
New production matrices for geometric graphs
Guillermo Esteban∗1 and Clemens Huemer, Rodrigo I. Silveira†2

1Carleton University, Ottawa, Canada
2Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract
We use production matrices to count several classes of geometric graphs. We present novel pro-

duction matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which
provide another way of counting the number of such objects. Counting geometric graphs is then
equivalent to calculating the powers of a production matrix. Applying the technique of Riordan
Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs
as well as combinatorial identities derived from the production matrices. Further, we obtain the
characteristic polynomial and the eigenvectors of such production matrices.

1 Introduction
This work is devoted to the prominent problem of counting geometric graphs. A geometric graph on
a finite set of points S ⊆ R2 is a graph with vertex set S whose edges are straight-line segments with
endpoints in S. It is called plane if no two edges intersect except at common endpoints. We focus on
plane graphs on a set S of n points in convex position, which will be labelled {p1, ..., pn} in counter-
clockwise order. Numerous geometric graph classes exist, such as triangulations (i.e., plane graphs all
whose faces, except possibly the exterior one, are triangles), connected graphs, or spanning trees. A
fundamental problem is to determine the number of graphs, for each class, as a function of n. Already
in 1753, Euler and Segner determined the number of triangulations. These numbers are the well-known
Catalan numbers. For many other classes of plane graphs, such as trees, forests, dissections, non-crossing
partitions, connected graphs, and geometric graphs, Flajolet and Noy [9] gave formulas for their numbers.
Some of such formulas were also obtained earlier, see for instance [16], where non-crossing partitions were
discussed for the first time, [7], where trees were first enumerated or [3], where results for dissection were
summarized.

The subject of counting plane geometric graphs for points in convex position has been studied inten-
sively. There exist different methods that provide formulas for the number of graphs in a given graph
class with n vertices. For an account of classical results, we refer to Comtet’s book [3]. Furthermore,
Flajolet and Noy [9] used tools from analytic combinatorics to obtain other formulas for some graph
classes unifying specifications of combinatorial structures with generating functions. Also, when analyz-
ing more complex parameters, such as extremal parameters [6], there is also a need for other methods
like singularity analysis, first and second moment method or iterated functions.

Throughout this paper we make use of another way of enumerating plane graphs on point sets in
convex position: production matrices. This method, in combination with Riordan Arrays [19], has been
used recently to count triangulations, spanning trees and geometric graphs [11, 12]. Our objective is to
use this method to obtain new formulas to count these kind of graphs as well as connected graphs and
k-angulations.

Recently, it was shown how different classes of geometric graphs can be counted by using an n × n
matrix An, called production matrix, associated to each graph class [11, 12, 13]. The number of these
graphs for a fixed number of vertices is given by (a column of) a power of An, while their asymptotic
number, as n tends to infinity, is governed by the largest eigenvalue of An. To derive a production matrix
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for a certain graph class, first the graphs with i ≤ n vertices are partitioned according to the degree of a
specified root vertex (several definitions of degree are possible). Then, each part is counted in the entries
of an n-element vector vi and hence, the sum of the vector elements gives the number of geometric graphs
for i vertices. A production matrix An is a matrix satisfying vi+1 = Anv

i. Furthermore, an initial vector
vc contains the count for a constant number of vertices (usually (1, 0, ..., 0)> and c = 1, but for the class
of geometric graphs the initial vector will be (2, 0, ..., 0)>, in this case we start with c = 2 vertices). It
then follows that vi+1 = Ai+1−c

n vc for i + 1 ≥ c. The method above to define An based on a vertex
degree, implicitly arranges graphs into a tree structure known as generating tree [2]. In this work we
will use different definitions of vertex degree than in [11, 12], which results in different generating trees
and different production matrices. We then will use Riordan Arrays to analyze the obtained production
matrices giving formulas for the number of graphs, characteristic polynomials and eigenvectors.

1.1 Previous results
The concept of production matrix was first introduced and studied by Deutsch et al. [5]. Also, these
matrices were defined to be infinite and in a triangular form [18]. One of the results obtained in [5]
was a production matrix for Catalan structures, including triangulations, shown in Table 1(a), and also
obtained by Merlini and Verri [18]. Recently, Huemer et al. [11, 12, 13] obtained production matrices for
other graph classes, and computed formulas for the characteristic polynomials of those matrices, as well
as formulas for the entries of vectors that enumerate the number of graphs. In this section, we summarize
the main previous results. In Table 1, examples of n×n production matrices from [11] for different graph
classes for n = 6 are presented. Matrices (a)-(e) are for graphs with at most n points and matrix (f) is
for paths with at most n

2 points.

(c) Spanning trees


1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1


(a) Triangulations
1 1 1 1 1 1
1 3 4 5 6 7
0 1 3 4 5 6
0 0 1 3 4 5
0 0 0 1 3 4
0 0 0 0 1 3


(d) Forests


1 1 1 1 1 1
1 3 3 3 3 3
0 2 4 4 4 4
0 0 2 4 4 4
0 0 0 2 4 4
0 0 0 0 2 4


(e) Geometric graphs


1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 1 1 1
0 1 1 0 1 1
0 0 1 0 0 1



(b) Matchings

(f) Paths


0 1 1 1 1 1
1 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0




2 3 4 5 6 7
1 2 3 4 5 6
0 1 2 3 4 5
0 0 1 2 3 4
0 0 0 1 2 3
0 0 0 0 1 2



Table 1: Production matrices for six different graph classes [11].

In [12], formulas for the entries of the vector vn were also given. In addition, the characteristic
polynomials of the n× n production matrices given in Table 1 are given in [11].

Many of the results obtained in [11, 12, 13] are related to Catalan numbers [17, 22] and other well-
known sequences of numbers. For instance, the Ballot number Bn,k appears in the formula of the vector
for the number of triangulations and also in the one for matchings, due to its relation with Catalan
numbers (note that

∑
k Bn,k is a Catalan number). Also, a relation between Fibonacci numbers and the

class of graphs of forests appears in [11].

1.2 Our results
In this section we summarize the different results presented in the paper. More results in several directions
are also given in Esteban’s Thesis [8].

Production matrices
This work is an extension of previous results [11, 12] in several directions. We present new production

matrices that count k-angulations, geometric graphs, connected geometric graphs, non-crossing partitions,
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forests, and forests of paths. In the case of geometric graphs and non-crossing partitions production
matrices were already known, but we define new production matrices for these two graph classes. We
summarize the production matrices we obtained for each graph class studied in Tables 2 and 3.

(e) Quadrangulations


1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1


(a) Triangulations
0 1 2 4 8 16
1 0 1 2 4 8
0 1 0 1 2 4
0 0 1 0 1 2
0 0 0 1 0 1
0 0 0 0 1 0


(b) Non-crossing partitions


3 7 15 31 63 127
1 3 7 15 31 63
0 1 3 7 15 31
0 0 1 3 7 15
0 0 0 1 3 7
0 0 0 0 1 3


(d) Connected graphs



(
k−2
k−3

) (
k−1
k−3

) (
k

k−3

) (
k+1
k−3

) (
k+2
k−3

) (
k+3
k−3

)
1

(
k−2
k−3

) (
k−1
k−3

) (
k

k−3

) (
k+1
k−3

) (
k+2
k−3

)
0 1

(
k−2
k−3

) (
k−1
k−3

) (
k

k−3

) (
k+1
k−3

)
0 0 1

(
k−2
k−3

) (
k−1
k−3

) (
k

k−3

)
0 0 0 1

(
k−2
k−3

) (
k−1
k−3

)
0 0 0 0 1

(
k−2
k−3

)



(c) Geometric graphs

(f) k-angulations (k ≥ 3)


2 4 8 16 32 64
2 2 4 8 16 32
0 2 2 4 8 16
0 0 2 2 4 8
0 0 0 2 2 4
0 0 0 0 2 2




2 3 4 5 6 7
1 2 3 4 5 6
0 1 2 3 4 5
0 0 1 2 3 4
0 0 0 1 2 3
0 0 0 0 1 2


[5]

Table 2: Production matrices for six graph classes.

An important concept that we have to take into account when defining a production matrix is the
degree of the root vertex of a graph. While in previous works [11, 12], for most matrices the degree of
a vertex was defined as the number of incident edges, in this work we use different definitions of vertex
degree. Matrix (a) in Table 2 [5, 18] is used to count triangulations and other Catalan structures like
non-crossing partitions and perfect matchings. In Section 3, we generalize matrix (a) to quadrangulations
and, further, to k-angulations, see matrices (e) and (f) in Table 2. Due to the fact that there exists a
bijection between quadrangulations and spanning trees [21], we know that matrix (e) is also a production
matrix for spanning trees, obtained using a different approach than the one applied in [12]. For the graph
class of k-angulations we use as degree definition the number of edges incident to the root vertex, minus
2. In Sections 4 and 5 we study production matrices for geometric and connected geometric graphs,
see matrices (c) and (d). For these graph classes, the degree of the root vertex is defined in a different
way, based on visibility: the degree of the root vertex pn is the number of visible vertices from a vertex
pn+1 inserted between p1 and pn in convex position, minus 2. Two vertices are visible if the line segment
connecting them does not intersect the interior of any edge of the graph. An example to illustrate the
concept of visibility degree is given in Figure 1. We observe that in the right graph, the degree of the root
vertex p12, for visibility degree and for the number of incident edges, coincides, and it is 3. However, in
the left graph, with the degree definition of [12], the root vertex p12 would have degree 0, while with the
new definition, p12 has visibility degree 3.

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10
p11

p12

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10
p11

p12

Figure 1: Geometric graphs with n = 12 vertices.

We point out that matrix (c) in Table 2 is a different matrix for geometric graphs than the one
obtained in [12], see Table 1(e). As for matrix (d), this is the first time that a production matrix for
connected geometric graphs is derived, to the best of our knowledge. In Section 5.3 we present another
interesting result: a production matrix that relates the class of geometric graphs to other classes of graphs:
connected geometric graphs, spanning trees and paths. The entries of such a matrix are calculated with
the sum of the numbers of connected graphs and it gives the number of geometric graphs of the same
graph class. For these graph classes, the root vertex degree is based on yet another definition of visibility,
called isolation degree: the degree of the root vertex is the number of isolated visible vertices from a
vertex pn+1 inserted between p1 and pn in convex position. An example to illustrate the concept of

3



isolation degree is given in Figure 2. With the degree definition of [12], the root vertex p12 would have
degree 0, while with the new definition, p12 has isolation degree 2.

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10
p11

p12

Figure 2: A geometric graph (non-crossing partition) with n = 12 vertices and two isolated vertices {p8, p12}.
The isolation degree of the root vertex g12 is 2.

Table 3 shows production matrices for three graph classes. The production matrix in Table 3(a) for
geometric graphs is different from the previous ones, i.e., compare to Table 1(e) and Table 2(c), and
the entries of the first row are calculated with the sum of connected graphs given as Sequence A007297
in The On-Line Encyclopedia of Integer Sequences (OEIS) [20]. In a similar manner, for plane forests
in Table 3(b) (see Sequence A054727 in OEIS), we find the entries of the first row of the production
matrix in OEIS as Sequence A307678 and they are given by the sum of the number of spanning trees. In
the case of spanning forests of paths in Table 3(c), the entries of the first row of the production matrix
correspond to Sequence A006234 in OEIS and we can calculate them with the sum of spanning paths
given as Sequence A001792 in OEIS.

(c) Forest of paths


0 1 4 19 101 578
1 0 1 4 19 101
0 1 0 1 4 19
0 0 1 0 1 4
0 0 0 1 0 1
0 0 0 0 1 0


(a) Geometric graphs (b) Non-crossing forests


0 1 5 32 238 1941
1 0 1 5 32 238
0 1 0 1 5 32
0 0 1 0 1 5
0 0 0 1 0 1
0 0 0 0 1 0




0 1 4 15 54 189
1 0 1 4 15 54
0 1 0 1 4 15
0 0 1 0 1 4
0 0 0 1 0 1
0 0 0 0 1 0



Table 3: Production matrices for three graph classes, for n = 6, obtained by exploiting the relation between
geometric graphs and connected graphs.

Finally, in Section 6 we study non-crossing partitions. To define the new production matrix, we use
the same degree definition as in Section 5.3: the number of isolated visible vertices from a vertex pn+1
inserted in convex position between pn and p1 (see Figure 2). We point out that production matrix (b)
in Table 2 provides an alternative production matrix for Catalan structures. This leads to a partition
formula of Catalan numbers Cn that we have not found in the literature, see Theorem 16, similar to the
well-known formula Cn =

∑
k Bn,k with Ballot numbers Bn,k.

Vectors that count graphs
In addition to devising production matrices, we deduce formulas for vectors counting graphs with a

given root degree. The results for the entries of those vectors for the different graph classes studied are
stated in Table 4. For k-angulations, the formula counts the number of k-angulations with r k-gons, on n
points, and root vertex degree j − 1, for j = 1, . . . , r. For non-crossing partitions, the formula counts the
number of non-crossing partitions with n points, and root vertex degree j − 1, for j = 1, . . . , n+ 1. The
other formulas enumerate the graphs with n vertices and root vertex degree j − 1, for j = 1, . . . , n− 1.

j
r

(
(k−1)r−j−1

r−j

)
j

n−12
n−1−j ∑n−1

k=j

(
n−1
k

)(
n+k−j−2

k−j

)
(−1)n−1−k2k

j
n−12

n−1∑n−1
k=0

(
n−1
k

) (
−1

2

)k ∑n−j−1
`=0

(
n−2−k+`

`

)(
k+n−`−j−2
n−`−j−1

)
2`

j
n+1

∑n+1

k=dn+j+1
2 e

(
n+1
k

)(
k−j−1

2k−n−j−1

)
22k−n−j−1

k-angulations

Geometric graphs

Connected graphs

Non-crossing partitions

Table 4: Entries for vectors that enumerate the number of graphs for four graph classes.
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Characteristic polynomials
We also study other properties that have combinatorial implications. We obtain the characteristic

polynomials of the matrices, and a characterization of the eigenvectors associated to them. The recursive
formulas obtained for the characteristic polynomials of the production matrices of the graph classes stated
in Table 2 are summarized in Table 5.

kr(λ) =
((

k−2
k−3

)
− λ

)
kr−1(λ)−

∑r
i=2(−1)i

(
k+i−3
k−3

)
kr−i(λ)

gn(λ) = (2− λ)gn−1(λ)−
∑n

i=2(−1)i22i−1gn−i(λ)

cn(λ) = (3− λ)cn−1(λ)−
∑n

i=2(−1)i(2i+1 − 1)cn−i(λ)

bn(λ) = −λbn−1(λ)− 1
4

∑n
i=2(−2)ibn−i(λ)

k-angulations

Geometric graphs

Connected graphs

Non-crossing partitions

Table 5: Recursive formulas for the characteristic polynomials for the production matrices for four graph classes.

Finally, the solutions for the recursive formulas of the characteristic polynomials stated in Table 5 are
given in Table 6.

kr(λ) =
∑r

`=0(−1)`
(
(k−2)(`+1)

r−`

)
λ`

gn(λ) =
∑n

t=0
∑n

k=t(−1)k
(
k
t

)(
t+1
n−k

)
22n−t−kλt

cn(λ) =
∑n

t=0

(∑t
`=0

(
t
`

)
(−1)t2t−`3n+2`−3t−2

[
2
(

`
n+2`−3t−2

)
+ 9

(
`+1

n+2`−3t

)])
λt

bn(λ) =
∑n

t=0
∑n

k=0
∑k

`=0

(
k
t

)(
t
`

)
(−1)k22k−n+t−2`

[
4
(

k−t
2k−n−`+1

)
+
(

k−t
2k−n−`

)]
λt

k-angulations

Geometric graphs

Connected graphs

Non-crossing partitions

Table 6: Characteristic polynomials for the production matrices for four graph classes.

2 Preliminaries
For the sake of clarity, the concepts explained in this section are divided into two sections. In Section 2.1,
we introduce the tools needed in the following chapters. It includes both the main definitions that appear
in other sections, and the main theorems we use in this work. Finally, Section 2.2 is devoted to find the
characteristic polynomial and the form of an eigenvector of Hessenberg-Toeplitz matrices, something that
we will use in the following sections to prove formulas in Table 5.

2.1 Analytic tools
Throughout this work, we use the concept of generating trees and some theorems related to Riordan
Arrays. A generating tree is a rooted labelled tree with the property that if v1 and v2 are any two nodes
with the same label then, for each label `, v1 and v2 have exactly the same number of children with label
`. A more detailed explanation about this kind of trees can be found in the work of Merlini and Verri
[18]. Moreover, for graphs on point sets in convex position, generating trees for triangulations [14] and
spanning trees [10] have been obtained. Generating trees have been studied in several contexts, most
notably for the ECO method [1], and for obtaining matrix representations of diverse combinatorial objects
[5, 18]. Once these matrices are obtained, one can follow the approach used by Merlini and Verri [18],
using the theory of Riordan Arrays to analyze them.

A Riordan Array is an infinite lower triangular array {dn,j}n,j∈N, defined by a pair of generating
functions (d(t), h(t)), such that the generic element dn,j is the n-th coefficient in the series d(t)(th(t))j ,
i.e.,

dn,j = [tn]d(t)(th(t))j , n, j ≥ 0. (1)
From this definition, dn,j = 0 for j > n. We always assume that d(0) 6= 0. If we also have h(0) 6= 0,

then the Riordan Array is said to be proper. Let D = (d(t), h(t)) be a proper Riordan Array, let
A = {ai}i∈N be its A-sequence, and let Z = {zi}i∈N be its Z-sequence (the Z-sequence characterizes row
0 of the Riordan Array while the A-sequence characterizes all the other rows [18]), then:

h(t) = A(th(t)) d(t) = d(0)
1− tZ(th(t)) , (2)
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where A(t) and Z(t) are the generating functions of the A-sequence and Z-sequence, respectively.

One theorem that we will use, especially when determining the entries of the vector vi that counts
the number of elements of a certain graph class, as well as for the characteristic polynomials of their
production matrices is Theorem 1. Theorem 2 connects the concept of proper Riordan Arrays with the
one of transfer matrices used by West [23], pointing out the power of the Riordan Array approach.

Theorem 1. (Merlini and Verri [18])
Let D = (d(t), h(t)) be a proper Riordan Array, and let A = {ai}i∈N be its A-sequence. Then, if

d(t) = 1 we have:

dn,j = j

n
[tn−j ]A(t)n,

and if d(t) = h(t) we have:

dn,j = j + 1
n+ 1[tn−j ]A(t)n+1.

Theorem 2. (Merlini and Verri [18])
Let D = {dn,j}n,j∈N be a proper Riordan Array defined by the triple (d(0), A, Z) and let T and d̄0 be

an infinite matrix and an infinite vector defined as follows:

T =


z1 z2 z3 z4 · · ·
a1 a2 a3 a4 · · ·
0 a1 a2 a3 · · ·
0 0 a1 a2 · · ·
...

...
...

...
. . .

 , d̄0 =


d(0)

0
0
0
...

 .

Then, the generic element dn,j of the Riordan Array, n > 0, is the j-th element of the vector Tnd̄0.

It follows that the entries dn,j correspond to the entries of the vector vn when T is a production
matrix and d(0) is the non-zero entry of the initial vector vc.

2.2 Hessenberg-Toeplitz matrices

All the production matrices we obtain are Upper Hessenberg-Toeplitz, i.e., matrices of the form:

An =


a0 a1 a2 · · · an−1
a−1 a0 a1 · · · an−2
0 a−1 a0 · · · an−3
...

...
...

. . .
...

0 0 0 · · · a0


A recursive formula for the determinant of Hessenberg-Toeplitz matrices An has already been given

in [4]. Hence, we can obtain easily the following result for the characteristic polynomial of An from [4,
Theorem 4.20].

Theorem 3. (Dale and Vein [4])
The characteristic polynomial dn(λ) of a Hessenberg-Toeplitz matrix An, for n ≥ 1, satisfies the

recurrence relation

dn(λ) = (a0 − λ)dn−1(λ) +
n∑

i=2
(−1)i+1ai−1a

i−1
−1 dn−i(λ),

where d0(λ) = 1.

In the following, we prove a formula for the entries of an eigenvector associated to an eigenvalue λ of
a Hessenberg-Toeplitz matrix that will be useful to find formulas for the eigenvectors of the production
matrices for the classes of graphs we study.
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Theorem 4. Let x = (xn−1, xn−2, . . . , x0)> be an eigenvector associated to an eigenvalue λ of a Hessenberg-
Toeplitz matrix An, for n ≥ 2. Then, the entries of the vector x are of the form:

xi =
(
−1
a−1

)i

di(λ)x0

∀i = 1, . . . , n− 1, where di(λ) is the characteristic polynomial of Ai.
Proof. We will prove the theorem by induction on the i-th entry of the vector and taking into account
that Anx = λx, where λ is the eigenvalue associated to an eigenvector x.

Inductive hypothesis: The base case for i = 1 is easily verified, so we will suppose that

xi =
(
−1
a−1

)i

di(λ)x0, for all i < n− 2.

Inductive step: if we multiply the second row of the production matrix An by the eigenvector x
and we make it equal it to λxn−2, we get:

a−1xn−1 = (λ− a0)xn−2 − a1xn−3 − a2xn−4 − . . .− an−2x0.

Then, by induction hypothesis:

a−1xn−1 =
[

(λ− a0) (−1)n−2

an−2
−1

dn−2(λ)− a1
(−1)n−3

an−3
−1

dn−3(λ)− . . .− an−2

]
x0 =⇒

=⇒ xn−1 = (−1)n−1

an−1
−1

[
(a0 − λ)dn−2(λ) +

n−1∑
i=2

(−1)i+1ai−1a
i−1
−1 dn−i−1(λ)

]
x0.

And by Theorem 3, this is equal to (−1)n−1

an−1
−1

dn−1(λ)x0. So the last part of the proof consists in
developing the first row of the system of equations Anx = λx given by:

a0xn−1 + a1xn−2 + . . .+ an−1x0 = λxn−1 =⇒ (a0 − λ)xn−1 + a1xn−2 + . . .+ an−1x0 = 0.

Now, if we substitute each xi by its value, we get that:[
(a0 − λ) (−1)n−1

an−1
−1

dn−1(λ) + a1
(−1)n−2

an−2
−1

dn−2(λ) + a2
(−1)n−3

an−3
−1

dn−3(λ) + . . .+ an−1

]
x0 =

= (−1)n−1

an−1
−1

[
(a0 − λ)dn−1(λ) +

n∑
i=2

(−1)i+1ai−1a
i−1
−1 dn−i(λ)

]
x0 = (−1)n−1

an−1
−1

dn(λ)x0.

And this is equal to 0 if dn(λ) = 0, but this is true because dn(λ) is the characteristic polynomial of
An.

3 Counting k-angulations
In this section we introduce the framework of production matrices and generating trees with our first
graph class, the k-angulations. A k-angulation is a 2-connected plane graph in which every internal face
is a k-gon. In this section we count the number of k-angulations that consist of exactly r k-gons. Such a
graph has n = (k − 2)r + 2 vertices.

For k = 3 we fall into the well-known case of triangulations. The number of triangulations of a
set of n + 2 points in convex position is the Catalan number Cn =

(2n
n

) 1
n+1 . In general, the number

of k-angulations with r k-gons is given by 1
(k−2)r+1

((k−1)r
r

)
. The way of calculating the entries of the

production matrices of k-angulations is similar to the mapping used by Hurtado and Noy [14] to obtain
a generating tree for triangulations. We use as degree of the root vertex the number of its incident edges,
minus 2. We substract 2 because the two edges incident to the root vertex that are incident to the outer
face are part of every k-angulation and hence, they can be disregarded. Vector vr counts k-angulations
with r k-gons, and (k − 2)r + 2 vertices. Once we have the r × r production matrix of k-angulations Kr

we apply the methods of Section 2.1 to get a formula for the number vr
j of k-angulations with r k-gons

and with root vertex of degree j − 1, given by the j-th entry of vr.

7



3.1 Production matrix
Our production matrix is devised by using a surjective mapping of k-angulations with (r + 1) k-gons to
k-angulations with r k-gons. Let σ be a k-angulation with point set {p1, . . . , p(k−2)r+2} labelled counter-
clockwise, where the vertex p(k−2)r+2 is the root vertex and its degree is defined as the number of its
incident edges, minus 2. Then, the entries of vr will depend on the degree of the root vertex p(k−2)r+2 of
σ in the mapping.

The mapping is based on a graph operation called edge flipping. For the sake of simplicity, we will
explain the case for k = 4, the remaining cases are analogous. Suppose that we have two quadrilateral
faces p1p2p3p4 and p1p4p5p6 adjacent to edge p1p4 (see Figure 3(b)). Edge flipping is an operation
replacing the diagonal p1p4 with p3p6 (Figure 3(a)), or with p2p5 (Figure 3(c)). If a diagonal flip yields
multiple edges or loops, then we do not apply it. This operation clearly transforms a quadrangulation
into another one.

p1 p6

p5

p4p3

p2

p1 p6

p5

p4p3

p2

p1

p2

p3 p4

p5

p6

(a) (b) (c)

Figure 3: The diagonal flip.

Once we have defined the tool needed to define the mapping, let us apply it to k-angulations. We
define the generating tree of k-angulations by using the following mapping between the set Qr+1 of k-
angulations with (r+ 1) k-gons and Qr. Let d(pi) be the degree of vertex pi in a k-angulation σ′ ∈ Qr+1
ignoring the boundary edges. We can obtain a k-angulation σ ∈ Qr from σ′ by following this procedure:
if
∑k

i=3 d(p(k−2)r+i) = 0 (see Figure 4(c) where k = 4 and vertices p2r+3 and p2r+4 have degree 0), we
just delete vertices p(k−2)r+3, . . . , p(k−2)r+k. Otherwise, we flip all the edges incident to those vertices so
that they become incident to p(k−2)r+2, in order to have no edges incident to p(k−2)r+3, . . . , p(k−2)r+k;
then the k-angulation contains the face with vertices {p1, p(k−2)r+2, . . . , p(k−2)r+k} and we can delete this
face (see Figure 4(d)). We call σ′ the child of σ and σ the parent of σ′.

root p2r+4 p2r+3

p2r+2
p1

pi pi+1

p1

pi pi+1

p2r+2

p2r+4 p2r+3

p1

pi pi+1

p2r+2

p2r+3
p2r+4

p1

pi pi+1

p2r+2

(a) (b) (c) (d)

root

Figure 4: Construction of a child σ′ (a) of a 4-angulation σ (d).

In the opposite direction, observe that the number of children of σ depends on the vertex degree of
p(k−2)r+2, and that a child can always be obtained by adding k − 2 vertices between p(k−2)r+2 and p1 in
convex position and flipping a subset of edges incident to p(k−2)r+2, such that they are incident to some
of the new vertices (refer again to Figure 4).

Observe that, by this procedure, each k-angulation is generated exactly once. Once we know how to
derive Qr+1 from Qr, we are able to produce the generating tree of k-angulations, see Figure 5 for the
first levels of the generating tree of quadrangulations.
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1

2 3

4

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1
2 3

4

5
67

8 8 8 8 8 8 8 8 8 8 8 8
7 7 7 7 7 7 7 7 7 7 76 6 6 6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

deg(8) = 0 0 1 0 1 0 1 2 0 0 0 1

deg(4) = 0

deg(6) = 0 1 0

Figure 5: First levels of the generating tree of quadrangulations. The degree of the root vertex is given below
the quadrangulation.

Considering vi as an r-dimensional vector with i ≤ r, we show that vi+1 can be obtained by multiplying
vi by a production matrix Kr, that is, vi+1 = Krv

i.

Theorem 5. The following r× r matrix is a production matrix for k-angulations of point sets in convex
position.

Kr =



(
k−2
k−3
) (

k−1
k−3
) (

k
k−3
) (

k+1
k−3
) (

k+2
k−3
)
· · ·

(
r+k−3

k−3
)

1
(

k−2
k−3
) (

k−1
k−3
) (

k
k−3
) (

k+1
k−3
)
· · ·

(
r+k−4

k−3
)

0 1
(

k−2
k−3
) (

k−1
k−3
) (

k
k−3
)
· · ·

(
r+k−5

k−3
)

0 0 1
(

k−2
k−3
) (

k−1
k−3
)
· · ·

(
r+k−6

k−3
)

0 0 0 1
(

k−2
k−3
)
· · ·

(
r+k−7

k−3
)

...
...

...
...

...
. . .

...
0 0 0 0 0 · · ·

(
k−2
k−3
)


.

Proof. We want to produce the number of graphs with r + 1 k-gons with root vertex of degree j − 1,
from vr. An entry of vr+1 is obtained by summing the number of children with a given degree, obtained
from the graphs counted in vr, which corresponds to multiplication of a row of Kr with vr. Assume we
are given a k-angulation σ ∈ Qr, and the root vertex p(k−2)r+2 has degree t (i.e., t + 2 incident edges)
in σ. First, add k − 2 new vertices p(k−2)r+3, . . . , p(k−2)r+k to the k-angulation by creating a new face
p1, p(k−2)r+2, p(k−2)r+3, . . . , p(k−2)r+kp1. This gives a k-angulation σ′ ∈ Qr+1. From the definition of the
generating tree of k-angulations, and the relation vi+1 = Krv

i, we can determine the entries of Kr as
follows:

• First row. If we want d(p(k−2)r+k) = 0 in σ′, we have the possibility of flippling some of the t+ 1
edges incident to p(k−2)r+2 in σ′, except the ones joining it with p(k−2)r+1 and p(k−2)r+3, such that
they are then incident to p(k−2)r+3, . . . , p(k−2)r+k−1, i.e., replacing an edge p(k−2)r+2pi by one of
the edges p(k−2)r+2+jpi+j for all 1 ≤ j ≤ k − 3, obtaining

(
t+k−2

k−3
)
k-angulations. This can be seen

as the number of ways of distributing t+ 1 indistinguishable balls into k − 2 identical boxes.

• Other rows. The following rows are analogous, shifted by one column every time: if we want
d(p(k−2)r+k) = m, m ≤ t + 1, we have to flip m edges from p(k−2)r+2 to p(k−2)r+k, and the
remaining t+ 1−m edges of p(k−2)r+2, we can leave them incident to p(k−2)r+2 or flip a subset of
them from p(k−2)r+2 to the vertices p(k−2)r+3, . . . , p(k−2)r+k−1, obtaining

(
t−m+k−2

k−3
)
k-angulations,

i.e., the number of ways of connecting t−m+ 1 edges with k− 2 vertices. This leads us to Kr.
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As we can see, the elements of each row of Kr correspond to the (k − 2)-th diagonal of the Pascal
triangle.

Next, we study the number of k-angulations with r k-gons with root vertex of degree j − 1.

Theorem 6. The number of k-angulations with r k-gons where the root vertex has degree j − 1 ∀j =
1, . . . , r is:

vr
j = j

r

(
(k − 1)r − j − 1

r − j

)
.

Proof. The production matrix Kr has a corresponding Riordan Array. Using notation as in Section 2.1,
its A-sequence is {1,

(
k−2
k−3
)
,
(

k−1
k−3
)
,
(

k
k−3
)
,
(

k+1
k−3
)
, . . .}, with generating function A(t) = 1

(1−t)k−2 , and its
Z-sequence is {

(
k−2
k−3
)
,
(

k−1
k−3
)
,
(

k
k−3
)
,
(

k+1
k−3
)
,
(

k+2
k−3
)
, . . .}, with generating function Z(t) = 1

t(1−t)k−2 − 1
t . We

have d(0) = v1
1 = 1 and by formula (2):

h(t) = A(th(t)) = 1
(1− th(t))k−2 . (3)

We also calculate d(t) using formula (2):

d(t) = d(0)
1− tZ(th(t)) = 1

1− t
(

1
th(t)(1−th(t))k−2 − 1

th(t)

) = th(t)(1− th(t))k−2

th(t)(1− th(t))k−2 − t+ t(1− th(t))k−2 .

We substitute th(t) = ω and obtain:

d(t) = ω(1− ω)k−2

ω(1− ω)k−2 − ω
h(t) + ω

h(t) (1− ω)k−2 = (1− ω)k−2

(1− ω)k−2 − 1
h(t) + (1−ω)k−2

h(t)

=

= h(t)(1− ω)k−2

h(t)(1− ω)k−2 − 1 + (1− ω)k−2 .

Finally, we substitute the value of h(t) previously calculated in (3) and the equation th(t) = w:

d(t) = 1
(1− ω)k−2 .

As we have d(t) = h(t), Theorem 1 states (after a shift of indices), that vr
j = j

r [tr−j ]A(t)r. So it
remains to determine the coefficient of tr−j in j

rA(t)r. Using the well-known identity:(
1

1− x

)r

=
∞∑

`=0

(
r + `− 1

`

)
x`, (4)

we thus arrive at the claimed formula by setting r − j = `

vr
j = j

r
[tr−j ]A(t)r = j

r
[tr−j ]

∞∑
`=0

(
(k − 2)r + `− 1

`

)
t` = j

r

(
(k − 1)r − j − 1

r − j

)
.

3.2 Characteristic polynomial
We now proceed to establish a formula for the characteristic polynomial of Kr. The following corollary
is proved by applying Theorem 3 with a−1 = 1 and ai−1 =

(
k+i−3

k−3
)
for i = 2, . . . , r.

Corollary 1. The characteristic polynomial kr(λ) of the matrix Kr satisfies the recurrence relation

kr(λ) =
((

k − 2
k − 3

)
− λ
)
kr−1(λ) +

r∑
i=2

(−1)i+1
(
k + i− 3
k − 3

)
kr−i(λ).

We need the following result to solve the recurrence relation.
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Lemma 1. For any given t,m, n ∈ N, it holds that
n∑

j=0

(
j +m− 1
m− 1

)(
m(t+ 1)
n− j − t

)
(−1)j =

(
mt

n− t

)
.

Proof. The proof of the lemma is obtained by using two identities related to the binomial coefficient.
Using the negation of the upper index of a binomial coefficient, see [15, G(17)], we get that

n∑
j=0

(
j +m− 1
m− 1

)(
m(t+ 1)
n− j − t

)
(−1)j =

n−t∑
j=0

(−1)j

(
m+ j − 1

j

)(
m(t+ 1)
n− t− j

)
=

n−t∑
j=0

(
−m
j

)(
m(t+ 1)
n− t− j

)
.

Finally, applying Chu-Vandermonde identity, see [15, I(21)], we obtain:

n−t∑
j=0

(
−m
j

)(
m(t+ 1)
n− t− j

)
=
(
−m+m(t+ 1)

n− t

)
=
(
mt

n− t

)
.

Theorem 7. The solution of the recurrence relation

kr(λ) =
((

k − 2
k − 3

)
− λ
)
kr−1(λ)−

r∑
i=2

(−1)i

(
k + i− 3
k − 3

)
kr−i(λ),

with initial value k0(λ) = 1 is

kr =
r∑

`=0
(−1)`

(
(k − 2)(`+ 1)

r − `

)
λ`.

Proof. We use induction on r. The base cases for r ≤ 2 are easily verified. So, assume the theorem holds
for all i ≤ r − 1. Let then i ≥ r and consider then kr(λ). By induction,

kr(λ) =
((

k − 2
k − 3

)
− λ
) r−1∑

`=0

(−1)`

(
(k − 2)(`+ 1)
r − 1− `

)
λ` −

r∑
i=2

(−1)i

(
k + i− 3
k − 3

) r−i∑
`=0

(−1)`

(
(k − 2)(`+ 1)
r − i− `

)
λ`.

We rewrite

A =
r∑

i=2

(−1)i

(
k + i− 3
k − 3

) r−i∑
`=0

(−1)`

(
(k − 2)(`+ 1)
r − i− `

)
λ`

in the form
∑r

`=0 λ
`(−1)`c`, where c` is the coefficient of λ`(−1)` and get

A =
r∑

`=0

λ`(−1)`

r∑
i=2

(
i+ k − 3
k − 3

)(
(k − 2)(`+ 1)
r − i− `

)
(−1)i.

This further equals, by Lemma 1,

A =
r∑

`=0

λ`(−1)`

((
(k − 2)`
r − `

)
−
(

(k − 2)(`+ 1)
r − `

)
+
(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − 1− `

))
.

Then,

kr(λ) =
((

k − 2
k − 3

)
− λ
) r−1∑

`=0

(−1)`

(
(k − 2)(`+ 1)
r − 1− `

)
λ` −A =

r−1∑
`=0

(−1)`

(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − 1− `

)
λ`−

−
r−1∑
`=0

(−1)`

(
(k − 2)(`+ 1)
r − 1− `

)
λ`+1 −

r∑
`=0

λ`(−1)`

((
(k − 2)`
r − `

)
−
(

(k − 2)(`+ 1)
r − `

)
+
(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − 1− `

))
.
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We make the change of variable `+ 1 = s in the second summation and get:

kr(λ) =
r∑

`=0

(−1)`

(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − 1− `

)
λ` −

r∑
s=1

(−1)s−1
(

(k − 2)s
r − s

)
λs−

−
r∑

`=0

λ`(−1)`

((
(k − 2)`
r − `

)
−
(

(k − 2)(`+ 1)
r − `

)
+
(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − `− 1

))
=

=
r∑

`=0

(−1)`

(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − 1− `

)
λ` +

r∑
s=1

(−1)s

(
(k − 2)s
r − s

)
λs −

r∑
`=0

λ`(−1)`

(
(k − 2)`
r − `

)
+

+
r∑

`=0

λ`(−1)`

(
(k − 2)(`+ 1)

r − `

)
−

r∑
`=0

(−1)`

(
k − 2
k − 3

)(
(k − 2)(`+ 1)
r − `− 1

)
λ` =

r∑
`=0

λ`(−1)`

(
(k − 2)(`+ 1)

r − `

)
.

We now give a formula for the entries of an eigenvector x associated to an eigenvalue λ of Kr. The
proof of the result is obtained by applying Theorem 4 with a−1 = 1.

Corollary 2. Let x = (xr−1, xr−2, . . . , x0)> be an eigenvector associated to an eigenvalue λ of Kr for
r ≥ 2. Then the entries of the vector x are of the form:

xi = (−1)iki(λ)x0,

where ki(λ) is the characteristic polynomial of Ki.

4 Counting geometric graphs
In this section, we work with plane geometric graphs whose vertices are represented by the points
{p1, . . . , pn} in convex position in the plane, ordered counter-clockwise. Figures 1 and 6 show several
plane geometric graphs.

4.1 Production matrix
In a previous paper [12], a production matrix for the number of graphs with given root vertex degree was
given. In that case, the degree of the root vertex pn was defined as the number of edges incident to pn.
Also, a formula for the number of geometric graphs was given. However, there are other ways to define
the degree of a vertex in the graph.

In this section, the degree of the root vertex is defined in a different way, based on visibility. The
visibility degree of the root vertex pn is the number of visible vertices from a vertex pn+1 inserted between
p1 and pn in convex position, minus 2. Two vertices are visible if the line segment connecting them does
not intersect the interior of any edge of the graph. We substract 2 because every vertex in the graph
“sees” at least one edge and its endpoints and hence, these vertices can be disregarded.

We start by giving the first level of a generating tree for a given geometric graph in Figure 6. We
generate its children by leaving the new root vertex isolated or connecting it to a subset of vertices visible
from the new root vertex.

1

2 3

4

5

1

2
3

4

5

6

1 1 1 1 1 1 1

2 2 2 2 2 2 2
3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6 6

5

4
3

deg(6) = 2 0 1 2 0 0 1 0

deg(5) = 1

Figure 6: Children of a given geometric graph in the tree of geometric graphs.
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Consider a vertex pi+1 that is inserted in convex position between p1 and pi. Let V (pi+1) = {p1 =
p1

i+1, p
2
i+1, . . . , p

t
i+1 = pi}, t < i+ 1, be the sequence, ordered counter-clockwise, of visible vertices from

pi+1. We have
(

t
0
)
ways of leaving pi+1 isolated,

(
t
1
)
ways of adding an edge from pi+1 to one vertex of

V (pi+1),
(

t
2
)
ways of adding two edges from pi+1 to a pair of vertices of V (pi+1), and so on. Thus, the

number of children of a given geometric graph with root vertex of visibility degree t−2 is
∑t

k=0
(

t
k

)
= 2t.

Theorem 8. The following n × n matrix is a production matrix for geometric graphs of point sets in
convex position.

Gn =



2 4 8 16 32 · · · 2n

2 2 4 8 16 · · · 2n−1

0 2 2 4 8 · · · 2n−2

0 0 2 2 4 · · · 2n−3

0 0 0 2 2 · · · 2n−4

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 2


.

Proof. Assume that the vector vi containing the number of geometric graphs for each possible visibility
degree of pi is known. For vi+1, with i ≤ n, consider a vertex pi+1 inserted between p1 and pi in convex
position. From the definition of the generating tree of geometric graphs, and the relation vi+1 = Gnv

i

we can determine the entries of Gn as follows:

• First row. For pi+1 to have visibility degree 0, an edge from pi+1 to p1
i+1 ∈ V (pi+1) must be

included. Thus, the number of geometric graphs where pi+1 has visibility degree 0 is equal to the
number of graphs where pi has visibility degree s, for 0 ≤ s ≤ n− 2 when adding a subset of edges
from pi+1 to some pj

i+1 ∈ V (pi+1), with 1 < j ≤ t. This gives a total number of
∑s+1

j=0
(

s+1
j

)
= 2s+1

graphs, resulting in a first row of powers of 2 in Gn.

• Second row. The number of geometric graphs where pi+1 has visibility degree 1, obtained from
the graphs where pi has visibility degree 0, is equal to the two graphs leaving pi+1 isolated or
connecting it with pi, thus we get a 2 in the first column of the second row. As soon as pi has
visibility degree at least 1, an edge from pi+1 to p2

i+1 ∈ V (pi+1) must be included, and then, we
add a subset of edges from pi+1 to some pj

i+1 ∈ V (pi+1) for j > 2. Thus, the rest of the row is
made of powers of 2.

• Other rows. The cases where |V (pi+1)| > |V (pi)| + 1 are not possible, so we get a zero in these
cases. The following rows are analogous, shifted by one column every time: in order for pi+1 to
have visibility degree s, an edge from pi+1 to ps+1

i+1 ∈ V (pi+1) must be included, and then we can
add a subset of edges from pi+1 to some pj

i+1 ∈ V (pi+1), for j > s+ 1. So, we get a power of 2 for
each entry.

Let vi be a vector of geometric graphs (that is, vi is the vector obtained by a power of Gn for i ≤ n
multiplied by v2; the sum of the elements of vi is the number of geometric graphs with i vertices). The
first vectors are:

v2 =



2
0
0
0
0
...


v3 =



4
4
0
0
0
...


v4 =



24
16
8
0
0
...


v5 =



176
112
48
16
0
...


If we sum up all the entries of each vector vi, we can verify that the sequence of numbers coincides

with the one given in [9, 12] and corresponds to Sequence A054726 in the OEIS [20] for the number of
graphs with n nodes on a circle without crossing edges.

Next, we give a formula to calculate the entries of the vector vn of geometric graphs different from
the one obtained in [12]. The difference comes from our definition of the degree of the root vertex. The
proof of the theorem is similar to the one for Theorem 6, so it is deferred to Appendix A.1.
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Theorem 9. The number of geometric graphs with n vertices where the root vertex has visibility degree
j − 1, ∀j = 1, . . . , n− 1 is:

vn
j = j

n− 12n−1−j
n−1∑
k=j

(
n− 1
k

)(
n+ k − j − 2

k − j

)
(−1)n−1−k2k.

4.2 Characteristic polynomial
Let gn(λ) be the characteristic polynomial of Gn. The sequence {gn(λ)} starts with

n = 1 −λ+ 2
n = 2 λ2 − 4λ− 4
n = 3 −λ3 + 6λ2 + 4λ+ 8
n = 4 λ4 − 8λ3 − 16
n = 5 −λ5 + 10λ4 − 8λ3 − 16λ2 − 16λ+ 32
n = 6 λ6 − 12λ5 + 20λ4 + 32λ3 + 48λ2 + 64λ− 64

Corollary 3. The characteristic polynomial gn(λ) of the matrix Gn satisfies the recurrence relation

gn(λ) = (2− λ)gn−1(λ) +
n∑

i=2
(−1)i+122i−1gn−i(λ).

Corollary 3 follows from Theorem 3 with a−1 = 2, a0 = 2 and ai−1 = 2i.

Theorem 10. The solution of the recurrence relation

gn(λ) = (2− λ)gn−1(λ) +
n∑

i=2
(−1)i+122i−1gn−i(λ)

with initial condition g0(λ) = 1 is

gn(λ) =
n∑

t=0

n∑
k=t

(−1)k

(
k

t

)(
t+ 1
n− k

)
22n−t−kλt.

Proof. Consider the infinite matrix

M =



2− λ −23 25 −27 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


Let w0 be the vector (1, 0, . . .)>, and let wi be the vector whose first i entries are the first i characteristic

polynomials gi(λ), and the remaining ones are zero, i.e., wi = (gi(λ), gi−1(λ), gi−2(λ), . . . , g1(λ), 0, . . .)>.
Then M · wi = wi+1. It follows that wn is the first column of Mn. We can now use the Riordan
Array approach. The Z-sequence is {2− λ,−8, 32, . . .} with generating function Z(t) = −λ+ 2

1+4t . The
A-sequence is {1, 0, . . .} with generating function A(t) = 1. It follows that h(t) = 1 and

d(t) = 1
1− t(−λ+ 2

1+4t )
= 1 + 4t

1 + t(2 + λ(1 + 4t)) = d1(t) + 4td1(t),

where
d1(t) = 1

1 + t(2 + λ(1 + 4t)) .

Then, by Equation (1),

dn,j = [tn]d(t)(th(t))j = [tn]d(t)tj = [tn−j ]d(t) = [tn−j ](d1(t) + 4td1(t)) =
= [tn−j ]d1(t) + 4[tn−1−j ]d1(t). (5)
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Using the well-known identity
1

1 + z
=
∞∑

k=0
(−1)kzk, (6)

we know that

d1(t) =
∞∑

k=0
(−1)ktk(2 + λ(1 + 4t))k.

We apply the binomial theorem to (2 + λ(1 + 4t))k. We then only have to take the coefficient of
tn−j in d1(t) for the left term of Equation (5) and the coefficient of tn−1−j in d1(t) for the right term of
Equation (5). After some short calculations, this gives the formula

gn(λ) =
n∑

k=0

n∑
j=0

(−1)k

(
k

j

)(
k − j
n− k

)
22(n−k)+jλk−j +

n∑
k=0

n∑
j=0

(−1)k

(
k

j

)(
k − j

n− k − 1

)
22(n−k)+jλk−j .

We finally rewrite gn(λ) =
∑n

t=0 ctλ
t, with ct the coefficient of λt. Since λt = λk−j we set j = k − t

and get

gn(λ) =
n∑

t=0

(
n∑

k=0
(−1)k

(
k

k − t

)(
t

n− k

)
22n−t−k +

n∑
k=0

(−1)k

(
k

k − t

)(
t

n− k − 1

)
22n−t−k

)
λt.

Note that k ≥ t, so after some elementary operations, taking into account that
(

t
n−k

)
+
(

t
n−k−1

)
=(

t+1
n−k

)
, and the symmetry identity for the binomial coefficient

(
k

k−t

)
, we finally get the formula

gn(λ) =
n∑

t=0

n∑
k=t

(−1)k

(
k

t

)(
t+ 1
n− k

)
22n−t−kλt.

The proof of the next corollary is obtained by applying Theorem 4 with a−1 = 2.

Corollary 4. Let x = (xn−1, xn−2, . . . , x0)> be an eigenvector associated to an eigenvalue λ of Gn for
n ≥ 2. Then the entries of the vector x are of the form:

xi =
(
−1

2

)i

gi(λ)x0,

where gi(λ) is the characteristic polynomial of Gi.

5 Counting connected graphs
In this section we treat plane connected graphs with vertices in convex position. Recall that a graph is
connected if there is a path between every pair of vertices. Figure 7 shows several connected graphs.

5.1 Production matrix
In this section, we present a production matrix for connected graphs where the degree of the root vertex
is again defined based on visibility. As far as we know, production matrices for connected graphs have
not been considered before. In general, for a given connected graph, we generate its children by using the
following mapping. Consider a vertex pi+1 that is inserted in convex position between p1 and pi. Let,
as before, V (pi+1) = {p1 = p1

i+1, p
2
i+1, . . . , p

t
i+1 = pi}, t < i+ 1, be the sequence of visible vertices from

the new vertex pi+1, ordered counter-clockwise. We obtain a connected graph by adding edges from pi+1
to all the visible vertices in the ordered sequence V ′ = {pk

i+1, . . . , p
j
i+1} with p`

i+1 ∈ V (pi+1) for each
k ≤ ` ≤ j, and removing a subset of the edges, such that both endpoints are in V ′. We need to connect
pi+1 with consecutive vertices in V ′ so that the connected graphs are generated only once. An example
of how we can apply the mapping to generate the children of a given connected graph can be seen in
Figure 7.
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Figure 7: Children of a given connected graph in the tree of connected graphs.

Theorem 11. The following n × n matrix is a production matrix for plane connected graphs of point
sets in convex position.

Cn =



3 7 15 31 63 · · · 2n+1 − 1
1 3 7 15 31 · · · 2n − 1
0 1 3 7 15 · · · 2n−1 − 1
0 0 1 3 7 · · · 2n−2 − 1
0 0 0 1 3 · · · 2n−3 − 1
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 3


.

Proof. Assume that the vector vi, containing the number of connected graphs for each possible visibility
degree of pi, is known. For vi+1, with i ≤ n, consider a vertex pi+1 inserted between p1 and pi in convex
position. From the definition of the generating tree of connected graphs, and the relation vi+1 = Cnv

i

we can determine the entries of Cn as follows:

• First row. For pi+1 to have visibility degree 0, an edge from pi+1 to p1
i+1 must be included.

Thus, the number of connected graphs where pi+1 has visibility degree 0 is equal to the number
of connected graphs where pi has visibility degree s, for 0 ≤ s ≤ n − 2 when adding some edges
from pi+1 to all the visible vertices from p1 to pj

i+1 ∈ V (pi+1), where 1 ≤ j ≤ s + 2, removing a
subset of edges with both endpoints between p1 and pj

i+1 ∈ V (pi+1). This gives a total number of∑s+1
r=0 2r = 2s+2 − 1 graphs, resulting in a first row of powers of 2 minus 1 in Cn.

• Second row. The number of connected graphs where pi+1 has visibility degree 1 and pi has
visibility degree 0 is equal to the connected graph obtained by connecting pi+1 to pi, thus we get a
one in the first column of the second row. As soon as pi has visibility degree at least s ≥ 1, we have
to add one edge from pi+1 to p2

i+1, and then we add edges from pi+1 to all the visible vertices from
p2

i+1 to pj
i+1 in V (pi+1), where j ≥ 2, removing a subset of edges with both endpoints between p2

i+1
and pj

i+1 ∈ V (pi+1). This leads to
∑s

r=0 2r = 2s+1 − 1 graphs. Thus, the rest of the row is made
of powers of 2 minus 1.

• Other rows. The cases when |V (pi+1)| > |V (pi)| + 1 are not possible, so we get a zero in these
cases. The following rows are analogous, shifted by one column every time: in order for pi+1 to
have visibility degree s, one edge needs to be added from pi+1 to ps+1

i+1 ∈ V (pi+1), and then we
can add a subset of edges from pi+1 to all the visible vertices from ps+1

i+1 to pj
i+1 in V (pi+1), where

j ≥ s+ 1, removing a subset of edges with both endpoints between ps+1
i+1 and pj

i+1 in V (pi+1). So,
we get a power of 2 minus 1 for each entry.

Let vi be the vector of connected graphs (that is, vi is the first column of a power of Cn for i ≤ n;
the sum of the elements of vi is the number of connected graphs). The first vectors are:
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v2 =



1
0
0
0
0
...


v3 =



3
1
0
0
0
...


v4 =



16
6
1
0
0
...


v5 =



105
41
9
1
0
...


If we sum up all the entries of each vector vi, we can verify that the sequence of numbers is given as

Sequence A007297 in the OEIS [20], obtaining the number of connected graphs with i labelled nodes on
a circle with straight-line edges that do not cross.

Next, we give a formula for the entries of a vector vn of connected graphs. Each number vn
j counts

the number of connected graphs with n points in convex position with root vertex of visibility degree
j − 1. The proof of the theorem is similar to the one of Theorem 6, so it is deferred to Appendix A.2.

Theorem 12. The number of connected graphs with n vertices, where the root vertex has visibility degree
j − 1, ∀j = 1, . . . , n− 1 is:

vn
j = j

n− 12n−1
n−1∑
k=0

(
n− 1
k

)(
−1

2

)k n−j−1∑
`=0

(
n− 2− k + `

`

)(
k + n− `− j − 2
n− `− j − 1

)
2`.

5.2 Characteristic polynomial
Let cn(λ) be the characteristic polynomial of Cn. The sequence {cn(λ)} starts with

n = 1 −λ+ 3
n = 2 λ2 − 6λ+ 2
n = 3 −λ3 + 9λ2 − 13λ
n = 4 λ4 − 12λ3 + 33λ2 − 12λ
n = 5 −λ5 + 15λ4 − 62λ3 + 63λ2 − 4λ
n = 6 λ6 − 18λ5 + 100λ4 − 180λ3 + 66λ2

Corollary 5. The characteristic polynomial cn(λ) of the matrix Cn satisfies the recurrence relation

cn(λ) = (3− λ)cn−1(λ)−
n∑

i=2
(−1)i(2i+1 − 1)cn−i(λ).

Corollary 5 can be derived from Theorem 3 with a−1 = 1, a0 = 3, and ai−1 = 2i+1 − 1.

Theorem 13. The solution of the recurrence relation

cn(λ) = (3− λ)cn−1(λ)−
n∑

i=2
(−1)i(2i+1 − 1)cn−i(λ)

with initial condition c0(λ) = 1 is

cn(λ) =
n∑

t=0

(
t∑

`=0

(
t

`

)
(−1)t2t−`3n+2`−3t−2

[
2
(

`

n+ 2`− 3t− 2

)
+ 9
(

`+ 1
n+ 2`− 3t

)])
λt.

The proof of Theorem 13 is similar to the one of Theorem 10, so it is deferred to Appendix B.1. To
conclude, we give a formula for the entries of an eigenvector x associated to the eigenvalue λ of Cn. We
derive Corollary 6 from Theorem 4 with a−1 = 1.

Corollary 6. Let x = (xn−1, xn−2, . . . , x0)> be an eigenvector associated to an eigenvalue λ of Cn for
n ≥ 2. Then the entries of the vector x are of the form:

xi = (−1)ici(λ)x0,

where ci(λ) is the characteristic polynomial of Ci.
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5.3 Relation between geometric graphs and connected geometric graphs
In this section we establish a relation between the class of connected geometric graphs and the class of
all geometric graphs. To that end, we start by creating a production matrix for geometric graphs whose
entries are a function of the numbers ci of connected graphs with i vertices.

It will be convenient to use a different definition of the root vertex degree. Let {p1, p2, . . . , pn} be the
set of vertices of a geometric graph, ordered counter-clockwise, in convex position. The isolation degree
of the root vertex pn is defined as the number of isolated visible vertices from a vertex pn+1 inserted
between p1 and pn in convex position.

In general, for a given geometric graph, we generate its children by using the following mapping.
Consider a vertex pi+1 that is inserted in convex position between p1 and pi. Let I(pi+1) = {p1 =
p1

i+1, p
2
i+1, . . . , p

t
i+1 = pi}, t < i + 1, be the sequence of isolated visible vertices from pi+1, ordered

counter-clockwise. We obtain a geometric graph by leaving the new root vertex isolated or by creating
one connected component with the new root vertex pi+1 and a subset of vertices from I(pi+1). The rest
of the vertices from I(pi+1) that do not belong to such a component remain isolated. An example of how
we generate the children of a given geometric graph is shown in Figure 8.
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8 8 8 8 8 89 9 9 9 9 910 10 10 10 10 10

6 6

7 7
8910

1
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3
4

5

deg(10) = 3 0 1 0 0 0 0

deg(9) = 2

Figure 8: Children of a given geometric graph in the tree of geometric trees.

Theorem 14. The following n × n matrix is a production matrix for plane geometric graphs of point
sets in convex position.

Rn =



0 a2 a3 a4 a5 · · · an

1 0 a2 a3 a4 · · · an−1
0 1 0 a2 a3 · · · an−2
0 0 1 0 a2 · · · an−3
0 0 0 1 0 · · · an−4
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0


.

where aj =
∑j

i=2
(

j−2
i−2
)
ci for j ≥ 2 and ci is the number of connected graphs with i vertices for

i = 2, . . . , n.

Proof. Assume that the vector vi, containing the number of connected graphs for each possible isolation
degree of pi, is known. For vi+1, with i ≤ n, consider a vertex pi+1 inserted between p1 and pi in convex
position. From the definition of the generating tree and the relation vi+1 = Rnv

i we can determine the
entries of Rn as follows:

• Main diagonal. Observe first that, when adding the vertex pi+1 to a geometric graph with isolation
degree of the root vertex pi equal to s, we cannot obtain a geometric graph with root vertex of
isolation degree s. This gives a main diagonal of 0s in Rn.

• First subdiagonal. We may obtain one geometric graph with |I(pi+1)| = s+ 1 from a geometric
graph with |I(pi)| = s by leaving the new vertex isolated. This gives the first subdiagonal of 1s.
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• Other diagonals. The cases where |I(pi+1)| > |I(pi)| + 1 are not possible, so we get a 0 in
these cases. In general, for any geometric graph with i vertices, we can decide whether to keep
pi+1 isolated or to connect it to a subset of vertices of I(pi+1) as follows: if we want pi+1 to have
isolation degree s, with s < t, we have to connect pi+1 to ps+1

i+1 ∈ I(pi+1) in c2 different ways, and
then we have

(
t−s−1

1
)
c3 ways of connecting pi+1 and ps+1

i+1 to pj
i+1, for each j > s+ 1 in I(pi+1), we

also have
(

t−s−1
2
)
c4 ways of connecting pi+1 and ps+1

i+1 to a pair of vertices pj
i+1, p

k
i+1, for each pair

of j, k such that s+ 1 < j < k in I(pi+1), and so on. This yields the claimed matrix.

Substituting each entry ci by the number of connected graphs on i vertices gives us a new production
matrix that enumerates the number of geometric graphs, see Table 3(a). In addition, if we substitute in
Rn each entry ci by the number of spanning trees on i vertices, we obtain the matrix in Table 3(b), which
is a production matrix for non-crossing forests, or if we substitute in Rn the entries ci by the number
of spanning paths with i vertices, we obtain the matrix in Table 3(c), which is a production matrix for
non-crossing forest of paths.

6 Counting non-crossing partitions
Given a set of n elements [n] = {1, 2, . . . , n}, a partition of [n] is a family of nonempty, pairwise disjoint
sets B1, B2, . . . , Bk, called blocks, whose union is the n-element set, see graphs from Figure 9 and recall
that each cycle in a graph represents a block. In our case, we treat partitions with vertices in convex
position. A partition of [n] is non-crossing if whenever four elements, 1 ≤ a < b < c < d ≤ n, are such
that if a, c are in the same block and b, d are in the same block, then the two blocks coincide.

6.1 Production matrix
There exist previous papers where a production matrix of non-crossing partitions has been given [12].
The matrix given in [12], in fact, is the same as for triangulations, see Table 2(a).

In this section we give a new production matrix for this type of graphs. Let {p1, p2, . . . , pn} be the
set of vertices of a non-crossing partition, ordered counter-clockwise, in convex position. While in [12],
the degree of the root vertex pn is defined as the number of blocks visible from the root vertex, here, we
use the definition of isolation degree.

Let I(pi+1) = {p1
i+1, p

2
i+1, . . . , p

t
i+1}, t < i+ 1, be the sequence of isolated visible vertices from pi+1,

ordered counter-clockwise. For a given non-crossing partition, we generate its children by leaving the new
root vertex pi+1 isolated or by connecting it with a subset of its visible vertices obtaining a new block
between them. Figure 9 shows an example of how the children of a non-crossing partition are generated.

1

2 3 4

5

6

7

8
9

1011

12

22 22 222 3 3 33 333 4 4 44 444

5 5 55 555

7
7

77 777
8 8 88 888

9 9 999 99 10 1010 10101011 11 1111 11111011

613

1 1 11 11
6 66 666

1313 1313

12 12 1212 12121212
11 10 9

8
7

6
5

4

1

13

32

1

13 13

deg(13) = 4 0 1 2 0 0 1 0

deg(12) = 3

Figure 9: Children of a given non-crossing partition in the tree of non-crossing partitions.

Theorem 15. The following n × n matrix is a production matrix for non-crossing partitions of point
sets in convex position.

Bn =



0 1 2 4 8 · · · 2n−2

1 0 1 2 4 · · · 2n−3

0 1 0 1 2 · · · 2n−4

0 0 1 0 1 · · · 2n−5

0 0 0 1 0 · · · 2n−6

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 0


.
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Proof. Assume that the vector vi, containing the number of non-crossing partitions for each possible
isolation degree of pi, is known. For vi+1, with i ≤ n, consider a vertex pi+1 inserted between p1 and
pi in convex position. From the definition of the generating tree and the relation vi+1 = Bnv

i we can
determine the entries of Bn as follows:

• Main diagonal. Observe first that, when adding the point pi+1 to a non-crossing partition with
isolation degree of the root vertex pi equal to s, we cannot obtain a non-crossing partition with
root vertex of isolation degree s. This gives a main diagonal of 0s in Bn.

• First subdiagonal. If |I(pi+1)| = |I(pi)|+ 1, we obtain one non-crossing partition by leaving the
new root vertex pi+1 isolated. This gives a first subdiagonal of 1s in Bn.

• First row. The number of non-crossing partitions where pi+1 has isolation degree 0 is equal to the
number of non-crossing partitions where pi has isolation degree s, for 0 ≤ s ≤ n. Those partitions
are obtained by adding an edge from pi+1 to p1; and then, we can add a subset of isolated visible
vertices from pi+1 to the block containing pi+1. We have

(
s−1

0
)
ways of producing a block of size 2

with the vertices p1 and pi+1,
(

s−1
1
)
blocks of size 3 with p1, pi+1 and one vertex of I(pi+1), and

so on. This results in
∑s−1

j=0
(

s−1
j

)
= 2s−1 graphs. This gives a first row of powers of 2 in Bn.

• Other rows. The cases where |I(pi+1)| > |I(pi)| + 1 are not possible, so we get a zero in these
cases. The following rows are analogous, shifted by one column every time: in order for pi+1 to
have isolation degree s, one edge needs to be added from pi+1 to ps+1

i+1 , and then we connect pi+1 to
a subset of its isolated visible vertices obtaining a block. So we get a power of 2 for each entry.

Let vi be a vector of non-crossing partitions (that is, vi is the first column of a power of Bn for i ≤ n;
the sum of the elements of vi is the number of non-crossing partitions). The first vectors are:

v1 =



0
1
0
0
0
...


v2 =



1
0
1
0
0
...


v3 =



2
2
0
1
0
...


v4 =



6
4
3
0
1
...


If we sum up all the entries of each vector vi, we can verify that the numbers obtained are the Catalan

numbers, the same sequence implied by production matrix (a) in Table 1 that counts the number of
triangulations with vertices in convex position, as well as the number of non-crossing perfect matchings.
Thanks to the new production matrix, we are able to partition Catalan numbers in a different way. So we
present a new formula for the vectors vi, whose entries are different from the well-known Ballot numbers.
The proof of the theorem is similar to the one of Theorem 6, so it is deferred to Appendix A.3.

Theorem 16. The number of non-crossing partitions with n vertices, where the root vertex has isolation
degree j − 1, ∀j = 1, . . . , n+ 1 is:

vn
j = j

n+ 1

n+1∑
k=
⌈

n+j+1
2

⌉
(
n+ 1
k

)(
k − j − 1

2k − n− j − 1

)
22k−n−j−1.

6.2 Characteristic polynomial
Let bn(λ) be the characteristic polynomial of Bn. The sequence {bn(λ)} starts with

n = 1 −λ
n = 2 λ2 − 1
n = 3 −λ3 + 2λ+ 2
n = 4 λ4 − 3λ2 − 4λ− 3
n = 5 −λ5 + 4λ3 + 6λ2 + 5λ+ 4
n = 6 λ6 − 5λ4 − 8λ3 − 6λ2 − 4λ− 5
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Corollary 7. The characteristic polynomial bn(λ) of the matrix Bn satisfies the recurrence relation

bn(λ) = −λbn−1(λ)− 1
4

n∑
i=2

(−2)ibn−i(λ).

Corollary 7 follows from Theorem 3 with a−1 = 1, a0 = 0, and ai−1 = 2i−2.

Theorem 17. The solution of the recurrence relation

bn(λ) = −λbn−1(λ)− 1
4

n∑
i=2

(−2)ibn−i(λ)

with initial condition b0(λ) = 1 is

bn(λ) =
n∑

t=0

n∑
k=0

k∑
`=0

(
k

t

)(
t

`

)
(−1)k22k−n+t−2`

[
4
(

k − t
2k − n− `+ 1

)
+
(

k − t
2k − n− `

)]
λt.

The proof of Theorem 17 is similar to the one of Theorem 10, so it is deferred to Appendix B.2.
Finally, we give a formula for the entries of an eigenvector x associated to an eigenvalue λ of Bn. The
proof of the corollary follows from Theorem 4 with a−1 = 1.

Corollary 8. Let x = (xn−1, xn−2, . . . , x0)> be an eigenvector associated to an eigenvalue λ of Bn for
n ≥ 2. Then the entries of the vector x are of the form:

xi = (−1)ibi(λ)x0,

where bi(λ) is the characteristic polynomial of Bi.

7 Conclusions
In this work, we have obtained new production matrices for several classes of graphs. Also, eigenvectors
and characteristic polynomials for each matrix, and several other formulas were derived from the produc-
tion matrices. This work is based on previous results about enumeration of graphs based on production
matrices. Our results have been possible due to different definitions of the degree we used with each
matrix. While in previous papers [11, 12], the degree of the graphs was defined as the number of incident
edges to the root vertex of the graph or the number of vertices on each block in the case of partitions, in
this work, we used two new definitions of degree: number of visible vertices seen from the new root vertex,
and the number of isolated vertices seen from the new root vertex. Different definitions of degree lead
to different production matrices, as we have seen in the cases of plane geometric graphs or non-crossing
partitions.

However, there are other important properties of the matrices which remain open. For instance,
a complete solution to the eigenvalues of the production matrices remains elusive to us. Only the as-
symptotic growth of the largest eigenvalue when n tends to infinity is known, because it is equal to the
assymptotic growth of the number of graphs of the considered class.

An interesting open problem is to find production matrices for bipartite graphs with point sets in
convex position. A major challenge is to obtain production matrices for point sets that are not in convex
position.
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Appendices
Appendix A Number of graphs
A.1 Proof of Theorem 9
Proof. The production matrix Gn has a corresponding Riordan Array. Using notation as in Section 2.1, the
second row of Gn gives the A-sequence {2, 2, 4, 8, 16, . . .} with generating function A(t) = 2−2t

1−2t
and its Z-sequence

is given by the first row of Gn and is {2, 4, 8, 16, 32, . . .} with generating function Z(t) = 2
1−2t

. We have d(0) = 2
(because we use as starting vector v2), and by formula (2)

h(t) = A(th(t)) = 2− 2th(t)
1− 2th(t) .

We calculate d(t) also with the formula given by (2):

d(t) = d(0)
1− tZ(th(t)) = 2

1− t( 2
1−2th(t) )

= 2− 4th(t)
1− 2th(t)− 2t .

We substitute th(t) = w and obtain

d(t) = 2− 4w
1− 2w − 2 w

h(t)
= h(t)(2− 4w)
h(t)− 2wh(t)− 2w =

2−2w
1−2w (2− 4w)

2−2w
1−2w − 2w 2−2w

1−2w − 2w
= (2− 2w)(2− 4w)

(2− 2w)− 2w(2− 2w)− 2w(1− 2w) =

= (2− 2w)(2− 4w)
(2− 2w)(1− 2w)− 2w(1− 2w) = (2− 2w)(2− 4w)

(1− 2w)(2− 4w) = 2− 2w
1− 2w .

From this result, we see that d(t) = h(t). Then, Theorem 1 states that dn,j = j+1
n+1 [tn−j ]A(t)n+1. It follows

from this theorem together with Theorem 2, (and a shift of index) that the j-th entry of vn is the coefficient of
tn−j−1 in the Taylor expansion of j

n−1 (A(t))n−1. We expand

A(t)n−1 =
(2− 2t

1− 2t

)n−1
= 2n−1

( 1
1− 2t −

t

1− 2t

)n−1
.

And now, using the binomial formula for the algebraic expansion of powers of a binomial and using the
well-known identity (4), we get the following result.

A(t)n−1 = 2n−1
n−1∑
k=0

(
n− 1
k

)( −t
1− 2t

)n−1−k ( 1
1− 2t

)k

= 2n−1
n−1∑
k=0

(
n− 1
k

)
(−t)n−1−k

( 1
1− 2t

)n−1
=

= 2n−1
n−1∑
k=0

(
n− 1
k

)
(−t)n−1−k

( 1
1− 2t

)n−1
= 2n−1

n−1∑
k=0

(
n− 1
k

)
(−1)n−1−ktn−1−k

∞∑
`=0

(
n− 1 + `− 1

`

)
(2t)` =

= 2n−1
n−1∑
k=0

(
n− 1
k

)
(−1)n−1−k

∞∑
`=0

(
n− 1 + `− 1

`

)
2`tn−1−k+`.

It remains to determine the coefficient of tn−j−1. We set n− j − 1 = n− 1− k + ` and therefore ` = k − j. Note
that in the summation we can put k ≥ j. We thus arrive at the claimed formula

vn
j = j

n− 12n−1
n−1∑
k=j

(
n− 1
k

)
(−1)n−1−k

(
n+ k − j − 2

k − j

)
2k−j =

= j

n− 12n−1−j

n−1∑
k=j

(
n− 1
k

)
(−1)n−1−k

(
n+ k − j − 2

k − j

)
2k.

A.2 Proof of Theorem 12
Proof. The production matrix Cn has a corresponding Riordan Array. Using notation as in Section 2.1, the second
row of Cn gives the A-sequence {1, 3, 7, 15, 31, . . .} with generating function A(t) = 1

(1−2t)(1−t) and its Z-sequence
is given by the first row of Cn and is {3, 7, 15, 31, 63, . . .} with generating function Z(t) = 3−2t

(1−2t)(1−t) . We have
d(0) = 1 and by formula (2)

h(t) = A(th(t)) = 1
(1− 2th(t))(1− th(t)) .
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We calculate d(t) using formula (2)

d(t) = d(0)
1− tZ(th(t)) = 1

1− t
(

3−2th(t)
(1−2th(t))(1−th(t))

) = (1− 2th(t))(1− th(t))
(1− 2th(t))(1− th(t))− 3t+ 2t2h(t) .

We substitute th(t) = w and obtain

d(t) = (1− 2w)(1− w)
(1− 2w)(1− w)− 3 w

h(t) + 2 w2
h(t)

= h(t)(1− 2w)(1− w)
h(t)(1− 2w)(1− w)− 3w + 2w2 =

=
1

(1−2w)(1−w) (1− 2w)(1− w)
1

(1−2w)(1−w) (1− 2w)(1− w)− 3w + 2w2 = 1
1− 3w + 2w2 = 1

(1− 2w)(1− w) .

From this result, we see that d(t) = h(t). Then, Theorem 1 states that dn,j = j+1
n+1 [tn−j ]A(t)n+1. It follows

from this theorem together with Theorem 2, (and a shift of index) that the j-th entry of vn is the coefficient of
tn−j−1 in the Taylor expansion of j

n−1 (A(t))n−1. Firstly, we use the partial fraction decomposition, and divide
the generating function A(t) into two terms in order to apply the binomial theorem to them.

A(t)n−1 =
(

1
(1− 2t)(1− t)

)n−1

=
( 2

1− 2t −
1

1− t

)n−1
=

=
n−1∑
k=0

(
n− 1
k

)( 2
1− 2t

)n−1−k ( −1
1− t

)k

= 2n−1
n−1∑
k=0

(
n− 1
k

)
2−k

( 1
1− 2t

)n−1−k

(−1)k
( 1

1− t

)k

.

Secondly, we apply the identity given by (4), so the previous equation is equal to

A(t)n−1 = 2n−1
n−1∑
k=0

(
n− 1
k

)(
−1

2

)k
∞∑

`=0

(
n− k + `− 2

`

)
(2t)`

∞∑
m=0

(
k +m− 1

m

)
tm =

= 2n−1
n−1∑
k=0

(
n− 1
k

)(
−1

2

)k
∞∑

`=0

(
n− k + `− 2

`

)
2`

∞∑
m=0

(
k +m− 1

m

)
t`+m.

It remains to determine the coefficient of tn−j−1. We set n− j − 1 = `+m and therefore m = n− `− j − 1.

A(t)n−1 = 2n−1
n−1∑
k=0

(
n− 1
k

)(
−1

2

)k
∞∑

`=0

(
n− k + `− 2

`

)
2`

(
k + n− `− j − 2
n− `− j − 1

)
tn−j−1.

Note that in the summation we can put ` ≤ n− j − 1. We thus arrive at the claimed formula:

vn
j = j

n− 12n−1
n−1∑
k=0

(
n− 1
k

)(
−1

2

)k
n−j−1∑

`=0

(
n− 2− k + `

`

)(
k + n− `− j − 2
n− `− j − 1

)
2`.

A.3 Proof of Theorem 16
Proof. The production matrix Bn has a corresponding Riordan Array. Using notation as in Section 2.1, the
second row of Bn gives the A-sequence {1, 0, 1, 2, 4, . . .} with generating function A(t) = (t−1)2

1−2t
and its Z-sequence

is given by the first row of Bn and is {0, 1, 2, 4, 8, . . .} with generating function Z(t) = t
1−2t

. We have d(0) = 1
and by formula (2)

h(t) = A(th(t)) = (th(t)− 1)2

1− 2th(t) .

We calculate d(t):

d(t) = d(0)
1− tZ(th(t)) = 1

1− t( th(t)
1−2th(t) )

= 1− 2th(t)
1− 2th(t)− t2h(t) .

We substitute th(t) = w and obtain

d(t) = 1− 2w
1− 2w − w2

h(t)
= h(t)(1− 2w)
h(t)− 2wh(t)− w2 =

(w−1)2

1−2w (1− 2w)
(w−1)2

1−2w − 2w(w−1)2

1−2w − w2
= (w − 1)2(1− 2w)

(w − 1)2 − 2w(w − 1)2 − w2(1− 2w) =

= (w − 1)2(1− 2w)
(w − 1)2(1− 2w)− w2(1− 2w) = (w − 1)2(1− 2w)

[(w − 1)2 − w2](1− 2w) = (w − 1)2

1− 2w .
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From this result, we see that d(t) = h(t). Then, Theorem 1 states that dn,j = j+1
n+1 [tn−j ]A(t)n+1. It follows

from this theorem together with Theorem 2, (and a shift of index) that the j-th entry of vn is the coefficient of
tn−j+1 in the Taylor expansion of j

n+1 (A(t))n+1. Using the well-known identity (4) we expand

A(t)n+1 =
(

(t− 1)2

1− 2t

)n+1

=
(

t2

1− 2t + 1
)n+1

=
n+1∑
k=0

(
n+ 1
k

)(
t2

1− 2t

)n+1−k

=

=
n+1∑
k=0

(
n+ 1
k

)
t2n+2−2k

( 1
1− 2t

)n+1−k

=
n+1∑
k=0

(
n+ 1
k

)
t2n+2−2k

∞∑
`=0

(
n+ 1− k + `− 1

`

)
(2t)` =

=
n+1∑
k=0

∞∑
`=0

(
n+ 1
k

)(
n− k + `

`

)
2`t`+2n+2−2k.

It remains to determine the coefficient of tn−j+1. We set n−j+1 = `+2n+2−2k and therefore ` = 2k−n−j−1.
Note that k ≥ n+j+1

2 . We thus arrive at the claimed formula

vn
j = j

n+ 1

n+1∑
k=
⌈

n+j+1
2

⌉
(
n+ 1
k

)(
k − j − 1

2k − n− j − 1

)
22k−n−j−1.

Appendix B Characteristic polynomials
B.1 Proof of Theorem 13
Proof. Consider the infinite matrix

M =



3− λ −(23 − 1) 24 − 1 −(25 − 1) · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


and let w0 be the vector (1, 0, . . .)>, and let wi be the vector whose first i entries are the first i characteristic

polynomials ci(λ), and the remaining ones are zero. That is, wi = (ci(λ), ci−1(λ), . . . , c1(λ), 0, . . .)>. Then
M · wi = wi+1. It follows that wn is the first column of Mn. We can now use the Riordan Array approach. The
Z-sequence is {3− λ,−7, 15, . . .} with generating function Z(t) = −λ+ 4

1+2t
− 1

1+t
. The A-sequence is {1, 0, . . .}

with generating function A(t) = 1. It follows that h(t) = 1 and

d(t) = 1
1− t(−λ+ 4

1+2t
− 1

1+t
)

= 1 + 3t+ 2t2

1 + t(λ(1 + 3t+ 2t2)) = d1(t) + 3td1(t) + 2t2d1(t),

where
d1(t) = 1

1 + t(λ(1 + 3t+ 2t2)) .

Then,

dn,j = [tn]d(t)(th(t))j = [tn]d(t)tj = [tn−j ]d(t) = [tn−j ]d1(t) + 3[tn−1−j ]d1(t) + 2[tn−2−j ]d1(t). (7)

We set z = λ(1 + 3t+ 2t2), and using the well-known identity (6):

d1(t) =
∞∑

k=0

(−1)ktk(λ(1 + 3t+ 2t2))k.

We apply the binomial theorem to (λ(1 + 3t + 2t2))k. We then only have to take the coefficient of tn−j in
d1(t) for the first term of (7), the coefficient of tn−1−j in d1(t) for the second term of (7) and the coefficient of
tn−2−j for the third term of (7). After some short calculations, this gives the formula:

cn(λ) =
n∑

k=0

k∑
`=0

(−1)k
(
k

`

)(
`

n+ 2`− 3k

)
2k−`3n+2`−3kλk +

n∑
k=0

k∑
`=0

(−1)k
(
k

`

)(
`

n+ 2`− 3k − 1

)
2k−`3n+2`−3k−1λk

+
n∑

k=0

k∑
`=0

(−1)k
(
k

`

)(
`

n+ 2`− 3k − 2

)
2k−`+13n+2`−3k−2λk.

25



We finally rewrite cn(λ) =
∑n

t=0 ctλ
t, with ct the coefficient of λt. Since λt = λk we set k = t and get after some

elementary operations:

cn(λ) =
n∑

t=0

(
t∑

`=0

(
t

`

)
(−1)t2t−`3n+2`−3t−2

[
2
(

`

n+ 2`− 3t− 2

)
+ 9
(

`+ 1
n+ 2`− 3t

)])
λt.

B.2 Proof of Theorem 17
Proof. Consider the infinite matrix

M =



−λ −20 21 −22 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .


and let w0 be the vector (1, 0, . . .)>, and let wi be the vector whose first i entries are the first i characteristic

polynomials bi(λ), and the remaining ones are zero. That is, wi = (bi(λ), bi−1(λ), . . . , b1(λ), 0, . . .). ThenM ·wi =
wi+1. It follows that wn is the first column of Mn. We can now use the Riordan Array approach. The Z-sequence
is {−λ,−1, 2,−4, . . .} with generating function Z(t) = −λ − t

1+2t
. The A-sequence is {1, 0, . . .} with generating

function A(t) = 1. It follows that h(t) = 1 and

d(t) = 1
1− t(−λ− t

1+2t
)

= 1 + 2t
1 + t((2 + λ) + (2λ+ 1)t) .

Then,
dn,j = [tn]d(t)(th(t))j = [tn]d(t)tj = [tn−j ]d(t) = [tn−j ]d1(t) + 2[tn−1−j ]d1(t), (8)

where
d1(t) = 1

1 + t((2 + λ) + (2λ+ 1)t) .

We set z = (2 + λ) + (2λ+ 1)t, and using equation (6):

d1(t) =
∞∑

k=0

(−1)ktk((2 + λ) + (2λ+ 1)t)k.

We apply the binomial theorem to ((2 + λ) + (2λ + 1)t)k. We then only have to take the coefficient of tn−j

in d1(t) for the left term of (8) and the coefficient of tn−1−j in d1(t) for the right term of (8). After some short
calculations, this gives the formula

bn(λ) =
n∑

k=0

2k−n∑
`=0

n−k∑
i=0

(−1)k

(
k

n− k

)(
2k − n
`

)(
n− k
i

)
22k−n−`+iλ`+i+

+ 2
n∑

k=0

2k−n+1∑
`=0

n−k−1∑
i=0

(−1)k

(
k

n− k − 1

)(
2k − n+ 1

`

)(
n− k − 1

i

)
22k−n−`+i+1λ`+i.

Note that in the summation we can put ` ≤ k.

bn(λ) =
n∑

k=0

k∑
`=0

n−k∑
i=0

(−1)k

(
k

n− k

)(
2k − n
`

)(
n− k
i

)
22k−n−`+iλ`+i+

+ 2
n∑

k=0

k∑
`=0

n−k−1∑
i=0

(−1)k

(
k

n− k − 1

)(
2k − n+ 1

`

)(
n− k − 1

i

)
22k−n−`+i+1λ`+i.

We finally rewrite bn(λ) =
∑n

t=0 ct(λ)λt, with ct(λ) the coefficient of λt. Since λt = λ`+i we set i = t− ` and
get

bn(λ) =
n∑

t=0

n∑
k=0

k∑
`=0

(−1)k

(
k

n− k

)(
2k − n
`

)(
n− k
t− `

)
22k−n+t−2`λt+

+
n∑

t=0

n∑
k=0

k∑
`=0

(−1)k

(
k

n− k − 1

)(
2k − n+ 1

`

)(
n− k − 1
t− `

)
22k−2`−n+t+2λt.
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After some elementary operations, and taking into account the subset of a subset identity
(

n
m

)(
m
k

)
=
(

n
k

)(
n−k
m−k

)
we finally get the formula

bn(λ) =
n∑

t=0

n∑
k=0

k∑
`=0

(
k

t

)(
t

`

)
(−1)k22k−n+t−2`

[
4
(

k − t
2k − n− `+ 1

)
+
(

k − t
2k − n− `

)]
λt.
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