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A derivative structure is a nonequivalent substitutional atomic configuration derived from a given
primitive cell. The enumeration of derivative structures plays an essential role in searching for the
ground states in multicomponent systems. However, it is computationally difficult to enumerate
derivative structures if the number of derivative structures of a target system becomes huge. In
this study, we introduce a novel compact data structure of the zero-suppressed binary decision
diagram (ZDD) for enumerating derivative structures much more efficiently. We show its simple
applications to the enumeration of structures derived from the face-centered cubic and hexagonal
close-packed lattices in binary, ternary, and quaternary systems. The present ZDD-based procedure
should significantly contribute not only to various computational approaches based on derivative
structures but also to a wide range of combinatorial issues in physics and materials science.

I. INTRODUCTION

Structure enumeration has played an essential role in
performing crystal structure prediction and in under-
standing crystal structures. In general, structure enu-
meration requires a given policy that restricts an entire
set of structures in a continuous configuration space to a
discrete set of structures. Such a policy is the atomic sub-
stitution of a given structure, and nonequivalent substi-
tutional structures are called “derivative structures” [1].
Although the convex hull in a configurational space [2, 3]
and an efficient algorithm specially developed to find the
ground states in multicomponent systems [4] have re-
cently been found to be applicable when the cluster ex-
pansion method [2, 5, 6] can describe the configurational
energy accurately, a set of derivative structures has been
commonly used to search for the ground states in mul-
ticomponent systems (e.g., Refs. 7–9). A set of deriva-
tive structures itself is also of interest from the view-
point of crystal chemistry because many existing crystal
structures of not only intermetallic alloys but also ionic
compounds have been interpreted as derivative structures
[10, 11].

The well-known Pólya counting theorem [12] has a long
history of being used to count the number of nonequiva-
lent molecule structures [13] and the number of derivative
structures [14], because they can be regarded as graph
coloring problems of assigning colors to graph vertices
under a given set of permutations. Recently, Hart and
Forcade proposed an efficient procedure to enumerate
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the derivative structures themselves, not only their to-
tal number [15, 16]. Their procedure is based on the
enumeration of nonequivalent lattices represented by the
Hermite normal form (HNF) and the enumeration of la-
belings using a finitely generated Abelian group given
by the Smith normal form (SNF). Moreover, faster algo-
rithms have also been reported recently [17, 18].

These procedures are practically sufficient to enu-
merate derivative structures required to determine the
ground-state structures in a binary alloy with a simple
lattice such as a face-centered cubic (fcc) one, because
each of many intermetallic compounds has a primitive
cell composed of up to 24 atoms [19]. On the other hand,
the possible size of periodicity in derivative structures is
very restrictive in a binary system with a small number
of symmetry operations and a system with three or more
components. In this study, we propose a much more ef-
ficient method of enumerating derivative structures. We
employ a compact data structure developed in the al-
gorithm theory for representing a set of combinations.
In particular, we use the zero-suppressed binary decision
diagram (ZDD) [20], which has been used to enumer-
ate constraint subgraphs of a given graph, such as all
paths between two given vertices (s-t paths) [21, 22] and
spanning trees [23]. For example, ZDD succeeded in enu-
merating s-t paths for the 27 × 27 grid graph, the total
number of which reaches as many as approximately 10163

[24, 25]. The use of ZDD should enable us to signifi-
cantly increase the possible size of periodicity in deriva-
tive structures.

This paper is organized as follows. Section II in-
troduces the terminology for representing a derivative
structure mathematically. Section III shows fundamen-
tal ideas to eliminate equivalent structures among all
possible substitutional ones, following the works of Hart
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and Forcade [15, 16]. Section IV introduces ZDD and
demonstrates how to apply ZDD to the derivative struc-
ture enumeration. The present method employs an
isomorphism-eliminated ZDD proposed in Ref. 26, which
can be applied to the enumeration of binary derivative
structures in a straightforward manner. In addition, we
propose a generalization of the isomorphism-eliminated
ZDD to extend the scope of application including the
derivative structure enumeration in multicomponent sys-
tems. Finally, Section V shows the application of the
present ZDD-based method to the enumeration of binary,
ternary, and quaternary derivative structures from the fcc
and hexagonal close-packed (hcp) primitive cells.

II. TERMINOLOGY TO REPRESENT
DERIVATIVE STRUCTURES

In this section, we define the terminology required
to represent a derivative structure mathematically. We
mainly follow the convention of crystallography to define
them [27]. Figure 1 illustrates the terminology in a two-
dimensional example, and their mathematical definitions
will be given for three dimensions in the following.

A. Parent lattice and primitive cell

Given a set of basis vectors A = (a1,a2,a3), the parent
lattice L is defined as

L =
{
A` | ` ∈ Z3

}
, (1)

where Z denotes the set of integers. A primitive cell is
also defined as the pair of the set of basis vectors A and
the set of sites whose positions are described by point
coordinates D, as shown in Fig. 1 (a). We adopt the
convention where A is used as the basis vectors to de-
scribe the point coordinates. Therefore, the values of the
point coordinates in the primitive cell range from zero to
one. All of the point coordinates in its crystallographic
pattern are expressed as {d + ` | d ∈ D, ` ∈ Z3}.

B. Sublattice and supercell

A sublattice is a subset of the parent lattice L obtained
by removing some lattice points from the parent lattice
L [27] [28]. A set of basis vectors of the sublattice is
identified with the transformation matrix M such that
the original set of basis vectors A is transformed into a
new set of basis vectors AM. Therefore, the sublattice
LM is the set of lattice points expressed as

LM =
{
AM` | ` ∈ Z3

}
. (2)

We refer to the determinant of M, detM, as the index of
the sublattice LM. The index is identical to the number

FIG. 1. (Color online) Example of a two-dimensional deriva-
tive structure and related terminologies. (a) A primitive cell
with a square parent lattice including two sites and its crystal-
lographic pattern. The shaded region represents a primitive
cell. The point coordinates of the sites in the primitive cell
are D = {(0, 0), (1/3, 1/3)}. (b) A sublattice of the square
lattice with the index of two. (c) A supercell with sublattice
(b). The shaded region represents a supercell. Since the index
of sublattice (b) is two, the number of sites in the supercell
is twice that in the primitive cell. We denote the point coor-
dinates of the sites in the supercell as DM = {d1,d2,d3,d4}.
We use matrix A as the basis vectors to describe the point
coordinates of the sites in the supercell DM. (d) A binary
derivative structure with supercell (c). In our label notation,
integers 0 and 1 represent the blue and yellow atoms, respec-
tively. Therefore, labeling c = (0, 1, 1, 0) indicates that the
blue atoms occupy sites 1 and 4 and the yellow atoms occupy
sites 2 and 3.

of lattice points in the sublattice LM [29]. Also, a super-
cell is identified with the set of basis vectors AM and the
set of point coordinates inside the parallelepiped spanned
by the set of basis vectors AM, DM = {d1, . . . ,d|DM|}.
The number of sites included in the supercell or the
number of point coordinates in DM, |DM|, is given as
|DM| = |D| · detM. Figures 1 (b) and (c) show a
sublattice and the corresponding supercell in the two-
dimensional example, respectively.

C. Derivative structure and labeling

A k-ary derivative structure is defined as a nonequiva-
lent structure in which one of k atomic species occupies
every site of a supercell identified with AM and DM.
Therefore, a derivative structure can be equivalently re-
garded as the labeling of the sites for the supercell. The
labeling can be expressed using k integers {0, . . . , k − 1}
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as

c = (c|DM|, c|DM|−1, . . . , c2, c1) ∈ {0, . . . , k−1}|DM|, (3)

where ci denotes the label of site i. Each label indicates
one of the atomic species. Here we follow the labeling in
descending order used in Ref. 26. Figure 1 (d) illustrates
a derivative structure in the two-dimensional example.

III. EQUIVALENT STRUCTURE ELIMINATION

Since the present ZDD-based method follows two fun-
damental ideas to eliminate equivalent structures, which
were used in the successive works of Hart and Forcade
[15, 16], we summarize them in this section. One idea
is the equivalent sublattice elimination using HNF (Sec-
tion III A). The other is the equivalent labeling elim-
ination using the structure of the finitely generated
Abelian group of a given sublattice (Section III B). In
Section III C, we demonstrate a two-dimensional exam-
ple of the equivalent labeling elimination for a given sub-
lattice.

A. Equivalent sublattice elimination

As described in the previous section, a sublattice is ob-
tained by transforming basis vectors using the transfor-
mation matrix M. An infinite number of integer trans-
formation matrices are possible even for a given index,
which is closely related to the arbitrariness for choosing
basis vectors of a given lattice. Fortunately, however, the
number of nonequivalent sublattices is finite for a given
index. We can enumerate a complete set of nonequivalent
sublattices for the index.

Let U be a three-dimensional square unimodular ma-
trix, where all elements are integers and det U = ±1. It
is well known that matrices M and MU are equivalent
in terms of lattice transformation [30]. This means that
they derive the same sublattice expressed as

LM = LMU, (4)

although they give different sets of basis vectors spanning
the sublattice. Their representative can be the canon-
ical form called the Hermite normal form (HNF) [30].
Any transformation matrix M can be converted to a
unique form of the lower-triangular integer matrix, HNF,
by multiplying the unimodular matrix U′ from the right
satisfying the relationship

MU′ =

 a 0 0
b c 0
d e f

 , (5)

where a > 0, 0 ≤ b < c, 0 ≤ d < f , and 0 ≤ e < f . The
requirement that diagonal elements a, c, and f are all
positive eliminates equivalent basis vectors obtained by

inversion. Also, the addition of a basis vector to another
one or the subtraction of a basis vector from another one
does not change the lattice itself. Thus, we can choose
remainders of f as d and e, and a remainder of c as b.

To enumerate nonequivalent sublattices for a given in-
dex, therefore, it is sufficient only to enumerate HNFs
whose determinant is the index. HNFs are easily enu-
merated by brute force. The product of diagonal ele-
ments a, c, and f should be equal to the index and the
diagonal elements should be divisors of the index. For
each set of diagonal elements {a, c, f}, all combinations
of non-diagonal elements b, d, and e satisfying the in-
equalities can be generated. In what follows, we consider
only transformation matrices in the lower-triangle HNF.

Then, we eliminate equivalent sublattices among the
enumerated ones according to the symmetry of the crys-
tallographic pattern of the primitive cell, as performed
in the works of Hart and Forcade [15, 16]. We denote a
symmetry operation in the space group of the primitive
cell [31] by the Seitz notation {R|τ}, where R and τ are
a matrix of the point group operation and a vector of
the translational operation of the symmetry operation,
respectively. When we choose A as basis vectors for the
matrix R, the point group operation changes the basis
vectors of the primitive cell from A to AR. Similarly,
the point group operation transforms the basis vectors of
sublattice LM from AM to ARM. Therefore, if there ex-
ists a symmetry operation such that LRM coincides with
a sublattice LM′ that is not LM, two sublattices LM and
LM′ are equivalent. In other words, LM and LM′ are
equivalent if there exists a unimodular matrix U such
that RM and M′ satisfy the relationship RMU = M′;
hence, there exists R such that (RM)−1M′ is unimodu-
lar.

B. Equivalent labeling elimination

Given the sublattice LM, we enumerate nonequivalent
labelings of the sites in the supercell with the sublattice
LM. To eliminate equivalent labelings from all possible
labelings, we introduce a permutation representation for
symmetry operations of the supercell. Considering sym-
metry operations in the space group of the primitive cell
that leaves the supercell unchanged, they form a sub-
group of the space group of the primitive cell HM. If
the symmetry operation g ∈ HM moves site i to site j
in the supercell, we describe operation g as a permuta-
tion, σg(i) = j. By applying this rule to all symmetry
operations in HM, we obtain the permutation group ΣM

mapped from the space group HM as

ΣM = {σg | g ∈ HM} , (6)

which is homomorphic to the space group HM.
We then define a permutation of labeling c. Given per-

mutation σ ∈ ΣM, permuted labeling σ(c) is expressed
as

σ(c) = (cσ(|DM|), . . . , cσ(1)). (7)
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We refer to labelings c and σ(c) as equivalent labelings
for the supercell with the permutation group ΣM. There-
fore, the set of labelings equivalent to c is given by the
orbit of c as

{σ(c) | σ ∈ ΣM}. (8)

A representative of the labeling orbit can be defined as
the maximum labeling in the lexicographical order, as de-
scribed in Ref. 17. For example, labeling c1 = (0, 1, 1, 0)
is larger in the lexicographical order than labeling c2 =
(0, 0, 1, 1). We denote that c1 is larger than or equal to
c2 by c1 � c2. Finally, nonequivalent labelings for the
supercell with the sublattice LM can be written as

CM,k =
{
c ∈ {0, . . . , k − 1}|DM| | c � σ(c) (∀σ ∈ ΣM)

}
.

(9)
Moreover, Pólya’s counting theorem is applicable only for
determining the size of CM,k or counting the number of
nonequivalent labelings [12, 13] (see Appendix A).

The set of nonequivalent labelings depends only on the
permutation group. This means that CM,k and CM′,k

for M 6= M′ having a bijection or one-to-one correspon-
dence are isomorphic if they have isomorphic permuta-
tion groups, i.e., ΣM

∼= ΣM′ . Therefore, it is sufficient
to enumerate nonequivalent labelings only for a complete
set of non-isomorphic permutation groups.

Note that the set of nonequivalent labelings given by
Eqn. (9) contains superperiodic labelings that can be ex-
pressed by a smaller supercell and labelings with less
than k atomic species denoted as incomplete labelings
in Ref. 15.

C. Two-dimensional example

We demonstrate an example of enumerating derivative
structures from a two-dimensional primitive cell. The
primitive cell is composed of a square lattice and a site
at the origin. The basis vectors of the primitive cell and
the point coordinates of the site are expressed as

A =

(
1 0
0 1

)
, D=

{(
0
0

)}
. (10)

The space group type of its crystallographic pattern is
p4mm [27]. We hereafter consider the enumeration of
derivative structures for the transformation HNF matrix
of

M =

(
1 0
1 4

)
. (11)

Figure 2 (a) illustrates the sublattice LM and the cor-
responding supercell. Since the determinant of the trans-
formation matrix is detM = 4, the number of sites in
the supercell is |DM| = 4. Although the crystallographic
pattern of the primitive cell has a fourfold rotation, that

of the supercell does not. The permutation group of the
supercell is represented by the two-line notation [32] as

ΣM =

{(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
2 3 4 1

)
,

(
1 2 3 4
3 4 1 2

)
,(

1 2 3 4
4 1 2 3

)
,

(
1 2 3 4
1 4 3 2

)
,

(
1 2 3 4
3 2 1 4

)
,(

1 2 3 4
2 1 4 3

)
,

(
1 2 3 4
4 3 2 1

)}
, (12)

where the first and second rows represent the original
sequence and the permuted sequence, respectively.

As described in Appendix A, the number of nonequiv-
alent labelings with k atomic species is easily obtained
from Pólya’s counting theorem as

|CM,k| =
1

8

(
k4 + 2k3 + 3k2 + 2k

)
. (13)

In the binary case (k = 2), Pólya’s counting theorem in-
dicates that there are six nonequivalent labelings for the
present supercell. Although the set of all possible label-
ings is given by {c | c ∈ {0, 1}4}, the six nonequivalent
labelings are the maximum labelings in the lexicograph-
ical order, expressed as

CM,2 = {(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0),

(1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)} . (14)

They are identical to the nonequivalent labelings shown
in Figs. 2 (b)–(g).

IV. DECISION DIAGRAM

In this section, we demonstrate a ZDD-based method
to enumerate nonequivalent labelings much more effi-
ciently. In Section IV A, we describe the binary decision
tree representing a family of subsets from a finite number
of elements. Then we introduce a compact form of the
binary decision tree, ZDD, in Section IV B. Finally, we
propose a procedure to construct a ZDD representing a
set of binary nonequivalent labelings (Section IV C 1) and
a procedure to construct a ZDD representing a set of mul-
ticomponent nonequivalent labelings (Section IV C 2).

A. Binary decision tree

A binary decision tree [33–35] represents a family of
subsets generated from n elements satisfying given con-
ditions. For example, subsets containing exactly two el-
ements from among {a, b, c} are {a, b}, {a, c}, and {b, c}.
By fixing the order of the elements, we express the fam-
ily of the subsets as a binary decision tree. The first
panel of Fig. 3 shows the binary decision tree represent-
ing the family of the subsets, S = {{a, b}, {a, c}, {b, c}}.
The binary decision tree comprises terminal nodes, non-
terminal nodes, and directed edges. Each non-terminal
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FIG. 2. (Color online) Example of two-dimensional binary derivative structures and their representations. (a) A sublattice
of a square lattice and the corresponding supercell. The solid lines indicate the sublattice. The point coordinates of the sites
in the supercell are denoted by d1, d2, d3, and d4. (b)–(g) Binary derivative structures and their labelings c = (c4, c3, c2, c1).
The blue contour atoms and yellow atoms correspond to labels 0 and 1, respectively. (h) Binary decision tree representing
nonequivalent labelings (b)–(g). The non-terminal node ci corresponds to label ci at site i in the supercell. The broken and
solid arrows from the non-terminal node ci indicate 0 and 1 assigned to label ci, respectively. The square nodes labeled by
1 and 0 indicate that the labeling is the maximum or not the maximum, respectively, among its equivalent labelings in the
lexicographic order. (i) Irreducible ZDD derived from the binary decision tree (h).

node has two kinds of outgoing edges, the 1-edge and
the 0-edge. They respectively indicate whether or not
a subset includes the element corresponding to the non-
terminal node. Therefore, a path from the root node to
a terminal node represents a subset. Then, the binary
value of the terminal node called the 1-terminal or 0-
terminal node respectively indicates whether or not the
family of subsets S contains the corresponding subset.
Therefore, each of three paths reaching the 1-terminal
nodes, called 1-paths, corresponds to each subset in
S = {{a, b}, {a, c}, {b, c}}.

A binary decision tree also similarly represents a set of
nonequivalent labelings. Figure 2 (h) shows the binary
decision tree of the set of nonequivalent labelings in the
two-dimensional example shown in Figs. 2 (b)–(g). The
non-terminal node ci has the 1-edge and the 0-edge, indi-
cating that the corresponding label is assigned as ci = 1
and ci = 0, respectively. The six 1-paths are identical to
the nonequivalent labelings.

B. Zero-suppressed binary decision diagram

A binary decision diagram (BDD) is a canonical repre-
sentation for a Boolean function [36, 37], derived by re-
ducing a binary decision tree to a directed acyclic graph.
A ZDD is a variant of the BDD [20, 38] and specially
designed for representing sets of combinations. ZDDs
are more efficient than BDDs for representing a family
of sparse subsets [20]. A ZDD is derived by reducing a
binary decision tree on the basis of the following two re-
duction rules, as schematically illustrated in Fig. 4. (1)
All nodes whose 1-edge directly points to the 0-terminal
nodes are deleted, and (2) all equivalent nodes having
the same child nodes and the same variable are shared.

Figure 3 shows the process of deriving a ZDD from
the binary decision tree representing the family of sub-
sets S = {{a, b}, {a, c}, {b, c}}. Fixing the order of vari-
ables a, b, and c, two non-terminal nodes c whose 1-edge
is directly connected to the 0-terminal nodes are first
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FIG. 3. Binary decision tree and a process to derive its ZDD for a family of subsets from elements {a, b, c}. The solid and
broken arrows indicate 1-edges and 0-edges, respectively. The square terminal nodes 1 and 0 indicate 1-terminal and 0-terminal
nodes, respectively. A reduction process of the binary decision tree to a ZDD is also shown. Processes (1) and (2) denote the
node elimination rule and the node sharing rule, respectively.

FIG. 4. ZDD reduction rules. (a) Node elimination rule for
redundant nodes. (b) Node sharing rule for equivalent nodes.

eliminated, as can be seen in the second panel of Fig. 3.
Then, redundant terminal nodes are combined into single
1-terminal and 0-terminal nodes, as shown in the third
panel of Fig. 3. Finally, two non-terminal nodes c with
the same child terminal nodes are shared, as shown in the
fourth panel of Fig. 3. The obtained irreducible ZDD is
more compact than the binary decision tree in terms of
the number of nodes. Moreover, the irreducible ZDD is
canonical and independent of the order of the reduction
processes for a given order of variables.

Each 1-path in a ZDD corresponds to a solution. The
following three 1-paths are identical to the family of sub-
sets S = {{a, b}, {a, c}, {b, c}}.

1. a
1-edge−−−−→ b

1-edge−−−−→ 1

2. a
1-edge−−−−→ b

0-edge−−−−→ c
1-edge−−−−→ 1

3. a
0-edge−−−−→ b

1-edge−−−−→ c
1-edge−−−−→ 1

Note that all paths from the root node to the terminal
nodes are represented with a common order of variables.

Figure 2 (i) shows the irreducible ZDD for the set of
nonequivalent labelings constructed from the binary de-

cision tree shown in Fig. 2 (h). The following six 1-paths
in the ZDD represent the six nonequivalent labelings.

1. c4
0-edge−−−−→ 1

2. c4
1-edge−−−−→ c3

0-edge−−−−→ c2
0-edge−−−−→ 1

3. c4
1-edge−−−−→ c3

0-edge−−−−→ c2
1-edge−−−−→ 1

4. c4
1-edge−−−−→ c3

1-edge−−−−→ c2
0-edge−−−−→ 1

5. c4
1-edge−−−−→ c3

1-edge−−−−→ c2
1-edge−−−−→ c1

0-edge−−−−→ 1

6. c4
1-edge−−−−→ c3

1-edge−−−−→ c2
1-edge−−−−→ c1

1-edge−−−−→ 1

They are identical to the set of nonequivalent labelings
given by Eqn. (14). In general, the number of paths is
calculated by dynamic programming in a computational
time proportional to the number of ZDD nodes. This is
typically a fast way to count the number of paths because
the number of nodes of a ZDD is much smaller than that
of paths in most cases.

C. ZDD for derivative structures

1. Binary system

Here, we reformulate the definition of the set of
nonequivalent labelings to derive its ZDD. As described
above, a nonequivalent labeling for a given supercell with
the sublattice LM is defined as the maximum labeling
in the lexicographical order among its equivalent label-
ings for the permutation group ΣM. In other words, a
nonequivalent labeling is a labeling larger than any of its
permuted structures for the permutation group. For per-
mutation σ ∈ ΣM, the set of larger or equal labelings in
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the lexicographical order is expressed as

C(σ)
M,2 =

{
c ∈ {0, 1}|DM| | c � σ(c)

}
. (15)

Therefore, the set of the nonequivalent labelings CM,2 is

then given by the intersection of C(σ)
M,2 for all permuta-

tions as

CM,2 =
⋂

σ∈ΣM

C(σ)
M,2. (16)

The intersection of ZDDs is efficiently obtained in a
top-down manner [39] during the construction of an

isomorphism-eliminated ZDD, C(σ)
M,2, using a frontier-

based method [26], as described in Appendix B.

2. Multicomponent system

We extend the procedure for deriving ZDDs to mul-
ticomponent systems, keeping the binary structure of
ZDD. First, we introduce an encoding of labeling
c ∈ {0, . . . , k − 1}|DM| to one-hot representation c̃ ∈
{0, 1}k|DM| expressed as

c̃ = (c̃|DM|,k−1, . . . , c̃|DM|,0, . . . ,

c̃2,k−1, . . . , c̃2,0, c̃1,k−1, . . . , c̃1,0), (17)

where

c̃i,p =

{
1 (ci = p)

0 (otherwise)
. (18)

Labeling c and one-hot encoding c̃ have a one-to-one cor-
respondence. The sum of k elements for site i in the one-
hot encoding must be one, because any one of k atomic
species occupies site i. This means that the one-hot en-
coding must satisfy the one-of-k constraint of

k−1∑
p=0

c̃i,p = 1 (i = 1, . . . , |DM|) . (19)

We then reformulate nonequivalent labelings using the
one-hot encoding. A nonequivalent one-hot encoding can
be defined as the largest one-hot encoding among its
equivalent one-hot encodings in the lexicographical or-
der. Therefore, the set of nonequivalent one-hot encod-
ings C̃M,k is written as

C̃M,k =

{
c̃ ∈ {0, 1}k|DM| | c̃ � σ(c̃) (∀σ ∈ ΣM),

k−1∑
p=0

c̃i,p = 1 (∀i)
}
, (20)

where the action of permutation σ on one-hot encoding
c̃, σ(c̃), is expressed as

σ(c̃) = (c̃σ(|DM|),k−1, . . . , c̃σ(|DM|),0,

. . . ,

c̃σ(2),k−1, . . . , c̃σ(2),0,

c̃σ(1),k−1, . . . , c̃σ(1),0). (21)

From this definition of the nonequivalent one-hot encod-
ings, a ZDD of nonequivalent one-hot encodings is the
intersection of isomorphism-eliminated ZDDs and a one-
of-k ZDD representing whether the constraint is satisfied
or not. Isomorphism-eliminated ZDD for permutation σ,

C̃(σ)
M,k, and one-of-k ZDD C̃one-of-k are written as

C̃(σ)
M,k =

{
c̃ ∈ {0, 1}k|DM| | c̃ � σ(c̃)

}
(22)

and

C̃one-of-k =

{
c̃ ∈ {0, 1}k|DM| |

k−1∑
p=0

c̃i,p = 1 (∀i)

}
, (23)

respectively. One-of-k ZDD C̃one-of-k as illustrated in
Fig. 5 (a) is easily derived. Finally, the set of nonequiv-
alent one-hot encodings is given as

C̃M,k = C̃one-of-k ∩

( ⋂
σ∈ΣM

C̃(σ)
M,k

)
. (24)

Note that if we impose additional constraints indicating
prior knowledge on derivative structures such as ener-
getically prohibited structures, a ZDD satisfying the ad-
ditional constraints is derived by the intersection of the
ZDD C̃M,k and the additional constraint ZDDs.

Figure 5 (b) shows a ZDD representing ternary
nonequivalent one-hot encodings of the two-dimensional
supercell that is the same as that used in Section III C.
Pólya’s counting theorem or Eqn. (13) indicates that
there exists 21 nonequivalent labelings. Because a 1-
path represents a nonequivalent one-hot encoding, the
ZDD has 21 1-paths. The relationship between paths
and nonequivalent one-hot encoding can be seen in the
following example. Labeling c = (2, 1, 0, 0) is encoded to
a one-hot representation as

c̃ = (c̃4,2, c̃4,1, c̃4,0, c̃3,2, c̃3,1, c̃3,0, c̃2,2, c̃2,1, c̃2,0, c̃1,2, c̃1,1, c̃1,0)

= (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1), (25)

which is stored in the ZDD as the following 1-path.

• c̃4,2
1−→ c̃3,2

0−→ c̃3,1
1−→ c̃2,2

0−→ c̃2,1
0−→ c̃2,0

1−→ c̃1,1
0−→

c̃1,0
1−→ 1

Note that the ZDD shown in Fig. 5 (b) is much more com-
pact than the corresponding binary decision tree. The
width of the ZDD or the maximum number of nodes cor-
responding to the same variable is only three, which cor-
responds to the number of nodes for c̃3,0, c̃2,2, and c̃2,1.
On the other hand, the width of the binary decision tree
is k|DM| = 34 = 81.

V. RESULTS AND DISCUSSION

We demonstrate applications of the present ZDD-
based method to the enumeration of binary, ternary, and
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TABLE I. Number of nonequivalent sublattices and permutation groups for fcc. The notations NHNF and NΣM denote the
number of nonequivalent sublattices and the number of non-isomorphic permutation groups for a given index.

Index NHNF NΣM Index NHNF NΣM Index NHNF NΣM Index NHNF NΣM

2 2 1 14 28 2 26 72 3 38 136 2
3 3 1 15 31 3 27 75 12 39 129 4
4 7 3 16 58 16 28 123 8 40 286 22
5 5 2 17 21 2 29 49 2 41 89 2
6 10 1 18 60 10 30 158 3 42 268 3
7 7 2 19 25 2 31 55 2 43 97 2
8 20 7 20 77 8 32 177 33 44 249 6
9 14 5 21 49 3 33 97 2 45 218 19
10 18 2 22 54 1 34 112 2 46 190 1
11 11 1 23 33 1 35 99 4 47 113 1
12 41 6 24 144 16 36 268 33 48 496 53
13 15 3 25 50 7 37 75 3

FIG. 5. (a) One-of-k ZDD of the two-dimensional example
representing ternary one-hot encodings that satisfy the one-of-
k constraint. (b) ZDD representing ternary one-hot encodings
of the two-dimensional supercell, which is the same as that
used in Section III C. The solid and broken arrows indicate
1-edges and 0-edges, respectively. The square terminal nodes
indicate the 1-terminal nodes. The 0-terminal node and edges
connected to it are omitted for visibility.

TABLE II. Number of nonequivalent sublattices and permu-
tation groups for hcp.

Index NHNF NΣM Index NHNF NΣM

1 1 1 14 53 13
2 3 2 15 55 20
3 5 3 16 104 57
4 11 9 17 37 10
5 7 4 18 115 32
6 19 9 19 45 12
7 11 6 20 143 48
8 34 25 21 91 27
9 23 12 22 105 16
10 33 10 23 61 13
11 19 7 24 272 108
12 77 40 25 90 22
13 25 9

quaternary derivative structures from the fcc and hcp
primitive cells. Basis vectors of a primitive cell and point
coordinates are given as

A =

0 1 1
1 0 1
1 1 0

 , D =


0

0
0

 , (26)

and

A =

1 1/2 0

0
√

3/2 0

0 0 2
√

6/3

 , D =


0

0
0

 ,

1/3
1/3
1/2

 (27)

for fcc and hcp, respectively. On the basis of the fcc and
hcp primitive cells, we enumerate nonequivalent sublat-
tices identified by HNFs and non-isomorphic permuta-
tion groups to derive ZDDs representing nonequivalent
labelings. We used Spglib [40] to obtain symmetry op-
erations in the space groups of the primitive cells. Tables
I and II show the numbers of nonequivalent sublattices
and non-isomorphic permutation groups for fcc and hcp,
respectively. The sequence of nonequivalent sublattices
for fcc is found in the On-line Encyclopedia of Integer
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c4

c3

c2 c2

c1

1

c4

c3

c2

c1

1

c4

c3

c2

c1

1

FIG. 6. Three ZDDs representing binary fcc nonequivalent
labelings with the index of four. Each ZDD corresponds to
nonequivalent labelings for each non-isomorphic permutation
group.

Sequences (OEIS) (A159842) [15, 41]. The first ten el-
ements of the sequence of nonequivalent sublattices for
hcp are also found in OEIS (A300783).

Then, we derive a ZDD representing nonequivalent la-
belings for each non-isomorphic permutation group. We
used tdzdd [39, 42], which is a library for facilitating
the manipulation processes of constructing ZDDs by a
frontier-based method. Figure 6 shows ZDDs represent-
ing binary fcc nonequivalent labelings with the index of
four. Each ZDD corresponds to nonequivalent labelings
for each non-isomorphic permutation group. The ZDD
shown in the left panel of Fig. 6 is identical to a set of
nonequivalent labelings for the supercell specified by the
following five HNFs:

M =

1 0 0
0 1 0
0 0 4

 ,

1 0 0
0 1 0
0 1 4

 ,

1 0 0
0 1 0
0 2 4

 ,

1 0 0
0 1 0
0 3 4

 ,

1 0 0
0 1 0
1 2 4

 . (28)

The ZDDs shown in the middle and right panels of Fig. 6
represent nonequivalent labelings for

M =

1 0 0
0 2 0
0 0 2

 (29)

and

M =

1 0 0
1 2 0
1 0 2

 , (30)

respectively. The last transformation matrix generates
the fcc conventional unit cell, and the following two 1-
paths correspond to the L12 (Cu3Au-type) structure.

c4

c3

c2 c2

c1

1

c4

c3

c2 c2

c1

1

FIG. 7. Two ZDDs representing binary hcp nonequivalent
labelings with the index of two.

• c4
1-edge−−−−→ c3

0-edge−−−−→ 1

• c4
1-edge−−−−→ c3

1-edge−−−−→ c2
1-edge−−−−→ c1

0-edge−−−−→ 1

Figure 7 shows ZDDs representing binary hcp
nonequivalent labelings with the index of two. The ZDDs
shown in the left and right panels of Fig. 7 represent
nonequivalent labelings for

M =

1 0 0
0 1 0
0 0 2

 ,

1 0 0
0 1 0
0 1 2

 (31)

and

M =

1 0 0
0 2 0
0 0 1

 , (32)

respectively.
Then, we compare the performance of the present

ZDD-based method with that of the previous method
[15, 16, 18] implemented in enumlib [43]. As performed
in the present ZDD-based method, the previous method
(enumlib) enumerates nonequivalent labelings only for
non-isomorphic permutation groups for a given index.
We enumerate nonequivalent labelings to the limit of the
index due to the computational resource [44].

Figure 8 shows the number of nonequivalent labelings
for each non-isomorphic permutation group in (a) bi-
nary, (b) ternary, and (c) quaternary systems. As de-
scribed before, the number of nonequivalent labelings is
easily calculated by Pólya’s counting theorem [12, 13],
and the number of nonequivalent labelings obtained from
each ZDD coincides exactly with the number obtained
by Pólya’s counting theorem. The multiple numbers of
nonequivalent labelings are found at most of the indexes
in Fig. 8 because the number of nonequivalent label-
ings depends on the permutation group. Note that all
nonequivalent labelings themselves can be obtained by
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FIG. 8. (Color online) Number of nonequivalent labelings for every permutation group in (a) binary, (b) ternary, and (c)
quaternary systems. The horizontal axis indicates the index. The blue closed circles and orange crosses show the numbers of
fcc nonequivalent labelings and hcp nonequivalent labelings, respectively.

tracing all paths in a ZDD, although we show only the
number of nonequivalent labelings in Fig. 8.

For fcc, the present ZDD-based method enumerates
nonequivalent labelings with up to 48, 31, and 26 sites
for binary, ternary, and quaternary systems, respec-
tively. The total number of derivative structures, which
is the sum of the numbers of nonequivalent labelings over
nonequivalent supercells, reaches approximately 1017 in
each of the binary, ternary, and quaternary systems. On
the other hand, the total number of derivative structures
is approximately 1010 in every system when using the pre-
vious method implemented in enumlib, which is much
smaller than that of the present ZDD-based method. For
hcp, the number of sites in a derivative structure is twice
its index. As can be seen in Fig. 8, the present ZDD-
based method enumerates nonequivalent labelings with
up to 50, 30, and 26 sites for the binary, ternary, and
quaternary systems, respectively. The total number of
derivative structures ranges approximately from 1016 to
1018. Although the number of enumerated derivative
structures can be too enormous to use them as candidates
for optimization, it is expected to reduce candidates by
introducing some useful constraints.

Figure 9 shows the number of non-terminal nodes and
the number of nonequivalent labelings in ZDDs. The
diagonal line indicates that the number of non-terminal
nodes is equal to that of nonequivalent labelings, which
corresponds to a simple case of each labeling being ex-
pressed by a single node. Therefore, their ratio can be
a simple estimation of the efficiency of a ZDD. As can
be seen in Fig. 9, the number of non-terminal nodes is
much smaller than that of nonequivalent labelings, which
indicates that ZDD represents nonequivalent labelings ef-
ficiently. For example, ZDD compresses as many as ap-
proximately 1012 nonequivalent labelings into approxi-
mately 108 non-terminal nodes.

FIG. 9. (Color online) Number of non-terminal nodes in
relation to number of nonequivalent labelings in ZDDs. The
blue and orange symbols indicate ZDDs representing fcc and
hcp nonequivalent labelings, respectively.

Figure 10 shows the computational time required to
enumerate derivative structures for a given index us-
ing the present ZDD-based method and the previous
method (enumlib). The computational time required
to construct a ZDD for each non-isomorphic permuta-
tion group is also shown in Fig. 10. In the ZDD-based
method, the computational time required to enumer-
ate derivative structures for a given index is the sum
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FIG. 10. (Color online) Computational times required to enumerate FCC derivative structures in present ZDD-based and
previous methods in (a) binary, (b) ternary, and (c) quaternary systems. The blue closed circles stand for constructing ZDDs
for each index. The green open circles indicate the computational time required to construct a ZDD representing nonequivalent
labelings for each permutation group with a given index. The computational time of the previous method of enumerating
derivative structures for each index is also shown by the orange closed squares.

of the computational times required to construct ZDDs
for non-isomorphic permutation groups. Similarly to the
present method, the previous method (enumlib) enu-
merates nonequivalent labelings only for non-isomorphic
permutation groups for a given index.

As can be seen in Fig. 10, both methods require ex-
ponential time with respect to the index. However, the
two series of computational time indicate that the base of
exponential time in the ZDD-based method is half that
in the previous method. For example, the computational
time is approximately 104 and 101 seconds at the index of
29 in the previous method and the ZDD-based method,
respectively. The difference in the computational time
at a larger index between the previous method and the
ZDD-based method is expected to be much larger. Thus,
the ZDD-based method to enumerate derivative struc-
tures is much more efficient than the previous method.
In practice, memory consumption is also an essential as-
pect in enumerating derivative structures. A comparison
of memory consumption between the ZDD-based method
and the previous method is given in Appendix C.

Note that it is impossible to compare the present
ZDD-based method and the previous method in a rig-
orous manner, because they have some differences in
their procedures and implementations. However, the
present discussion on their differences in terms of com-
putational time order should remain valid. The main
difference between their procedures is that the previous
method (enumlib) excludes superperiodic structures and
incomplete structures, but the present method includes
such structures. Regarding the implementation of the
methods, the present method and the previous method
(enumlib) are implemented in C++ and Fortran, respec-
tively.

VI. CONCLUSION

We have proposed an efficient procedure with a com-
pact data structure of ZDD to enumerate derivative
structures or nonequivalent labelings for given lattice and
sites. We have applied the ZDD-based procedure to the
enumeration of binary, ternary, and quaternary deriva-
tive structures from the simple fcc and hcp structures.
The present approach significantly increases the possible
number of derivative structures to be enumerated, which
is as many as approximately 1014. Although the number
of enumerated derivative structures can be too huge to
perform structure optimization from the derivative struc-
tures, such a structure optimization will be possible by
introducing ZDDs representing some useful constraints.
The present ZDD-based method can be easily applied to
the structure enumeration derived from the other struc-
tures. In addition to the derivative structure enumer-
ation, ZDD and similar approaches should be powerful
tools for solving combinatorial problems in physics and
materials science that can be reformulated as the enu-
meration of subgraphs from a given graph.
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Appendix A: Pólya’s counting theorem

Pólya’s counting theorem derives the number of k-ary
nonequivalent labelings for the permutation group ΣM.
The number of nonequivalent labelings CM,k defined in
Eqn. (9), |CM,k|, is given by [12, 13, 45]

|CM,k| =
1

|ΣM|
∑
σ∈ΣM

kt1(σ)+t2(σ)+···+t|DM|(σ), (A1)

where tj(σ) denotes the number of cycles with length j in
permutation σ. The sequence t(σ) = (t1(σ), . . . , tDM

(σ))
is the type of permutation σ [13], and the sum of the
elements in the type indicates the total number of cycles
in permutation σ. In the two-dimensional example shown
in Section III C, the permutations are expressed using the
cycle notation as

σ1 =

(
1 2 3 4
1 2 3 4

)
= (1)(2)(3)(4)

σ2 =

(
1 2 3 4
2 3 4 1

)
= (1234)

σ3 =

(
1 2 3 4
3 4 1 2

)
= (13)(24)

σ4 =

(
1 2 3 4
4 1 2 3

)
= (4321)

σ5 =

(
1 2 3 4
1 4 3 2

)
= (1)(3)(24)

σ6 =

(
1 2 3 4
3 2 1 4

)
= (2)(4)(13)

σ7 =

(
1 2 3 4
2 1 4 3

)
= (12)(34)

σ8 =

(
1 2 3 4
4 3 2 1

)
= (14)(23).

Therefore, the types of permutation are derived as

t(σ1) = (4, 0, 0, 0)

t(σ2) = (0, 0, 0, 1)

t(σ3) = (0, 2, 0, 0)

t(σ4) = (0, 0, 0, 1)

t(σ5) = (2, 1, 0, 0)

t(σ6) = (2, 1, 0, 0)

t(σ7) = (0, 2, 0, 0)

t(σ8) = (0, 2, 0, 0),

and the number of nonequivalent labelings is given by

|CM,k| =
1

8

(
k4 + 2k3 + 3k2 + 2k

)
. (A2)

Appendix B: Frontier-based method for deriving
isomorphism-eliminated ZDD

Regarding the derivation of a ZDD, we lose the greatest
advantage of ZDD once we have constructed the complete
binary decision tree. Therefore, primitive set operations
between two ZDDs based on Bryant’s algorithm have
been used to derive ZDDs [36, 38]. Recently, frontier-
based methods improving the efficiency of deriving ZDDs
have been proposed. They are specially developed for
various graph-based enumeration problems including the
enumeration of s-t paths [21, 22] and spanning trees [23].

The frontier-based method is a dynamic program-
ming method that uses specific structural properties of
a given graph [38]. Therefore, the algorithm design of
the frontier-based method strongly depends on the target
problem. Heuristic rules have been used in the algorithm;
hence, the frontier-based method does not necessarily de-
rive the irreducible ZDD. Nonetheless, a well-designed al-
gorithm of the frontier-based method is known to enable
the building of a much more compressed data structure
than the original binary decision tree.

The present frontier-based method was proposed to
enumerate all non-isomorphic subgraphs of a given graph
with respect to the automorphism of the graph by one of
the authors of this study [26]. It was applied to the enu-
meration of all non-isomorphic developments of Platonic
and Archimedean solids and d-dimensional hypercubes.
This method can be applied to the enumeration of binary
derivative structures (k = 2) in a straightforward manner
because it can be regarded as such a subgraph enumera-
tion problem. Figure 11 shows the development process

of isomorphism-eliminated ZDDs with three labels, C(π)
M,2,

for permutations

π1 =

(
1 2 3
2 3 1

)
, π2 =

(
1 2 3
3 2 1

)
. (B1)

The key ideas to efficiently construct an isomorphism-

eliminated ZDD, C(π)
M,2, within a frontier-based method

are (1) comparing partially determined labeling and its
permuted labeling and (2) retaining only frontier labels
that should be compared in a later process, not all the
labels that are already determined.

The following branching and sharing rules are applied
to derive ZDDs. (1) If the relationship c � π(c) is de-
cided in the comparison of partially determined labeling
and its permuted labeling, all paths containing the par-
tially determined labeling are never solutions. The edge
corresponding to the partially determined labeling is di-
rectly connected to the 0-terminal node. An example of
such a branching is c = (0 1 ◦) and π(c) = (1 ◦ 0) for
permutation π1, where ◦ denotes the undetermined label.
(2) If the relationship c � π(c) is decided in the compar-
ison of partially determined labeling and its permuted
labeling, all paths containing the partially determined
labeling are solutions. The edge is connected to a ZDD
that corresponds to the binary decision tree where every
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FIG. 11. Development process of isomorphism-eliminated ZDDs with three labels, C(π)
M,2, for permutations π1 and π2. The

solid and dotted arrows indicate 1-edges and 0-edges, respectively. The order of variables is fixed as c3, c2, and c1. To show
the development process of ZDDs, partially determined labeling and its permuted labeling are also shown for each edge. The
upper and lower blocks indicate (c3, c2, c1) and (cπ(3), cπ(2), cπ(1)), respectively. The asterisks indicate discarded labels that are
not needed in a later comparison process.

terminal node has the value of one. An example of such
a branching is c = (1 0 ◦) and π(c) = (0 ◦ 1) for per-
mutation π1. (3) If neither of the above relationships is
decided, the labels used in the comparison are removed
from the set of frontier labels that should continue to be
compared. They do not need to be compared in a later
process after comparing label ci and permuted label cπ(i)

for site i. Its example is c = (00◦) and π(c) = (0 ◦ 0) for
permutation π1. Labels c1 and cπ(1) are then discarded,
and we denote them as c = (∗ 0 ◦) and π(c) = (∗ ◦ 0),
where ∗ indicates a discarded label. (4) Two nodes are
merged when the values of their frontier labels coincide
[46].

Appendix C: Memory consumption

Regarding memory consumption in the construction of
ZDDs, we practically should consider not only the size of
the allocated memory of the final ZDD representing a
set of nonequivalent labelings but also the peak memory
required for allocating a ZDD representing a set of lexico-
graphically larger labelings for a permutation. Figure 12
shows the memory required for the ZDD method in enu-
merating fcc nonequivalent labelings compared with that
required for the previous method implemented in enum-
lib [15, 16, 18, 43]. We show the peak memory required
for constructing a ZDD for a non-isomorphic permuta-
tion group, while we show the peak memory required
for enumerating derivative structures for a given index
in the previous method. As can be seen in Fig. 12, the
required memory for the ZDD method increases more
slowly with the increase in the index than that for the
previous method. For example, the peak memory con-
sumed at the index of 29 is approximately 3.0 GB in the
previous method and 25 MB in the ZDD-based method.
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