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SOME NATURAL EXTENSIONS OF THE PARKING SPACE

MATJAŽ KONVALINKA AND VASU TEWARI

Abstract. We construct a family of Sn modules indexed by c ∈ {1, . . . , n} with the property that
upon restriction to Sn−1 they recover the classical parking function representation of Haiman. The
construction of these modules relies on an Sn-action on a set that is closely related to the set of
parking functions. We compute the characters of these modules and use the resulting description
to classify them up to isomorphism. In particular, we show that the number of isomorphism classes
is equal to the number of divisors d of n satisfying d 6= 2 (mod 4). In the cases c = n and c = 1,
we compute the number of orbits. Based on empirical evidence, we conjecture that when c = 1,
our representation is h-positive and is in fact the (ungraded) extension of the parking function
representation constructed by Berget and Rhoades.

1. Introduction

Parking functions were introduced by Konheim and Weiss [KW66] in their investigation of hash-
ing functions in computer science. Since then, they, along with their various generalizations,
have attracted plenty of attention and have proven to be a fertile source of interesting mathe-
matics. This is reflected by their appearances in diverse areas such as hyperplane arrangements
[AL99, HP12, Maz17, Sta96], representation theory [PP94, ARR15], polytopes [SP02], the sandpile
model [CLB03], and the theory of Macdonald polynomials [Hai94]. The last of these areas provides
the context for our work and we detail our motivation next.

An integer sequence (x1, . . . , xn) is a parking function if its weakly increasing rearrangement
(z1, . . . , zn) satisfies 0 ≤ zi ≤ i − 1 for i = 1, . . . , n. This definition implies that rearranging the
entries in one parking function results in another. Haiman [Hai94] was the first to study the Sn

action on the set of parking functions of length n. We denote the resulting Sn-representation by ρn.
Two decades later, Berget-Rhoades [BR14] studied the following seemingly unrelated representation
σn of Sn. Let Kn denote the complete graph with vertex set [n] := {1, . . . , n}. Given a subgraph
G ⊆ Kn, we attach to it the polynomial p(G) :=

∏
ij∈E(G)(xi − xj) ∈ C[x1, . . . , xn]. Here E(G)

refers to the set of edges ofG and we record those by listing the smaller number first. Define Vn to be
the C-linear span of p(G) over all G for which the complement G is a connected graph. We remark
here that Vn first appears in the work of Postnikov and Shapiro [PS04], where the graphs G with
the property that G is connected are called slim graphs. The natural action of Sn on C[x1, . . . , xn]
that permutes variables gives an action on Vn because relabeling vertices preserves connectedness.
Amongst various other interesting things, Berget and Rhoades [BR14, Theorem 2] establish the
remarkable fact that the restriction of σn to Sn−1 is isomorphic to ρn−1. The question of extending
symmetric group representations in general has also received attention; see [Mat96, Sun01].

The first author acknowledges the financial support from the Slovenian Research Agency (research core funding
No. P1-0294).
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The primary goal of this article is to construct a family of permutation representations P̂Fn,c

of Sn with easy-to-compute characters, which all also restrict to ρn−1. Interestingly, the modular
behavior of the sum of elements in a parking function (closely related to the area statistic on
parking functions) plays a key role in our analysis, and our arguments rely on some subtle number-

theoretic considerations. The authors in fact believe that the representation P̂Fn,1 is isomorphic
to the (ungraded) Berget-Rhoades representation mentioned above; see Conjecture 3.3.

2. Background

For any undefined terminology in the context of symmetric functions, we refer the reader to
[Sta99, Mac95]. For n ≥ 1, we denote by Zn the set of integers modulo n. Typically, representatives
from residue classes modulo n will be implicitly assumed to belong to {0, . . . , n− 1}. Throughout,
Sn denotes the symmetric group consisting of permutations of [n]. We use both the cycle notation
and the one-line notation for permutations depending on our needs. If we use the latter, then we
let πi denote the image of i under the permutation π for a positive integer i.

2.1. Symmetric functions. A partition λ = (λ1, . . . , λℓ) is a weakly decreasing sequence of posi-
tive integers. The λi’s’ are the parts of λ, their sum its size, and their number its length, which is
denoted by ℓ(λ). If λ has size n, then we denote this by λ ⊢ n. Furthermore, letting mi denote the
multiplicity of the part i in λ for i ≥ 1, we set zλ :=

∏
i≥1 i

mimi!. The cycle type of a permutation

π is a partition that we denote λ(π).

We consider the following distinguished bases for the ring of symmetric functions Λ: the power

sum symmetric functions {pλ : λ ⊢ n}, the complete homogeneous symmetric functions {hλ : λ ⊢ n},
and the Schur symmetric functions {sλ : λ ⊢ n}.

The representation theory of the symmetric group is intimately tied to Λ and the connection is
made explicit by the Frobenius characteristic. Given a representation ρ of Sn, denote the corre-
sponding character by χρ. Then

Frob(ρ) =
1

n!

∑

π∈Sn

χρ(π)pλ(π) =
∑

λ⊢n

χρ(λ)
pλ
zλ

.

Under Frob, the irreducible representation of Sn corresponding to the partition µ ⊢ n gets mapped
to the Schur function sµ. As a special case, we have the equality

∑
λ⊢n z

−1
λ pλ = hn. We proceed to

define parking functions and an associated representation whose study has substantially motivated
algebraic combinatorics in the last two decades.

2.2. Parking functions. As mentioned earlier, an integer sequence (x1, . . . , xn) is a parking func-
tion if its weakly increasing rearrangement (z1, . . . , zn) satisfies 0 ≤ zi ≤ i− 1 for i = 1, . . . , n. We
denote by PFn the set of all parking functions of length n. For example,

PF2 ={00, 01, 10},

PF3 ={000, 001, 010, 100, 002, 020, 200, 011,

101, 110, 012, 021, 102, 120, 201, 210},

and the weakly increasing elements of PF4 are 0000, 0001, 0011, 0111, 0002, 0012, 0112, 0022,
0122, 0003, 0013, 0113, 0023, and 0123. Observe that there are 14 such elements in PF4. More
generally, we have that the number of weakly increasing elements in PFn is the nth Catalan number
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Catn := 1
n+1

(2n
n

)
. In the preceding examples, we have omitted commas and parentheses in writing

our parking functions for the sake of clarity, and we will do this throughout without explicit mention.

It is well known that |PFn | = (n + 1)n−1. One way to see this is through the following result
present in [FR74] (where it is attributed to H. O. Pollak) that will also be crucial in the sequel.

Theorem 2.1 (Pollak). The map PFn → Zn−1
n+1, given by

(x1, . . . , xn) 7→ (x2 − x1, . . . , xn − xn−1),

where subtraction is performed modulo n+ 1, is a bijection.

Note that in particular Theorem 2.1 says that for an arbitrary sequence (α1, . . . , αn−1) ∈ Zn−1
n+1,

exactly one of the sequences (y, y + α1, y + α1 + α2, . . . , y + α1 + · · ·+ αn−1), y ∈ Zn+1, is in PFn.

Recall the natural action ρn of Sn on PFn defined by

π · (x1, . . . , xn) = (xπ1 , . . . , xπn).

For a partition λ = (λ1, . . . λℓ) ⊢ n, the number of fixed points of the action of the permutation
with cycle decomposition (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · is equal to the number of sequences
(α1, . . . , αn−1) ∈ Zn−1

n+1 satisfying αi = 0 for i ∈ [n− 1] \{λ1, λ1 +λ2, . . . , λ1+ · · ·+λℓ−1}. It follows
that the character χρn of ρn satisfies

χρn(π) = (n+ 1)ℓ−1,

where ℓ := ℓ(λ(π)).

3. Main results

For n ∈ N and 1 ≤ c ≤ n, define the set

P̂Fn,c = {(x1, . . . , xn) ∈ Zn
n : (x1, . . . , xn−1) ∈ PFn−1, xn = c−

∑

1≤i≤n−1

xi (modn)}.

In other words, given a parking function (x1, . . . , xn−1), xn is uniquely determined by the constraint∑n
i=1 xi = c (modn). For example, the reader may check that

P̂F3,1 ={001, 010, 100},

P̂F3,2 ={002, 011, 101},

P̂F3,3 ={000, 012, 102}.

It is obvious that, for every 1 ≤ c ≤ n, the projection (x1, . . . , xn) 7→ (x1, . . . , xn−1) is a bijection

P̂Fn,c → PFn−1. In particular, we have |P̂Fn,c| = nn−2. Again, we can construct an action τn,c of

Sn on P̂Fn,c. Take π ∈ Sn and (x1, . . . , xn) ∈ P̂Fn,c. Note that (xπ1 , . . . , xπn−1) is not necessarily

in PFn−1, and therefore (xπ1 , . . . , xπn) is not necessarily in P̂Fn,c. However, by Pollak’s theorem,
exactly one of the sequences (y + xπ1 , . . . , y + xπn−1) is in PFn−1, and therefore (y + xπ1 , . . . , y +

xπn) ∈ P̂Fn,c. This element is the action of π on (x1, . . . , xn). For example, consider the action of

π = 1432 ∈ S4 on 0003 ∈ P̂F4,3. Näıvely permuting elements of the sequence 0003 according to
π leads to 0300. Note that 030 /∈ PF3, but adding 1 to each coordinate gives 101 ∈ PF3. Thus
1432 · 0003 = 1011.



4 MATJAŽ KONVALINKA AND VASU TEWARI

The following is our first main result.

Theorem 3.1. The map τn,c is an action of Sn on P̂Fn,c whose restriction to Sn−1 is isomorphic to

ρn−1. Furthermore, the character χn,c := χτn,c can be computed as follows. Choose a permutation

π ∈ Sn with cycle type λ = (λ1, . . . , λℓ), and write d := GCD(λ1, . . . , λℓ). Then

χn,c(π) =





d2nℓ−2

2 d even,nd odd, and d|2c
d2nℓ−2 d even,nd even, and d|c
d2nℓ−2 d odd and d|c
0 otherwise.

As a corollary, we completely classify the representations τn,c up to isomorphism, and show in
particular that the number of non-isomorphic representations is equal to the number of divisors
of n that are not 2 (mod 4). We refer the reader to Section 4 for further details, in particular to
Theorem 4.4 and Corollary 4.5.

Subsequently we focus on the cases where c equals n (equivalently, 0) and 1, where the characters

simplify a bit. In both cases we compute the multiplicity of the trivial representation in P̂Fn,c,
or equivalently, the number of orbits under τn,c. As our second main result, we state below the
character in the case c = 1 as well as the number of orbits.

Theorem 3.2. The character χn,1 can be computed as follows. Choose a permutation π ∈ Sn with

cycle type λ = (λ1, . . . , λℓ), and write d := GCD(λ1, . . . , λℓ). Then

χn,1(π) =





nℓ−2 d = 1

2nℓ−2 d = 2, n = 2 (mod 4)

0 otherwise.

.

As a consequence, the number of orbits of the action τn,1 is given by

on,1 =
1

n2

∑

d|n

(−1)n+dµ(n/d)

(
2d− 1

d

)
,

where µ is the classical Möbius function.

Note that the sequence (on,1)n∈N starts with 1, 1, 1, 2, 5, 13, 35, 100, 300 (see [Slo, A131868]).

Recall from the introduction that understanding the Berget-Rhoades extension was our main
motivation. In this context, we offer the following conjecture to close this section.

Conjecture 3.3. The representation τn,1 is isomorphic to σn. Furthermore, Frob(τn,1) expands

positively in the basis of homogeneous symmetric functions, i.e., it is h-positive.

It is worth noting that from the original definition of σn in terms of slim graphs, it is not straight-
forward to compute its character. In this regard, assuming the validity of Conjecture 3.3, one could
say that τn,1 is the computationally more amenable representation.
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4. Characters and classification of the P̂Fn,c

Before providing proofs to our main results stated earlier, we establish a useful lemma.

Lemma 4.1. For a1, . . . , ak, c ∈ Z, m ∈ N the number of tuples (x1, . . . , xk) ∈ {0, . . . ,m− 1}k that

satisfy

a1x1 + · · · + akxk = c (modm)

is equal to dmk−1 if d|c, and 0 otherwise. Here d = GCD(a1, . . . , ak,m).

Proof. Consider the homomorphism from the group Zk
m to Zm sending (x1, . . . , xk) to a1x1 +

· · · + akxk (modm). It follows from the extended Euclidean algorithm that the image is the set
{y ∈ Zm : d|y}. Thus, we see that there exists a solution to the equation in question if d|c.
Furthermore, if this is indeed the case, the number of solutions is equal to the cardinality of the

kernel of our map, i.e., mk

m/d = dmk−1, thereby implying the claim. �

We are ready to compute the character χn,c of the Sn action on P̂Fn,c.

Proof of Theorem 3.1. Since the maps (x1, . . . , xn) 7→ (xπ1 , . . . , xπn) and (x1, . . . , xn) 7→ (y +
x1, . . . , y + xn) commute, we conclude that τn,c is an action. It is also clear that the restriction of
τn to Sn−1 is ρn−1. It remains to compute the character χn,c.

Without loss of generality, assume that π = (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · , and set d :=
GCD(λ). Also, following [Sta99, Equation 7.103], define

b(λ′) :=

ℓ∑

i=1

(
λi

2

)
(4.1)

where λ′ denotes the transpose of λ. As λ is fixed, we set b := b(λ′) for convenience. We want to
count the number of fixed points of π.

Suppose that π · (x1, . . . , xn) = (x1, . . . , xn). We have π · (x1, . . . , xn) = (x2 + y, . . . , xλ1 + y, x1+
y, xλ1+2+y, . . . , xλ1+λ2 +y, xλ1+1+y, . . .) for some y ∈ Zn, so x1 = x2+y, x2 = x3+y, . . . , xλ1−1 =
xλ1 + y, xλ1 = x1 + y, xλ1+1 = xλ1+2 + y, xλ1+2 = xλ1+3 + y, . . . xλ1+λ2−1 = xλ1+λ2 + y, xλ1+λ2 =
xλ1+1 + y etc.

The equalities immediately imply that λi · y = 0 (modn), and consequently d · y = 0 (modn).
In other words, y = k · n

d for some k ∈ Z, 0 ≤ k < d. Furthermore, the sum of the coordinates of
π · (x1, . . . , xn) is, modulo n, equal to c, and therefore

λ1x1 +

(
λ1

2

)
y + λ2xλ1+1 +

(
λ2

2

)
y + · · ·+ λℓxλ1+···+λℓ−1+1 +

(
λℓ

2

)
y = c (modn).(4.2)

Set f1 := x1, f2 := xλ1+1, . . . , fℓ = xλ1+···+λℓ−1+1. Then counting fixed points of π is tantamount

to counting tuples (f1, . . . , fl) ∈ Zℓ
n (up to translation by (1, . . . , 1) ∈ Zℓ

n) that satisfy

ℓ∑

i=1

λifi + yb = c (modn).(4.3)
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Assume first that d is odd. Then d|λi implies d|
(λi

2

)
, and therefore d|b. It follows that

yb =
b

d
· k · n = 0 (modn),

which in turn implies that (4.3) reduces to

ℓ∑

i=1

λifi = c (modn).(4.4)

Using Lemma 4.1 and recalling that we have d choices for y, we infer that there are d2nℓ−2 (we
have power of ℓ − 2 instead of ℓ− 1 because we look at tuples up to translation by (1, . . . , 1), i.e.

we can fix one of fi’s to be, say, 0) elements in P̂Fn,c fixed by π if d|c, and 0 otherwise.

Now assume that d (and consequently n) is even. Then d
2 |

λi

2 and d
2 |
(λi

2

)
, thereby implying d|2b.

It follows that

yb =
2b

d
· k ·

n

2
.(4.5)

We are naturally led to consider two scenarios based on the parity of 2b/d. First note that n/d =
λ1/d + · · · + λℓ/d is odd if and only if the number of odd numbers among λ1/d, . . . , λℓ/d is odd.
On the other hand 2b/d = λ1(λ1 − 1)/d+ · · ·+ λℓ(λℓ − 1)/d, and λ1 − 1, . . . , λℓ − 1 are all odd, so
2b/d is also odd if and only if the number of odd numbers among λ1/d, . . . , λℓ/d is odd. In other
words, 2b/d and n/d have the same parity.

Suppose that 2b/d and n/d are even. In view of the equality in (4.5), we may rewrite (4.3) as

ℓ∑

i=1

λifi = c (modn).(4.6)

Like before, we infer that d2nℓ−2 elements in P̂Fn,c are fixed by π if d|c, and 0 otherwise.
Finally consider the case where 2b/d and n/d are odd. We need to count solutions to

ℓ∑

i=1

λifi = c+
kn

2
(modn).(4.7)

Note crucially that since n
d is odd, it cannot be that d divides both c and c + n

2 . From the odd

k ∈ {0, . . . , d − 1}, we get a contribution of d2nℓ−2

2 if d|(c + n
2 ), and 0 otherwise. From the even

k ∈ {0, . . . , d− 1}, we get a contribution of d2nℓ−2

2 if d|c, and 0 otherwise. We leave it to the reader
to check that in the case under consideration we have

d|c or d|(c+
n

2
) ⇔ d|2c.(4.8)

This concludes our proof.



7

4.1. Number of non-isomorphic P̂Fn,c. Given a positive integer n, let v2(n) denote the 2-adic
valuation of n, i.e., the highest power of 2 that divides n. Define Dn to be the following subset of
the set of divisors of n:

Dn := {k|n : n/k = n (mod 2)}.(4.9)

For instance, we have D12 = {1, 2, 3, 6}. We will show that Dn indexes the isomorphism classes of
the representations τn,c. Prior to that we establish a straightforward lemma on the cardinality of
Dn.

Lemma 4.2. The cardinality of Dn equals the number of divisors of n that are not 2 modulo 4.

Proof. Let d(n) denote the number of divisors of n. Then |Dn| equals d(n) if v2(n) = 0, and

v2(n) · d
(

n
2v2(n)

)
otherwise. It is easily checked the number of divisors of n that are not 2 modulo

4 satisfies the same recursion: such a divisor d must satisfy v2(d) 6= 1. �

For k ∈ Dn, consider the set

Cn,k := {m ∈ [n] : GCD(n,m) ∈ {k, 2k} if
n

k
= 2 (mod 4) and GCD(n,m) = k otherwise}.(4.10)

As an example, consider n = 12, in which case we have

C12,1 = {1, 5, 7, 11},

C12,2 = {2, 4, 8, 10},

C12,3 = {3, 9},

C12,6 = {6, 12}.

Note in particular that sets C12,1, C12,2, C12,3, and C12,6 form a partition of [12]. More generally,
the following lemma holds.

Lemma 4.3. We have that
∐

k∈Dn

Cn,k = [n], where
∐

denotes disjoint union.

Proof. First we show that for distinct k, k′ ∈ Dn, we have that Cn,k ∩ Cn,k′ = ∅. Indeed, suppose
to the contrary that there exists m ∈ [n] belonging to Cn,k ∩ Cn,k′. If k and k′ are such that
n
k = n

k′ = 2 (mod4), then GCD(n,m) ∈ {k, 2k} ∩ {k′, 2k′}. Note that n is necessarily even in this
case. The only way for k and k′ to be distinct is if, say, GCD(n,m) = 2k = k′. Since n

k = 2(mod 4),
we know that n

2k is odd, which in turn means that n
k′ is odd. But this is absurd as, by definition,

k′ ∈ Dn necessarily implies that n
k′ is even.

An argument similar to the one just given also works in the case where we assume that k and k′

are such that n
k = 2 (mod 4) and n

k′ 6= 2 (mod 4). Finally, if k and k′ are such that n
k 6= 2 (mod 4)

and n
k′ 6= 2 (mod4), then GCD(n,m) = k = k′, a contradiction. Thus, we see that Cn,k ∩Cn,k′ = ∅

for distinct k, k′ ∈ Dn.

To finish the proof, given m ∈ [n], let k := GCD(n,m). If n is odd, or n and n
k are both even,

then k ∈ Dn and hence m ∈ Cn,k. Otherwise we are in the case where n is even but n
k is odd. It
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must be that k is even as well, and therefore k
2 ∈ Dn. Since GCD(n,m) = 2 · k2 and n

k/2 = 2(mod 4),

we have that m ∈ Cn, k
2
. �

We are now ready for the classification.

Theorem 4.4. For k ∈ Dn, the representations τn,c are isomorphic for all c ∈ Cn,k. Furthermore,

for distinct k, k′ ∈ Dn, we have that τn,c and τn,c′ are non-isomorphic for every c ∈ Cn,k and

c′ ∈ Cn,k′.

Proof. Pick k ∈ Dn. Note that k ∈ Cn,k. Consider k′ ∈ Cn,k distinct from k. Crucially, we are
guaranteed that GCD(n, k′) ∈ {k, 2k}. We first show that the characters χn,k and χn,k′ agree on
all conjugacy classes of Sn. We appeal to the character values defined by Theorem 3.1 throughout
our argument. Let π ∈ Sn have cycle type λ, and write d := GCD(λ).

Case I: Suppose d is odd. To establish χn,k(π) and χn,k′(π) are equal, it suffices to show that
d|k ⇔ d|k′. The forward direction is immediate, while the reverse implication follows easily from
the fact that GCD(n, k′) ∈ {k, 2k}, and we infer that d|k as d is odd.

Case II: Suppose d and n
d are both even. Once again, we need to show that d|k ⇔ d|k′, and we

deal with the reverse direction. Assume d|k′. If GCD(n, k′) = k, then d|k is immediate. We are
left to deal with the case where n

k = 2 (mod4) and GCD(n, k′) = 2k. Then we have that n
2k is odd

and d|2k. Now note that

n

2k
=

n/d

2k/d
,(4.11)

and since n
d is even, it must be that 2k

d is even as well, from which it follows that d|k.

Case III: Suppose d is even but n
d is odd. We need to establish that d|2k ⇔ d|2k′. Again, we

only need to deal with the reverse direction. Suppose the stronger statement d|k′ holds. Since
GCD(n, k′) ∈ {k, 2k}, we have that d|2k.

Finally, suppose that d ∤ k′ but d|2k′. Then it must be that 2k′

d is odd. If GCD(n, k′) = k, then
by multiplying both sides by 2, we conclude that d|2k. Hence consider the case where n

k = 2(mod 4)

and GCD(n, k′) = 2k. Then we know that n
2k is odd, and that GCD(2nd , 2k

′

d ) = 4k
d . We conclude

that 4k
d is odd as 2k′

d is odd. Now note that n
2k = 2n/d

4k/d is odd, which is absurd as 2n
d is even while

4k
d is odd. Thus, we see that the scenario n

k = 2 (mod 4) and GCD(n, k′) = 2k is impossible.

At this stage, we know that for a fixed k ∈ Dn the representations τn,c are isomorphic for all
c ∈ Cn,k. In particular, they are isomorphic to τn,k. To finish the proof, we show that τn,k and τn,k′
are nonisomorphic for distinct k, k′ ∈ Dn by finding a conjugacy class where they disagree.

Without loss of generality, suppose k > k′. Let λ := (k
n
k ) and pick π ∈ Sn with cycle type λ.

We have GCD(λ) = k, and therefore we see that χn,k(π) is nonzero, whereas χn,k′(π) is zero unless
we are in the setting where k is even, n

k is odd, and k|2k′. This situation is impossible as k ∈ Dn

implies n
k is even. This finishes the proof. �

As an immediate consequence of Theorem 4.4, we have:

Corollary 4.5. There are |Dn| many non-isomorphic representations among the τn,c.
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In view of Lemma 4.2, we have that |Dn| is given by [Slo, A320111]. Observe also the curious
fact that the sequence {|Dn|}n≥1 gives a multiplicative arithmetic function.

Example 4.6. Consider n = 6. Then D6 = {1, 3}. Here are the power sum expansions for the
two non-isomorphic representations amongst the τ6,c for c ∈ [6]:

Frob(τ6,1) =
9

5
p16 +

9

2
p214 +

9

4
p2212 +

1

4
p222 + 2p313 + p321 +

3

4
p412 +

1

4
p42 +

1

5
p51,

Frob(τ6,3) =
9

5
p16 +

9

2
p214 +

9

4
p2212 +

1

4
p222 + 2p313 + p321 +

1

2
p33 +

3

4
p412 +

1

4
p42 +

1

5
p51 +

1

2
p6.

The proof of Theorem 4.4 predicts that p33 appears with a nonzero coefficient in Frob(τ6,3) but not
in Frob(τ6,1), as can be seen in the expansions.

5. Two special cases

We now proceed to discuss the special cases c = n (or equivalently c = 0) and c = 1. We focus
in particular on the number of orbits of our Sn action, which is, in view of Burnside’s lemma, equal
to the multiplicity of the trivial representation.

5.1. The case c = n. Given a positive integer n, define an auxiliary function fn on the set of
divisors of n as follows:

fn(d) =

{
1/2 d even, n/d odd,
1 otherwise.

(5.1)

In terms of fn, note that the character χn,n at the conjugacy class determined by the partition

λ ⊢ n is fn(d) · d
2nℓ(λ)−2 where d := GCD(λ). To establish a formula for the number of orbits,

we need some more notation followed by a key lemma. For a positive integer m, let J2(m) be the
Jordan totient function defined as

J2(m) := m2
∏

prime p|m

(
1−

1

p2

)
.(5.2)

It is well known that
∑

d|m J2(d) = m2, in other words,
∑

d|m µ(m/d)d2 = J2(m).

Lemma 5.1. For fixed positive integer e and m, let n := me and define

F (m, e) :=
∑

d|m

µ
(m
d

)
fn(d)d

2.

Then we have that

F (m, e) =

{
J2(m) e even or m odd,
1
3J2(m) e odd and m even.

Proof. Note that if e is even, then n/d is even, and hence fn(n/d) = 1. In this case we have

F (m, e) =
∑

d|m

µ
(m
d

)
d2 = J2(m).(5.3)
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Assume e is odd. If m is odd, then again we have that F (m, e) equals J2(m) from (5.3). Assume

v2(m) = k ≥ 1. Then m = 2km′, where m′ is odd. Note that if d = 2v2(d)d′ is a divisor of m such
that v2(d) ≤ k − 2, then

µ
(m
d

)
= µ

(
2k−v2(d)m

′

d′

)
,(5.4)

where m′

d′ is odd. It follows that µ(m/d) = 0 as m/d is not squarefree.

Thus, we may assume that d = 2k−1d′ or d = 2kd′, where d′|m′. In the former case, we have that
n/d is even, and in the latter case we have that d is even while n/d is odd. Thus we obtain

F (m, e) =
∑

d′|m′

µ

(
2m′

d′

)
22(k−1)d′2 +

∑

d′|m′

µ

(
m′

d′

)
22k−1d′2

= 22k−2
∑

d′|m′

µ

(
m′

d′

)
d′2.(5.5)

In arriving at the last equality, we made use of the fact that µ
(
2m′

d′

)
= −µ

(
m′

d′

)
. Therefore

F (m, e) = 22k−2J2(m
′) =

1

3
J2(m),

which finishes the proof.
�

Theorem 5.2. Let on,n denote the number of orbits of P̂Fn,n under the action τn,n. Then

on,n =
1

n2

∑

e|n

(
2e− 1

e

)
F (n/e, e).

Proof. By interpreting the number of orbits as the multiplicity of the trivial representation, we
have that

on,n =
∑

d|n

fn(d)
∑

λ⊢n
GCD(λ)=d

d2nℓ(λ)−2

zλ
.(5.6)

Denote the inner sum in (5.6) by an,d. Note that if λ = (λ1, . . . , λℓ) satisfies GCD(λ) = d, then the

partition λ̃ := (λ1/d, . . . , λℓ/d) satisfies zλ = dℓ(λ)zλ̃ and GCD(λ̃) = 1. Therefore, by scaling down
the parts of λ by d in the sum defining an,d, we get that an,d = an/d,1 =: an/d.

On the one hand, note that

∑

λ⊢n

nℓ(λ)

zλ
=

∑

d|n

d2ad.(5.7)
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On the other hand, observe that nℓ(λ) is the specialization pλ(1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .), and hence the

relation
∑

λ z
−1
λ pλ = hn implies

∑

λ⊢n

nℓ(λ)

zλ
= hn(1, . . . , 1, 0, 0, . . .) =

(
2n− 1

n

)
.(5.8)

Equating the right hand sides of equations (5.7) and (5.8) and then applying Möbius inversion to
the resulting relation yields

n2an =
∑

d|n

µ
(n
d

)(
2d− 1

d

)
,(5.9)

Now rewrite (5.6) as

on,n =
∑

d|n

fn(d)an/d,(5.10)

and use (5.9) to obtain

on,n =
1

n2

∑

d|n

fn(d)d
2
∑

e|n
d

µ(n/ed)

(
2e− 1

e

)

=
1

n2

∑

e|n

(
2e− 1

e

)∑

d|n
e

µ(n/ed)fn(d)d
2,(5.11)

which gives 1
n2

∑
e|n

(
2e−1
e

)
F (n/e, e) by the definition of F . �

Note that Lemma 5.1 tells us that the F (n/e, e) appearing in the theorem is equal to J2(n/e),
up to a potential factor of 1/3.

Example 5.3. Consider the case P̂F3,3. Theorem 3.1 gives the following power sum expansion
for the Frobenius characteristic of the action τ3,3:

Frob(τ3,3) = p3 +
p21
2

+
p111
2

= 2s3 + s111 = 3h3 − 2h21 + h111.

We naturally expect a Schur-positive expansion for Frob(τ3,3), though note that it is not h-positive.
The Schur expansion also tells us that we have 2 orbits under the action τ3,3. To see that we get
the same quantity from Theorem 5.2, note that the possible values of e are 1 and 3; the resulting
F (n/e, e) is equal to 8 and 1, respectively. Thus we get o3,3 =

1
9 (1 · 8 + 10 · 1) = 2.

5.2. The case c = 1. We now turn our attention to the case of the Sn action on P̂Fn,1. This is
also the case which we believe (see Conjecture 3.3) to be pertinent from the viewpoint of the work
of Berget-Rhoades [BR14]. Curiously, even though the character values turn out be simpler than
those in the case c = n, unlike Theorem 5.2, we obtain a signed (yet still compact) expression for
the number of orbits.
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Proof of Theorem 3.2. As an immediate Corollary to Theorem 3.1, the character value χn,1(π),
where π ∈ Sn has cycle type λ, is given by

χn,1(π) =





nℓ−2 d = 1

2nℓ−2 d = 2, n = 2 (mod 4)

0 otherwise.

,(5.12)

where d := GCD(λ).
Let on,1 denote the number of orbits. We borrow notation established in the proof of Theorem 5.2.

Using the description in (5.12), we have that the number of orbits on,1 under τn on P̂Fn,1 satisfies

on,1 =

{
an + 1

2an
2

if n = 2 (mod4)

an otherwise.
(5.13)

From (5.9), we have an expression for an, which clearly agrees with the expression for on,1 in the
statement of Theorem 3.2 in the case n is odd, as n + d is necessarily even. Similarly, if 4|n, then
µ(n/d) is 0 unless d is an even divisor, and then n+ d is again even. The case n = 2 (mod 4) needs
some more manipulation. In this case, we have

on,1 =
1

n2

∑

d|n

µ
(n
d

)(
2d− 1

d

)
+

2

n2

∑

d|n
2

µ
( n

2d

)(
2d− 1

d

)
(5.14)

Note that d|n2 is equivalent to stating that d is an odd divisor of n. Since n
2d is odd for d|n2 , we have

µ
( n

2d

)
= −µ

(n
d

)
,(5.15)

which allows us to rewrite (5.14) as

on,1 =
1

n2

∑

d|n
d even

µ
(n
d

)(
2d− 1

d

)
−

1

n2

∑

d|n
d odd

µ
(n
d

)(
2d− 1

d

)
.(5.16)

Theorem 3.2 follows.

Example 5.4. Consider the case P̂F3,1. Theorem 3.1 gives the following power sum expansion
for the Frobenius characteristic of the action τn,1:

Frob(τ3,1) =
p21
2

+
p111
2

= s3 + s21 = h21.

Again, we know that Frob(τ3,1) is Schur-positive; in fact, in contrast to the case c = n, it is h-
positive. The Schur expansion also tells us that we have 1 orbit under the action τ3,1. To see that
we get the same quantity from Theorem 3.2, note that we have the possible d being 1 or 3, and we
get o3,1 =

1
9 ((−1) · 1 + 1 · 10) = 1.

We conclude this section with a couple of remarks, the first of which concerns the multiplicity
of another irreducible representation in the representation τn,1. Let [sλ]τn,1 denote the multiplicity
in τn,1 of the irreducible representation of Sn corresponding to λ ⊢ n. In particular, [sn]τn,1 = on,1.
It follows easily that the multiplicity of the standard representation is

[sn−1,1]τn,1 = Catn−1−on,1.(5.17)
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To see why this is true, recall on the one hand that [sn−1]ρn−1 = Catn−1. On the other hand, since
ρn−1 is the restriction of τn−1, we have that [sn−1]ρn−1 = [sn−1,1]τn,1+[sn]τn,1. Since [sn]τn,1 = on,1,
the equality (5.17) follows.

Our second remark is inspired by the grading in the Berget-Rhoades representation that stems
from the area statistic for parking functions. Given a parking function x = (x1, . . . , xn) ∈ PFn, we
define its area, denoted by area(x), as follows:

area(x) =

(
n

2

)
−

∑

1≤i≤n

xi.(5.18)

The area statistic was first studied by Kreweras [Kre80] who related it to the inversion statistic on

labeled trees. If we now consider the Sn module P̂Fn,c where c =
(
n−1
2

)
(modn), then in the last

coordinate of P̂Fn,c we are recording the area statistic modulo n of the parking function built from
the preceding n− 1 coordinates. Observe that(

n− 1

2

)
=

{
1 (modn) n odd
1 + n

2 (modn) n even.
(5.19)

By using this fact, one can show that P̂Fn,c is isomorphic to P̂Fn,1, which we conjecture to be the
ungraded Berget-Rhoades representation.

6. A generalization to certain families of rational parking functions

We broaden the scope of our results by applying our techniques to a subclass of the set of rational
parking functions. These functions are a generalization of usual parking functions and their study
is an active field of research in recent years [ALW16, GM16, GMV16]. Given the similarity in flavor
to earlier arguments, we keep our exposition brief.

Consider coprime positive integers a and b. Define an (a, b)-parking function to be a sequence
(x1, . . . , xa) of nonnegative integers with the property that the weakly increasing arrangement

(z1, . . . , za) satisfies zi ≤ (i−1)b
a . We denote the set of (a, b)-parking functions by PFa,b. As an

example, consider the case where a = 3 and b = 5. The sequence (1, 0, 3) is an element of PF3,5

as its weakly increasing arrangement (0, 1, 3) satisfies the condition. On the other hand, it may be
checked that (2, 0, 3) /∈ PF3,5. It is clear that the set PFn,n+1 is the set PFn from before.

We denote the natural action of Sa on PFa,b by ρa,b. A generalization of Pollak’s proof implies

that the map from PFa,b → Za−1
b given by mapping

(x1, . . . , xa) 7→ (x2 − x1, . . . , xa − xa−1),

where subtraction is performed modulo b, is a bijection. This implies that |PFa,b | = ba−1. Fur-
thermore, the number of orbits under the action ρa,b is the rational Catalan number Cata,b defined

to equal 1
a+b

(a+b
b

)
. See [ALW16, Proposition 2], [Sul17, Theorem 2.4.1], [Thi15, Theorem 3.1.1] for

proofs establishing the aforementioned facts.

Mimicking our ideas from before, we construct a new set that is equinumerous with PFa,b. For
c ∈ [b], define the set

P̂Fa,b,c := {(x1, . . . , xa+1) : (x1, . . . , xa) ∈ PFa,b,
∑

1≤i≤a+1

xi = c (mod b)}.
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As usual, we take xa+1 to lie in {0, . . . , b− 1}. Clearly, we have |P̂Fa,b,c| = ba−1.

In order to mimic our action from Section 3, we need to impose the constraint that b|(a + 1).
Henceforth, assume that this is indeed the case. This given, we can construct an action τa,b,c of

the symmetric group Sa+1 on P̂Fa,b,c. Take π ∈ Sa+1 and (x1, . . . , xa+1) ∈ P̂Fa,b,c. Like before,

(xπ1 , . . . , xπa) is not necessarily in PFa,b, and therefore (xπ1 , . . . , xπa+1) is not necessarily in P̂Fa,b,c.
However, by the generalized Pollak’s theorem, exactly one of the sequences (y + xπ1 , . . . , y + xπa)

is in PFa,b, and therefore (y + xπ1 , . . . , y + xπa+1) ∈ P̂Fa,b,c. This element is the action of π on
(x1, . . . , xa+1). The careful reader should note that we made use of the fact b|(a + 1) in obtaining
an action.

Rather than repeating the analysis from before, we simply state our result for the case c = 1.

Theorem 6.1. Take a = kb− 1 for b, k ∈ N. The map τa,b,1 is an action of Sa+1 on P̂Fa,b,1 whose

restriction to Sa is isomorphic to ρa,b. Furthermore, the character χτa,b,1 can be computed as follows.

Choose a permutation π ∈ Sa+1 with cycle type (λ1, . . . , λℓ), and set d := GCD(λ1, . . . , λℓ, b). Then

χτa,b,1(π) =





bℓ−2 d = 1

2bℓ−2 d = 2, b = 2 (mod 4), k odd

0 otherwise

.

Letting oa,b,1 denote this number of orbits under τa,b,1, we have the following equality:

oa,b,1 =
1

b2

∑

d|b

(−1)k(b+d)µ(b/d)

(
(k + 1)d− 1

kd

)
.

7. Final remarks

We remark briefly on a plausible approach to establishing Conjecture 3.3. One way to prove the

conjecture would be to find an explicit action-preserving map between P̂Fn,1 and a particular basis
of the space Vn. The following table shows the construction (for a representative of each orbit) for
n = 3, 4, 5. Consider the case n = 3 for instance. By its definition, V3 would be spanned by elements
of {1, x1 − x2, x2 − x3, x1 − x3}, and one can extract a basis from this, say {1, x1 − x2, x2 − x3}. In
fact, one can read from the table the following S3-invariant basis of V3:

{1− 2x1 + x2 + x3, 1− 2x2 + x1 + x3, 1− 2x3 + x1 + x2}.

The map

100 7→ 1− 2x1 + x2 + x3, 010 7→ 1− 2x2 + x1 + x3, 001 7→ 1− 2x3 + x1 + x2

commutes with the action. We were not able to find an appropriate basis for n ≥ 6, but we
did check the conjecture (via character computations) for n = 6 as well. Note further that Vn is
naturally graded by the number of edges of a slim graph. We do not see a compatible grading in
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our P̂Fn.

3 001 1− 2x3 + x1 + x2
4 0003 1− 3x4 + x1 + x2 + x3

0012 (x4 − x1)(x4 − x2)(1 − 2x3 + x1 + x2)
5 00001 1− 4x5 + x1 + x2 + x3 + x4

00033 (−3x4 + x1 + x2 + x3)(−3x5 + x1 + x2 + x3)
01113 (x1 − x2)(x1 − x3)(x1 − x4)
00114 (x5 − x3)(x5 − x4)(−2x3 + x1 + x2)(−2x4 + x1 + x2)
00123 (x5 − x1)(x5 − x2)(x5 − x3)(x4 − x1)(x4 − x2)(1 − 2x3 + x1 + x2)

Observe also the results of Berget and Rhoades are in a slightly more general setting—they

consider spaces obtained by spans of polynomials attached to slim graphs of multigraphs Kℓ,m
n and

study the Sn-action. In this more general setup, usual parking functions are replaced by certain
vector parking functions [Yan15]. We emphasize that the generalization we consider in Section 6 is
different from the above-mentioned, even though rational parking functions are also vector parking
functions. Interestingly, usual parking functions are the only ones at the intersection of these two
pictures. Since Berget and Rhoades used an Sn-module coming from work of Postnikov and Shapiro,

one is led to wonder if there is an (a, b)-analogue in that context?

Our last remark concerns the number of orbits on,1 (respectively oa,b,1) under the action τn,1
(respectively τa,b,1). According to [Slo, A131868], non,1 is equal to the number of n-element subsets
of {1, . . . , 2n − 1} that sum to 1 modulo n. We do not know how to establish this correspondence
directly. The numbers oa,b,1 show up in a topological setting as Betti numbers as described in
[Ray18, Section 5]. Again the counting problem considered in the aforementioned article is different
from ours. We intend to explore some of these connections further.
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