) = a’$(ls), and it
follows than ¢(m1) = ¢(myz). Finally, m; — mg = (' — a’)ls = lk(a,b). O
Proof of Theorem[ll Let

{ai,...,a50} ={1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,41, 42, 43,44, 45, 46,47, 48, 49, 52, 56},
By Lemmal[2] for some 4, j with 1 < i < j < 50, & (a1, a;) is true. We compute
lem{r(a;, a;) 1 1 <i < j <50} = 442720643463713815200 = 2°3%5% [ ] p,
T<p<A4T
and thus (a) follows from Lemma[3]
For part (b), we take
{aq,...,a5} = {15, 20, 30, 36, 40, 45, 60, 72, 75, 80, 90, 96, 100, 108, 120, 135, 144, 150, 180, 192, 200,
216, 225, 240, 250, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 450, 480, 500, 540, 600,
720, 750, 810, 900, 960, 1080, 1200, 1440, 1500, 1800},

numbers that only have prime factors 2, 3,5. We also compute that

max_ k(aj,a;) = 3570,

1<i<j<50
and again invoke Lemma[3] This proves (b). O
Remarks. For any choice of ay, ..., a5, Z20043463713815200 1 (3), where L(a) = lem{r(a;, a;) :
i < j}. Without loss of generality, assume (a,...,as0) = 1. For a prime 7 < p < 47, if p|a; for some

i then p { a; for some j and thus p|k(a;, a;). If p { a; for all 4, by the pigeonhole principle, there are
two indices with a; = a; (mod p). Again, p|r(a;,a;). Thus, p|L(a). Now we show that 5%|L(a). Let
Sy = {a; : 5°|a;} for b = 0. Then [Sp| = 1. If |S,| > 1 for some b > 2, then there are i, j with 52|a;
and 5 { a;, and then 52|k (a;,a;). Otherwise, we have |Sy| > 21 for some b € {0,1}. By the pigeonhole
principle, there is i # j with 5°|a;, 5°|a; and 5°+2|(a; — a;). This also implies that 52|x(a;, a;). Simlarly,
let T, = {a; : 3%|a;}. Then we have either |T}| > 1 for some b > 2, or |T}| = 7 for some i € {0,1}.
Either way, 32|L(a). Let U, = {a; : 2°||a;}. Then either |U;| > 1 for some b = 4 or |Uy| > 9 for some
b € {0,1,2,3}. Either way, 2*|L(a). It is easy to construct a = (ay, ..., aso) such that 33 { L(a) and
25t L(a). However, such constructions seem to always produce g|L(a) for some prime ¢ > 50.



SOLUTIONS OF ¢(n) = ¢(n + k) AND o(n) = o(n + k) 5

We likewise believe that 3570 is ths smallest number than can be produced for Theorem [l (b). Using
numbers divisible by 4 or more primes always produces some very large (a, b), thus we limitied our search
with numbers composed only of the primes 2,3,5. For a given finite set of integers {b1, ..., b,}, the problem
of minimizing max; jer (b;, b;) over all 50-element subsets I — {1,...,r}, is equivalent to that of finding
the largest clique in a graph. Take vertex set {1,...,7} and draw an edge from i to j if x(b;, b;) < t. Using
the Sage routing clique_number () with ¢ = 3569 and {b,...,b,} being the smallest 800 numbers
composed only of primes 2,3,5 (the largest being 12754584), we find that the largest clique has size 49.

Proof of Theorem[2l Let m > 2, k = K,, and consider any set {a1,as,...,a;} of k positive integers.
By Lemma 2| there are 1 < i3 < i3 < -+ < 4,, < k such that for infinitely many r, the m numbers
a;, v +1,...,a;,r + 1 are all prime. Let r be such a number. Define
2
a. DS a/
h] _ ( 11 Zm) (1 < ] < m)
Q; .

J

Let ¢ € Nand set n = {(a;, - - - a;,,)?r. Then, since a;, |h; for all j, it follows that for any j,
¢(n + fh]) = (JS(WIJ (aijr + 1)) = qb(ﬁhj)aijr = QS(fhjaij)r. I

Proof of Theorem[3l Same as the proof of Theorem [l (a), but take {a1,as,as,aq,a5} = {1,2,3,4,6} if
Ky <5and {a1,...,a1} = {1,2,3,4} if Ko < 4. 0

Proof of Theorem[dl Lett = K,, and a1, ..., a; satisfy (L3). Put A = lem[ay, ..., a;] and for each i define
b; = A/a;. By Lemma[2]applied to the collection of linear forms b;n — 1, 1 < i < t, there exist i1,. .. ,in
such that for infinitely many r € N, the m numbers b;;r — 1 are all prime. Let r > A be such a number, and
let £ € N such that (¢, A) = 1 (this holds for a positive proportion of all ¢). Let

tj zﬁaij(bijr—l) :AET—ECLZ'J. (1 <j<m)
By (L3), for every j we have
o(t;) = a(l)o(ai;)bi;r = yo(£)Ar. O
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