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ABSTRACT
Cyclomatic complexity is an incompletely specified but mathemati-

cally principled software metric that can be usefully applied to both

source and binary code. We consider the application of path homol-

ogy as a more powerful analogue of cyclomatic complexity. There

exist control flow graphs realizable at the assembly level with non-

trivial path homology in arbitrary dimension. We exhibit several

classes of examples in this vein while also experimentally demon-

strating that path homology gives identicial results to cyclomatic

complexity for at least one detailed notion of structured control

flow. Thus path homology generalizes cyclomatic complexity, and

has the potential to substantially improve upon it.

CCS CONCEPTS
• General and reference → Metrics; • Mathematics of com-
puting → Algebraic topology; Paths and connectivity problems.
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1 INTRODUCTION
An archetypal software metric is the cyclomatic complexity of the

control flow graph of a computer program [25]. Although cyclo-

matic complexity continues to be widely used [12], it has also

been widely criticized, though there are no widely agreed-upon

alternatives [1], much less any with a comparably mathematical

underpinning that permits principled adaptation and generaliza-

tion. Moreover, at least some of the criticism directed at cyclomatic

complexity stems from ambiguity of control flow representations

of source code that disappear at the level of disassembled binary

code, where cyclomatic complexity can usefully guide testing and

reverse engineering efforts such as fuzzing [10, 23]. Even at the

source code level, cyclomatic complexity and other software met-

rics can contribute substantially to the identification of fault-prone

or vulnerable code [2, 9, 26]. In short, cyclomatic complexity is an

incomplete but principled software metric with useful applications

to both source and binary code.

The recent series of papers [14–20] develops a theory of path
homology that both generalizes the simplicial homology theory

underlying cyclomatic complexity and directly applies to digraphs.

Whereas the simplicial Betti numbers of a 1-complex equal the

cyclomatic complexity in dimension 1 and are trivial in all higher

dimensions (see §2.2), the path homology of a digraph is a richer

topological invariant whose Betti numbers can take any values in

every dimension. It is therefore natural to consider its application

as a more powerful analogue of cyclomatic complexity.

2 HOMOLOGY
A chain complex over a field F is a pair of sequences (indexed by

a “dimension” p ∈ N) of F-vector spaces Cp and linear boundary
operators ∂p : Cp → Cp−1 such that ∂p−1 ◦∂p ≡ 0. We can visualize

such a structure as in Fig. 1, and write it as

. . .Cp+1
∂p+1
−→ Cp

∂p
−→ Cp−1

∂p−1
−→ . . . ∂1−→ C0

∂0−→ 0. (1)

Writing Zp := ker ∂p and Bp := im ∂p+1, the homology of (1) is

Hp := Zp/Bp . (2)

The Betti numbers are βp := dim Hp = dim Zp − dim Bp .

Figure 1: Schematic picture of a chain complex.

In practice, it is frequently convenient for technical reasons to

(and we do) work with the reduced homology H̃p . This has the

minor effect H̃0 ⊕ F � H0, while H̃p � Hp for p > 0. Similarly, and

using an obvious notational device,
˜βp = βp − δp0, where δjk = 1

iff j = k and δjk = 0 otherwise.

2.1 Simplicial homology
Following [24], we now proceed to sketch the archetypal notion

of simplicial homology that underlies cyclomatic complexity. An

abstract simplicial complex (ASC) is a family ∆ of finite subsets

{v0, . . . ,vp } (called simplices) of a set V of vertices such that if

X ∈ ∆ and � , Y ⊆ X , then Y ∈ ∆. 1

Given an ASC ∆, let Cp be the F-vector space generated by

basis elements e(v0, ...,vp ) corresponding to oriented simplices of
dimension p in ∆. This essentially means that if σ is a permutation

acting on (v0, . . . ,vp ), then e(v0, ...,vp ) = (−1)σ e(vσ (0), ...,vσ (p)).
2 3

1
In other words, an ASC is a hypergraph with all sub-hyperedges.

2
Thus for example e(v

0
,v

1
,v

2
) = −e(v

0
,v

2
,v

1
) .

3
Note that an order on V induces an order on each simplex in ∆, and in turn this

induces an orientation.
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The simplicial boundary operator ∂p is now defined to be the

linear map acting on basis elements as

∂pe(v0, ...,vp ) =
p∑
j=0

(−1)je∇j (v0, ...,vp ) (3)

where ∇j deletes the jth entry of a tuple. It turns out that this con-

struction yields a bona fide chain complex. Moreover, the simplicial

Betti numbers measure the number of voids of a given dimension

in a geometric realization of an ASC.
4

For example, the boundary of a 2-simplex or “triangle” is

∂2e(1,2,3) = e(2,3) − e(1,3) + e(1,2) = e(1,2) + e(2,3) + e(3,1)

and its boundary in turn is

∂1

(
e(1,2) + e(2,3) + e(3,1)

)
= 0.

Thus the homology of the boundary of a triangle has βp = δp1:
there is a single void in dimension 1, and none in other dimensions.

2.2 Cyclomatic complexity
The cyclomatic number or cyclomatic complexity [25] of an undi-

rected connected graph G = (V ,E) is ν (G) := |E | − |V | − 1: a result

dating to Euler (for a modern treatment, see, e.g. [4]) is that this

equals the dimension of the so-called cycle space of G. Meanwhile,

the cyclomatic number also equals the first (simplicial) Betti number

of the abstract simplicial complex whose 2-simplices correspond to

edges [29], and all Betti numbers in dim > 1 are identically zero.
5

2.3 Path homology
Our sketch of path homology mostly follows [6, 18], with some

small changes to notation and terminology that should be easily

handled by the interested reader.

Let D = (V ,A) be a loopless digraph and let p ∈ Z+. The set

Ap (D) of allowed p-paths is

{(v0, . . . ,vp ) ∈ V p+1
: (vj−1,vj ) ∈ A, 1 ≤ j ≤ p}. (4)

By convention, we set A0 := V , V 0 ≡ A−1 := {0} and V −1 ≡
A−2 := �. For a field F (in practice, we take F = R) and a finite setX ,

let FX � F |X |
be the free F-vector space on X , with the convention

F� := {0}. The non-regular boundary operator ∂[p] : FV
p+1 → FV p

is the linear map acting on the standard basis as

∂[p]e(v0, ...,vp ) =
p∑
j=0

(−1)je∇j (v0, ...,vp ). (5)

A straightforward calculation shows that ∂[p−1] ◦ ∂[p] ≡ 0, so

(FV p+1
, ∂[p]) is a chain complex. However, we are not concerned

with the homology of this chain complex, but of a derived one.

Towards this end, set

Ωp :=
{
ω ∈ FAp

: ∂[p]ω ∈ FAp−1
}
, (6)

Ω−1 := F{0} � F, and Ω−2 := F� = {0}. If ω ∈ Ωp , then auto-

matically ∂[p]ω ∈ FAp−1
, so ∂[p−1]∂[p]ω = 0 ∈ FAp−2

. Therefore,

∂[p]ω ∈ Ωp−1. We thus get a chain complex (Ωp , ∂p ) called the

4
Here, 0-dimensional voids amount to connected components.

5
For background on simplicial homology, see [24].

(non-regular) path complex of D, where ∂p := ∂[p] |Ωp . 6 The corre-
sponding homology is the (non-regular) path homology of D.

3 FLOW GRAPHS
Following [22], a flow graph is a digraph with exactly one source

(i.e., a vertex with indegree 0) and exactly one target (i.e., a vertex

with outdegree 0) such that there is a unique (entry) arc from the

source and a unique (exit) arc to the target, and such that identifying

the source of the entry arc with the target of the exit arc yields a

strongly connected digraph.
7
(We do not require the entry and exit

arcs to be distinct, e.g., if the flow graph has only two vertices.)

We exhibit here a flow graph that is realizable as the assembly-

level control flow graph of a program and with
˜β• = (0, 1, 1, 0, . . . ):

This example was constructed via the following theorem of [13]:

Theorem. ForL,n1, . . . ,nL ∈ Z+, define the digraphK→
n1, ...,nL :=(

[N ],An1, ...,nL
)
whereN :=

∑L
ℓ=1 nℓ , [N ] := {1, . . . ,N },An1, ...,nL :=⋃L−1

ℓ=1 Anℓ,nℓ+1 , and

Anℓ,nℓ+1 :=

(
[nℓ] +

ℓ−1∑
k=1

nk

)
×

(
[nℓ+1] +

ℓ∑
k=1

nk

)
.

Then

˜βp
(
K→
n1, ...,nL

)
= δp,L−1

L∏
ℓ=1

(nℓ − 1). □ (7)

The proof for a variant of the flow graph above where the bottom

arc is replaced by two consecutive arcs follows from the theorem

above along with Theorems 5.1 and 5.7 of [18] (which hold in

the non-regular context), so we shall not belabor the exact variant

shown. Furthermore, adding “layers” to this example shows howwe

can produce valid flow graphs realizable as assembly-level control

flow graphs and that have nontrivial path homology in arbitrarily

high dimension.

3.1 2-flow graphs
We could exhibit nontrivial path homology in dim > 1 for many

other flow graphs, but we focus here on a highly restricted class of

flow graphs to demonstrate that interesting behavior still occurs.

The set of flow graphs in which the outdegrees of vertices are all ≤ 2

models control flow at the assembly level in typical architectures:

the program counter either advances linearly through memory

addresses as operations are executed, or it jumps to a new memory

address based on the truth value of a Boolean predicate [7, 27].

6
The implied regular path complex amounts to enforcing a condition that prevents

a directed 2-cycle from having nontrivial 1-homology. While [18] advocates using

regular path homology, in our view non-regular path homology is simpler, more likely

useful in applications such as the present one, and exhbits richer phenomenology.

7
Unlike in [22], here we disallow loops (i.e., 1-cycles) in digraphs, but the ramifications

of this difference are straightforward. In particular, loops in control flow at the assembly

level can be transformed into 2-cycles through the introduction of unconditional jumps

to/from “distant” memory addresses in a way that does little violence to the actual

binary code, and no violence at all to its semantics.
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In practice, many vertices in assembly-level control flow graphs

have outdegree 1, but indegree > 1 owing to the presence of in-

bound jumps.
8
More generally, jumps into or out of an otherwise

“structured” control flow motif that can be interpreted as an if, a
while, or a repeat construct are called “unstructured” gotos in the

programming literature [8, 25, 28]. These can be eliminated through

control flow restructuring [3, 21, 30], so that the control flow is

“structured” in the sense that it can be interpreted as arising from

a combination of if, while, and repeat-type structures (though
at the assembly level, every control flow operation is instantiated

as a jump–i.e., a goto–of some sort, however it may be morally

interpreted).

Rather than precisely define the notion of a structured flow graph

per se, we consider the simpler, related notion of a 2-flow graph
(2FG). A 2FG is a flow graph with a source vertex with outdegree 1, a
target vertex with outdegree 0, a single vertex adjacent to the target

with outdegree 1, and such that all other vertices have outdegree 2.

Suppose we construct all digraphs on N vertices with outdegree

identically 2, except for a single vertex with outdegree 0.
9
If such

a digraph has a vertex a with nonzero outdegree and such that

adding an arc to a from the unique vertex z with outdegree 0 results

in a strongly connected digraph, then we call the digraph a 2FG
progenitor at (a, z). Note that a digraph can be a 2FG progenitor at

(a, z) and at (a′, z) for a , a′: indeed, the only way such a situation

can be avoided is if a has indegree 0, in which case the strong

connectivity requirement ensures that a is unique. Given a 2FG

progenitor at (a, z), we can construct a 2FG by adding a vertex

s and the arc (s,a) and possibly also a vertex t and the arc (z, t).
Conversely, removing the entry arc, and possibly also the exit arc,

from a 2FG yields a 2FG progenitor, so every 2FG can be constructed

from a 2FG progenitor.

In Figs. 2 and 4 we show the 2FG progenitors with
˜β2 > 0 on 5

and 6 vertices, respectively; Fig. 3 shows an example of disassembled

binary code whose control flow is that of the digraph on the right of

Fig. 2. These examples make it clear that even in a very restrictive

setting, the path homology of many different control flow graphs

can be nontrivial in dim > 1.

3.2 Control flow skeletons
We generated 20000 “program skeletons” each resulting from 20

uniformly random productions at uniformly random nonterminals

from a context-free grammar along the lines of

S →S ; S

S →if b; S ; endif

S →do while b; S ; enddo

S →repeat; S ; until b (8)

where ; is shorthand for a newline. We then analyzed the resulting

control flow graphs, in which every line had its own vertex. In

every case, the equalities ν = |b| = ˜β1 were satisfied, where here |b|

8
Such inbound jumps may land in the middle of what would otherwise be a basic

block (i.e., a sequence of code statements without any [nondegenerate] control flow),

which results in vertices with indegree and outdegree both equal to 1: in fact, a first

attempt to produce Fig. 3 exhibited this behavior.

9
The number of such digraphs follows the sequence at http://oeis.org/A003286. That

is, starting from N = 3, there are 1, 7, 66, 916, 16816, . . . such digraphs.

Figure 2: There are 2 5-vertex 2FG progenitors at (a, z)
with ˜β2 > 0. The Betti numbers on the left and right are
(0, 0, 1, 0, . . . ) and (0, 1, 1, 0, . . . ), respectively. Note that remov-
ing the target arc from the 2FG progenitor on the left yields
the unique 4-vertex 2FG progenitor with ˜β2 > 0.

Figure 3: A control flow example with the (moral) structure
of the digraph on the right in Fig. 2, shown in IDA Pro [11].
The Intel assembly instructions are directly compiled from
C code (albeit using gotos and assembly statements). The
common instruction motif in all of the basic blocks (i.e., bi-
nary code corresponding to vertices) except for the function
exit clearly indicates how to construct binaries with control
flow given by an arbitrary 2FG (progenitor).

http://oeis.org/A003286
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Figure 4: All 6-vertex 2FG progenitors at (a, z) with ˜β2 > 0.
In each case ˜β2 = 1. From left to right and top to bottom, we
have ˜β1 = 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0; all other Betti
numbers are zero.

indicates the number of “predicates” in the skeleton.
10

Moreover, in

every case we also had
˜β2 = 0. This suggests that, e.g., postprocess-

ing, alternative conventions for control flow graph construction, or

additional constructs such as case statements are necessary at the

source code level in order to obtain useful invariants in dim > 1.

To illustrate direct applicability to binary code, we also gener-

ated 20000 program skeletons whose control flow consisted of 16

conditional gotos to different addresses chosen uniformly at ran-

dom. In this experiment, 55/20000 skeletons had
˜β2 > 0; we show

the first such in the left panel of Fig. 5. In fact, this example is also

more complex in other ways than the first skeleton with
˜β2 = 0,

shown in the right panel of Fig. 5: e.g., the digraph drawing in the

left panel of Fig. 5 has 15 arc crossings, while the digraph drawing

in the right panel has only 10.
11

4 CONCLUSION
Path homology offers several improvements on cyclomatic complex-

ity. With case statements, the Betti numbers can take on arbitrary

values for control flow graphs at the source code level. The Betti

numbers can also take on nontrivial values in arbitrary dimension

for control flow graphs at the assembly level.

As a practical matter, it makes sense to analyze complicated flow

graphs in a hierarchical and modular fashion using the program

structure tree along the lines of [22]: this is not only scalable, but

also extends the analogy of cyclomatic complexity in relation to

essential complexity [25].
12

In dimension 1 path homology appears to give the same results

as cyclomatic complexity for structured control flow. While it is

obviously desirable to turn evidence for this claim into proof, it is

10
The first equality here is generic, and can be proved via an easy counting argument,

but the second equality is not obvious.

11
Unfortunately, computing the minimal number of arc crossings is NP-hard, so we

did not attempt to analyze arc crossings in any more detail.

12
Tracking the birth and death of homology classes along these lines via tree persis-

tence [5] is a particularly tempting prospect.

  1 START  2 if b goto 14
  3 if b goto 16

  4 if b goto 9  5 if b goto 9  6 if b goto 3   7 if b goto 3  8 if b goto 5  9 if b goto 5  10 if b goto 2
  11 if b goto 12

  12 if b goto 4
  13 if b goto 17

  14 if b goto 5
  15 if b goto 2
  16 if b goto 6

  17 if b goto 12
  18 HALT

  1 START  2 if b goto 9  3 if b goto 13
  4 if b goto 7  5 if b goto 12

  6 if b goto 3  7 if b goto 17
  8 if b goto 11

  9 if b goto 14
  10 if b goto 9

  11 if b goto 16
  12 if b goto 10
  13 if b goto 4

  14 if b goto 15
  15 if b goto 14

  16 if b goto 15
  17 if b goto 4
  18 HALT

Figure 5: (L) The first of 55 (out of 20000) realizations
of a control flow graph for a program skeleton generated
through 16 uniformly random conditional gotos that result
in ˜β2 > 0. Blue (resp., red) arcs indicate branches where a
Boolean predicate (placeholder) b evaluates to ⊤ (resp., ⊥).
This particular example has ˜β• = (0, 11, 1, 0, . . . ). (R) The
first of the remaining 19945 realizations that do not result
in ˜β2 > 0. This particular example has ˜β• = (0, 13, 0, . . . ).

already apparent that path homology has the potential to substan-

tially improve upon an archetypal software metric.
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