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Abstract

We consider avoidance of permutation patterns with designated gap

sizes between pairs of consecutive letters. We call the patterns having

such constraints distant patterns (DPs) and we show their relation to

other pattern notions investigated in the past. New results on DPs with

2 and 3 letters are obtained including a generating function found using

the block-decomposition method in a non-trivial way. Furthermore, we

prove two conjectures of Kuszmaul using a DP interpretation and we give

that perspective to four of the other conjectures listed there. DPs with

tight gap constraints are also considered in order to deduce a somewhat

surprising relation between the sets of permutations avoiding the classical

patterns 123 and 132. In addition, interesting Stanley-Wilf analogues for

DPs are discussed, as well as some open questions.

1 Introduction

The notion of patterns in permutations has applications when solving a vari-
ety of enumeration problems in different areas including algorithms (sortable
permutations), algebraic geometry (Kazhdan-Lusztig polynomials and Shubert
varieties), statistical mechanics (generalizations of gas models), computational
biology and even chemistry.

The work of Simion and Schmidt [34] was the first systematic study of per-
mutation pattern avoidance. Before that, in 1968, Knuth [27] showed that the
permutation π can be sorted by a stack if and only if π avoids 231, and that the
stack-sortable permutations are enumerated by the Catalan numbers.

This work is related to the idea of considering permutation patterns for which
we have additional constraints for the distance between some pairs of consecutive
letters in the pattern’s occurrences. For example, when we want two consecutive
letters to have a positive gap size in any occurrence of a pattern, we will write
� between these two letters. For instance, a permutation π = π1π2 · · ·πn avoids
1�2 if there is no 0 < i < j − 1 < n with πi < πj . In this paper, we obtain
some interesting results related to this type of patterns, and show its usefulness
when interpreting other results combinatorially.
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1.1 Definitions

Permutations in this paper are presented in one-line notation. When we say
an n-permutation or a permutation of size n, we will mean a bijective map
from [n] = {1, 2, · · · , n} to itself. A sequence of distinct numbers will be just
called sequence. An occurrence of the classical pattern p in a permutation π
is a subsequence in π whose letters are in the same relative order as those in
p. We use the fl operator to define this formally. Given a sequence of distinct
real numbers u1, u2, · · ·uk, define fl(u1, u2, · · ·uk) to be the permutation q ∈ Sk

such that ui < uj if and only if qi < qj . A permutation is uniquely defined by
the set of its inversions, so this condition uniquely defines q. A permutation
π ∈ Sn contains a pattern p = p1p2 · · · pk ∈ Sk for k ≤ n if there exists
i1 < i2 < · · · < ik such that fl(πi1πi2 · · ·πik) = p. Otherwise, π avoids p. For
instance, the permutation 32514 has two occurrences of the pattern 231, namely
the subsequences 351 and 251 and it avoids the pattern 123.

Vincular patterns allow the requirement that some adjacent letters in a pat-
tern must also be adjacent in the permutation. We indicate this requirement
by underlining the letters that must be adjacent. For instance, if the pattern
312 occurs in a permutation π, then the letters in π that correspond to 1 and
2 are adjacent. For example, the permutation 621543 has only one occurrence
of the pattern 312, namely the subsequence 615. Vincular patterns are also
called “generalized patterns” (GPs) and they were first studied systematically
by Babson and Steingŕımsson in [3], where many Mahonian permutation statis-
tics were shown to be linear combinations of vincular patterns. When all the
entries of a pattern are required to occur in adjacent positions, we will call the
pattern consecutive.

We will denote by Sn the set of permutations of size n and by Avn(p) the
set of permutations of size n avoiding a pattern p. The set of all permutations,
of any size, avoiding a pattern p will be denoted Av(p). Similarly, the set of
permutations that avoid all permutations in a set Π will be denoted Avn(Π)
and Av(Π), respectively. If each number in a sequence σ1 is greater than each
number in a sequence σ2, then we write σ1 > σ2. Otherwise, we write σ1 ≯ σ2.
Finally, we write σ[< x] (resp. σ[> x]) for the subsequence of elements of σ
that are less than (resp., greater than) x.

A permutation class is a set C of permutations such that every pattern
occurring in a permutation in C is also in C. Certainly, Av(Π) is a permutation
class for any set of permutations Π. Two permutations σ, τ ∈ Sk are Wilf-
equivalent if, for each n, |Avn(σ)| equals |Avn(τ)|. Whenever we say generating
function, we will mean ordinary generating function.

We will write �r to denote a gap with at least r letters, with � := �1.
Therefore avoiding the pattern 12�23 will be the same as avoiding occurrences
xyz of the classical pattern 123 for which there are at least two other letters
between y and z. The patterns containing �r symbols will be called distant
patterns (DPs) and we will use gap and gap size for the space between two
consecutive letters of a pattern and for its size. Any distant pattern can be
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written in the form
�r0q1�r1q2�r2 · · ·�rk−1

qk�rk ,

where each ri is a non-negative integer and q1q2 · · · qk ∈ Sk. We will also
consider tight constraints and we will underline the corresponding part of the
pattern in case of a tight constraint as, for example, in 1�423 to denote that we
want to avoid the pattern 123 with gap size exactly 4 between the letters 1 and
2. DPs without any tight constraints are classical distant patterns while DPs
having at least one tight constraint are vincular distant patterns. If we take a
classical pattern q and require the minimal gap size to be the same number r
for all pairs of consecutive letters, we will write distr(q) and we will call these
uniform distant patterns. For example, dist3(312) = 3�31�32. Note that DPs
generalize classical patterns since q = dist0(q) for any classical pattern q. DPs
generalize vincular patterns, as well, since one can write any vincular pattern
as a vincular distant pattern. Finally, when we say that a distant pattern has
size n, we mean that the number of its non-square letters is n. For example
2�1�23 is a distant pattern of size 3.

1.2 Related work and motivation

The idea of arbitrary constraints for the gap sizes between any two consecutive
pattern letters is not new, even though not much has been written on the subject
and the topic seems to be not so well explored yet. The thesis of Ghassan Firro
[13] defines a more general concept of permutation patterns with gap constraints
unifying many popular pattern notations. He calls them distanced patterns or
d-patterns and uses a different notation. The distanced patterns described there
also allow requiring a gap size to be at most some given number r. The thesis
itself enumerates the patterns of the kind xy�z using both a direct bijection and
an analytical approach. We have included this result in Section 4.1. The paper
of Hopkins and Weiler [18] describes the concept of uniform distant patterns
under the name of gap patterns and obtains an important result related to
them, as a corollary of their work on pattern avoidance over posets. We state
this corollary in Section 4.

In his book dedicated to pattern avoidance [25], Kitaev mentions patterns
containing the �-symbol, where the work of Hou and Mansour on the so-called
Horse permutations [19] is listed. There, the authors proved that the permuta-
tions avoiding both the classical pattern 132 and the pattern 1�23 are in one
to one correspondence with the so-called Horse paths.

In [22], Kitaev introduces partially ordered patterns (POPs) and partially
ordered generalized patterns (POGPs) which further generalize classical DPs
(resp., vincular DPs). While in classical patterns, all of the letters form one
totally ordered set (e.g. in 123, 1 < 2 < 3), in POPs this set is partially
ordered. In an occurrence of a distant pattern, an element at the place of a �

is incomparable to any other element which shows us that POPs (and POGPs
that allow tight constraints) are indeed generalizations. If we have a classical
distant pattern or a vincular distant pattern, we could easily write it as a POP
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(resp., POGP) by replacing each square with a letter in its own group. POPs
were studied in the context of permutations, words and compositions in a series
of papers [17, 20, 21, 22, 23, 24, 25] including a recent work [16] of Gao and
Kitaev where a systematic search of connections between sequences in the Online
Encyclopedia of Integer Sequences (OEIS) and permutations avoiding POPs of
size 4 and 5 was conducted. Two other works [7] and [8] study avoidance of non-
consecutive occurrence of a pattern and this has connections with both POPs
and DPs. Another generalization of the DPs are the so-called place-difference-
value patterns [26].

1.3 Organization of the results

Section 2 contains proofs of two basic facts about DPs which set the stage for
the later work. Section 3 considers the avoidance of classical DPs of size 2,
namely 2�1 and the more general case 2�r1. While |Avn(2�1)| = |Avn(1�2)|
was shown to be given by the Fibonacci numbers Fn+1 in many ways in the
past, we use this old result and a technique that can be generally applied to any
classical DP to obtain a new summation formula for Fn+1 (see Section 3.1). In
addition, we establish a bijection between the permutations in Avn(2�r1) and
the permutations in Sn for which any two elements in a cycle differ by at most
r.

Section 4 considers the DPs of size 3. Previous results by Firro and
Mansour[13, 15], as well as by Hopkins and Weiler[18] are first listed. Then,
we describe briefly our approach towards the enumeration of Avn(1�3�2). The
main tool that was used was the block-decomposition approach initiated by
Mansour and Vainshtein [29]. All the details in the proposed approach will be
described in a forthcoming article.

In Section 5.1, recursive formulas for |Avn(1�23)| and |Avn(1�32)| are ob-
tained, which help us to show that 1�23 is the only pattern among 1�23, 12�3,
1�2�3 and 123 that is avoided by fewer permutations of size n, compared to the
same pattern after we switch the places of 2 and 3. This is somewhat surprising
since, as we know, |Avn(123)| = |Avn(132)| ([34]). We study consecutive DPs in
Section 5.2. We will show a simple but surprising relation between these pat-
terns and the question of avoidance of arithmetic progressions in permutations
for which still not much is known.

In Section 6, we give interpretations with distant patterns to six out of the
ten conjectures listed in [28] and we present solutions to two out of these six
conjectures using the new interpretations. These solutions use the formulations
of the conjectures in terms of distant patterns, which provides additional moti-
vation. Furthermore, in the same section we show how another result related to
permutation patterns can be rewritten using distant patterns. The latter result
was found in the Database of Permutation Pattern Avoidance [9].

Section 7 is dedicated to some analogues of the Stanley-Wilf former con-
jecture for distant patterns. We conclude with Section 8 listing some ideas for
future research and open problems.
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2 Two basic facts about distant patterns

Avoidance of classical distant patterns can be formulated as a statement about
simultaneous avoidance of classical patterns. For example, avoiding 1�2 is
equivalent to the simultaneous avoidance of the 3-letter classical patterns {123,
132, 213}. In the general case, we have the fact below, where

x(y) := x(x− 1) · · · (x− y + 1) = x!
(x−y)!

denotes the falling factorial.

Theorem 2.1. The avoidance of q = �r0q1�r1q2�r2 · · ·�rk−1
qk�rk , where

k
∑

j=0

rj = S, is equivalent to the simultaneous avoidance of (S + k)(S) classical

patterns of size S + k.

Proof. If a permutation π avoids q then π avoids all classical patterns of the
kind q′ = p0,1 · · · p0,r0q′1p1,1 · · · p1,r1q′2 · · · q′k−1pk−1,1 · · · pk−1,rk−1

q′kpk,1 · · · pk,rk ,
where pi,j are S distinct numbers from 1 to S + k and q′1, q

′
2, · · · , q′k are the

remaining k numbers from 1 to S+ k and they are in the same relative order as
the numbers q1q2 · · · qk, i.e., fl(q′1,q′2,· · · ,q′k) = q1q2 · · · qk. Indeed, any occurrence
of such classical pattern would be an occurrence of q. The number of such

classical patterns is (S+k)!
k! since the relative order of exactly k of the positions

is fixed. Conversely, if π avoids all the listed classical patterns, then it does not
have an occurrence of q. Assume the opposite and take one such occurrence
of q: oc = πx1

πx2
· · ·πxk

. We know that x1 > r0, x2 − x1 > r1, etc. Select
arbitrary r0 letters of π, preceding πx1

, arbitrary r1 letters between πx1
and

πx2
and so forth. You will obtain a subsequence s = πy1

πy2
· · ·πyS+k

of π and
fl(s) must be one of the already listed classical patterns of size S + k which is a
contradiction.

In fact, if we have some number of squares at the beginning or at the end of
a distant pattern, we may consider the same distant pattern, but without those
squares due to the following.

Theorem 2.2. For any r1, r2 > 0 and a distant pattern q, we have

|Avn(�r1q�r2)| = n(r)|Avn−r(q)|, (1)

where r := r1 + r2.

Proof. If σ = σ1σ2 · · ·σn ∈ Avn(�r1q�r2), then

fl(σr1+1 · · ·σn−r2) ∈ Avn−r(q).

Conversely, any σ = σ1σ2 · · ·σn for which σ1, · · · , σr1 , σn−r2 , · · · , σn are r ar-
bitrary numbers in [n] and for which fl(σr1+1 · · ·σn−r2) ∈ Avn−r(q), would be
such that σ ∈ Avn(�r1q�r2), since any possible occurrence of q in σ would have
either less than r1 other elements in front of it or less than r2 elements after
it.

5



The theorem above tells us that it suffices to consider only classical DPs
without � symbols at the beginning or at the end.

3 Classical DPs of size 2

By theorem 2.2, it suffices to consider 1�2 and 2�1 as the only DPs of size 2.
One can obviously see that |Avn(2�1)| = |Avn(1�2)|, by applying the reverse
map. Therefore we have only one Wilf-equivalence class here.

Theorem 3.1. For n ≥ 3,

|Avn(2�1)| = Fn+1, (2)

i.e., the (n+ 1)st Fibonacci number.

Proof. If p1p2 · · · pn ∈ Avn(2�1), then either pn = n or pn−1 = n since oth-
erwise n will participate in an inversion that is not of consecutive letters. If
pn = n then p1p2 · · · pn−1 must be in Avn−1(2�1), and for each permutation in
Avn−1(2�1), we obtain a permutation in Avn(2�1) after appending the let-
ter n at the end. Thus, we have |Avn−1(2�1)| permutations in Avn(2�1)
ending with n. If pn−1 = n, then we must have pn = n − 1 to prevent
n − 1 from forming a prohibited inversion with pn. Thus, in this second case
we must have pn−1 = n and pn = n − 1 and the prefix p1p2 · · · pn−2 must
be a permutation in Avn−2(2�1). For each such permutation in An−2(2�1),
we obtain a new one in Avn(2�1) by appending n and then n − 1 to it.
Therefore |Avn(2�1)| = |Avn−1(2�1)|+ |An−2(2�1)|. It remains to note that
|A3(2�1)| = 3 and |A4(2�1)| = 5.

This basic result was proved in the seminal paper of Simion and Schmidt
[34], where they showed that |Avn(123, 132, 213)|= Fn+1 which as we explained
(Theorem 2.1) is equivalent to the fact above.

One can consider more general settings for distant patterns and look at bigger
values of the maximal distance between two consecutive letter of a pattern.
Recall that Avn(2�r1) is the set of all p1p2 · · · pn ∈ Sn with no inversion (pi, pj),
such that |i − j| > r. Apparently, |Avn(2�m1)| = n! for m ≥ n − 1 and
|Avn(2�01)| = |Avn(21)| = 1. The theorem below addresses the general case.

Theorem 3.2. The permutations in Avn(2�r1) are in one-to-one correspon-
dence with the permutations in Sn for which, when written in a cycle notation,
any two elements in a cycle differ by at most r.

Proof. Let X = Avn(2�r1) be the set of all permutations in Sn that do not have
inversions at distance greater than r in their one-line notation representation.
Let Y be the set of those permutations in Sn for which any two elements in the
same cycle differ by at most r. We will describe a bijective map f : X → Y .
Consider p = p1p2 · · · pn ∈ X . We will show how to obtain the standard form
of f(p) written in cycle notation, i.e., the minimal element of every cycle is at
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its first position and the cycles are ordered in increasing order of their minimal
elements. Below is the description of f :
The number p1 is at position 1, so let us look at the set of positions of all numbers
with which p1 is in inversion: 1, 2, · · · , p1 − 1. Denote their positions with
i1, i2, · · · , ip1−1, respectively. These positions are not bigger than r+1, since p ∈
X . Then take (1, ip1−1, ip1−2, · · · , i1) to be the first cycle in the standard form of
the cycle decomposition for f(p). Then, let j be the minimal number that is not
already used in this cycle decomposition, and let the numbers pj − 1, · · · , p1+1
be at positions jpj−1, jpj−2, · · · , jp1+1. Take (j, jpj−1, jpj−2, · · · , jp1+1) as the
next cycle in the standard form of the cycle decomposition for f(p) and continue
in the same way afterwards. Note that the length of some of those cycles might
be 1.

Here are two examples:

• If n = 9, r = 3 and p = 352149867, then f(352149867) = (134)(25)(6798).

• If n = 8, r = 4 and p = 41352867, then f(41352867) = (1352)(4)(687).

Obviously, f maps each σ ∈ X to a permutation f(σ) such that any two
numbers in the same cycle of f(σ) differ by at most r, since these two numbers
correspond to indices of two numbers, in the one-line notation of σ, which are
in inversion in σ ∈ X . To prove that f is indeed a bijection, we will describe
its inverse. Consider π ∈ Y in its standard cycle decomposition form. If the
first cycle of π is (π1π2 · · ·πi1), then put the number i1 in the first place, then
i1 − 1 at position π2, i1 − 2 at position π3 and so on. The number 1 will be
placed at position πi1 . Note also that π1 is always 1. Next, go to the next
cycle (πj1πj2 · · ·πji2

). We will determine the positions of the next i2 numbers:
i1 + 1, i1 + 2, · · · , i1 + i2. We can see that πj1 must be the least integer not
occurring in the first given cycle. We will place at this position, the number
i1+ i2. Then, i1+ i2− 1 should be placed at position πj2 , i1+ i2− 2 at position
πj3 and so on. One can use the two given examples above for verification.

The sequences of the numbers |Avn(2�r1)|, for different fixed values of n
and r are respectively rows and columns of the table described in [31, A276837].
For example, in the case r = 2, if we denote an = |Avn(2�21)|, then it is not
hard to prove the recurrence

an = an−1 + an−2 + 3.an−3 + an−4. (3)

3.1 Recurrence formula for F
n+1 = |Av

n
(1�2)|

In an attempt to obtain a general enumeration approach when dealing with
DPs, we tried to use a technique that is described in the current subsection.
The technique helped us to obtain a recurrence formula for the number of per-
mutations avoiding the distant pattern 1�2, i.e.,, a new recurrence formula for
the Fibonacci numbers (see Theorem 3.1).

The idea is that almost all permutations containing a given distant pattern
can be obtained by first taking a permutation containing the corresponding
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classical pattern and then inserting additional numbers between some of the
letters (where we have the � symbol) for a certain occurrence of this classical
pattern. Let us describe this more concretely with the following algorithm that
we will use for the pattern 1�2.

Algorithm 3.3.

1. For a given n ≥ 3 and j ∈ [n], take any π ∈ Sn−1 \Avn−1(12).
2. Find the leftmost 1 that is part of a classical 12-pattern and insert the number
j immediately after it.
3. Increase by 1 the numbers j, j+1, . . . , n−1, except the j that we just inserted
(unless j = n, π contains another j).

This algorithm defines a map g : An−1 → Bn, for

An−1 = (Sn−1 \Avn−1(12))× [n]

and Bn = Sn\Avn(1�2). Here is an example: g(3412, 2) = 42513. The leftmost
occurrence of the pattern 12 in 3412 is by the first two letters, 3 and 4. Therefore
we insert j = 2 immediately after the letter 3 and then increase the 2, 3 and
4 in the original permutation. Note that the added number j always keep its
value in the final image. We will first need to show that this map is not far from
being injective.

Theorem 3.4. No permutation in Bn = Sn\Avn(1�2), the range of the map g,
is the image of more than two different elements of An−1 = (Sn−1\Avn−1(12))×
[n].

Proof. Assume the opposite. Let π = g(π1, j1) = g(π2, j2) = g(π3, j3) for three
different tuples (π1, j1), (π2, j2), (π3, j3) ∈ An = (Sn−1 \Avn(12))× [n]. We can
see that j1, j2 and j3 must be different since if two of them, say j1 and j2, are
equal then obviously π1 = π2 and we will not have different tuples. Now, we
know that without loss of generality 1 < cj1 < cj2 < cj3 are three different
positions for the three different numbers j1, j2, j3 in the final permutation π.
By step 2 of Algorithm 3.3, after removing j1 from π, the first occurrence of the
classical pattern 12, should be some πxπy, where x = cj1 − 1. Similarly, after
removing j2, the first such occurrence should begin at position cj2 − 1 > cj1 − 1,
but this is only possible if the position y = cj2 since if this is not the case then
πxπy would be an occurrence of 12 that begins before position cj2 −1. However,
after removing j3 from π (note that cj3 > cj2), the first occurrence of 12 should
begin at position cj3 − 1 > cj1 − 1. Contradiction.

There are many permutations in Bn which are the image of g for two different
elements of An−1. An example is 3142 ∈ B4 since g(312, 4) = g(231, 1) = 3142.
The next fact that we will need gives the number of these permutations.

Theorem 3.5. The number of permutations ω in Bn which are an image of
exactly two different elements of An−1, after applying the map g, is given by the
sum

n−1
∑

j=3

(j − 2)(n− j)(n− j)!. (4)
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Proof. Let π = g(π1, x) = g(π2, y) for π1, π2 ∈ Sn−1 \Avn−1(12) and x, y ∈ [n],
where the tuples (π1, x) and (π2, y) are different. We saw in the proof of Theorem
3.4 that x and y must be different. Let us denote the positions of x and y
in π with i and j respectively. Without loss of generality, let i < j. We
know that after removing y = πj from π, then πj−1πj+k, for some k ≥ 1,
is the first occurrence of the classical pattern 12. Therefore, we should have
π1 > π2 > · · · > πj−1. Since, if we remove x = πi from π, then πi−1πj must
be the first occurrence of 12, it follows that we must have π1 > π2 > · · · >
πi−2 > πj > πi−1 > · · · > πj−1. In other words, the number πj is between πi−2

and πi−1. Otherwise, we would have a 12−occurrence ending at πj that starts
before position i−1. We also have that πj−t > πj+l, for any t = 2, · · · , j−1 and
l = 1, · · · , n − j, because otherwise when removing πj from π, a 12-occurrence
starting before πj−1 will be present.

In order to determine π completely, we must have the relations between the
n − j + 1 numbers πj−1, πj+1, πj+2, · · · , πn. The only constraint that we have
is that πj−1 is not the biggest among them. Thus, when i and j are fixed, we
always have (n − j + 1)! − (n − j)! possible ways to write π. Therefore, the
number of different permutations π ∈ Sn that are an image for two different
tuples is

n−1
∑

j=3

j−1
∑

i=2

[(n− j + 1)!− (n− j)!] =
n−1
∑

j=3

(j − 2)(n− j)(n− j)!.

Each term in the latter sum gives us the number of permutations in π ∈ Bn,
where π = g(π1, x) = g(π2, y) for some π1, π2 ∈ Sn−1 \Avn−1(12) and x, y ∈ [n],
where x < y and y is at position j in π.

As we have seen that no permutation in Bn is counted more than two times,
it remains to obtain the number of permutations in Bn that are not an image
of g for any permutation in the set of tuples An−1.

Theorem 3.6. The number of permutations in the set Bn \ g(An−1) is:

n−2
∑

k=3

(Fn−k+1 − 1)k(k − 2)(k − 2)!, (5)

where Fi denotes the i-th Fibonacci number.

Proof. An example of a permutation in Bn that cannot be obtained as an out-
put of the function g (i.e., with Algorithm 1) for any input in An−1 is the
permutation 45132. The reason is that before the first occurrence of the distant
pattern 1�2, there exist an occurrence of the classical pattern 12 (which is not
an occurrence of 1�2). We want to obtain a formula for all permutations in Bn

having this property. Consider one such permutation π = π1π2 · · ·πn and let
the first occurrence of 1�2 be πjπj+v for some j ≥ 1, v ≥ 2, and j + v ≤ n.
Since, this is the first such occurrence, observe that πi > πj+d, for any i < j
and d ≥ 0. Otherwise we would have another occurrence of 1�2, preceding
πjπj+v . Thus π′ = π1 · · ·πj−1 must be a permutation of the j − 1 numbers
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n− j+2, . . . , n and π′′ = πj . . . πn is simply a permutation of 1, · · · , (n− j+1)
for which πj < πj+v for some v = 1 · · ·n−j. This means that π′ avoids 1�2, but
contains the classical pattern 12. Therefore the number of possibilities for π′ is
|Avj−1(1�2)| − |Avj−1(12)| = Fj − 1 since |Avj−1(1�2)| = Fj (Theorem 3.1),
|Avj−1(12)| = 1 and Aj−1(12) ⊂ Aj−1(1�2). Now, let us denote k = n− j + 1,
for clarity. For π′′, we can see that it could be any k-permutation except that it
could not start with k or with (k− 1)k since if this is the case, then π′′ will not
start with an occurrence of the 1�2 pattern. The latter means that the possible
values for π′′ are exactly k! − (k − 1)!− (k − 2)! = k(k − 2)(k − 2)!. Summing
over k, we obtain the given formula.

Now, we are ready to derive the recurrence formula that we want. Note
that |An−1| = |(Sn−1 \ Av(12)) × [n]| = ((n − 1)! − 1) · n = n! − n gives the
number of permutations in Bn that are the image of the map g for exactly one
tuple in An−1. Theorems 3.5 and 3.6 give the number of permutations being
the image of g for 2 and 0 tuples in An−1, respectively. We also know that
|Bn| = |Sn \Avn(1�2)| = n!− Fn+1. Thus using inclusion-exclusion we have:

(n!−Fn+1)−
n−2
∑

k=3

(Fn−k+1−1)k(k−2)((k−2)!) = (n!−n)−
n−1
∑

j=3

(j−2)(n−j)(n−j)!.

After simplifying, we obtain the following recurrence formula for the Fi-
bonacci numbers and respectively for the number of permutations avoiding the
distant pattern 1�2 (or 2�1):

|Avn(1�2)| = Fn+1 = n+

n−3
∑

k=1

(n− (k + 2)Fn−(k+1)) · k · k!. (6)

4 Classical DPs of size 3

As we can infer from Theorem 2.1, finding a closed formula for the avoidance set
of a distant pattern becomes more complicated as its size increases, because the
number of classical patterns that must be simultaneously avoided increases, as
well. In this section, we describe some already established results on the DPs of
size 3 with one square (xy�z) and two squares (x�y�z). Then, we discuss an
approach that we have used to obtain the generating function for |Avn(1�3�2)|,
which represents one of the two different Wilf-equivalent classes for patterns of
the latter kind.

4.1 Patterns of the kind xy�z

Consider the patterns xy�z and x�yz, for some permutation xyz ∈ S3. The
thesis of Firro [13] and two related works [14, 15] give the formula

|Avn(12�3)| =
∑

k≥0

1

n− k

(

2n− 2k

n− 1− 2k

)(

n− k

k

)

. (7)
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The same thesis gives two bijections between 12�3-avoiding permutations and
odd-dissections of a given (n + 2)-gon, which are dissections with non-crossing
diagonals so that no 2m-gons (m > 1) appear [31, A049124]. In fact, it turns
out that this is cardinality of the avoidance set for any pattern of the kind xy�z
or x�yz [13]. We know that all classical patterns in S3 are avoided by the same
number of permutations, namely the Catalan numbers. One might suspect that
whenever two classical patterns p, q ∈ Sk are Wilf-equivalent, then inserting a
square at the same place in p and q will produce two Wilf-equivalent distant
patterns. The computer simulations shows that the former seems to be true
for the Wilf-equivalent patterns {1234, 1243, 2143}. We have formulated this
conjecture in Section 8.

It was shown in [13] that if xyz ∈ S3, then inserting a square between x and
y or between y and z always gives us two Wilf-equivalent patterns. It is worth
noting that we do not have a similar fact when considering patterns of bigger
size. For example, |Av7(1�234)| = 3612 6= 3614 = |Av7(12�34)|.

4.2 Patterns of the kind x�y�z

The inverse and the complement map give us at most twoWilf-equivalent permu-
tation classes : {dist1(p) | p = 132, 231, 213, 312} and {dist1(p) | p = 123, 312}.
Unlike the case of classical patterns in which these are, in fact, one class [34],
here, these classes are different.

Theorem 4.1. ([18]) For n > 5,

|Avn(dist1(123))| > |Avn(dist1(132))|. (8)

The theorem above is a special case of a result of Hopkins and Weiler [18,
Theorem 3]. In that work they extend the result of Simion and Schmidt that
|Avn(123)| = |Avn(132)| from permutations on a totally ordered set to a sim-
ilar result for pattern avoidance in permutations on partially ordered sets. In
particular, they show that |AvP,n(132)| ≤ |AvP,n(123)| for any poset P , where
AvP,n(q) is the number of n-permutations on the poset P avoiding the pattern
q. Furthermore, they classify the posets for which equality holds. Here, we
state the corollary of their result generalizing Theorem 4.1, as formulated by
the authors.

Theorem 4.2. ([18]) For r ≥ 0 and n ≥ 1, we have

|Avn(distr(123))| ≥ |Avn(distr(132))|, (9)

with strict inequality if and only if r ≥ 1 and n ≥ 2r + 4.

Note that in the case n = 2r+3, |Av2r+3(distr(123))| = |Av2r+3(distr(132))|
since there is only one triple of positions where each of these two patterns can
occur in a (2r + 3)-permutation, namely the positions 1, r + 2 and 2r + 3. So
for each such occurrence, we can exchange the elements at positions r + 2 and
2r + 3 to get an occurrence of the other pattern. A similar statement about
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consecutive patterns was first proved in [10] with a simple injection. It states
that |Avn(123)| > |Avn(132)| for every n ≥ 4. The listed facts imply that
the monotonic pattern 123 is avoided more frequently than 132 when we have
two gaps of size exactly 0 between the letters in each occurrence of the two
patterns, or when the minimal constraint for each gap is some fixed positive
number. However, when patterns with all possible gap sizes must be avoided,
we have an equality since |Avn(123)| = |Avn(132)|. We address this surprising
fact in the next section.

Along those lines is another work of Elizalde [12] on consecutive patterns,
where he generalizes [10] by proving that the number of permutations avoiding
the monotone consecutive pattern 12 · · ·m is asymptotically larger than the
number of permutations avoiding any other consecutive pattern of size m. He
also proved there that |Avn(12 . . . (m− 2)m(m− 1))| is asymptotically smaller
than the number of permutations avoiding any other consecutive pattern of
the same size. Similar conjectures can be formulated for distant patterns (see
Section 8).

4.2.1 The pattern 1�3�2

In this subsection, we will roughly describe an approach that one can use to find

the generating function G(x) =
∑

n≥0

|Avn(q)|xn, where q = 1�3�2 = dist1(132).

All the details about this proof and the technique, that we use, will be described
in a separate, forthcoming, article. Here, we will sketch that proof. To do that,
we will need to define the following sets of permutations:

H1 := {π | π ∈ Av(q), |π| ≥ 1 and π does not have an occurrence of 1�32
ending at the last position of π}, and

H2 := {π | π ∈ Av(q), |π| ≥ 1 and π does not have an occurrence of 13�2
beginning at the first position of π }.

Let us also denote the corresponding generating functions with

Hi(x) =
∞
∑

k=1

hi(k)x
k,

where hi(n) is the number of permutations of size n in Hi (i = 1, 2). Now, we
can describe a useful decomposition for the permutations in Avn(q) which is
similar, but more complicated, to the one given in [13] for the permutations in
Avn(13�2).

Theorem 4.3. For all n ≥ 1, π = αnβ ∈ Avn(q) if and only if:

(i) α > β, α, β ∈ Av(q)

(ii) α ≯ β, but α′ > β′, where α = α′t1 and β = t2β
′ for some t1, t2 ∈ [n− 1].

and one of the following holds:

1. t1 > β′, t2 < α′, t1 < t2 and α′, β′ ∈ Av(q)
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2. t1 > β′, t2 ≮ α′, β′ ∈ Av(q) and σ = α′t1t2 ∈ H1 with t2 not being
the smallest element in σ and not being the second smallest, after t1.

3. t1 ≯ β′, t2 < α′, α′ ∈ Av(q) and σ = t1t2β
′ ∈ H2 with t1 not being

the biggest element in σ and not being the second biggest, after t2.

4. t1 ≯ β′, t2 ≮ α′, σ1 = α′t2 ∈ H1 with t2 not being the smallest
element in σ1 and β′ = xβ′′, where x > t1 > β′′ and β′′ ∈ Av(q).

In this paper, we omit the proof of the fact above. The described decompo-
sition gives us the next result almost directly

Theorem 4.4.

G(x) = 1 +G(x)(xH1(x) + xH2(x) + x3H1(x)) +G2(x)(x − 2x2 − x3 − x4).

(10)

In order to obtain G(x), we first express H1(x) as a function of H2(x)
and G(x). Then we express H2(x) as a function of G(x) using the block-
decomposition method [29] and an additional fact. These are the main ingredi-
ents of our approach. Extensive case analysis and inclusion-exclusion arguments
are additionally used. As a result, we obtain a system of two equations each of
which is a polynomial of x, G(x) and H2(x). We eliminate H2(x) to obtain an
equation P (x,G(x)) = 0, where P is a polynomial of G(x) with coefficients that
are polynomials of x. P has 170 terms with the term of highest total degree
being x27G12. One could use a generalization of the Lagrange inversion formula
discussed in the work of Baderier and Drmota [4] to get a closed form expression
for the coefficients of G(x) which is our final goal.

5 Vincular distant patterns

In this section, we consider a particular kind of vincular distant patterns of
size 3. The goal will be to compare the number of permutations avoiding the
different kinds of 123 and 132 patterns.

5.1 Patterns of the form ab�c and a�bc

There are 12 patterns of this kind, and the reverse and complement maps give
at most 3 Wilf-equivalence classes listed below. As we will show, these turn out
to be different.

We will first find a recurrence for the pattern 12�3:

Theorem 5.1. If an = |Avn(12�3)|, then an = n! for 0 ≤ n ≤ 3, and for n ≥ 4
we have

an = an−1 + (n− 1)an−2 +
(n+ 1)(n− 2)

2
an−3+

n−1
∑

i=4

((

n

i− 1

)

− 1

)

an−i + (n− 1)
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Class 1 Class 2 Class 3

12�3 1�32 13�2
32�1 21�3 31�2
1�23 23�1 2�31
3�21 3�12 2�13

Table 1: The Wilf-equivalent classes of ab�c and a�bc patterns.

Proof. Let q = 12�3 and let π = π1π2 · · ·πn be a permutation of [n] that avoids
q. We will consider five cases for the position of the number n in π. Denote this
position with i, so πi = n.

Case 1. i = 1: π = nπ2 · · ·πn

In this case, n will not participate in any occurrence of q since it can only
be the first letter in such occurrence. Thus since π avoids q then π2 · · ·πn

must avoid q. There are an−1 such permutations π2 · · ·πn ∈ Sn−1.

Case 2. i = 2: π = π1n · · ·πn

Here, n cannot participate in any occurrence of q. Neither can π1, because
it could participate only together with π2 = n. Then π1 can be any of
the remaining n − 1 numbers. Regardless of the choice of π1, one would
have an−2 ways to choose the order of the remaining n − 2 letters since
fl(π3 · · ·πn) must avoid q. This gives (n− 1)an−2 ways to obtain π.

Case 3. i = 3: π = π1π2n · · ·πn

The number n cannot be part of a q-occurrence, again. Therefore if n− 1
is in an occurrence of q, then it must be the last letter (the ’3’). Let
j = π−1(n− 1) be the position of n− 1 in π.

Case 3a. j = 1 or j = 2
None of the first three elements of π will be part of any occurrence of
q. Thus we have 2(n − 2)an−3 permutations π ∈ Avn(q) with i = 3
and j = 1 or j = 2, since we can choose the position, j, of n − 1 in
2 ways and the other of the first 2 letters in n − 2 ways. The rest
of the permutation must avoid q and there are an−3 possibilities for
that. We get a q-avoiding permutation in all of these cases.

Case 3b. j > 3
Here, since π avoids q, we must have π1 > π2, because otherwise
π1π2πj would be a q-occurrence. We can determine π1 and π2 in
(

n−2
2

)

ways. The number of ways to determine π4 · · ·πn would be
again an−3, despite knowing that n − 1 will be one of these letters,
simply because this part of π must avoid q and because once we have
π1, π2 and π3 fixed, this part will correspond to a permutation in
Avn−3(q).
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n− 1 = π1

π2

πi−2

n = πi

Figure 1: sketch of the order of the elements of π in Case 4b.

Case 4. 3 < i < n. π = π1π2 · · ·n · · ·πn

Since π avoids q, the numbers π1, π2, · · ·πi−2 must be in decreasing order.
We have three subcases for the position j = π−1(n− 1).

Case 4a. j = i− 1: π = π1π2 · · ·πi−2(n− 1)n · · ·πn

The numbers π1, · · · , πi−2 must be in decreasing order since π ∈
Av(q). Once we have chosen these i − 2 numbers of π then neither
πi−1 = n − 1 nor πi = n could participate in a q-occurrence and
any ordering of the last n − i numbers that avoids q would give us
a different q-avoider π. This gives

(

n−2
i−2

)

an−i permutations for this
case.

Case 4b. j < i− 1 (in fact, j = 1): π = (n− 1)π2 · · ·nπi+1 · · ·πn

This would imply that j = 1 since π1, · · · , πi−2 are in decreasing
order. If πi−2 > πi−1, then we can select π2, · · · , πi−1 in

(

n−2
i−2

)

ways

which gives
(

n−2
i−2

)

an−i more q-avoiding permutations. Slightly more
attention is required for the subcase πi−2 < πi−1. In order to avoid
q, all of πi+1, · · · , πn must be smaller than πi−1, because otherwise
πi−2πi−1πk would be a q-occurrence for some k > i. Now, we should
calculate how many different permutations π satisfy the described
conditions. For clarity, one may look at Figure 1 that visualizes the
order of the elements in one such π.

We claim that the number of these permutations is (
(

n−2
i−3

)

− 1)an−i.
Indeed, we can first choose the last n− i numbers πi+1, πi+2, · · · , πn,
and the number πi−1. Those are the unlabeled elements on Figure 1.
We can do that in

(

n−2
n−i+1

)

=
(

n−2
i−3

)

ways. Out of these choices, only
the one where we have selected the smallest numbers, 1, 2, · · · , n −
i+1, would force πi−2 > πi−1 which we do not want to happen, so we
exclude this single choice. For all the other choices, we simply have
that the biggest number among the chosen has to be πi−1 and the
other n− i chosen numbers can be ordered in an−i ways at positions
i+1, i+2, · · · , n. The unchosen i−3 numbers are ordered decreasingly
after π1 = n− 1, at positions 2, 3, · · · , i− 2.

Case 4c. j > i
In this case, the numbers π1, · · · , πi−1 must all be in decreasing order.
Thus, it suffices just to choose which are they and choose the numbers
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in the remaining part of the permutation, i.e., we have
(

n−2
i−1

)

an−i

permutations here.

Case 5. i = n. π = π1π2π3 · · ·n
Again, the numbers π1, · · · , πn−2 must be in decreasing order, so it suffices
to choose πn−1 in n− 1 ways.

It remains to observe that in Case 4, after summing the number of q-avoiding
permutations for the three subcases, we get

((

n− 2

i− 2

)

+

(

n− 2

i− 2

)

+

((

n− 2

i− 3

)

− 1

)

+

(

n− 2

i − 1

))

an−i =

((

n− 2

i− 2

)

+

((

n− 2

i− 3

)

− 1

)

+

(

n− 1

i − 1

))

an−i =

((

n− 1

i− 2

)

+

(

n− 1

i − 1

)

− 1

)

an−i =

((

n

i− 1

)

− 1

)

an−i

The first few elements of the sequence |Avn(12�3)| for n ≥ 4 are

20, 75, 316, 1464, 7359, 39815, 230306.

This is not part of any sequence in OEIS.
This enumerates avoidance for Class 1 patterns in Table 1. Similar recur-

rence can be found for the patterns in Class 2. We demonstrate this using
1�32.

Theorem 5.2. If bn = |Avn(1�32)|, then bn = n! for 0 ≤ n ≤ 3 and for n ≥ 4
we have

bn = bn−1 + (n− 1)bn−2 +
(n+ 1)(n− 2)

2
bn−3+

n−3
∑

i=2

(

i

(

n− 2

i

)

+

(

n− 1

i− 1

))

bi−1 + (n− 1).

(11)

Proof. Let π = π1π2 · · ·πn be a permutation of [n] that avoids q = 1�32. We
will again consider five cases, now according to the index π−1(1). We omit the
explanations in four of the five cases, because they are identical to those in the
previous proof. Let i = π−1(1) and j = π−1(2).

Case 1. i = n: π = π1π2 · · · 1
There are bn−1 such permutations π.

Case 2. i = n− 1: π = π1 · · · 1πn

There are (n− 1)bn−2 such permutations π.

Case 3. i = n− 2: π = π1 · · · 1πn−1πn

There are ((n+1)(n−2)/2)bn−3 such permutations, respectively
(

n−2
2

)

bn−3

for the case j < n− 2 and 2(n− 2)bn−3 for the case j ≥ n− 1.
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Case 4. 1 < i < n− 2: π = π1 · · · 1 · · ·πn−2πn−1πn

In this case, the subsequence πi+2 · · ·πn must be increasing.

Case 4a. j = i+ 2
Then, we will have i

(

n−2
n−i−2

)

bi−1 such q-avoiding permutations, be-
cause we can choose the remaining n−i−2 numbers of the increasing
subsequence in

(

n−2
n−i−2

)

ways and then from the other i numbers, each
could be placed at position i + 1. The rest of the permutation, i.e.,
the subsequence π1 · · ·πi−1 must be q-avoiding.

Case 4b. j = i+ 1
We obtain

(

n−2
n−i−1

)

bi−1 =
(

n−2
i−1

)

bi−1 q-avoiding permutations in this
case since we can just choose those numbers that will form the in-
creasing subsequence πi+2 · · ·πn. Any such choice will not create
q as a pattern in π given that the prefix subsequence π1 · · ·πi−1 is
q-avoiding.

Case 4c. j < i
In this subcase, the subsequence πi+1 · · ·πn must be increasing, be-
cause otherwise a q-pattern starting with the number 2 will be formed.
Thus, it is enough to choose the numbers in this increasing subse-
quence in

(

n−2
n−i

)

=
(

n−2
i−2

)

ways and then to observe that there are
bi−1 q-avoiding sequences π1 · · ·πi−1.

Summing up the number of permutations found for the three subcases, we

get
(

i
(

n−2
i

)

+
(

n−2
i−1

)

+
(

n−2
i−2

)

)

bi−1 =
(

i
(

n−2
i

)

+
(

n−1
i−1

)

)

bi−1.

Case 5. i = 1: π = 1π2 · · ·πn

There are n− 1 such permutations π.

The first few elements of the sequence |Avn(1�32)| for n ≥ 4 are

20, 76, 326, 1544, 7954, 44164, 262456.

This is not part of any sequence in OEIS.
Theorems 5.1 and 5.2 differ only in the sums in their right-hand sides. Ap-

plying the complement map after the reverse map, we see that |Avn(12�3)| =
|Avn(1�23)| for every positive n and we already placed those two patterns in
the same of the three classes for the considered set of vincular DPs. Using this,
we can easily prove the following

Theorem 5.3. If n > 4, then |Avn(1�23)| < |Avn(1�32)|.
Proof. We just noted that |Avn(1�23)| is given by the number an from Theo-
rem 5.1, while |Avn(1�32)| is given by the number bn from equation (11). By
substituting j = n−i+1, we get that the sum in the right-hand side of equation
(11) can be written as

n−1
∑

j=4

((n− j + 1)

(

n− 2

j − 3

)

+

(

n− 1

j − 1

)

)bn−j . (12)
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Then, in order to obtain this inequality, it suffices to prove that for every n > 4
and 4 ≤ i ≤ n− 1:

(

n

i− 1

)

− 1 < (n− i+ 1)

(

n− 2

i− 3

)

+

(

n− 1

i− 1

)

. (13)

This is equivalent to
(

n−1
i−2

)

−1 < (n−i+1)
(

n−2
i−3

)

or
(

n−1
i−2

)

−1 < (n−i+1)(i−2)
n−1

(

n−1
i−2

)

.
When n = 5 and i = 4, we check directly that the latter holds. When n > 5,

one can easily see that (n−i+1)(i−2)
n−1 > 1, for 4 ≤ i ≤ n− 1.

It remains to investigate Class 3. A well known proof technique in the area
of permutation patterns helps to do that.

Theorem 5.4. For all n ∈ Z+, Avn(13�2) = Avn(13�2), which implies that
|Avn(13�2)| = |Avn(13�2)|.

Proof. We will prove that whenever an n-permutation contains the pattern
13�2, then it must contain the pattern 13�2. Take an n-permutation σ =
σ1σ2 · · ·σn containing q = 13�2 and let σiσjσk, 1 ≤ i < j < k − 1 < n be an
occurrence of q with the smallest possible distance between the 1 and the 3,
i.e., d = j − i is the smallest possible for such an occurrence. If d = 1, then
σiσjσk would be an occurrence of 13�2 and we are done. Assume that d > 1
and then consider the value of σi+1. If σi+1 < σk, then σi+1σjσk would be a
q-occurrence with j − (i + 1) = d − 1 < d. On the other hand, if σi+1 > σk,
then σiσi+1σk would be a q-occurrence with (i+ 1)− i = 1 < d, which is again
a contradiction.

The theorem that we just proved and the fact that |Avn(12�3)| = |Avn(13�2)|
(see [13] and subsection 4.1) imply that |Avn(13�2)| is given by the right-hand
side of equation (7) and sequence A049124 in OEIS. It turns out that the pat-
terns in the corresponding Class 3 of Table 1 have the smallest avoiding sets out
of the 3 classes.

Theorem 5.5. For all n ≥ 5, |Avn(12�3)| > |Avn(13�2)|.

To establish this fact, we will first need a few additional definitions. For a
given pattern q, let Avi1,i2,...,ik;n(q) be the set of q-avoiders of size n beginning
with i1, i2, . . . , ik and let avi1,i2,...,ik;n(q) denotes |Avi1,i2,...,ik;n(q)|. Moreover,
let avn(q) := |Avn(q)|. Let us first prove the following simple lemma.

Lemma 5.6. If 1 ≤ i ≤ n− 1 and n ≥ 4, then

avi;n(13�2) ≤ avn;n(13�2) = avn−1(13�2).

Moreover, if 1 ≤ i ≤ n− 2, then the inequality is strict, i.e.,

avi;n(13�2) < avn;n(13�2).
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Proof. For every π ∈ Avn−1(13�2), we have that nπ ∈ Avn;n(13�2), since n
cannot participate in any occurrences of 13�2, being at first position. Con-
versely, for every nσ ∈ Avn;n(13�2), one have that σ ∈ Avn−1(13�2). Thus,
avn;n(13�2) = avn−1(13�2). In addition, for every 1 ≤ i ≤ n − 1 and iσ ∈
Avi;n(13�2), we have fl(σ) ∈ Avn−1(13�2), which implies that avi;n(13�2) ≤
avn−1(13�2).

Since n ≥ 4, when 1 ≤ i ≤ n − 2, then we have at least one n-permutation
π = inσ′, beginning with i, where nσ′ = σ is such that fl(σ) ∈ Avn−1(13�2)
and i is obviously part of an 13�2-occurrence. An example is π = ina · · · (n−1)
for any a ∈ [n], where a 6= i, n, (n − 1). Therefore, fl(σ) ∈ Avn−1(13�2), but
π = iσ /∈ Avi,n(13�2).

We will need this lemma together with a few other definitions. Given a
permutation (pattern) σ, let Cn(σ) = Sn \ Avn(σ) be the permutations of Sn

containing σ. Then, let

Un := Cn(12�3) ∩Avn(13�2)

and

Vn := Avn(12�3) ∩ Cn(13�2),

with un := |Un| and vn := |Vn|. In addition, let us denote with Ui1,i2,...,ik;n

(resp. Vi1,i2,...,ik;n) the set of permutations in Un (resp. in Vn) beginning
with i1i2 . . . ik. Furthermore, let ui1,i2,...,ik;n := |Ui1,i2,...,ik;n| and vi1,i2,...,ik;n :=
|Vi1,i2,...,ik;n|. Now, we will prove the following

Lemma 5.7. For each n ≥ 4 and 1 ≤ i ≤ n,

ui;n ≤ vi;n.

Proof. Note that the statement implies un ≤ vn and |Cn(12�3)| ≤ |Cn(13�2)|
(resp. |Avn(12�3)| ≥ |Avn(13�2)|), for each n ≥ 4. Indeed, if Tn = Cn(12�3)∩
Cn(13�2), then Cn(12�3) = Un ∪ Tn and Cn(13�2) = Vn ∪ Tn. Thus, un ≤ vn
implies |Cn(12�3)| ≤ |Cn(13�2)|. We will proceed by induction on n. One
can directly check that ui;4 ≤ vi;4 for each 1 ≤ i ≤ 4. Now assume that
ui;n′ ≤ vi;n′ , for each 4 ≤ n′ ≤ n − 1 and 1 ≤ i ≤ n′, for a given n ≥ 5.
Consider ui;n and vi;n for 1 ≤ i ≤ n. If i = n, then using the induction
hypothesis, we have un;n = un−1 ≤ vn−1 = vn;n. Similarly, if i = n − 1,
then we have un−1;n = un−1 ≤ vn−1 = vn−1;n. Now, let 1 ≤ i ≤ n − 2. By
the induction hypothesis, ui,i−k;n = ui−k;n−1 ≤ vi−k;n−1 = vi,i−k;n, for each
1 ≤ k ≤ i − 1. It remains to compare the numbers ui,i+k;n and vi,i+k;n for
1 ≤ k ≤ n − i. Note that when k ≥ 3, then ui,i+k;n = 0, since for these values
of k, any n-permutation beginning with i(i + k) will contain an occurrence of
13�2. Similarly, vi,i+k;n = 0, when i+k < n−1, since for these values of k, any
n-permutation beginning with i(i+ k) will contain an occurrence of 12�3. We
will show that ui,i+1;n ≤ vi,n;n and that ui,i+2;n ≤ vi,n−1;n which will complete
the proof.
Consider the sets Ui,i+1;n and Vi,n;n. First, let us look at those π ∈ Ui,i+1;n
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(resp., π ∈ Vi,n;n) which do not begin with an 12�3 occurrence (resp., not with
an 13�2 occurrence). Then, note that π must begin with (n− 2)(n− 1)n (resp.
with (n− 2)n(n− 1)). However, we have

un−2,n−1,n;n = un−3 ≤ vn−3 = vn−2,n;n−1 (14)

using the induction hypothesis, again.
Now, let us look at those π ∈ Ui,i+1;n beginning with a 12�3 occurrence.

Their number is given by

avi;n−1(13�2)− avn−2,n−1;n−1(13�2). (15)

Indeed, after we remove from π its first element i and flatten, we obtain an
(n − 1)-avoider of 13�2. Conversely, for any permutation π = iπ2 . . . πn−1 ∈
Avi;n−1(13�2), one can increase by 1 all the elements of π greater than or equal
to i and then add i at the beginning, to obtain a permutation in Ui,i+1;n.
This permutation will begin with a 12�3 occurrence, unless it begins with
(n − 2)(n − 1)n, i.e., when i = n − 2 and when π ∈ Avn−2,n−1;n−1(13�2).
Therefore, we should subtract avn−2,n−1;n−1(13�2). Respectively, for the num-
ber of permutations π ∈ Vi,n;n, beginning with an 13�2 occurrence, one would
have

avn−1;n−1(12�3)− avn−1,n−2;n−1(12�3). (16)

It is not difficult to see that avn−2,n−1;n−1(13�2) = avn−3(13�2) and that
avn−1,n−2;n−1(12�3) = avn−3(12�3). Hence, by using expressions (15), (16)
and equation (14), we see that in order to establish that ui,i+1;n ≤ vi,n;n, it
remains to prove the inequality below for each 1 ≤ i ≤ n− 2:

avi;n−1(13�2)− avn−3(13�2) ≤ avn−1;n−1(12�3)− avn−3(12�3). (17)

By lemma 5.6, we have that avi;n−1(13�2) ≤ avn−1;n−1(13�2) = avn−2(13�2).
We also have that avn−1;n−1(12�3) = avn−2(12�3). Thus, it suffices to prove
that

avn−2(13�2)− avn−3(13�2) ≤ avn−2(12�3)− avn−3(12�3). (18)

Using that avn−3(q) = avn−2;n−2(q) for any of the patterns q = 12�3 or q =
13�2, as well as the relation

avi;n−2(13�2) ≤ avi;n−2(12�3) ⇐⇒ vi;n−2 ≥ ui;n−2, (19)

we see that equation (18) is equivalent to

n−3
∑

i=1

vi;n−2 ≥
n−3
∑

i=1

ui;n−2, (20)

which follows directly, because by the induction hypothesis ui;n−2 ≤ vi;n−2,
∀1 ≤ i ≤ n−3. From equations (14) and (20), we conclude that ui,i+1;n ≤ vi,n;n.

One could establish that ui,i+2;n ≤ vi,n−1;n in almost the same way, by first
noticing that Ui,i+2;n = Ui,i+2,i+1;n and that Vi,n−1;n = Vi,n−1,n;n since the
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permutations in Ui,i+2;n (resp. in Vi,n−1;n) do not have a 13�2 (resp. a 12�3)
occurrence. Then, the only thing that remains is to consider the cases i = n− 2
and i 6= n−2 and to use the induction hypothesis and lemma 5.6. In particular,
if i = n− 2, then

un−2,n,n−1;n = un−3 ≤ vn−3 = vn−2,n−1,n;n. (21)

If i 6= n − 2, then π ∈ Ui,i+2,i+1;n (resp. in Vi,n−1,n;n) begins with an 12�3
(resp. an 13�2) occurrence and

ui,i+2,i+1;n = avi;n−2(13�2) ≤ avn−2;n−2(13�2) (22)

by lemma 5.6. In addition,

avn−2;n−2(13�2) ≤ avn−2;n−2(12�3) = vi,n−1,n;n (23)

by the induction hypothesis.

As we have pointed out, lemma 5.7 implies that |Avn(12�3)| ≥ |Avn(13�2)|,
for each n ≥ 4. In order to obtain a proof of theorem 5.5, we should just use the
second part of lemma 5.6 to see that inequality (17) is strict when n − 1 ≥ 4,
i.e., when n ≥ 5.

We are now ready to formulate an interesting conclusion. The last Theorem
5.5 together with Theorem 5.3, the result on consecutive patterns of Elizalde [10]
and the corollary of the result of Hopkins (Theorem 4.1) imply the following:

Corollary 5.8. Consider the set of distant patterns

X = {1�23, 12�3, 1�2�3, 123}.

Take any pattern p ∈ X and switch the places of the letters 2 and 3 to get a
pattern p′ in Y = {1�32, 13�2, 1�3�2, 132}. We have that Avn(p) > Avn(p

′)
for all n > 5, p ∈ X and the corresponding p′ ∈ Y , except for 1�23 which is
avoided by fewer permutations of size n, compared to its counterpart 1�32.

Cn(123) Cn(1�23)

Cn(12�3) Cn(1�2�3)

Cn(132) Cn(1�32)

Cn(13�2) Cn(1�3�2)

Figure 2: Venn diagrams for the n-permutations containing 123 and 132
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Figure 2 depicts the sets of permutations containing each of the patterns in
X and Y as a Venn diagram. Corollary 5.8 is somewhat surprising since each
occurrence of the classical pattern 123 (resp.132) is an occurrence of a pattern
in X (resp. Y ) and as we know, |Avn(123)| = |Avn(132)| [34]. Thus the total
”area” of the union of the four sets on the left is the same as the total ”area”
of the union of the four sets on the right. However, each of the three unmarked
sets on the left contains fewer elements than its counterpart on the right.

5.2 Consecutive distant patterns

Recall that when all the constraints for the gap sizes in a distant pattern are
tight, then we call these patterns consecutive distant patterns and we underline
the whole pattern to denote that. Considering POGP, Kitaev mentioned in the
introduction of [23] that Avn(1�2) =

(

n

⌊n
2
⌋

)

. Indeed, we may use that the letters

in the odd and the even positions of a permutation avoiding this pattern do not
affect each other. Thus we can choose the letters in odd positions in

(

n
⌊n

2
⌋

)

ways, and we must arrange them in decreasing order. We then must arrange
the letters in even positions in decreasing order, too. Using the same reasoning
one can easily find, for example Avn(1�22) or Avn(1�2�3). This can be further
generalized by the fact given below. Recall that if q = q1q2 · · · qk is a classical
pattern of size k, then q = q1q2 · · · qk is the corresponding consecutive pattern.
We also use distr(q) to denote the corresponding consecutive distant pattern
q1�rq2�r · · ·�rqk.

Theorem 5.9. [21, Theorem 11] For a given classical pattern q of size k, given
distance r ≥ 0 and a natural n, denote l = ⌊ n

r+1⌋. Set u := n mod (r + 1) ∈
[0, r]. Then

|Avn(distr(q))| =
n!

(l!)r+1−u((l + 1)!)u
|Al(q)|r+1−u|Al+1(q)|u. (24)

This gives us a formula for the size of the set of permutations avoiding any
consecutive distant pattern, knowing the size of the avoidance set for the cor-
responding classical consecutive pattern. Corollaries of this simple fact were
previously stated in [13, 14]. We state another simple corollary here, which
shows a surprising relationship between the former fact and avoidance of arith-
metic progressions in permutations.

Theorem 5.10. The number of permutations of size n avoiding arithmetic
progressions of length k > 1 and difference r > 0 is |Avn(distr(12 · · · k))|, which
can be obtained using equation (24).

Proof. Consider π ∈ Sn, containing an arithmetic progression (AP) πi1πi2 · · ·πik

of size k and difference r > 0. I.e., we have πi1 = x, πi2 = x+r,· · · , πik = x+(k−
1)r for some x, r ∈ [n] with i1 < i2 < · · · < ik. Then in the inverse permutation
π−1, i1i2 · · · ik will be an occurrence of the distant pattern distr(12 · · ·k) since
π−1(x) = i1, π

−1(x+ r) = i2, · · · , π−1(x+(k− 1)r) = ik. Conversely, if π ∈ Sn
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contains distr(12 · · · k), then π−1 contains an AP of length k and difference
r > 0. Therefore, the number of permutations of [n] containing APs of length
k and difference r > 0 equals the number of permutations of [n] containing
distr(12 · · · k). This implies the same for the set of avoiders, i.e., what we aim
to prove.

6 Interpretations of other results

Here, we will demonstrate that DPs can be very useful when interpreting already
known results (including ones obtained with a computer) and that this, in turn,
could help proving such results. One previous work that gives several conjectures
about the enumeration of pattern-avoiding classes containing many size four
patterns is the work of Kuszmaul [28]. In particular, he considers Av(Π) for
any set Π ⊆ S4 and he computes |Avn(Π)| for n = 5, 6, . . . , 16 using a new
algorithm. Then, for each such Π, he looks up at OEIS for matches of the
corresponding sequence. There are matches for huge number of subsets, but
the author reported that for a total of 82 subsets Π, the corresponding OEIS
sequence is one related to pattern-avoidance problems, such that neither of them
can be solved with the insertion-encoding technique [1]. There are ten such OEIS
sequences with several matches with different subsets Π ⊆ S4, for each of them.
All the ten sequences are listed with one particular match for each sequence.
These are, in fact, ten conjectures about simultaneous pattern avoidance of
many size four patterns. We give solutions to two of these conjectures below
after we interpret the respective big set of size four patterns as a smaller set of
both classical and distant patterns.

Theorem 6.1. (conjectured in [28], p.20, sequence 6) The generating function
of

|Avn(2431, 2143, 3142, 4132, 1432, 1342, 1324, 1423, 1243)|
is given by C+x3C, where C is the generating function for the Catalan numbers.

Proof. Note that the set of patterns above can be written as

Π = {�132, 132�, 1342}

When n = 1, 2, 3, |Avn(Π)| = 1, 2, 6 respectively and these are indeed the first
three coefficients of C + x3C. Consider values n ≥ 4. If σ ∈ Avn(132), then
σ ∈ Avn(Π). As we know, |Avn(132)| has generating function C [27]. It remains
to find the generating function for those σ containing 132, but avoiding Π. Take
one such σ = σ1σ2 · · ·σn and notice that any occurrence of 132 in σ must have
σ1 as its first letter and σn as its last letter. Otherwise, given that n ≥ 4, an
occurrence of at least one of the patterns 132� or �132 will be present. Now,
let σk = n be the biggest element of σ. Clearly, σ1σkσn must be an occurrence
of 132. If not, then this biggest element must be either at the first or the last
position in σ and thus σ would not contain any 132-occurrences that either
begin at σ1 or end at σn. In Figure 3 are shown three black points representing
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σ1

σk

σnA

C B

α

Figure 3: Decomposition for σ ∈ Av(Π) from the proof of Theorem 6.1

σ1, σk and σn, as well as three segments of the diagram of σ denoted with A, B
and C and defined below. We further show that σ will not contain any elements
in these three segments. Here is why:

• A is empty
There is no element x among σ2, σ3, · · · , σk−1, such that x < σn. If there
is such x, then xσkσn would be a forbidden occurrence of 132.

• B is empty
There is no element x among σk+1, σk+2, · · · , σn−1, such that σ1 < x < σk.
If there is such x, then σ1σkx would be a forbidden occurrence of 132.

• C is empty
There is no element x among σ1, σ2, · · · , σk−1, such that σn < x < σk. If
there is such x, then σ1xσkσn would be an occurrence of 1342.

Therefore, the biggest element σk in σ must be at position 2, i.e., k = 2 and
the only non-empty segment could be the one denoted α in figure 3. In other
words, σ must be σ1σ2ασn, for some sequence α, where α < σ1 < σn < σ2 and
α ∈ Av(132) since otherwise an occurrence of 132, such that σ1 is not part of
it, would be formed. Conversely, for any α ∈ Av(132), σ = σ1σ2ασn, where
α < σ1 < σn < σ2, belongs to Av(Π).

Then, we get x3C for the generating function of the permutations in Av(Π)
containing 132 and therefore we will have C + x3C for the generating function
of Av(Π), since C is the generating function for Av(132).

As we know, C = 1 + xC2, so we can write

C + x3C = C + x3(1 + xC2) = x3 + C(1 + x4C)

and this indeed corresponds to sequence A071742 given by C(1 + x4C), as
reported in [28], with the subtle difference that for n = 3, we have one extra
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permutation in Av3(Π), namely 132. The same structure for the decomposition
of the permutations in Av(Π) was recently found with a computer by Bean et
al. who used a particular algorithm called the Struct algorithm [5]. As we saw,
rewriting the problem in terms of distant patterns helped us to prove the result
directly and to give an interpretation of the already discovered decomposition.

Below, we will give a proof for another, previously unproved conjecture,
listed in [28].

Theorem 6.2. (conjectured in [28], p.19, sequence 5) The generating function
of

|Avn(2431, 2413, 3142, 4132, 1432, 1342, 1324, 1423)|
is given by C(1 + x3C), where C is the generating function for the Catalan
numbers.

Proof. Note that the set of permutations above can be written as

Π = {13�2, 1324, 2431, 3142, 4132}.

If σ has no occurrences of 132 at all, then obviously σ ∈ Av(Π) and the gener-
ating function for these permutations is C. Let us consider those σ that have
some occurrences of 132 and are in Av(Π). The set Π contains 13�2 thus all the
occurrences of 132 in σ, are occurrences of 132. Take the occurrence σiσjσj+1

of 132 that ends at the largest possible position, i.e., with j maximal. Denote
by α the segment in σ of largest possible size that ends at σi and such that
α < σj+1 < σj . Let us first consider σ

′ = σj+2σj+3 · · ·σn. We will show that σ′

is the empty permutation, i.e., n = j + 1 and the segments A,B and C, defined
below and shown at Figure 4 are empty:

• A is empty
There is no element x in σ′, such that x < σj and x ≮ α. If there is such x,
then σiσjx would be an occurrence of 132 that is not an 132−occurrence.

• B is empty
There is no element x in σ′, such that x < α. If there is such x, then
σiσjσj+1x would be an occurrence of 2431 which is not allowed.

• C is empty
There is no element x in σ′, such that x > σj . If there is such x, then
σiσjσj+1x would be an occurrence of 1324 which is not allowed.

Next, let us consider the segment σ′′ = σi+1 · · ·σj−1. We will show that σ′′ is
the empty permutation, i.e., the segment D, shown at Figure 4, is empty and
i = j − 1:

• D is empty
There is no element x in σ′′, such that x > σj+1. If there is such x, then
σixσj+1 would be an occurrence of 132 that is not an 132−occurrence.

25



σj

σj+1

C

A

B

α

σi

E

F D

Figure 4: Decomposition for σ ∈ Av(Π) from the proof of Theorem 6.2.

Finally, consider the segment σ′′′ that is the part of σ in front of α. We will
show that σ′′′ is the empty permutation, i.e., the segments E and F, shown at
Figure 4 are empty:

• E is empty
There is no element x in σ′′′, such that x > σj+1 and x < σj . If there is
such x, then xσiσjσj+1 would be an occurrence of 3142, which is forbidden.

• F is empty
There is no element x in σ′′′, such that x > σj . If there is such x, then
xσiσjσj+1 would be an occurrence of 4132, which is forbidden.

Therefore, we must have σ = ασjσj+1, where α < σj+1 < σj , α is non-empty
and α ∈ Av(132). The latter holds since if α contains 132 then after appending
σj at the end, we will get an occurrence of 1324. Conversely, one may readily
check that for each non-empty α ∈ Av(132), σ = ασjσj+1, where α < σj+1 < σj ,
would be a permutation in Av(Π). Thus, the generating function of the number
of permutations in Av(Π) is C+x2(C−1), since the generating function of such
non-empty α ∈ Av(132) is C − 1. Furthermore, we have

C + x2(C − 1) = C + x2xC2 = C(1 + x3C).

The sequence of the coefficients for this generating function is given by
A071726 in OEIS. Having seen the utility of the DP perspective, we write four
of the remaining conjectures of [28] this way, as well:
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1. Conjecture 3 (A071721):

|Avn(132�, 1342, 4132)|= 6n

(n+ 1)(n+ 2)

(

2n

n

)

. (25)

2. Conjecture 4 (A071717): The generating function of

|Avn(132�, 1342, 4132, 3142)| (26)

is given by (1 + x2C)C2.

3. Conjecture 8 (A109262):

|Avn(13�2, 4132)| (27)

is given by the sequence A109262, which is a Catalan transform of the
Fibonacci numbers.

4. Conjecture 9 (A119370): The generating function A(x) of

|Avn(13�2, 3142)| (28)

satisfies A(x) = 1 + xA2(x) + x2(A2(x)−A(x))

We conclude this section with one more interpretation of a pattern-related
result with DPs, that was found after a search in the Database of Permutation
Pattern Avoidance [9] at the website of Bridget Tenner. The result is by herself
and can be found in [36].

Theorem 6.3. The permutations in Sn for which the number of repeated letters
in a reduced decomposition equals the number of occurrences of 321 and 3412 is
given by

Avn(34�12, 43512, 45132, 45231, 53412, 4321) (29)

We went over all entries in the database [9] (from P0001 to P0056) and this
was the only one that we found such DP interpretation for, except the trivial
interpretation of P0026. We were also not able to verify that two other entries
(P0040 and P0044) do not have such interpretations, because the corresponding
permutation classes are huge. Another database where one may try to find
similar interpretations is the PermPAL database [32].

7 Stanley-Wilf type conjectures for DPs

A popular former conjecture on the classical permutation patterns formulated
independently by Stanley and Wilf in the late 80s states that for any given
classical pattern q, n

√

|Avn(q)| < cq, when n → ∞. In 1999, Arratia ([2])

observed that this is equivalent to the existence of the limit lim
n→∞

n
√

|Avn(q)|.
The conjecture was resolved in 2004 by Markos and Tardos ([30]) who actually
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proved a conjecture of Füredi and Hajnal, which had been shown earlier to
imply the Stanley–Wilf conjecture.

In Theorem 2.1, we saw that the avoidance of every distant pattern is equiv-
alent to simultaneous avoidance of several classical patterns. The Stanley-Wilf
conjecture is true for any of these classical patterns. Thus we will have that
n
√

|Avn(q)| < const, for any distant pattern q, when n → ∞. Arratia’s ob-
servation that |Avm+n(q)| ≥ |Avm(q)|.|Avn(q)|, also holds for distant patterns,
if the considered distant pattern does not start with a square. Thus for those
kind of distant patterns, we can rely on the Fekete’s lemma on subadditive se-
quences, exactly as Arratia did, to obtain that n

√

|Avn(dp)| exists. As for the
DPs beginning with r > 0 number of squares, we can use Theorem 2.2 to write

n
√

|Avn(�rq)| = n

√

n(r)|Avn−r(q)| = (n(r))
1
n |Avn−r(q)|

1
n−r

n−r
n −→

n→∞
cq,

where q is a distant pattern which does not start with a square and
n
√

|Avn(q)| −→ cq. This yields the following Stanley-Wilf type result for DPs.

Theorem 7.1. For any distant pattern q, there exists a constant c > 0, such
that

n
√

|Avn(q)| −→
n→∞

cq. (30)

An interesting continuation might be to consider avoidance of distr(q), for
a classical pattern q and size of r that increases with n. Obviously, if r ≥ n− 1,
then |Avn(distr(q))| = n! for any pattern q. Then, a new Stanley-Wilf-type
conjecture might be

Proposition 7.2. For any given classical pattern q, there exist constants c > 0
and 0 < c1 < 1, such that

n
√

|Avn(distr(q))| n→∞−→
r=⌊c1n⌋

c (31)

In other words, we consider avoidance of a sequence of distant patterns,
where the classical pattern q must be avoided, but the minimal gap size is a
positive fraction of n. We are asking is it true that the number of permutations
avoiding such series of DPs is asymptotically cn, for some constant c, similarly
to the original Stanley-Wilf conjecture. We will now show that Proposition 7.2
is false, using Theorem 3.2.

Theorem 7.3. Proposition 7.2 is false.

Proof. Consider the classical pattern q = 12. By Theorem 3.2, the number of
n-permutations avoiding 1�r2, for any r ≥ 1, will be the same as the number
of n-permutations for which in each of their cycles, any two elements differ
by at most r. Denote this set of permutations with Sr

n. Furthermore, let Cr
n

be the set of permutations in Sn for which each cycle is of length exactly r,
except possibly 1 cycle of smaller length, if r does not divide n, and where each
cycle is consisted of consecutive elements. Therefore, since Cr

n ⊆ Sr
n, we can

28



use that |Cr
n| ≤ |Sr

n| = |Avn(1�r2)|. In addition, we have the obvious bound
|Cr

n| ≥ ((r − 1)!)⌊
n
r
⌋. Thus for any given 0 < c1 < 1, if r = ⌊c1n⌋, then for big

enough values of n, we have:

Avn(1�r2) ≥ ((r − 1)!)⌊
n
r
⌋ = ((⌊c1n⌋ − 1)!)

⌊ n
⌊c1n⌋ ⌋ = ((⌊c1n⌋ − 1)!)

1
c1 ≥

((
c1
2
n)!)

1
c1 ≥ ((

c1n

2e
)

c1
2
n)

1
c1 = (

c1n

2e
)

n
2 =

√
Cnn = Ω(Cn),

for some constant C > 0. In the last equation, we used the Stirling approxima-
tion.

The latter fact motivates us to consider the following

Conjecture 7.4. For any given classical pattern q ∈ Sk and for every 0 < c1 <
1, there exists 0 < w < 1, such that:

lim
n→∞

(
|Avn(dist⌊c1n⌋(q))|

n!
)

1
n = w (32)

The approach of Elizalde ([11, Section 4]) for consecutive patterns might
be useful when one tries to prove the latter conjecture, even though this ap-
proach cannot be applied directly. Here, we prove one lemma that might help
confirming the conjecture.

Lemma 7.5. For any given classical pattern q ∈ Sk and for every 0 < c1 < 1,
there exists d < 1, such that if r = ⌊c1n⌋ and n ≥ k(r + 1), then

|Avn(distr(q))| < dnn!. (33)

Proof. Assume that n ≥ k(r+1) for some c1 and n and let us take an arbitrary
permutation π = π1π2 · · ·πn. We can divide the elements of π into roughly n

k

non-overlapping subsequences of size k, such that if π ∈ Avn(distr(q)), then
neither of these subsequences is order-isomorphic to q. We are looking for an
upper bound and thus such a necessary condition could help. One way to get
such a partition into subsequences is to take

{π1πr+2 · · ·π(k−1)r+k, π2πr+3π2r+4 · · · , πr+1π2r+2 · · · },

with the first element in every next subsequence being the first not yet used
element of π. Denote this family of subsequences by F and the event that after
a uniform sampling of a permutation π, no subsequence in F is order isomorphic
to q by EF,q. Since |F| ≥ (r + 1) > 0, we will have that

P(EF,q) ≤ (1− 1

k!
)r+1 (34)

Therefore, if we write Cπ,distr(q) for the event that π contains the pattern

distr(q), then P(Cπ,distr(q)) > 1 − (1 − 1
k! )

r+1 and thus the number of per-

mutations π containing distr(q) is at least n!(1 − (1 − 1
k! )

r+1) from which we

can deduce that |Avn(distr(q))| ≤ n!((1 − 1
k! )

r+1) = ((1 − 1
k! )

r+1

n )nn! = dnn!,

for d = (1− 1
k! )

r+1

n .
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An analogous fact could be conjectured about the bound from below, which
would lead to a proof of Conjecture 7.4, given Lemma 7.5.

Conjecture 7.6. For any given classical pattern q ∈ Sk and for every 0 < c1 <
1, there exists c > 0, such that if r = ⌊c1n⌋ and n ≥ k(r + 1), then:

|Avn(distr(q))| > cnn!. (35)

We saw that when r is a positive fraction of n, the number of n-permutations
avoiding the corresponding distant pattern may become huge. Thus it would be
reasonable to consider a Stanley-Wilf type conjecture, where r is asymptotically
smaller than O(n), e.g., a function of the kind nc2 , for 0 < c2 < 1.

Conjecture 7.7. For any given classical pattern q, there exist cq > 0 and
0 < c2 < 1, such that

n
√

|Avn(distr(q))| n→∞−→
r=⌊nc2⌋

cq (36)

If the latter conjecture is true, then one might ask which are the allowable
growth rates cq when c2 is a fixed positive constant. Furthermore, an interesting
additional question would be to find a function g(n), such that

n
√

|Avn(distr(q))| n→∞−→
r=⌊Θ(g(n))⌋

c,

for some constant c > 0, but

n
√

|Avn(distr(q))|
n→∞

6−→
r=⌊Ω(g(n))⌋

c,

for any c > 0.

8 Open problems and future work

In this section, we list some ideas for possible further investigations, related to
the current work on distant patterns:

• The approach using the map g in section 3 can be applied to the set
A′

n−1 = Sn−1 \ Avn(1�23) × [n] with the hope to find an equation that
will give us a recurrence formula for |Avn(1�2�3)|. We have checked that
a statement analogous to Theorem 3.4 holds and that no permutation is
the image of g for more than two different elements of A′

n−1.

• One can try to prove or refute the following surprising conjecture (see
section 4.1 for a discussion):

Conjecture 8.1. Choose one of the 3 places between consecutive letters
in the patterns {1234, 1243, 2143} and put a square at that place for each
of the three given classical patterns. You will obtain three Wilf-equivalent
distant patterns. For example

|Avn(1�234)| = |Avn(1�243)| = |Avn(2�143)| (37)
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We should note that a similar statement does not hold for any two Wilf-
equivalent classical patterns, because |Avn(4132)| = |Avn(3142)| [35], for
all n > 1, but |A7(4�132)| = 3592 6= 3587 = |A7(3�142)|.

• Three more conjectures related to the least and most avoided uniform
distant patterns can be investigated (see section 4 for a discussion):

Conjecture 8.2. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such
that for every natural n > n0, we have

|Avn(distr(12 · · ·m))| ≥ |Avn(distr(q))|, (38)

for any given classical pattern q of size m.

Conjecture 8.3. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such
that for every natural n > n0, we have

|Avn(distr(12 · · · (m− 2)m(m− 1)))| ≤ |Avn(distr(q))|, (39)

for any given classical pattern q of size m.

A weaker version of these two conjectures would be the one below and a
suitable injection establishing the fact is desired.

Conjecture 8.4. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such
that for every natural n > n0:

|Avn(distr(12 · · ·m))| ≥ |Avn(distr(12 · · · (m− 2)m(m− 1)))|. (40)

• Section 6 gives interpretations in terms of distant patterns to six out of
the ten conjectures of Kuszmaul, as well as solutions to two of these six
conjectures. One may try to give a solution for the remaining four in a
similar fashion, using the listed interpretations.

• The PermPAL database [32] currently contains about 17000 permutation
pattern avoidance results and one may try to find equivalent interpreta-
tions in terms of distant patterns, as well as new combinatorial proofs
using those interpretations (similar to the two proofs in section 6).

• Section 7 mentions a few unresolved conjectures, namely Conjecture 7.4,
7.6 and 7.7, all related to Stanley-Wilf type results.

• One may investigate the case of bivincular distant patterns, i.e., when we
have constraints for the values of the letters in an occurrence of a distant
pattern in addition to gap size constraints.

• Several statistics over permutations avoiding certain distant patterns might
be considered and perhaps some facts related to their distribution could
be established. We were not able to find much previous work related to
the topic.
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