ON ZERO-SUM FREE SEQUENCES CONTAINED IN RANDOM SUBSETS OF FINITE CYCLIC GROUPS

SANG JUNE LEE AND JUN SEOK OH

Abstract

Let C_{n} be a cyclic group of order n. A sequence S of length ℓ over C_{n} is a sequence $S=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{\ell}$ of ℓ elements in C_{n}, where a repetition of elements is allowed and their order is disregarded. We say that S is a zero-sum sequence if $\Sigma_{i=1}^{\ell} a_{i}=0$ and that S is a zero-sum free sequence if S contains no zero-sum subsequence.

Let R be a random subset of C_{n} obtained by choosing each element in C_{n} independently with probability p. Let N_{n-1-k}^{R} be the number of zero-sum free sequences of length $n-1-k$ in R. Also, let $N_{n-1-k, d}^{R}$ be the number of zero-sum free sequences of length $n-1-k$ having d distinct elements in R. We obtain the expectation of N_{n-1-k}^{R} and $N_{n-1-k, d}^{R}$ for $0 \leq k \leq\lfloor n / 3\rfloor$. We also show a concentration result on N_{n-1-k}^{R} and $N_{n-1-k, d}^{R}$ when k is fixed.

1. Introduction

Let C_{n} be a cyclic group of order n. A sequence S of length ℓ over C_{n} is a sequence

$$
S=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{\ell}
$$

of ℓ elements in C_{n}, where a repetition of elements is allowed and their order is disregarded. We say that a sequence S over C_{n} is contained in $A \subset C_{n}$ if each element in S is contained in A. For $a \in C_{n}$, let

$$
\mathrm{v}_{a}(S)=\left|\left\{i \in[1, \ell] \mid a_{i}=a\right\}\right|
$$

be the multiplicity of a in S. A subsequence T of S is a sequence over C_{n} satisfying $\mathrm{v}_{a}(T) \leq \mathrm{v}_{a}(S)$ for all $a \in C_{n}$. We say that S is a zero-sum sequence if $a_{1}+a_{2}+\ldots+$ $a_{\ell}=0$. A sequence is called zero-sum free if it contains no zero-sum subsequence.

[^0]An initial study of zero-sum sequences dates back to 1961 when Erdős, Ginzburg, and Ziv [6] proved that $2 n-1$ is the smallest positive integer ℓ such that every sequence of length ℓ over C_{n} has a zero-sum subsequence of length n. Since that time, zero-sum sequences over a finite group have actively studied in additive combinatorics. For more details, see a survey paper by Gao and Geroldinger [8]. Although earlier works often focused on finite abelian groups, an application to factorization theory and invariant theory pushed the object forward to non-abelian groups. The reader can refer to Geroldinger, Grynkiewicz, Zhong, and the second author [9] for recent progress with respect to factorization theory and to Cziszter, Domokos, and Szöllősi 3, 5, for connection with invariant theory.

In this paper, we focus on zero-sum free sequences over a cyclic group. Wellknown problems about zero-sum free sequences over a finite group are to determine the maximum length of zero-sum free sequences, which is a combinatorial group invariant known as the Davenport constant, and to characterize the structure of zero-sum free sequences. Observe that the maximum length of all zero-sum free sequences over C_{n} is $n-1$. Also, we have that S is a zero-sum free sequence of length $n-1$ over C_{n} if and only if

$$
S=\underbrace{g \cdot g \cdot \ldots \cdot g}_{n-1}
$$

for a generator $g \in C_{n}$. Gao [7] proved the following result on the structure of long zero-sum free sequences over C_{n}.

Theorem 1 (Theorem 4.3 in [8], Lemma 2.5 in [7]). Let $n \geq 2$ and $0 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor$. Then S is a zero-sum free sequence of length $n-1-k$ over C_{n} if and only if

$$
S=\underbrace{g \cdot g \cdot \ldots \cdot g}_{n-1-2 k} \cdot\left(x_{1} g\right) \cdot\left(x_{2} g\right) \cdot \ldots \cdot\left(x_{k} g\right)
$$

where g is a generator of C_{n} and $x_{1}, x_{2}, \ldots, x_{k}$ are positive integers such that

$$
\begin{equation*}
1 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{k} \quad \text { and } \quad x_{1}+x_{2}+\ldots+x_{k} \leq 2 k \tag{1}
\end{equation*}
$$

Theorem 1 was generalized by Savchev and Chen [17] on the zero-sum free sequences of length at least $(n+1) / 2$ over C_{n}. Theorem 1 and the result by Savchev and Chen were applied to the number of minimal zero-sum sequences of long length by Ponomarenko 15 and Cziszter, Domokos, and Geroldinger 4, respectively.

Remark that Theorem 4.3 in [8] only gives the statement in Theorem 1 from the left-hand side to the right-hand side. The proof from the right-hand side to the left-hand side is obvious since g is a generator of C_{n} and all subsequences T of S satisfy $\sigma(T)=\ell g \neq 0$ for some integer $0<\ell<n$, where $\sigma(T)$ is the sum of all elements in T.

In this paper, we are interested in zero-sum free sequences of a given length contained in a random subset of C_{n}. Investigating how classical extremal results in dense environments transfer to sparse settings has become a deep line of research. For example, Roth's theorem on 3-term arithmetic progressions [16] was generalized for random subsets of integers [13], and there are recent generalizations about various classical extremal results by Schacht [18] and Conlon and Gowers [2].

Let R be a random subset of C_{n} obtained by choosing each element in C_{n} independently with probability p. Let N_{n-1-k} be the number of zero-sum free sequences of length $n-1-k$ over C_{n}. Also, let N_{n-1-k}^{R} be the number of zero-sum free sequences of length $n-1-k$ in R. The result on the expectation of N_{n-1-k}^{R} is as follows.

Theorem 2. Let $n \geq 2$ and $0 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor$. The expected number of zero-sum free sequences of length $n-1-k$ in a random subset R of C_{n} is

$$
\mathbb{E}\left(N_{n-1-k}^{R}\right)=\varphi(n)\left[p+\sum_{d=2}^{D} p^{d}\left(\sum_{j=\frac{(d-1) d}{2}}^{k} q(j, d-1)\right)\right]
$$

where

- $D=\left\lfloor\frac{1+\sqrt{1+8 k}}{2}\right\rfloor$,
- $\varphi(n)$ denotes the number of generators in C_{n}, and
- $q(j, d-1)$ is the number of partitions of j having $d-1$ distinct parts.

The number $q(j, d-1)$ can be computed in two ways: The first way is based on its generating function (see Section 2.1 for details). Second, we provide a recursive formula for computing $X_{k, d-1}=\sum_{j=(d-1) d / 2}^{k} q(j, d-1)$ (see Section (2.2).

If k is fixed, then we can obtain a simpler statement as follows.
Corollary 3. If k is fixed and $p=o(1)$ as $n \rightarrow \infty$, then

$$
\mathbb{E}\left(N_{n-1-k}^{R}\right)=p \varphi(n)\left(1+O_{k}(p)\right),
$$

where the constant in O_{k} depends only on k.
Next, we have a concentration result on N_{n-1-k}^{R} when k is fixed.
Theorem 4. Let k be fixed, and let p be such that

$$
\frac{(\log n)^{2 d} \log \log n}{n} \ll p \ll 1
$$

Then, asymptotically almost surely (a.a.s.)

$$
N_{n-1-k}^{R}=p \varphi(n)+O_{k}\left(p^{2} \varphi(n)+\sqrt{p \varphi(n)}(\log n)^{d}\right)
$$

where the constant in O_{k} depends only on k.

Moreover, we have a refined result. Let $N_{n-1-k, d}$ be the number of zero-sum free sequences of length $n-1-k$ having d distinct elements over C_{n}. Also, let $N_{n-1-k, d}^{R}$ be the number of zero-sum free sequences of length $n-1-k$ having d distinct elements contained in a random subset R of C_{n}. We show a concentration result on $N_{n-1-k, d}^{R}$.

Theorem 5. If $0 \leq k \leq\left\lfloor\frac{n}{3}\right\rfloor$ and

$$
p \gg \frac{\log \log n}{n}
$$

then we have that a.a.s.

$$
p \varphi(n)-\omega \sqrt{p \varphi(n)} \leq N_{n-1-k, 1}^{R} \leq p \varphi(n)+\omega \sqrt{p \varphi(n)}
$$

where ω tends to ∞ arbitrarily slowly as $n \rightarrow \infty$.
Let $d \geq 2$. If k is fixed and

$$
p \gg \frac{(\log n)^{2}(\log \log n)^{1 / d}}{n^{1 / d}}
$$

then we have that a.a.s.

$$
N_{n-1-k, d}^{R}=p^{d} \varphi(n)\left(\sum_{j=\frac{(d-1) d}{2}}^{k} q(j, d-1)\right)+O_{k}\left(\sqrt{p^{d} \varphi(n)}(\log n)^{d}\right)
$$

The organization of this paper is as follows. In Section 2, we consider expectations and prove Theorem 2 and Corollary 3. Then, we deal with our concentration results and prove Theorems 4 and 5 in Section 3.

2. Expectation

In this section, we prove Theorem 2 and Corollary 3. Also, we provide a recursive formula to compute the important value $X_{k, d-1}=\sum_{j=(d-1) d / 2}^{k} q(j, d-1)$ given in Theorem 2
2.1. Proofs of Theorem 2 and Corollary 3, It turns out that the number of distinct elements in a zero-sum free sequence plays an important role since each element in C_{n} is contained in a random set R with probability p. Recall that $N_{n-1-k, d}$ is the number of zero-sum free sequences of length $n-1-k$ having d distinct elements over C_{n}, and $N_{n-1-k, d}^{R}$ is the number of zero-sum free sequences over C_{n} of length $n-1-k$ having d distinct elements contained in a random set R.

Clearly, the expectation of $N_{n-1-k, d}^{R}$ is

$$
\mathbb{E}\left(N_{n-1-k, d}^{R}\right)=p^{d} N_{n-1-k, d}
$$

Based on Theorem 11 the numbers $N_{n-1-k, d}$ and $N_{n-1-k, d}^{R}$ are related to the number of

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

satisfying that $x_{1}, x_{2}, \ldots, x_{k}$ are positive integers such that (1) holds and the number of distinct $x_{i} \neq 1$ is $d-1$. With $x_{i}^{\prime}:=x_{i}-1$, the number can be simplified as follows.

Definition 6. Let $X_{k, d}$ be the number of $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{k}^{\prime}\right)$ such that

$$
0 \leq x_{1}^{\prime} \leq x_{2}^{\prime} \leq \cdots \leq x_{k}^{\prime}, \quad x_{1}^{\prime}+x_{2}^{\prime}+\cdots+x_{k}^{\prime} \leq k
$$

and the number of distinct positive x_{i}^{\prime} is d.

Theorem 1 and Definition 6 give that

$$
\begin{equation*}
N_{n-1-k, d}=\varphi(n) X_{k, d-1} \tag{2}
\end{equation*}
$$

where $\varphi(n)$ is the number of generators in C_{n}. Therefore, the expectation of $N_{n-1-k, d}^{R}$ is

$$
\begin{equation*}
\mathbb{E}\left(N_{n-1-k, d}^{R}\right)=p^{d} \varphi(n) X_{k, d-1} \tag{3}
\end{equation*}
$$

From now on, we focus on estimating $X_{k, d-1}$. To this end, we use the definition of a partition of an integer. A partition of a positive integer k is a non-decreasing sequence whose sum equals k. A partition λ of k can be shortly expressed by

$$
1^{r_{1}} 2^{r_{2}} \cdots t^{r_{t}}
$$

meaning that

$$
k=(\underbrace{1+1+\ldots+1}_{r_{1}})+(\underbrace{2+2+\ldots+2}_{r_{2}})+\ldots+(\underbrace{t+t+\ldots+t}_{r_{t}}) .
$$

If λ is a partition of k, then we denote $\lambda \vdash k$. Let $|\lambda|=k$ if $\lambda \vdash k$.
Let $q(k, d)$ be the number of partitions of k having d distinct parts. For example, all partitions of 7 are as follows:

- $1^{7}, 7^{1}$,
- $1^{5} 2^{1}, 1^{3} 2^{2}, 1^{1} 2^{3}, 1^{4} 3^{1}, 1^{1} 3^{2}, 2^{2} 3^{1}, 1^{3} 4^{1}, 3^{1} 4^{1}, 1^{2} 5^{1}, 2^{1} 5^{1}, 1^{1} 6^{1}$,
- $1^{2} 2^{1} 3^{1}, 1^{1} 2^{1} 4^{1}$.

We have that $q(7,1)=2, q(7,2)=11, q(7,3)=2$, and $q(7, d)=0$ for $d \geq 4$.
Recalling Definition 6, we have that $X_{k, d}$ is the same as the number of partitions λ of at most k having d distinct parts. Observe that if λ is counted for $X_{k, d}$, then

$$
\begin{equation*}
\frac{d(d+1)}{2} \leq|\lambda| \leq k \tag{4}
\end{equation*}
$$

because λ contains parts with at least $1,2, \ldots, d$. Thus, we have

$$
\begin{equation*}
X_{k, d}=\sum_{j=\frac{d(d+1)}{2}}^{k} q(j, d) \tag{5}
\end{equation*}
$$

Remark that the number $q(j, d)$ can be found in A116608 of the on-line encyclopedia of integer sequences (OEIS), and it can be computed from its generating function

$$
Q(x, t)=-1+\prod_{i=1}^{\infty}\left(1+\frac{t x^{i}}{1-x^{i}}\right)
$$

where

$$
Q(x, t)=\sum_{j, d \geq 1} q(j, d) x^{j} t^{d}
$$

There are related results on $q(j, d)$. Kim [11] constructed a generating function with one variable for $q(j, d)$ when d is fixed. Also, Goh and Schmutz [10] obtained the asymptotic distribution of the number of distinct part sizes in a random integer partition. On the other hand, $X_{k, d}$ is not found in OEIS.

We are ready to prove Theorem 2,

Proof of Theorem 园. Trivially, the expected number of zero-sum free sequences of length $n-1-k$ with same elements in R is

$$
\mathbb{E}\left(N_{n-1-k, 1}^{R}\right)=\varphi(n) p
$$

Next, for $d \geq 2$, we infer that

$$
\mathbb{E}\left(N_{n-1-k, d}^{R}\right)=p^{d} N_{n-1-k, d} \stackrel{\text { (2) }}{=} p^{d} \varphi(n) X_{k, d-1} \stackrel{\text { (5) }}{=} p^{d} \varphi(n)\left(\sum_{j=\frac{(d-1) d}{2}}^{k} q(j, d-1)\right)
$$

Next we consider the range of d. If $X_{k, d-1}$ is positive, then (4) gives that

$$
k \geq \frac{(d-1) d}{2}
$$

Hence, let D be the lagest integer d satisfying $(d-1) d / 2 \leq k$, and then,

$$
d \leq D=\left\lfloor\frac{1+\sqrt{1+8 k}}{2}\right\rfloor
$$

This completes our proof of Theorem 2

Now we are ready to prove Corollary 3 using Theorem 2

Proof of Corollary 3. For a fixed k, Theorem 2 gives that

$$
\begin{aligned}
\mathbb{E}\left(N_{n-1-k}^{R}\right) & =\varphi(n)\left[p+\sum_{d=2}^{D} p^{d}\left(\sum_{j=\frac{(d-1) d}{2}}^{k} q(j, d-1)\right)\right] \\
& =p \varphi(n)\left(1+\sum_{d=2}^{D} O_{k}\left(p^{d-1}\right)\right) \\
& =p \varphi(n)\left(1+O_{k}(p)\right),
\end{aligned}
$$

where the constant in O_{k} depends only on k, which completes the proof of Corollary 3
2.2. Recursive formula for $X_{k, d}$. Here, we give another way to compute the important value

$$
X_{k, d-1}=\sum_{j=\frac{(d-1) d}{2}}^{k} q(j, d-1)
$$

given in Theorem 2 using a recursive formula.
A partition of an integer can be illustrated by a Young diagram (also called a Ferrers diagram), which is a useful way to understand a partition in combinatorics. A Young diagram corresponding to a partition $\lambda \vdash k$ is a collection of left-justified rows of k boxes piled up in non-decreasing order of row lengths from parts. For example, the partition $1^{2} 2^{1} 3^{1} \vdash 7$ corresponds to the Young diagram

Let $Y_{b, c, d}$ be the number of partitions of at most b with at most c parts having d distinct parts. Equivalently, $Y_{b, c, d}$ is the number of Young diagrams with at most b boxes, at most c rows, and d distinct rows. See Figure 1 (a).

Note that $Y_{b, c, d}>0$ if and only if $b \geq \frac{d(d+1)}{2}$ and $c \geq d$, where the first inequaity follows from (4). Observe that

$$
X_{k, d}=Y_{k, k, d}
$$

A recursive formula for $Y_{b, c, d}$ is as follows. (Hence we have a recursive formula for $X_{k, d}$.)

Lemma 7. We have that, for $b \geq \frac{d(d+1)}{2}$ and $c \geq d \geq 2$,

$$
\begin{equation*}
Y_{b, c, d}=\sum_{i=1}^{c\left\lfloor\frac{b-(d-1) d / 2}{i}\right\rfloor} \sum_{j=1} Y_{b-i j, i-1, d-1} \tag{6}
\end{equation*}
$$

Figure 1. Definition of $Y_{b, c, d}$ and the deletion process
and, for $b \geq 1$ and $c \geq 1$,

$$
\begin{equation*}
Y_{b, c, 1}=\sum_{i=1}^{c}\left\lfloor\frac{b}{i}\right\rfloor . \tag{7}
\end{equation*}
$$

Proof. We first show (6). We delete the gray retangle in Figure 1 from a Young diagram counted for $Y_{b, c, d}$, and then we have a Young diagram with at most $b-i j$ boxes, at most $i-1$ rows, and $d-1$ distinct rows.

We consider the ranges of i and j. Clearly, the range of i is $1 \leq i \leq c$. Then the remaining Young diagram after the deletion has $d-1$ distinct rows, and hence, it has at least $(d-1) d / 2$ boxs. Thus,

$$
i j+\frac{(d-1) d}{2} \leq b
$$

So the range of j is

$$
1 \leq j \leq\left\lfloor\frac{b-(d-1) d / 2}{i}\right\rfloor
$$

Next, we show (7). The number $Y_{b, c, 1}$ is the same as the number of rectangles with at most b boxes and at most c rows. Let i and j be the numbers of rows and columns, respectively, of such a rectangle. Clearly, $1 \leq i \leq c$. Since $i j \leq b$, we have $j \leq\left\lfloor\frac{b}{i}\right\rfloor$.

3. Concentration

Recall that $N_{n-1-k, d}^{R}$ be the number of zero-sum free sequences of length $n-1-k$ having d distinct elements in a random subset R. From (3), recall that

$$
\mathbb{E}\left(N_{n-1-k, d}^{R}\right)=p^{d} \varphi(n) X_{k, d-1}
$$

From now on, we consider a concentration of $N_{n-1-k, d}^{R}$ and N_{n-1-k}^{R} using a graph theoretical approach called the Kim-Vu polynomial concentration result.
3.1. Kim-Vu polynomial concentration result. Let $\mathcal{H}=(V, E)$ be a weighted hypergraph with $V=[n]:=\{0,1, \ldots, n-1\}$. Recall that R is a random subset of $[n]$ obtained by selecting each $v \in[n]$ independently with probability p. Let $\mathcal{H}[R]$ be the sub-hypergraph of \mathcal{H} induced on R, and we let Z be the sum of weights of hyperedges in $\mathcal{H}[R]$. Kim and $\mathrm{Vu}[12]$ obtained a result that provides a concentration of Z around its mean $\mathbb{E}(Z)$ with high probability. For more details, see Alon and Spencer [1]. To state the result, we need some definitions.

Definition 8. Let ℓ be the maximum size of hyperedges in \mathcal{H}, and let $A \subset[n]$ be such that $|A| \leq \ell$. We let

- $Z_{A}:=$ the sum of weights of hyperedges in $\mathcal{H}[R]$ containing A,
- $\mathbb{E}_{A}:=\mathbb{E}\left(Z_{A} \mid A \subset R\right)$,
- $\mathbb{E}_{i}:=$ the maximum of \mathbb{E}_{A} for $A \subset[n]$ with $|A|=i$,
-

$$
\mathbb{E}^{\prime}:=\max _{1 \leq i \leq \ell} \mathbb{E}_{i} \quad \text { and } \quad \mathbb{E}^{*}:=\max \left\{\mathbb{E}^{\prime}, \mathbb{E}(Z)\right\}
$$

The concentration result by Kim and $\mathrm{Vu}[12]$ is as follows.
Theorem 9 (Kim-Vu polynomial concentration inequality). With the notation as above, we have that, for each $\lambda>1$,

$$
\operatorname{Pr}\left[|Z-\mathbb{E}(Z)|>a_{\ell} \sqrt{\mathbb{E}^{\prime} \cdot \mathbb{E}^{*}} \lambda^{\ell}\right]<2 e^{-\lambda+2} n^{\ell-1}
$$

where $a_{\ell}=8^{\ell}(\ell!)^{1 / 2}$.
3.2. Hypergraph and example. For a given positive integer k, we define the hypergraph $\mathcal{H}_{n-1-k}=\mathcal{H}_{n-1-k}\left(C_{n}\right)=([n], E)$ such that $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n-1-k}$ is a zero-sum free sequence over C_{n} if and only if the corresponding set $\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\}=$ $\left\{a_{1}, a_{2}, \ldots, a_{n-1-k}\right\}$, with $1 \leq \ell \leq n-1-k$, is contained in E. The weight of an hyperedge $\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\}$ of \mathcal{H}_{n-1-k} is the number of zero-sum free sequences over C_{n} consisting of $b_{1}, b_{2}, \ldots, b_{\ell}$.

Then $\mathbb{E}_{d, A}$ defined above is the expected number of zero-sum free sequences of length $n-1-k$ having d distinct elements that contains $A \subset C_{n}$ and is contained in R under the condition that $A \subset R$. Also, for $1 \leq i \leq d$, let

$$
\mathbb{E}_{d, i}=\max \left\{\mathbb{E}_{d, A} \mid A \subset C_{n} \text { with }|A|=i\right\}
$$

We will estimate $\mathbb{E}_{d, A}$ and $\mathbb{E}_{d, i}$.
For an easier understanding, we give an example in C_{8} before estimating $\mathbb{E}_{d, A}$ and $\mathbb{E}_{d, i}$ in a general C_{n}. Let $C_{8}=\{0,1,2,3,4,5,6,7\}$ and we consider the case where $k=2$. In this case, the length of zero-sum free sequences is $n-1-k=$ $8-1-2=5$. All generators in C_{8} are $1,3,5,7$, and all possible (x_{1}, x_{2}) in Theorem 1 are $(1,1),(1,2),(1,3)$, and $(2,2)$. Thus, Theorem 1 gives that all zero-sum free
sequences of length 5 over C_{8} are

$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$	$5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$	$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$
$1 \cdot 1 \cdot 1 \cdot 1 \cdot 2$	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 6$	$5 \cdot 5 \cdot 5 \cdot 5 \cdot 2$	$7 \cdot 7 \cdot 7 \cdot 7 \cdot 6$
$1 \cdot 1 \cdot 1 \cdot 1 \cdot 3$	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 1$	$5 \cdot 5 \cdot 5 \cdot 5 \cdot 7$	$7 \cdot 7 \cdot 7 \cdot 7 \cdot 5$
$1 \cdot 1 \cdot 1 \cdot 2 \cdot 2$	$3 \cdot 3 \cdot 3 \cdot 6 \cdot 6$	$5 \cdot 5 \cdot 5 \cdot 2 \cdot 2$	$7 \cdot 7 \cdot 7 \cdot 6 \cdot 6$.

Hence, the hypergraph $\mathcal{H}_{5}\left(C_{8}\right)$ has hyperedges as follows:

Hyperedge	$\{1\}$	$\{3\}$	$\{5\}$	$\{7\}$	$\{1,2\}$	$\{1,3\}$	$\{3,6\}$	$\{5,2\}$	$\{5,7\}$	$\{7,6\}$
Weight	1	1	1	1	2	2	2	2	2	2

As an example, we estimate $\mathbb{E}_{2,1}$ by considering $\mathbb{E}_{2,\{a\}}$ for $a \in C_{8}$. First, let $a=1$. Note that our goal here is not to get the exact value of $\mathbb{E}_{2,\{1\}}$ but to obtain a uniform upper bound of $\mathbb{E}_{2,\{a\}}$ for all $a \in C_{8}$. For a generator g, there are several cases we need to deal with:

- Case $1(a=1=g)$: Trivially, $g=1$. Since $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=(0,1),(0,2)$, or $(1,1)$, we have $\left(x_{1}, x_{2}\right)=(1,2),(1,3)$, or $(2,2)$, and hence, all zero-sum free sequences of this case in C_{8} are

$$
1 \cdot 1 \cdot 1 \cdot 1 \cdot(2 \cdot 1) \quad 1 \cdot 1 \cdot 1 \cdot 1 \cdot(3 \cdot 1) \quad 1 \cdot 1 \cdot 1 \cdot(2 \cdot 1) \cdot(2 \cdot 1)
$$

Thus, the expected number of all zero-sum free sequences of this case in R is

$$
X_{2,1} \cdot p
$$

- Case $2(a=1=2 g)$: There is no such g, but we go forward to get a uniform upper bound. Since $a=2 g$, we have $x_{\ell}^{\prime}=1$ for some ℓ. Hence, the number of all zero-sum free sequences of this case in C_{8} is at most $X_{2-1,1}+X_{2-1,0}$, where the first term is from the situation when all other x^{\prime} are different from x_{ℓ}^{\prime} and the second term is from the other situation. Thus, the expected number of all zero-sum free sequences of this case in R is at most

$$
\left(X_{2-1,1}+X_{2-1,0}\right) p
$$

- Case $3(a=1=3 g)$: We infer that $g=3$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=(0,2)$. Hence, every zero-sum free sequences of this case in C_{8} is

$$
3 \cdot 3 \cdot 3 \cdot 3 \cdot(3 \cdot 3)=3 \cdot 3 \cdot 3 \cdot 3 \cdot 1
$$

The number of all zero-sum free sequences of this case over C_{8} is

$$
X_{2-2,1}+X_{2-2,0} \leq X_{2-1,1}+X_{2-1,0}
$$

Thus, the expected number of all zero-sum free sequences of this case in R is at most

$$
\left(X_{2-1,1}+X_{2-1,0}\right) p
$$

Therefore,

$$
\mathbb{E}_{2,\{1\}} \leq\left(X_{2,1}+2\left(X_{2-1,1}+X_{2-1,0}\right)\right) p
$$

By the same argument, for every $a \in C_{8}$, we have that $\mathbb{E}_{2,\{a\}}$ has the same upper bound, and hence,

$$
\mathbb{E}_{2,1} \leq\left(X_{2,1}+2\left(X_{2-1,1}+X_{2-1,0}\right)\right) p
$$

In a similar way, one can estimate \mathbb{E}_{2} in C_{8}, which gives \mathbb{E}^{\prime} and \mathbb{E}^{*}.
3.3. Estimating $\mathbb{E}_{d, i}$. We are ready to estimate $\mathbb{E}_{d, i}$ in a general C_{n}. First, we consider the case where $i=1$.

Lemma 10. For $2 \leq d \leq\left\lfloor\frac{1+\sqrt{1+8 k}}{2}\right\rfloor$, we have that

$$
\begin{aligned}
& \mathbb{E}_{d, 1} \leq p^{d-1}\left(X_{k, d-1}+k\left(X_{k-1, d-1}+X_{k-1, d-2}\right)\right) \text { and } \\
& \mathbb{E}_{1,1}=1
\end{aligned}
$$

Proof. Fix $a \in C_{n}$. We estimate the expected number of zero-sum free sequences

$$
g \cdot \ldots \cdot g \cdot\left(x_{1} g\right) \cdot \ldots \cdot\left(x_{k} g\right)
$$

in R containing $\{a\}$ with two cases separately: for a generator g, the first case is when $a=g$, and the second case is when $a=j g$ for $2 \leq j \leq k+1$.

- Case $1(a=g)$: The number of zero-sum free sequences over C_{n} containing $a=g$ is $X_{k, d-1}$. Hence, the expected number of zero-sum free sequences in R containing $a=g$ is

$$
\begin{equation*}
X_{k, d-1} \cdot p^{d-1} \tag{8}
\end{equation*}
$$

- Case $2(a=j g$ for $2 \leq j \leq k+1)$: We first estimate the number of zerosum free sequences over C_{n} containing $a=j g=x_{\ell} g$ for some ℓ. Since $x_{\ell}^{\prime}=$ $x_{\ell}-1 \geq 1$, the remaining $x_{1}^{\prime}, \ldots, x_{\ell-1}^{\prime}, x_{\ell+1}^{\prime}, \ldots, x_{k}^{\prime}$ satisfy $\sum_{\substack{1 \leq i \leq k \\ i \neq \ell}} x_{i}^{\prime} \leq k-1$. If $x_{1}^{\prime}, \ldots, x_{\ell-1}^{\prime}, x_{\ell+1}^{\prime}, \ldots, x_{k}^{\prime}$ are different from x_{ℓ}^{\prime}, then the number of zero-sum free sequences over C_{n} is at most $X_{k-1, d-2}$. Otherwise, the number of zero-sum free sequences over C_{n} is at most $X_{k-1, d-1}$. Since $2 \leq j \leq k+1$, the expected number of zero-sum free sequences of this case in R is

$$
\begin{equation*}
k\left(X_{k-1, d-1}+X_{k-1, d-2}\right) p^{d-1} \tag{9}
\end{equation*}
$$

From (8) and (9), we have that

$$
\mathbb{E}_{d, 1} \leq \max _{\{a\}} \mathbb{E}_{d,\{a\}} \leq p^{d-1}\left(X_{k, d-1}+k\left(X_{k-1, d-1}+X_{k-1, d-2}\right)\right)
$$

which completes our proof of the lemma.

Next, we consider a general i with $|A|=i$.
Lemma 11. For $1 \leq i<d \leq\left\lfloor\frac{1+\sqrt{1+8 k}}{2}\right\rfloor$, we have that

$$
\begin{aligned}
& \mathbb{E}_{d, i} \leq p^{d-i}\left[i\binom{k}{i-1}+\binom{k}{i}\right]\left(\sum_{j=0}^{i} X_{k-i+1, d-1-j}\right) \text { and } \\
& \mathbb{E}_{d, d}=1
\end{aligned}
$$

Proof. Fix $a_{1}, a_{2}, \ldots, a_{i} \in C_{n}$. We estimate the number of zero-sum free sequences

$$
g \cdot \ldots \cdot g \cdot\left(x_{1} g\right) \cdot \ldots \cdot\left(x_{k} g\right)
$$

containing $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$ with two cases separately: for a generator g, the first case is when $g=a_{\ell}$ for some ℓ, and the second case is when $g \neq a_{\ell}$ for all ℓ.

- Case $1\left(a_{1}=g\right.$ and $\left\{a_{2}, \ldots, a_{i}\right\}=\left\{j_{2} g, \ldots, j_{i} g\right\}$ for $2 \leq j_{2}<\cdots<j_{i} \leq$ $k+1$): For fixed g and j_{2}, \ldots, j_{i}, the number of zero-sum free sequences over C_{n} containing $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=\left\{g, j_{2} g, \ldots, j_{i} g\right\}$ is at most $X_{k-i+1, d-1}+\cdots+$ $X_{k-i+1, d-i}$. The number of choices $\left(g, j_{2}, \ldots, j_{i}\right)$ such that $g=a_{\ell}$ for some ℓ and $2 \leq j_{2}<\cdots<j_{i} \leq k+1$ is at most $i\binom{k}{i-1}$. Hence, the expected number of zero-sum free sequences in R containing $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=\left\{g, j_{2} g, \ldots, j_{i} g\right\}$ is

$$
\begin{equation*}
i\binom{k}{i-1}\left(X_{k-i+1, d-1}+\cdots+X_{k-i+1, d-i}\right) p^{d-i} \tag{10}
\end{equation*}
$$

- Case $2\left(\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=\left\{j_{1} g, j_{2} g, \ldots, j_{i} g\right\}\right.$ for $\left.2 \leq j_{1}<\cdots<j_{i} \leq k+1\right)$: For fixed $j_{1}<\cdots<j_{i}$, we first consider the number of zero-sum free sequences over C_{n} containing $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=\left\{j_{1} g, j_{2} g, \ldots, j_{i} g\right\}$. Without loss of generality, we let $x_{1}=j_{1}, \ldots, x_{i}=j_{i}$. Since $x_{\ell}^{\prime}=x_{\ell}-1 \geq 1$, the remaining $x_{i+1}^{\prime}, \ldots, x_{k}^{\prime}$ satisfy $\sum_{i+1 \leq \ell \leq k} x_{\ell}^{\prime} \leq k-i$. The number of distinct $x_{i+1}^{\prime}, \ldots x_{k}^{\prime}$ from $x_{1}^{\prime}, \ldots, x_{i}^{\prime}$ are possibly $d-1, d-2, \ldots$, or $d-1-i$, and hence, the number of zero-sum free sequences over C_{n} containing $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}=\left\{j_{1} g, j_{2} g, \ldots, j_{i} g\right\}$ is at most $X_{k-i, d-1}+X_{k-i, d-2}+\cdots+X_{k-i, d-1-i}$. From the choices of $2 \leq j_{1}<\cdots<j_{i} \leq k+1$, the expected number of zero-sum free sequences in R containing $\left\{a_{1}, \ldots, a_{i}\right\}$ is at most

$$
\begin{equation*}
\binom{k}{i}\left(X_{k-i, d-1}+X_{k-i, d-2}+\cdots+X_{k-i, d-1-i}\right) p^{d-i} . \tag{11}
\end{equation*}
$$

From (10) and (11), we have that

$$
\begin{aligned}
\mathbb{E}_{d, i} & \leq \max _{\left\{a_{1}, \ldots, a_{i}\right\}} \mathbb{E}_{d,\left\{a_{1}, \ldots, a_{i}\right\}} \\
& \leq\left[i\binom{k}{i-1}+\binom{k}{i}\right]\left(\sum_{j=0}^{i} X_{k-i+1, d-1-j}\right) p^{d-i}
\end{aligned}
$$

which completes our proof of the lemma.

3.4. Proofs of Theorems 4 and 5.

Proof of Theorem 4. Let $X=N_{n-1-k}^{R}$. Under the assumption that k is fixed and $p \ll 1$, Corollary 3 gives that

$$
\mathbb{E}(X)=p \varphi(n)\left(1+O_{k}(p)\right)
$$

Since k is fixed, Lemmas 10 and 11 yield that

$$
\begin{aligned}
\mathbb{E}_{1} & =\mathbb{E}_{1,1}+\mathbb{E}_{2,1}+\cdots+\mathbb{E}_{D, 1}=O_{k}(1) \\
\mathbb{E}_{2} & =\mathbb{E}_{2,2}+\mathbb{E}_{3,2}+\cdots+\mathbb{E}_{D, 2}=O_{k}(1) \\
& \vdots \\
\mathbb{E}_{D} & =\mathbb{E}_{D, D}=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}^{\prime} & =\max _{1 \leq i \leq D}\left\{\mathbb{E}_{i}\right\}=O_{k}(1) \text { and } \\
\mathbb{E}^{*} & =\max \left\{\mathbb{E}^{\prime}, \mathbb{E}\right\}=p \varphi(n)
\end{aligned}
$$

provided that $p \varphi(n) \gg 1$, i.e., $p \gg \frac{\log \log n}{n}$.
Set $\lambda=d \log n$, then $e^{-\lambda} n^{d-1}=1 / n=o(1)$, and hence, the Kim-Vu polynomial concentration result (Theorem 9) gives that a.a.s.

$$
|X-\mathbb{E}(X)|=O_{k}\left(\sqrt{p \varphi(n)}(\log n)^{d}\right)
$$

that is,

$$
X=p \varphi(n)+O_{k}\left(p^{2} \varphi(n)+\sqrt{p \varphi(n)}(\log n)^{d}\right)
$$

Note that $p \varphi(n) \gg \sqrt{p \varphi(n)}(\log n)^{d}$ is equivalent to $p \gg \frac{(\log n)^{2 d} \log \log n}{n}$, and hence, our assumption on p is

$$
\frac{(\log n)^{2 d} \log \log n}{n} \ll p \ll 1
$$

Thus, we complete the proof of Theorem4.
For the proof of Theorem 5, we use the following version of Chernoff's bound.
Lemma 12 (Chernoff's bound, Corollary 4.6 in [14]). Let X_{i} be independent random variables such that

$$
\operatorname{Pr}\left[X_{i}=1\right]=p_{i} \quad \text { and } \quad \operatorname{Pr}\left[X_{i}=0\right]=1-p_{i}
$$

and let $X=\sum_{i=1}^{n} X_{i}$. For $0<\lambda<1$,

$$
\operatorname{Pr}[|X-\mathbb{E}(X)| \geq \lambda \mathbb{E}(X)] \leq 2 \exp \left(-\frac{\lambda^{2}}{3} \mathbb{E}(X)\right)
$$

We are ready to prove Theorem 5.
Proof of Theorem 5. Let $X=N_{n-1-k, d}^{R}$. First, we consider the case where $d=1$. Observe that $X \sim \operatorname{Bin}(\varphi(n), p)$, and hence, Chernoff's bound with $\lambda=\omega / \sqrt{p \varphi(n)}$ implies that a.a.s.

$$
|X-p \varphi(n)|<\omega(p \varphi(n))^{1 / 2}
$$

provided that $p \varphi(n) \gg$ 1, i.e., $p \gg \frac{\log \log n}{n}$, where ω tends to ∞ arbitrarily slowly as $n \rightarrow \infty$.

Next we consider the case when $d \geq 2$. It follows from (3) that

$$
\mathbb{E}(X)=p^{d} \varphi(n) X_{k, d-1}
$$

Lemma 11 gives that for a fixed k,

$$
\begin{aligned}
\mathbb{E}_{d, i} & =O_{k}\left(p^{d-i}\right) \text { for } 1 \leq i \leq d-1 \text { and } \\
\mathbb{E}_{d, d} & =1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}^{\prime} & =\max _{1 \leq i \leq d} \mathbb{E}_{d, i}=O_{k}(1) \text { and } \\
\mathbb{E}^{*} & =O_{k}\left(\max \left\{1, p^{d} \varphi(n)\right\}\right)=O_{k}\left(p^{d} \varphi(n)\right),
\end{aligned}
$$

provided that $p^{d} \varphi(n) \gg 1$, i.e., $p \gg\left(\frac{\log \log n}{n}\right)^{1 / d}$.
Set $\lambda=d \log n$, then $e^{-\lambda} n^{d-1}=1 / n=o(1)$, and hence, the Kim-Vu polynomial concentration result (Theorem 9) implies that a.a.s.

$$
|X-\mathbb{E}(X)| \leq a_{d}\left(\mathbb{E}^{\prime} \mathbb{E}^{*}\right)^{1 / 2} \lambda^{d}=O_{k}\left(p^{d / 2} \varphi(n)^{1 / 2}(\log n)^{d}\right)
$$

Note that $p^{d} \varphi(n) \gg \sqrt{p^{d} \varphi(n)}(\log n)^{d}$ is equivalent to $p \gg \frac{(\log n)^{2}(\log \log n)^{1 / d}}{n^{1 / d}}$, which is our assumption on p. This completes our proof of Theorem 5

Acknowledgement. The authors thank Myungho Kim (Kyung Hee Univ.) for valuable comments.

References

[1] N. Alon and J. H. Spencer, The probabilistic method, fourth ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley \& Sons, Inc., Hoboken, NJ, 2016. 3.1
[2] D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Ann. of Math. (2) $\mathbf{1 8 4}$ (2016), no. 2, 367-454. 1
[3] K. Cziszter and M. Domokos, The Noether number for the groups with a cyclic subgroup of index two, J. Algebra 399 (2014), 546-560.
[4] K. Cziszter, M. Domokos, and A. Geroldinger, The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics, Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, [Cham], 2016, pp. 43-95.
[5] K. Cziszter, M. Domokos, and I. Szöllősi, The Noether numbers and the Davenport constants of the groups of order less than 32, J. Algebra 510 (2018), 513-541. 1
[6] P. Erdös, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel Sect. F 10F (1961), no. 1, 41-43. 1
[7] W. D. Gao, Zero sums in finite cyclic groups, Integers 0 (2000), A12, 7. 11
[8] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), no. 4, 337-369. 111
[9] A. Geroldinger, D. J. Grynkiewicz, J. S. Oh, and Q. Zhong, On product-one sequences over Dihedral groups, submitted, https://arxiv.org/abs/1910.12484. 1
[10] W. M. Y. Goh and E. Schmutz, The number of distinct part sizes in a random integer partition, J. Combin. Theory Ser. A 69 (1995), no. 1, 149-158. 2.1
[11] B. Kim, On the number of partitions of n into k different parts, J. Number Theory 132 (2012), no. 6, 1306-1313. 2.1
[12] J. H. Kim and V. H. Vu, Concentration of multivariate polynomials and its applications, Combinatorica 20 (2000), no. 3, 417-434. 3.1 3.1
[13] Y. Kohayakawa, T. Ł uczak, and V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), no. 2, 133-163. 1
[14] M. Mitzenmacher and E. Upfal, Probability and computing, Cambridge University Press, Cambridge, 2005, Randomized algorithms and probabilistic analysis. 12
[15] V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4 (2004), A24, 6. 1
[16] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
[17] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math. 307 (2007), no. 22, 2671-2679. 1
[18] M. Schacht, Extremal results for random discrete structures, Ann. of Math. (2) $\mathbf{1 8 4}$ (2016), no. 2, 333-365.

Department of Mathematics, Kyung Hee University, Seoul 02447, South Korea
E-mail address: sjlee242@khu.ac.kr, sjlee242@gmail.com
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea

E-mail address: junseok1.oh@gmail.com

[^0]: Date: Friday $6^{\text {th }}$ March, 2020.
 2010 Mathematics Subject Classification. 11B50, 11B30, 05D40.
 Key words and phrases. zero-sum free sequence, cyclic group, integer partition, Young diagram, hypergraph, Kim-Vu polynomial concentration.
 The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1058860). The second author is the corresponding author. This work was partially done while the second author was visiting Kyung Hee University in South Korea.

