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RESTRICTED COLOR n-COLOR COMPOSITIONS

BRIAN HOPKINS AND HUA WANG

Abstract. Agarwal introduced n-color compositions in 2000 and most sub-
sequent research has focused on restricting which parts are allowed. Here we
focus instead on restricting allowed colors. After three general results, giving
recurrence formulas for the cases of given allowed colors, given prohibited col-
ors, and colors satisfying modular conditions, we consider several more specific
conditions, establishing direct formulas and connections to other combinatorial
objects. Proofs are combinatorial, mostly using the notion of spotted tilings
introduced by the first named author in 2012.

1. Introduction

A composition of a given positive integer n is an ordered sequence of positive
integers with sum n. For instance, there are four compositions of 3, namely (3),
(2, 1), (1, 2), and (1, 1, 1). The summands are called parts of the composition.
Compositions are sometimes referred to as ordered partitions.

Agarwal [2] introduced the concept of n-color compositions, where a part κ has
one of κ possible colors, denoted by a subscript 1, . . . , κ. There are eight n-colored
compositions of 3, namely

(31), (32), (33), (21, 11), (22, 11), (11, 21), (11, 22), (11, 11, 11).

There has been much research on these objects, often with restrictions on part sizes
[3, 6, 8, 9, 10, 15]. Related colored compositions have arisen in many places, e.g.,
Andrews’s k-compositions [4] where every part but the last has k possible colors,

[12] where odd parts have two possible colors, and [5] where a part κ has
(

κ+d−1
d

)

potential colors.
The combinatorial tool called spotted tilings were introduced by the first named

author in [10]. The tiling for a composition of n is a 1 × n rectangle broken into
smaller rectangles (tiles) whose lengths correspond to the part sizes. With col-
ors, a part κi corresponds to a 1 × κ rectangle with a spot in square i. Spotted
tilings for the n-color compositions of 3 are shown in Figure 1. Spotted tiling were
subsequently used in [6, 7]. Other combinatorial interpretations of n-colored com-
positions are based on binary sequences [15], lattice paths [3], and rooted trees [14].

✉(31)

✉(32)

✉(33)

✉ ✉(21, 11)

✉ ✉(22, 11)

✉ ✉(11, 21)

✉ ✉(11, 22)

(11, 11, 11) ✉ ✉ ✉

Figure 1. The 8 spotted tilings for the n-color compositions of 3.

1

http://arxiv.org/abs/2003.05291v1


2 BRIAN HOPKINS AND HUA WANG

In this paper, we consider n-color compositions with restrictions on colors rather
than part sizes. Even and odd colors and some variations were considered in 2017
[14], and certain of what we call modular color restrictions (see Theorem 2.3 below)
were considered in 2019 [1]; the current work adds significantly to these explorations.
Section 2 gives general results on the enumeration of color restricted n-color com-
positions in terms of allowed or prohibited colors. Section 3 treats many particular
cases, adding combinatorial interpretations to several integer sequences and estab-
lishing various identities in terms of n-color compositions. Proofs throughout are
combinatorial, usually based on spotted tilings.

2. Main Results

We have the following very general results giving recurrence relations for the
number of n-color compositions when a set of colors (finite or infinite) is allowed or
prohibited. There is also a result for colors satisfying certain modular conditions.

We follow the convention that there is an empty composition with sum zero, so
that a(0) = 1 in most of our recursively defined sequences. Also, in this section
only, we use superscripts to index a list of numbers in order to avoid confusion with
the subscripts denoting colors. The sequence c1, c2, . . . is abbreviated {ci}. Let
c− = min({ci}) and c+ = max({ci}). We also use A \ B for the complement of B
inside A.

2.1. Allowed Colors. We begin with the situation where only specified colors are
allowed.

Theorem 2.1. For allowed colors {ci}, the number of color restricted n-color com-
positions of n is given by

a(n) = a(n− 1) +
∑

i

a(n− ci)

with a(n) = 0 for n ≤ −1, a(0) = 1, a(1) = · · · = a(c− − 1) = 0 (if c− 6= 1), and
a(c−) = 1.

Proof. We build all allowed compositions of n from the compositions counted by
the summands in the right-hand side of the equation.

(1) For a composition of n − 1, increase its last part, say κc, to (κ + 1)c to
obtain an allowed composition of n.

(2) For a composition of n − c for some c ∈ {ci}, add a part cc to make an
allowed composition of n.

These compositions are distinct since those from (1) have an empty last square
while those from (2) have a spot in the last square, and the compositions from (2)
are distinct since the added last part is different for each ci.

The reverse map is clear: If the last tile has a spot in the last square, then
remove that tile. Otherwise, decrease the last tile by one square.

The initial values through a(c−) = 1 are clear. For other n = c ∈ {ci}, the
sequence term a(n) calls step (2) of the bijection, generating (nn) from the empty
composition in addition to any compositions consisting of parts with smaller colors.

�

See section 3.1 for several examples.
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Note that when c− = 1, there will be two a(n− 1) terms on the right-hand side:
The bijection step (1) produces a(n− 1) compositions of n with empty last squares
while (2) applied to 1 ∈ {ci} produces the a(n− 1) compositions of n ending in 11.

2.2. Prohibited Colors. For situations where certain colors are prohibited, The-
orem 2.1 would suffice using the complementary set of allowed colors. However, for
a finite list of prohibited colors, that would give an infinite recurrence. Theorem
2.2 establishes a finite recurrence given a finite list of prohibited colors.

Theorem 2.2. For prohibited colors {di}, the number of color restricted n-color
compositions of n is given by

a(n) = 3a(n− 1)− a(n− 2) +
∑

i

(

−a(n− di) + a(n− di − 1)
)

with initial values a(0), . . . , a(d+) provided by Theorem 2.1 applied to the colors
{1, . . . , d+} \ {di}.

Proof. For the bijection, we rewrite the recurrence as

a(n) + a(n− 2) +
∑

i

a(n− di) = 3a(n− 1) +
∑

i

a(n− di − 1).

We proceed from the compositions counted by terms in the left-hand side.

1a. For a composition of n whose last part is κj for some j < κ, decrease the
last part to (κ− 1)j to obtain an allowed composition of n− 1.

1b. For a composition of n with last part 11, remove 11 to obtain an allowed
compositions of n− 1.

1c. For a composition of n whose last part is κκ for some κ ≥ 2 with κ 6= di+1
for any i, replace κκ with (κ − 1)κ−1 to obtain an allowed composition of
n− 1.

1d. For compositions of n whose last part is κκ for some κ ≥ 2 with κ = di +1
for some i, remove κκ to obtain an allowed composition of n− di − 1.

2. For a composition of n − 2, increase its last part κj to (κ + 1)j to obtain
an allowed composition of n− 1.

3. For any i and a composition of n− di, add a part (di − 1)di−1 to obtain an
allowed compositions of n− 1.

Figure 2 illustrates these aspects of the bijection.
As suggested by the labels, maps (1a) through (1d) treat all allowed compositions

of n, map (2) treats all allowed compositions of n−2, and map (3) handles all allowed
compositions of n − di for the prohibited colors {di}. Note that (1b) handles the
case d− 6= 1; see the note following the proof for the simplified bijection when
d− = 1.

Over all allowed compositions of n, (1a) produces a complete set of allowed
compositions of n− 1, as does (1b). The third set of allowed compositions of n− 1
comes from (1c), (2), and (3): All compositions with an empty final square are
produced by (2) applied to all allowed compositions of n − 2. For compositions
with a spot in the final square, for all i, (3) applied to all allowed compositions of
n − di produces the compositions with final part (di − 1)di−1 while (1c) produces
all the others. (Note that the κ 6= di + 1 restriction in (1c) guarantees that the
replacement part (κ− 1)κ−1 uses an allowed color and, since κ /∈ {di}, it does not
duplicate the output of (3).) Finally, (1d) produces all allowed compositions of
n− di − 1 over all i.
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✉. . .(1a) ✉. . .

✉ ✉. . .(1b) ✉. . .

✉(1c) . . . ✉. . .

✉(1d) . . . . . . . . . . . .

✉(3) . . . . . . . .. . . . . . . .

✉(2) . . . ✉. . .

Figure 2. The n-color compositions with the spotted tilings on
the left-hand side are mapped to the corresponding compositions
on their right by the bijection in the proof of Theorem 2.2, demon-
strating each case when d1 = 2.

For the initial values, for 1 ≤ n ≤ d+, prohibiting the colors {di} is equivalent to
allowing the complementary colors {1, . . . , d+} \ {di}, so that the initial sequence
generated by Theorem 2.1 is valid. In the case that {di} = {1, . . . , d+}, this leads
to a(0) = 1, a(1) = · · · = a(d+) = 0. In any case, the sequence term for n = d+ +1
involves step (1d) of the bijection, connecting (nn) and the empty composition. �

See section 3.2 for further examples.
If d− = 1, then the recurrence becomes

a(n) + a(n− 2) +
∑

i6=1

a(n− di) = 2a(n− 1) +
∑

i

a(n− di − 1)

and the bijection simplifies: Step (1b) never occurs, leaving two sets of allowed
compositions counted by n − 1. Also note that the d− = 1 case is excluded from
(3) to avoid producing compositions of n− 1 with last part “00.”

Also, whenever there are sequential forbidden colors, terms in the recurrence
relation of Theorem 2.2 cancel out. For instance, for forbidden colors k, k+1, . . . , k+
d, the recurrence relation reduces to

a(n) = 3a(n− 1)− a(n− 2)− a(n− k) + a(n− k − d− 1).

2.3. Modular Colors. When there are infinitely many colors both allowed and
prohibited, there can still be a finite recurrence relation for the number of resulting
compositions. Our final main theorem addresses such a situation, where all colors
having the same modulus are either all allowed or all prohibited.

Theorem 2.3. For allowed colors congruent to {mi} modulo m, the number of
color restricted n-color compositions of n is given by

a(n) = a(n− 1) + a(n−m)− a(n−m− 1) +
∑

i

a(n−mi)

where 1 ≤ mi ≤ m for each i. The initial values a(0), . . . , a(m + 1) are provided
by Theorem 2.1 applied to the colors {mi} if m− 6= 1, to colors {mi} ∪ {m+ 1} if
m− = 1.
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✉(1a) . . . . . . . . ✉. . . . . . . .

✉(1b) . . . . . . . . . . . . . . . . . . . . . . . . . .

✉(1c) . . . . . . ✉. . . . . .

✉(2) . . . ✉. . .

Figure 3. Demonstration of each case of the bijection in the proof
of Theorem 2.3, with m = 3 and m1 = 2.

Proof. For the bijection, we rewrite the recurrence as

a(n) + a(n−m− 1) = a(n− 1) + a(n−m) +
∑

i

a(n−mi).

We proceed from the compositions counted by terms in the left-hand side.

1a. For a composition of n whose last part is κj for some j < κ, decrease the
last part to (κ− 1)j to obtain an allowed composition of n− 1.

1b. For a composition of n whose last part is κκ with κ ≤ m, then κ = mi for
some i; remove κκ to obtain an allowed composition of n−mi.

1c. For a composition of n whose last part is κκ with κ ≥ m + 1, replace κκ

with (κ−m)(κ−m) to obtain an allowed composition of n−m.
2. For a composition of n−m− 1, increase its last part, say κj , to (κ+1)j to

obtain an allowed composition of n−m.

Figure 3 illustrates these aspects of the bijection.
Similar to before, maps (1a), (1b), and (1c) treat all allowed compositions of n

and map (2) treats all allowed compositions of n−m− 1.
Over all allowed compositions of n, (1a) produces all allowed compositions of

n−1, (1b) produces all allowed compositions of n−mi for all {mi} with 1 ≤ mi ≤ m,
and (1c) produces all allowed compositions of n−m with a spot in the last square
(note that if κ is an allowed colors, then so is κ − m). Finally, over all allowed
compositions of n − m − 1, (2) produces all allowed compositions of n − m with
empty last squares.

For the initial values, for 1 ≤ n ≤ m + 1, allowing colors congruent to {mi}
modulo m is just allowing the colors {mi} with 1 ≤ mi ≤ m for each i if m− 6= 1, or
the colors {mi}∪{m+1} if m− = 1. Larger colors are handled by the bijection. �

The special treatment of color m+ 1 in the proof, should it be included, comes
from step (2) of the bijection which at n = m + 1 would call for sending “00” to
“10.” Addressing n = m+1 in the setting of Theorem 2.1 means that the bijection
here will only be applied to colors n = m + 2 or greater where compositions of
n−m− 1 have nonzero parts with nonzero colors.

See section 3.3 for additional examples.

3. Examples and Additional Results

The majority of this article is dedicated to establishing further results for partic-
ular classes of allowed or prohibited colors, such as direct formulas and bijections
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to other classes of compositions or various combinatorial objects. The three sub-
sections mirror the three theorems above. Most results are general cases. There
are also a handful of more specific results, e.g., prohibiting the color 2; see [11] for
additional specific results. We will use the following definitions in describing several
of the bijections.

Definition 3.1. Given a tile κc of an n-color composition, the c-block consists of
the first c squares: starting from the left, c − 1 empty squares and the spotted
square indicating the tile’s color. The c-block is followed by a tail of κ − c empty
squares; if κ = c then we say the tail is empty.

3.1. Allowed colors. We begin with the examples having a finite number of al-
lowed colors. The recurrences follow from Theorem 2.1. In each of the following
general cases, we derive a closed formula and, in most, present bijections to other
combinatorial objects. See [11] for further particular examples.

3.1.1. Single colored compositions. First we consider allowing parts of only one
color. The direct formula in the next result is a generalization of the following
classical result: The number of regular compositions of n with m parts is the
binomial coefficient

(

n−1
m−1

)

. The binomial theorem then gives one way (of many) to

conclude that there are 2n−1 regular compositions of n. Note that only allowing
the color c = 1 is equivalent to regular compositions; simply ignore the color/spot.

Proposition 3.2. The number of n-color compositions of n with only the one color
c > 1 allowed is given by the recurrence relation

a(n) = a(n− 1) + a(n− c)

with a(n) = 0 for n ≤ −1, a(0) = 1, and a(1) = · · · = a(c− 1) = 0. Also,

a(n) =
n
∑

m=1

(

n− (c− 1)m− 1

m− 1

)

.

Proof. The recurrence comes from Theorem 2.1.
For the direct formula, consider the compositions (and hence the corresponding

spotted tiling representations) of n, allowing color c, with m parts. The entire tiling
is an arrangement of m c-blocks and n−mc empty squares that constitute the tails.
The number of ways to assign n−mc empty squares to the tails of m tiles is

(

n−mc+m− 1

m− 1

)

equivalent to the binomial coefficient above. Summing over possible values of m
gives the formula. �

The counting sequences for small cases include the Fibonacci numbers for c = 2,
the “tribonacci” numbers for c = 3, [13, A003269] for c = 4, and [13, A003520] for
c = 5. Such sequences also enumerate compositions with constraints on part sizes
as detailed in the next result.

Proposition 3.3. Given positive integers n and c, the following three combinatorial
objects are equinumerous.

(i.) n-color compositions of n with only color c allowed,
(ii.) regular compositions of n with parts c or greater,
(iii.) regular compositions of n with parts 1 or c and first part c.
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✉ ✉ ✉

Figure 4. An example of the bijection in Proposition 3.3 for
n = 12 and c = 3. The spotted tiling of the n-colored compo-
sition (53, 33, 43) is mapped to the regular composition tiling for
(3, 1, 1, 3, 3, 1) below it.

Proof. We relate each type of restricted uncolored compositions to (i). The con-
nection with (ii) is clear: A part with color c has size at least c, so removing the
color from the parts of the n-color composition (equivalently, removing the spots
from the corresponding spotted tiling) leaves a regular composition of the desired
type. For the reverse direction, simply add the color c to each part/add a spot in
square c of each tile.

To connect (i) and (iii), consider the spotted tiling of a composition with color
c and the following bijection.

(1) In each tile, map the c-block to a part c.
(2) Map each square in the tail to a part 1.

For the reverse map, combine each c with any subsequent parts 1 to make a tile κc.
Figure 4 shows an example. �

It is interesting to consider Proposition 3.3 when c = 1. This allows one possi-
bility for every part size which is equivalent to regular compositions (simply erase
the spots), so the connection between (i) and (ii) is clear. What is described by
(iii) in this case? There is only one composition of n − 1 where every part is a 1,
namely (1, . . . , 1) with n− 1 parts. Here we need to understand “1 or c” with c = 1
as indicating two types of 1s, say 1 and 1. Indeed, there are 2n−1 compositions of
n− 1 with each part 1 or 1, as there are two choices for each of the n− 1 parts.

3.1.2. Compositions with two colors. Next, we consider cases where two arbitrary
colors are allowed. We give two results analogous to, but a little more complicated
than, Propositions 3.2 and 3.3 above. In the following proposition, we follow the
convention that

(

m
x

)

= 0 for noninteger x.

Proposition 3.4. The number of n-color compositions of n with colors b and c
(where b < c) is given by

a(n) = a(n− 1) + a(n− b) + a(n− c)

with a(n) = 0 for n ≤ −1, a(0) = 1, and a(1) = · · · = a(b − 1) = 0 if b > 1. Also,

a(n) =

n
∑

m=1

n−bm
∑

i=0

(

i+m− 1

m− 1

)(

m

(n− bm− i)/(c− b)

)

.

Proof. The recurrence follows directly from Theorem 2.1.
For the direct formula, let m be the number of parts. Since only colors b and c

are allowed, each spot is preceded by at least b − 1 empty squares; these and the
spots account for bm squares. These are either b-blocks or incomplete c-blocks in
need of additional empty squares. The remaining n− bm squares either contribute
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to tails (empty squares after spots to make greater parts) or complete c-blocks
(empty squares before the spot).

More precisely, let i be the total number of squares in the tails of parts. There
are

(

i+m−1
m−1

)

ways of partitioning these i squares into the tails of m tiles. The
remaining n− bm− i squares need to be distributed before spots in some tiles. For
each tile, we have already accounted for b − 1 empty squares before the spot; if
additional empty squares are added, then there must be exactly c− b of them (to
make the part have color c rather than b). This is only possible when n− bm− i is
divisible by c − b, in which case there are

(

m
(n−bm−i)/(c−b)

)

ways to select the tiles

to extend to c-blocks. (Note that, by the binomial coefficient convention, nonzero
contributions to the sum arise only arise when n− bm− i is a multiple of c− b.) �

Proposition 3.5. Given positive integers n and b, c with b < c, the following three
combinatorial objects are equinumerous.

(i.) n-color compositions of n with only colors b and c allowed,
(ii.) regular compositions of n with parts b or greater where there are two types

of parts c and greater,
(iii.) regular compositions of n with parts 1, b, or c with first part b or c.

Proof. The proof is fairly similar to that of Proposition 3.3.
To connect the n-color compositions of (i) to the regular compositions of (ii),

it suffices to note that every part must be at least b (since the smallest allowed
color is b), and parts c or greater each have two possible types corresponding to the
allowed colors b and c.

With the following bijection connects the n-color compositions of (i) to the union
of regular compositions given in (iii).

(1) In each tile, map the b- or c-block to a part b or c, respectively.
(2) Map each square in the tail to a part 1.

For the reverse map, combine each b or c with any subsequent parts 1 to make
a tile κb or κc, respectively. �

There are further results for the case of consecutive colors (c = b + 1) and
several connections to well known integer sequences for small values of b; see [11]
for details. The interested reader could formulate and prove analogous statements
to Propositions 3.4 and 3.5 for three or more arbitrary colors.

3.1.3. Compositions with colors 1, 2, . . . , c. We conclude this subsection by consid-
ering consecutive allowed colors starting with 1 and continuing to an arbitrary
c ≥ 1, a case considered in the first paper on n-color compositions [2, §3]. The for-
mula in the following enumeration result combines to c nested summations; after
the proof we expand the formulas for small c.

Proposition 3.6. The number of n-color compositions of n allowing colors 1, 2, . . . , c
is given by

a(n) = 2a(n− 1) + a(n− 2) + · · ·+ a(n− c)

with a(0) = a(1) = 1. Also,

a(n) =

n
∑

ic=1

n−ic
∑

ℓ=0

(

ℓ+ ic − 1

ic − 1

)

Gc(nc, ic)
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where

Gj(nj , ij) =

ij
∑

ij−1=0

(

ij
ij − ij−1

)

Gj−1(nj−1, ij−1)

for 3 ≤ j ≤ c and G2(n2, i2) =
(

i2
n2

)

where nc = n− ic − ℓ and, for 2 ≤ j ≤ c− 1,

nj = nj+1 − j(ij+1 − ij).

Proof. The recurrence follows directly from Theorem 2.1.
For the direct formula, let ic be the number of parts, equivalently, the number

of spotted squares in the tiling. Also, let ℓ be the total number of squares in the
tails of the tiles. There are

(

ℓ+ic−1
ic−1

)

ways of partitioning these ℓ squares into the
tails of ic tiles. It remains to distribute the other nc = n − ic − ℓ squares as the
empty squares preceding spotted squares in the k-blocks for tiles with color k (with
k ≤ c); suppose there are Gc(nc, ic) ways to do this. Then the number of n-color
compositions of n allowing colors 1, 2, . . . , c is

a(n) =

n
∑

ic=1

n−ic
∑

ℓ=0

(

ℓ+ ic − 1

ic − 1

)

Gc(nc, ic).

Determining Gc(nc, ic) essentially involves an inductive process. We detail the
next step, a general step, and the last step (which can be considered the base case).

Let ij be the number of parts with color at most j (so that, in our setting, ic is
the total number of parts). Now ic − ic−1 is the number of parts with color c and

there are
(

ic
ic−ic−1

)

ways to select which parts have color c. Since each color c part

requires c− 1 empty squares in its c-block, we have nc−1 = nc − (c− 1)(ic − ic−1)
other squares left to assign to the ic−1 parts with colors at most c − 1. Suppose
there are Gc−1(nc−1, ic−1) ways to do this. Then

Gc(nc, ic) =

ic
∑

ic−1=0

(

ic
ic − ic−1

)

Gc−1(nc−1, ic−1).

In general, suppose Gj(nj , ij) is the number of ways to distribute nj empty
squares preceding spots to form k-blocks for ij parts with colors at most j. There

are ij − ij−1 parts of color j chosen among all the ij parts in
(

ij
ij−ij−1

)

ways leaving

nj−1 = nj − (j − 1)(ij − ij−1) other squares left to assign to the ij−1 parts with
color at most j − 1; suppose there are Gj−1(nj−1, ij−1) ways to do this. Then

Gj(nj , ij) =

ij
∑

ij−1=0

(

ij
ij − ij−1

)

Gj−1(nj−1, ij−1).

For j = 2, the formula simplifies considerably. The i2 parts have color 1 or 2.
Each of the n2 = n3− 2(i3− i2) empty squares precedes a spot to make the 2-block

of a color 2 part. Therefore G2(n2, i2) =
(

i2
n2

)

. �

As illustrations of the proposition, we detail the formulas for small values of c.
As mentioned above, the c = 1 case corresponds to regular compositions. In terms
of the proposition formula, it is easy to see that ℓ = n− i1 where i1 is the number
of parts. Then there are

(

ℓ+i1−1
i1−1

)

ways to distribute the empty squares among the
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i1 tails. Summing over i1 gives

n
∑

i1=1

(

ℓ+ i1 − 1

i1 − 1

)

=

n
∑

i1=1

(

n− 1

i1 − 1

)

= 2n−1.

For c = 2, we have G2(n2, i2) =
(

i2
n2

)

with n2 = n− i2 − ℓ, therefore

n
∑

i2=1

n−i2
∑

ℓ=0

(

ℓ+ i2 − 1

i2 − 1

)(

i2
n− i2 − ℓ

)

gives the number of n-color compositions of n allowing colors 1 and 2.

When c = 3, we have G3(n3, i3) =
∑i3

i2=0

(

i3
i3−i2

)

G2(n2, i2) with n3 = n− i3 − ℓ

and n2 = n3 − 2(i3 − i2). Thus the number of n-color compositions of n allowing
colors 1, 2, and 3 is

n
∑

i3=1

n−i3
∑

ℓ=0

i3
∑

i2=0

(

ℓ+ i3 − 1

i3 − 1

)(

i3
i3 − i2

)(

i2
n− 3i3 − 2i2 − ℓ

)

.

3.2. Prohibited colors. Our primary applications of Theorem 2.2 concern the
case where colors 1, . . . , d are prohibited for an arbitrary d ≥ 1. The section also
includes results for the specific case where the color 2 is prohibited.

3.2.1. Compositions prohibiting colors 1, 2, . . . , d. Analogous to Proposition 3.6, the
next proposition gives a (simpler) counting formula. We also provide a connection
to certain regular compositions with some notes on the case d = 1, as usual. First,
we recall a result on the enumeration of n-color compositions by number of parts.

Theorem 3.7. The number of n-color compositions of n with m parts is
(

n+m−1
2m−1

)

.

See [2, Thm. 1] for the original proof and [10, Thm. 4] for a combinatorial proof.

Proposition 3.8. Given d ≥ 1, the number of n-color compositions of n prohibiting
colors 1, 2, . . . , d is given by

a(n) = 2a(n− 1)− a(n− 2) + a(n− d− 1)

with a(0) = 1 and a(1) = · · · = a(d) = 0. Also,

a(n) =

⌊n/(d+1)⌋
∑

m=1

(

n− (d− 1)m− 1

2m− 1

)

.

Proof. The recurrence follows directly from Theorem 2.2.
For the direct formula, we determine the number of desired length n compositions

having m parts. Note that m can range from 1 to ⌊n/(d+1)⌋ since each part must
be at least d+ 1.

With the color prohibition, each part κc begins with d empty squares. Disre-
garding these leaves (κ− d)c−d where the color c− d is restricted only by the part
length. Together, ignoring the dm necessarily empty squares of a composition of n
with colors 1, . . . , d prohibited leaves an unrestricted n-color composition of n−dm
with m parts. By Theorem 3.7, there are

(

n−dm+m−1
2m−1

)

of these. Summing over
possible m values gives the formula. �
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It is worth mentioning that the d = 1 case has recurrence a(n) = 2a(n− 1) and
direct formula
(

n− 1

1

)

+

(

n− 1

3

)

+ · · · =

(

n− 2

0

)

+

(

n− 2

1

)

+

(

n− 2

2

)

+

(

n− 2

3

)

+ · · · = 2n−2

by the binomial theorem. See also the notes for the d = 1 case of the next propo-
sition.

Proposition 3.9. There is a bijection between

(i.) n-color compositions of n+ d prohibiting colors 1, 2, . . . , d and
(ii.) regular compositions of n with parts congruent to 1, 2, . . . , d mod 2d where

any part i for 2 ≤ i ≤ d − 1 must either be the first part or be followed by
an odd number of parts d.

Proof. Apply the following map to the spotted tiling of an n-color composition of
n+ d with colors 1, 2, . . . , d prohibited.

(1) Remove the first d squares (necessarily empty), changing the first part κc

to (κ− d)c−d.
(2) Convert each part κc to c followed by k− c parts 1 in the regular composi-

tion, i.e., the c-block becomes a part c and each square of the tail becomes
a part 1.

(3) In the resulting regular composition, replace any part j such that d + 1 ≤
j ≤ 2d mod 2d by the parts j − d, d.

Note that step (1) makes a composition with sum n and step (3) guarantees that
each part is congruent to 1, 2, . . . , d mod 2d. In the resulting regular composition,
the only time a part i with 2 ≤ i ≤ d − 1 can be generated is either from the
conversion of the shortened part in (1), in which case i is the first part, or from
j − d in step (3), in which case it is followed by a d. The only way for i to be
followed by additional parts d is subsequent applications of (3) to 2d which each
yield two parts d, thus i is followed by an odd number of parts d.

For the reverse map, begin with a specified regular composition of n.

(1) Working from right to left, every time we have a part d, we add it to the
next part to the left ℓ to make a part ℓ+ d. Also, change the leftmost part
k to k + d.

(2) Starting again from the right, merge runs of parts 1 (possibly empty) with
the larger part to the left into n-colored parts. Specifically, a length b run
of parts 1 and the part d+ ℓ to its left becomes the part (ℓ+d+ b)ℓ+d, that
is, a (ℓ+ d)-block with tail length b.

By the restriction on the compositions given in the proposition statement, step
(1) produces compositions of n+ d with each part 1 or greater than d whose first
part is not 1. Step (2) then converts these into n-color compositions with colors
1, 2, . . . , d prohibited. See Figure 5 for an example of the bijection. �

In the case of d = 1, the restriction about parts i in the regular compositions is
vacuous; the bijection is between n-color compositions of length n+ 1 with color 1
prohibited and all regular compositions of length n. In the first mapping, step (3)
does not arise. In the reverse map, ignore step (1) except to add an initial part 1
to the composition. See Figure 6 for the complete n = 3, d = 1 case.
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✉ ✉ ✉ ✉

Figure 5. An example of the bijection in Proposition 3.9 for n =
16 and d = 2, which associates the spotted tiling of the n-colored
composition (53, 33, 44, 64) and the regular composition tiling for
(2, 1, 2, 2, 2, 4, 1, 1) below it.

✉ ✉ ✉ ✉ ✉

Figure 6. The complete bijection in Proposition 3.9 for n = 3
and d = 1, which associates the spotted tilings of (44), (43), (42),
(22, 22) with the regular tilings of (3), (2, 1), (1, 1, 1), (1, 2), respec-
tively.

3.2.2. Prohibiting color 2. We conclude this subsection with an illustration of the
specific results that can be found for particular restrictions, here, prohibiting the
color 2. See [11] for further examples of this type. We begin with enumeration
results, including a combinatorial proof for a formula listed in [13, A034943].

Proposition 3.10. The number of n-color compositions of n prohibiting color 2 is
given by

a(n) = 3a(n− 1)− 2a(n− 2) + a(n− 3)

with a0 = a1 = 1 and a2 = 2. Also,

⌊n/2⌋
∑

k=0

(

n+ k

3k

)

.

Proof. The recurrence follows directly from Theorem 2.2.
For the direct formula, we show that there are

(

n+k
3k

)

compositions of n prohibit-
ing color 2 that have k parts greater than 1. Summing over possible values of k,
from 0 to ⌊n/2⌋, will establish the formula.

Here is a bijection between the color compositions of n prohibiting color 2 and
with k greater than 1, and 1× (n+ k) rectangles with 3k marked squares.

Given a 1×(n+k) rectangle, label its squares 1, 2, . . . , n+k with marked squares
in positions a1 < a2 < · · · < a3k. For i = 1, . . . , k, form a spotted tile from the
squares a3i−2, . . . , a3i−1, . . . , a3i as follows.

(1) Let a3i−1 be the spotted square.
2a. If a3i−1 = a3i−2 + 1, remove the square a3i−2.
2b. If a3i−1 6= a3i−2 + 1, remove the square a3i.
3. Map any square not in {a3i−2, . . . , a3i−1, . . . , a3i} for any i to a spotted tile

corresponding to 11.

Steps 1 and 2 create a spotted tile corresponding to a color composition part of
length a3i − a3i−2 (which is at least 2) with color a3i−1 − a3i−2 + 1 unless that
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❡❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡❡ ❡ ✉ ❡ ❡ ❡ ✉ ❡ ❡ ❡ ❡ ❡ ❡

✉❡ ❡ ✉ ❡ ✉ ❡ ✉ ❡ ✉ ❡ ❡ ✉ ❡

✉ ✉ ✉ ✉ ✉ ✉

✉ ✉ ✉✉ ✉ ✉

Figure 7. An example of the bijection of Proposition 3.10. The
1 × 20 rectangle with indicated 12 marked squares corresponds to
the color composition (41, 11, 33, 11, 31, 43) of 16 which has four
parts greater than 1.

would give a 2, in which case the color is 1. Removing k squares and erasing
marked squares that did not become spots leaves a desired color composition of n.
See Figure 7 for an example.

For the reverse map, given a color composition of n prohibiting color 2 with k
parts greater than 1, we modify each of those k parts.

1a. Change κ1 with κ ≥ 2 to (κ+ 1)2.
1b. Change κc with κ ≥ 2 and c ≥ 2 to (κ+ 1)c.
2. Mark the first square, spotted square, and last square of these resulting k

parts.
3. Erase the spots of any parts 11.
4. Erase any lines separating parts.

Note that step 1 produces parts with no color 1 and with each part having a positive
length tail (i.e., no last square is spotted). Extending each of these k parts by one
gives a color composition of n+ k. Also, for each of these k parts, step 2 described
three distinct squares. Steps 2 through 4 give a 1×(n+k) rectangle with 3k marked
squares. �

Next, we prove a connection between n-color compositions prohibiting the color
2 and certain regular compositions. To present this bijection, we introduce the
notions of left open, right open, and open parts in a composition. A left open part
of size k, denoted by ·k, is a part of size k that can be joined with its adjacent part
(on the left) if that part is right open or open; the definition for right open part k·
or open part ·k· are similar. Standard parts may be called closed for clarity. For
example, (3·, ·2·, 4·, ·3, ·1·, ·5) corresponds to the regular composition (5, 7, 6) where
5 is a result of 3· and ·2·, 7 is a result of 4· and ·3, and 6 is a result of ·1· and ·5;
see Figure 8.

Figure 8. A representation of (3·, ·2·, 4·, ·3, ·1·, ·5) leading to (5, 7, 6).
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Proposition 3.11. There is a bijection between

(i.) n-color compositions of n with color 2 prohibited and
(ii.) regular compositions of 3n+ 2 with parts congruent to 2 modulo 3.

Proof. Note that the regular compositions described in (ii) must each have 3m+ 1
parts for some nonnegative integer m in order for the parts congruent to 2 modulo
3 to sum to 3n+ 2.

Given a color composition of n with color 2 prohibited, we triple each part size
and build a regular composition as follows.

(1) Change any 11 to ·3· (an open 3).
2a. Change any κ1 with κ ≥ 2 to ·2, 2, 3κ−4 (a left open 2 followed by a closed

2 and a closed 3κ− 4).
2b. Change any κc with κ ≥ 2 and c ≥ 3 to ·2, 3c− 4, 3κ− 3c+ 2.
3. Add ·2 at the end of the composition.
4. Combine any open and left open parts as described in their definition.

There are several characteristics of the map to verify.
Since each part of the color composition is tripled in length and step 3 adds a

length 2 part, the resulting composition sums to 3n+ 2.
The parts are all 2 modulo 3: The closed parts generated in step 2 all have that

form, and any run of ·3· terms (possibly empty) combines with a subsequent ·2
(guaranteed by step 3) to give a part of length 2 modulo 3.

Finally, for the constraint on the number of parts, suppose that there are m
parts in the color composition of length 2 or more. For each of these m parts, step
2 creates 3 parts: an initial part which is the merger of any previous ·3· terms with
·2 and two closed parts specified by (2a) or (2b). Step 3 results in one additional
part, giving 3m+ 1 in total.

For the reverse map, consider a regular composition of 3n+2 with parts congruent
to 2 modulo 3 that has 3m+ 1 parts.

(1) For the first part and every third part after that, i.e., for each of the (3k+
1)st parts for k = 0, . . . ,m, change it from 3a+2 to a copies of 11 followed
by a 2;

(2) Remove the final 2.
(3) Every remaining 2 from step 1 is followed by the (3k+2)nd and (3k+3)rd

parts of the regular composition. Write these three consecutive parts as
(2, x, y).

3a. If x = 2, change (2, x, y) to ((2 + x+ y)/3)1;
3b. If x > 2, change (2, x, y) to ((2 + x+ y)/3)(x+4)/3.

Step 2 is valid since the last part is the (3m + 1)st which was converted in step
1 to a sequence ending in 2. The various part lengths and colors in step 3 are all
integers since x, y ≡ 2 mod 3.

For the composition sums, each application of step 3 replaces 2 + x+ y towards
the sum of the regular composition with a part (2+x+y)/3 in the color composition,
and step 1 takes a 3a contribution to the regular composition to a copies of 11, so
that the color composition has sum n.

Note that the colors assigned are either 1 or (x+ 4)/3 with x > 2, i.e., a color 3
or greater.
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Towards seeing that this is the inverse of the previous map, step 3 applies to m
triples (2, x, y) so that the resulting color composition has m parts of length 2 or
greater. �

For example, the color composition (21, 11, 11, 33, 44, 11) of 12, with 3 parts 2
or greater, corresponds the regular composition (2, 2, 2, 8, 5, 2, 2, 8, 2, 5) of 38, with
3 · 3 + 1 = 10 parts, as follows.

(21, 11, 11, 33, 44, 11) −→ (·2, 2, 2; ·3·; ·3·; ·2, 5, 2; ·2, 8, 2; ·3·; ·2)

−→ (2, 2, 2, 8, 5, 2, 2, 8, 2, 5)

(2, 2, 2, 8, 5, 2, 2, 8, 2, 5) −→ ([2, 2, 2], 11, 11, [2, 5, 2], [2, 8, 2], 11, 2)

−→ (21, 11, 11, 33, 44, 11)

3.3. Colors under modular conditions. Certain cases of modular color con-
ditions have been considered recently. Odd and even colors are aspects of many
combined restrictions in [14]. The focus of [1] is allowing colors within a singular
modular class i mod m. In this section, we give results that expand on this work.

3.3.1. Compositions with colors of a single modular congruence. Most of [1] con-
siders n-color compositions with colors restricted to those of the form am + i for
positive m, i and a ≥ 0. This is slightly more general than our i mod m since, for
example, m = 2 and i = 5 gives allowed colors 5, 7, 9, . . . rather than all odd colors.
Acosta et al. give further results for the case i = m+ 1, including a combinatorial
proof involving binary words [1, Thm. 10]. We give a related proof for all i in the
range 2 ≤ i ≤ m.

Proposition 3.12. Given a modulus m ≥ 2 and an i such that 2 ≤ i ≤ m, there
is a bijection between

(i.) n-color compositions of n with colors congruent to i mod m and
(ii.) length n − 1 binary strings that start with 1 where runs of 1’s have length

congruent to i− 1 mod m.

Proof. Given a color composition of n with all colors congruent to i mod m,

1a. In each part, map the empty squares of the c-block (i.e., the squares before
the spot) to 1.

1b. In each part, map the spotted square and tail to 0.
2. Remove a 0 at the end.

Since allowed colors satisfy c ≥ 2, the first binary digit is 1. Because c ≡ i mod m
and each run of 1’s begins with a corresponding part, the length of each run of 1’s
is congruent to i− 1 mod m. And since the tiling for a color composition ends in
a spot or empty square after a spot, the last binary digit is 0 (before it is removed
in step 2).

The reverse map is clear: Given a specified binary string, add a 0 at the end and
convert alternating runs of 1’s and 0’s into tilings of a color composition. �

See Figure 9 for an example with even colors. We note that the proposition
statement holds for i = 1, but neither the combinatorial proof here nor the related
one in [1] cover that case.
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✉ ✉ ✉

1 1 1 0 0 1 0 0 1 1 1

Figure 9. The bijection of Proposition 3.12 for m = i = 2 where
the composition (54, 32, 44) of 12 corresponds to the length 11 bi-
nary string 11100 100 111 (spaces corresponding to parts are only
for clarity).

3.3.2. Connecting compositions with odd colors and with no parts 1. The first new
restriction considered in [14] is n-color compositions with just odd colors [13,
A006054]. Sachdeva and Agarwal also consider a restriction due to Guo [9], n-
color compositions where the part 11 is prohibited [13, A219788]. We conclude
with a new connection between these two types of n-color compositions.

Proposition 3.13. Let a(n) be the number of n-color compositions of n with only
odd colors allowed and let b(n) be the number of n-color compositions of n where
the part 11 is prohibited. Then a(n) = b(n) + b(n− 1).

Proof. Write A(n) for the set of color compositions of n with only odd colors allowed
and B(n) for the set of color compositions of n where the part 11 is prohibited. We
establish a bijection between A(n) and B(n) ∪B(n− 1).

Starting from B(n) ∪B(n− 1),

(1) Create the set B′(n) by adding a 11 at the end of each composition in
B(n− 1).

(2) In the compositions of B(n)∪B′(n), change each even part κ2c to 11, (κ−
1)2c−1.

Note that B′(n) from step 1 is disjoint from B(n) which contains no parts 11. An
alternative description of step 2 is to make the first square (empty since the color is
even) spotted corresponding to a new part; note that the spot for κ2c stays in the
same position. See Figure 10 for an example. Clearly, step 2 results in compositions
with only odd colors.

For the reverse map, given a composition in A(n),

(1) Working left to right, any 11 having a successor κ2c−1 becomes the part
(κ+ 1)2c.

(2) Any terminal 11 is removed.

Note that the spot indicating the color of κ2c−1 does not move in the merger giving
(κ + 1)2c. Clearly, the procedure leaves no parts 11. The compositions with a 11
at the end become elements of B(n − 1); those with other terminal parts become
elements of B(n). �
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