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Abstract

Mutually orthogonal frequency squares (MOFS) of type F (mλ;λ) generalize the structure
of mutually orthogonal Latin squares: rather than each of m symbols appearing exactly once
in each row and in each column of each square, the repetition number is λ ≥ 1. A classical

upper bound for the number of such MOFS is (mλ−1)2

m−1
. We introduce a new representation of

MOFS of type F (mλ;λ), as a linear combination of {0, 1} arrays. We use this representation
to give an elementary proof of the classical upper bound, together with a structural constraint
on a set of MOFS achieving the upper bound. We then use this representation to establish a
maximality criterion for a set of MOFS of type F (mλ;λ) when m is even and λ is odd, which
simplifies and extends a previous analysis [3] of the case when m = 2 and λ is odd.

1 Introduction

Latin squares are a fundamental concept in combinatorial design theory, whose study is at least
300 years old [2, p. 12]. A frequency square is a generalization of a Latin square, introduced by
MacMahon [15] in 1898 under the name “quasi-latin square”, subsequently studied in the 1940s by
Finney [5], and named in 1969 by Hedayat [7] (see [14] for a survey).

Definition 1. A frequency square (F-square) of type F (mλ;λ) is an mλ×mλ array with elements
belonging to the symbol set {1, 2, . . . ,m}, where each symbol j appears exactly λ times in each row
and in each column.

We note that some authors write F (mλ;λm) instead of F (mλ;λ). The special case of an F-square
of type F (m; 1) is a Latin square of order m. An F-square of type F (mλ;λ) corresponds to a
statistical experimental design offering more flexibility than a design based on a Latin square [9,
Section 2].

Definition 2. Two F-squares S and S′ of type F (mλ;λ) are orthogonal if each ordered symbol
pair (j, j′) appears exactly λ2 times in the superposition of S on S′.
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A set of pairwise orthogonal F-squares of type F (mλ;λ) is a set of mutually orthogonal frequency
squares (MOFS) of type F (mλ;λ). The central question is:

How large can a set of MOFS of type F (mλ;λ) be?

The following result provides an upper bound.

Theorem 3 (Hedayat, Raghavarao, Seiden (1975) [8, Theorem 2.1]). The number of MOFS of type

F (mλ;λ) is at most (mλ−1)2

(m−1) .

A set of MOFS attaining the upper bound in Theorem 3 is complete. The special case of a set of
MOFS of type F (m; 1) is the well-known concept of a set of mutually orthogonal Latin squares
(MOLS) of order m (see [1] for background), and the existence of a complete set of m − 1 MOLS
of order m is equivalent to the existence of a projective plane of order m and an affine plane of
order m [1, Theorem 3.20]. Several ideas from the study of sets of MOLS have been adapted to
investigate the existence pattern for sets of MOFS.

The following construction, which depends on symmetric factorial designs, provides a complete
set of MOFS of type F (mλ;λ) when m is a prime power.

Theorem 4 (Hedayat, Raghavarao, Seiden (1975) [8, Theorem 3.1]). Let m be a prime power and

h a positive integer. Then there exists a complete set of (mh−1)2

m−1 MOFS of type F (mh;mh−1).

Other combinatorial designs have been used to construct complete sets of MOFS with the same
parameters as in Theorem 4, including linear permutation polynomials over GF(m) [17] and affine
designs [16].

A further construction of a complete set of MOFS of type F (mλ;λ) depends on the existence
of a Hadamard matrix of order 4n (which has long been conjectured for all positive integers n; see
[10] for background).

Theorem 5 (Federer (1977) [4, Theorem 2.1]). Let n be a positive integer and suppose a Hadamard
matrix of order 4n exists. Then there exists a complete set of (4n− 1)2 MOFS of type F (4n; 2n).

All known constructions of complete sets of F-squares of type F (mλ;λ) having m > 2 require
m to be a prime power, and the only known examples having m = 2 are as described in Theorem 5.
Jungnickel, Mavron and McDonough showed in 2001 how to unify all such constructions in terms
of nets [13].

Whereas Theorem 5 shows the existence of a complete set of MOFS of type F (2λ;λ) when λ

is even (subject to the existence of a Hadamard matrix of order 2λ), a recent result established
nonexistence when λ > 1 is odd by making a connection with resolvable designs.

Theorem 6 (Britz, Cavenagh, Mammoliti, Wanless (2019+) [3, Corollary 11]). There is no com-
plete set of MOFS of type F (2λ;λ) when λ > 1 is odd.

In view of Theorem 6, it is natural to ask:

Q1. What is the maximum size of a set of MOFS of type F (mλ;λ) when λ > 1 is odd?

Q2. When is a set of MOFS of type F (mλ;λ) maximal (that is, not extendible to a larger such set)
but not complete?
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These questions are explored in the recent paper by Britz et al. [3] when λ is odd. For example,
it is shown computationally that for MOFS of type F (6; 3), the maximum size of a set is 17 rather
than the upper bound of 25 given by Theorem 3, and there are maximal sets of size t for each t

satisfying t ∈ {1, 17} or 5 ≤ t ≤ 15.
In this paper, we introduce a representation of MOFS of type F (mλ;λ) as a linear combination

of {0, 1} arrays (Section 2). We use this representation to give a new elementary proof of the upper
bound of Theorem 3, together with a structural constraint on a complete set of MOFS (Section 3).
We then use this representation to establish a maximality criterion for a set of MOFS of type
F (mλ;λ) when m is even and λ is odd (Section 4), extending the analysis of [3] for the case when
m = 2 and λ is odd.

2 Indicator squares

We begin by introducing a representation of an F-square of type F (mλ;λ) as a linear combination
of {0, 1} arrays. We shall use this representation in Section 3 in the new proof of Theorem 3, and in
Section 4 to establish maximality criteria. The indicator function of a condition X is the function

I[X ] =

{

1 if X holds,

0 otherwise.

Definition 7. Let S = (Sij) be an F-square of type F (mλ;λ). For a ∈ {1, 2, . . . ,m}, the indicator
square Ia(S) of S with respect to a is the {0, 1} array of size mλ×mλ whose (i, j) entry is I[Sij = a].

Using Definition 7, an F-square S of type F (mλ;λ) may be written as
∑m

a=1 aIa(S).

Example 8. Let

S =

















1 2 3 1 2 3
3 1 2 3 2 1
2 3 1 2 1 3
1 1 2 3 3 2
3 3 1 2 1 2
2 2 3 1 3 1

















be an F-square of type F (6; 2). Then the indicator square of S with respect to 1, 2, 3 is

I1(S) =

















1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

















, I2(S) =

















0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
1 1 0 0 0 0

















, I3(S) =

















0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 0 1
0 0 0 1 1 0
1 1 0 0 0 0
0 0 1 0 1 0

















,

respectively, and S = I1(S) + 2I2(S) + 3I3(S).

Let A = (Aij) and B = (Bij) be arrays of the same size. We write

A ◦B :=
∑

i,j

AijBij
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for the sum of the entries of the elementwise product of A and B. With this notation, A ◦ J is the
sum of the entries of A (where J is the all-ones array whose size is given by context), and A ◦A is
the sum of squares of the entries of A. For an F-square S of type F (mλ;λ), we have

Ia(S) ◦ Ia(S) = Ia(S) ◦ J = mλ2 for each a ∈ {1, 2, . . . ,m}, (1)

and F-squares S, S′ of type F (mλ;λ) are orthogonal if and only if

Ia(S) ◦ Ib(S
′) = λ2 for all a, b ∈ {1, 2, . . . ,m}. (2)

3 Proof of Theorem 3 using indicator squares

The original proof of Theorem 3 by Hedayat, Raghavarao, and Seiden [8] uses an argument based
on the matrix rank. Jungnickel, Mavron, and McDonough [13, Theorem 3.5] give an alternative
counting proof, making use of an equivalence between sets of MOFS and nets, and characterizing
the case when equality holds (namely, that the set of MOFS is complete). In this section, we give
a further elementary proof of Theorem 3 that also provides a characterization of the case when
equality holds, using indicator squares. Our method is inspired by the proof of an upper bound
for the number of rows of a difference matrix over a group given by van Greevenbroek and Jedwab
[6, Theorem 2.1], which is in turn adapated from a more general result due to Jungnickel [12,
Proposition 3.1].

Theorem 9. Suppose S1, S2, ...St is a set of MOFS of type F (mλ;λ). Relabel the F-squares if

necessary so that (Sk)11 = 1 for each k ∈ {1, 2, . . . , t}. Then t ≤ (mλ−1)2

m−1 , and equality holds if and
only if

∑

k

∑

a>1

Ia(Sk) =











0 λ(mλ − 1) . . . λ(mλ − 1)
λ(mλ− 1) λ(mλ − 2) . . . λ(mλ − 2)

...
...

. . .
...

λ(mλ− 1) λ(mλ − 2) . . . λ(mλ − 2)











.

Proof. Let T = (Tij) be the mλ×mλ array given by

T =
∑

k

∑

a>1

Ia(Sk).

We calculate the sum of the entries of T as
∑

i,j

Tij = T ◦ J

=
∑

k

∑

a>1

Ia(Sk) ◦ J

= t(m− 1)mλ2 (3)

from (1), and the sum of squares of the entries of T as

∑

i,j

T 2
ij = T ◦ T =

∑

k,ℓ

∑

a,b>1

Ia(Sk) ◦ Ib(Sℓ)
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=
∑

k 6=ℓ

∑

a,b>1

Ia(Sk) ◦ Ib(Sℓ) +
∑

k

∑

a,b>1

Ia(Sk) ◦ Ib(Sk)

= t(t− 1)(m− 1)2λ2 + t(m− 1)mλ2

by (2) and (1), noting that Ia(Sk) ◦ Ib(Sk) = 0 for all a 6= b. Therefore

∑

i,j

T 2
ij = t(m− 1)λ2

(

t(m− 1) + 1
)

. (4)

Since (Sk)11 = 1 for each k, we have T11 = 0 and therefore

∑

i>1

Ti1 =
∑

i

Ti1

=
∑

k

∑

a>1

∑

i

Ia(Sk)i1

= t(m− 1)λ (5)

because Sk is an F-square, and similarly

∑

j>1

T1j = t(m− 1)λ. (6)

Now define an mλ×mλ array U = (Uij) by

Uij =











T11 + λ(mλ− 2) for (i, j) = (1, 1),

Tij − λ for (i > 1, j = 1) and (i = 1, j > 1),

Tij for i, j > 1.

We calculate the sum of the entries of U as
∑

i,j

Uij =
∑

i,j

Tij + λ(mλ − 2)− 2λ(mλ− 1)

= mλ2(t(m− 1)− 1) (7)

by substitution from (3), and the sum of squares of the entries of U as

∑

i,j

U2
ij =

(

T11 + λ(mλ− 2)
)2

+
∑

i>1

(Ti1 − λ)2 +
∑

j>1

(T1j − λ)2 +
∑

i,j>1

T 2
ij

=
∑

i,j

T 2
ij − 2λ

(

∑

i>1

Ti1 +
∑

j>1

T1j

)

+ λ2(mλ− 2)2 + 2λ2(mλ− 1)

= t(m− 1)λ2
(

t(m− 1) + 1
)

− 2λ · 2t(m− 1)λ+ λ2(m2λ2 − 2mλ+ 2)

by substitution from (4), (5), and (6). Therefore

∑

i,j

U2
ij = λ2

(

t2(m− 1)2 − 3t(m− 1) +m2λ2 − 2mλ+ 2
)

.
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Substitute this and (7) into the Cauchy-Schwartz inequality

(

∑

i,j

Uij

)2

≤ m2λ2
∑

i,j

U2
ij (8)

and simplify to obtain t ≤ (mλ−1)2

m−1 . Equality holds in (8) if and only if the Uij are equal for all

i, j, in which case from (7) and t = (mλ−1)2

m−1 we obtain Uij = λ(mλ− 2) for all i, j. In that case, by
definition of U we have

T =











0 λ(mλ − 1) . . . λ(mλ − 1)
λ(mλ − 1) λ(mλ − 2) . . . λ(mλ − 2)

...
...

. . .
...

λ(mλ − 1) λ(mλ − 2) . . . λ(mλ − 2)











.

4 A maximality criterion using indicator squares

In this section, we address question (Q2) of Section 1: when is a set of MOFS of type F (mλ;λ)
maximal (not extendible to a larger set) but not complete? As m and λ grow, it quickly becomes
computationally infeasible to determine the maximality of a particular set of MOFS by direct
comparison with all other F-squares. For example, the number of F-squares of type F (6; 3) is
297 200 whereas the number of F-squares of type F (8; 4) is 116 963 796 250 [11]. Nonetheless, Britz
et al. [3] showed how to adapt parity arguments from the study of maximal sets of MOLS in order
to obtain a theoretical criterion for the maximality of a set of MOFS of type F (2λ;λ) when λ is
odd. They also derived necessary conditions on the MOFS parameters for the criterion to hold. In
this section, we extend the analysis of [3] to the case of MOFS of type F (mλ;λ) for all even m and
odd λ, using indicator squares as introduced in Section 2 and streamlining the arguments.

We shall derive a maximality criterion in Theorem 13, depending on a sum of indicator squares
having the regular block structure described in Definition 10. Write 0 for the all-zeroes array whose
size is given by context, and as before write J for the all-ones array. For an array A, write A mod 2
for the elementwise reduction of A modulo 2.

Definition 10. Let x, y be integers for which 0 ≤ x, y ≤ mλ and x, y do not both belong to {0,mλ}.
A set {S1, S2, . . . , St} of F-squares of type F (mλ;λ) satisfies a non-constant full relation with respect
to x and y if, for some permutation of rows and columns, the array

(
∑t

k=1 I1(Sk)
)

mod 2 has block
structure

x

mλ− x

y mλ− y

0 J

J 0

. (9)
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We present two preparatory results about a non-constant full relation in Lemmas 11 and 12.

Lemma 11. Suppose that {S1, S2, . . . , St} is a set of F-squares of type F (mλ;λ) satisfying a non-
constant full relation with respect to x and y. Then

(i) x ≡ y ≡ tλ (mod 2),

(ii) mλ ≡ 0 (mod 2).

Proof. Let V = (Vij) =
∑

k I1(Sk). For each row i of V , we have

∑

j

Vij =
∑

k

∑

j

I1(Sk)ij =
∑

k

λ

because Sk is an F-square of type F (mλ;λ). Reduce modulo 2 to give
∑

j

(V mod 2)ij ≡ tλ (mod 2) for each i. (10)

Similarly,
∑

i

(V mod 2)ij ≡ tλ (mod 2) for each j. (11)

By symmetry, we may assume that 0 < x < mλ. With reference to (9), take i = x + 1 in (10) to
show that

y ≡ tλ (mod 2), (12)

and take i = 1 in (10) to show
mλ− y ≡ tλ (mod 2).

Combining with (12) establishes (ii).
Next take j = 1 in (11). In the case y = 0, we obtain

x ≡ tλ (mod 2),

which with (12) establishes (i). Otherwise y > 0, and then

mλ− x ≡ tλ (mod 2),

which with (ii) and (12) establishes (i).

The condition in Definition 10 that x, y do not both belong to {0,mλ} ensures that the array
(
∑t

k=1 I1(Sk)
)

mod 2 does not equal the constant array 0 or J . Without this condition, both
conclusions (i) and (ii) of Lemma 11 can fail, for example for the three F-squares of type F (3; 1)
given by

S1 =





1 2 3
3 1 2
2 3 1



 , S2 =





2 3 1
1 2 3
3 1 2



 , S3 =





3 1 2
2 3 1
1 2 3



 ,

which satisfy

I1(S1) + I1(S2) + I1(S3) =





1 1 1
1 1 1
1 1 1





and so fulfil all conditions of Definition 10 with (x, y) = (3, 0) except that x, y ∈ {0, 3}.
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Lemma 12. Let λ be odd, and suppose that {S1, S2, . . . , St} is a set of MOFS of type F (mλ;λ)
satisfying a non-constant full relation. Then t is odd.

Proof. Let the relation be with respect to x and y, and let V =
∑

k I1(Sk). Using (2), the orthog-
onality of S1 with each Sk for k > 1 gives

(t− 1)λ2 =
∑

k>1

I1(Sk) ◦ I1(S1)

=
∑

k

I1(Sk) ◦ I1(S1)− I1(S1) ◦ I1(S1)

= V ◦ I1(S1)−mλ2

by (1). By Lemma 11 (ii) and the assumption that λ is odd, reduction modulo 2 gives

t− 1 ≡ (V mod 2) ◦ I1(S1) (mod 2). (13)

Since S1 is an F-square of type F (mλ;λ), the number of 1s in the blocks of I1(S1) corresponding
to the blocks of V mod 2 shown in (9) is

x

mλ− x

y mλ− y

α xλ− α

yλ− α mλ2 − (x+ y)λ+ α

(14)

for some non-negative integer α. Therefore from (13) we obtain

t− 1 ≡ (xλ− α) + (yλ− α)

≡ 0 (mod 2)

by Lemma 11 (i), so t is odd.

We now use Lemmas 11 and 12 to prove the desired maximality criterion.

Theorem 13. Let λ be odd, and suppose that {S1, S2, . . . , St} is a set of MOFS of type F (mλ;λ)
satisfying a non-constant full relation. Then {S1, S2, . . . , St} is a maximal set of MOFS.

Proof. Let the relation be with respect to x and y, and let V =
∑

k I1(Sk). Suppose, for a
contradiction, that S is an F-square of type F (mλ;λ) that is orthogonal to each Sk. Then by (2),

tλ2 =
∑

k

I1(Sk) ◦ I1(S) = V ◦ I1(S).

By Lemma 12 and the assumption that λ is odd, reduction modulo 2 gives

1 ≡ (V mod 2) ◦ I1(S) (mod 2). (15)
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Since S is an F-square of type F (mλ;λ), the number of 1s in the blocks of I1(S) corresponding to
the blocks of V mod 2 shown in (9) is as shown in (14) for some non-negative integer α. Therefore
from (15),

1 ≡ (xλ− α) + (yλ− α) ≡ 0 (mod 2)

by Lemma 11 (i), which is a contradiction.

The criterion of Theorem 13 for a set of MOFS of type F (mλ;λ) to be maximal requires the
set to satisfy a non-constant full relation, and we know from Lemma 11 (ii) that this requires m to
be even. We now derive a more restrictive necessary condition for this criterion to hold.

Proposition 14. Let λ be odd, and suppose that {S1, S2, . . . , St} is a set MOFS of type F (mλ;λ)
satisfying a non-constant full relation with respect to x and y. Then t ≡ m(x+y)−(m+1) (mod 8).

Proof. Let V =
∑

k I1(Sk), and let xr be the number of occurrences of r in the array V . We shall
calculate expressions for the four quantities

∑

r rxr and
∑

r r
2xr and

∑

r odd xr and
∑

r odd rxr ,
and substitute them into the congruence

∑

r

(2r − r2)xr ≡
∑

r odd

r(2 − r)xr (mod 8)

≡
∑

r odd

(2r − 1)xr (mod 8). (16)

We have

t
∑

r=0

rxr = V ◦ J

=
∑

k

I1(Sk) ◦ J

= tmλ2

by (1), and

t
∑

r=0

r2xr = V ◦ V

=
∑

k,ℓ

I1(Sk) ◦ I1(Sℓ)

=
∑

k 6=ℓ

I1(Sk) ◦ I1(Sℓ) +
∑

k

I1(Sk) ◦ I1(Sk)

= t(t− 1)λ2 + tmλ2

by (2) and (1).
The expression

∑

r odd xr is the number of entries of V mod 2 that equal 1, so with reference to
the block structure of (9) we have

∑

r odd

xr = x(mλ − y) + y(mλ− x).

9



Since each Sk is an F-square of type F (mλ;λ), the number of 1s in V =
∑t

k=1 I1(Sk) has the
block structure

x

mλ− x

y mλ− y

β txλ− β

tyλ− β tmλ2 − t(x+ y)λ+ β

(17)

for some non-negative integer β. The expression
∑

r odd rxr is the sum of the odd entries of V , so
∑

r odd

rxr = V ◦ (V mod 2)

= (txλ− β) + (tyλ− β)

from (17) and (9).
Substitute the four calculated quantities into (16) to give

tλ2(m+ 1− t) ≡ 2t(x+ y)λ− 4β −m(x+ y)λ+ 2xy (mod 8). (18)

By comparison of (17) with (9), we see that β is even. Also λ is odd by assumption, and m is even
and x, y, t are odd by Lemmas 11 and 12. Note that for integers a and b with a ≡ 0 (mod 4) and
b odd,

ab ≡ a ≡ −a (mod 8). (19)

Therefore (18) simplifies to

t(m+ 1)− 1 ≡ m(x+ y) + 2(x+ y + xy) (mod 8).

Since x and y are odd we have 2(x+ y + xy) = 2(x+ 1)(y + 1)− 2 ≡ −2 (mod 8), so that

t(m+ 1) ≡ m(x+ y)− 1 (mod 8).

Multiply by the odd integer m+ 1 and use (19) to give

t ≡ m(x+ y)− (m+ 1) (mod 8).

Corollary 15. Let λ be odd, and suppose that {S1, S2, . . . , St} is a set of MOFS of type F (mλ;λ)
satisfying a non-constant full relation. Then t ≡ m− 1 (mod 4).

Proof. Let the relation be with respect to x and y. By Lemma 11 we have that x + y and m are
even. Reduce modulo 4 the conclusion of Proposition 14.

By taking the special case m = 2 of Theorem 13, Proposition 14, Corollary 15 (and noting that
in this case the condition in Definition 10 that x, y do not both belong to {0,mλ} can be removed),
we recover Theorems 4, 6, 5 of [3], respectively. These theorems were obtained in [3] by regarding a
set of MOFS of type F (2λ;λ) as an orthogonal array and using counting arguments. The analysis
presented here, using indicator squares, streamlines the arguments of [3] and allows us to deal with
all even m > 2.
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