Flexible circuits in the d-dimensional rigidity matroid

Georg Grasegger, Hakan Guler ${ }^{\dagger}$ Bill Jackson ${ }^{\ddagger}$ and Anthony Nixon ${ }^{\S}$

Abstract

A bar-joint framework (G, p) in \mathbb{R}^{d} is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of \mathbb{R}^{d}. It is known that, when (G, p) is generic, its rigidity depends only on the underlying graph G, and is determined by the rank of the edge set of G in the generic d-dimensional rigidity matroid \mathcal{R}_{d}. Complete combinatorial descriptions of the rank function of this matroid are known when $d=1,2$, and imply that all circuits in \mathcal{R}_{d} are generically rigid in \mathbb{R}^{d} when $d=1,2$. Determining the rank function of \mathcal{R}_{d} is a long standing open problem when $d \geq 3$, and the existence of non-rigid circuits in \mathcal{R}_{d} for $d \geq 3$ is a major contributing factor to why this problem is so difficult. We begin a study of non-rigid circuits by characterising the non-rigid circuits in \mathcal{R}_{d} which have at most $d+6$ vertices.

1 Introduction

A bar-joint framework (G, p) in \mathbb{R}^{d} is the combination of a finite graph $G=(V, E)$ and a realisation $p: V \rightarrow \mathbb{R}^{d}$. The framework is said to be rigid if the only edge-length preserving continuous motions of its vertices arise from isometries of \mathbb{R}^{d}, and otherwise it is said to be flexible. The study of the rigidity of frameworks has its origins in work of Cauchy and Euler on Euclidean polyhedra [5] and Maxwell [14] on frames.

Abbot [1] showed that it is NP-hard to determine whether a given d-dimensional framework is rigid whenever $d \geq 2$. The problem becomes more tractable for generic frameworks (G, p) since we can linearise the problem and consider 'infinitesimal rigidity' instead. We define the rigidity matrix $R(G, p)$ as the $|E| \times d|V|$ matrix in which, for $e=v_{i} v_{j} \in E$,

[^0]the submatrices in row e and columns v_{i} and v_{j} are $p\left(v_{i}\right)-p\left(v_{j}\right)$ and $p\left(v_{j}\right)-p\left(v_{i}\right)$, respectively, and all other entries are zero. We say that (G, p) is infinitesimally rigid if $\operatorname{rankR}(\mathrm{G}, \mathrm{p})=\mathrm{d}|\mathrm{V}|-\binom{\mathrm{d}+1}{2}$. Asimow and Roth [2] showed that infinitesimal rigidity is equivalent to rigidity for generic frameworks (and hence that generic rigidity depends only on the underlying graph of the framework).

The d-dimensional rigidity matroid of a graph $G=(V, E)$ is the matroid $\mathcal{R}_{d}(G)$ on E in which a set of edges $F \subseteq E$ is independent whenever the corresponding rows of $R(G, p)$ are independent, for some (or equivalently every) generic p. We denote the rank function of $\mathcal{R}_{d}(G)$ by r_{d} and put $r_{d}(G)=r_{d}(E)$. We say that G is: \mathcal{R}_{d}-independent if $r_{d}(G)=|E| ; \mathcal{R}_{d^{-}}$ rigid if G is a complete graph on at most $d+1$ vertices or $r_{d}(G)=d|V|-\binom{d+1}{2}$; minimally \mathcal{R}_{d}-rigid if G is \mathcal{R}_{d}-rigid and \mathcal{R}_{d}-independent; and an \mathcal{R}_{d}-circuit if G is not \mathcal{R}_{d}-independent but $G-e$ is \mathcal{R}_{d}-independent for all $e \in E$.

It is not difficult to see that the 1-dimensional rigidity matroid of a graph G is equal to its cycle matroid. Landmark results of Pollaczek-Geiringer [12, 15], and Lovász and Yemini [13] characterise independence and the rank function in \mathcal{R}_{2}. These results imply that every \mathcal{R}_{d}-circuit is rigid when $d=1,2$. This is no longer true when $d \geq 3$ (see Figures 1 and 2 below), and the existence of flexible circuits is a fundamental obstuction to obtaining a combinatorial characterisation of independence in \mathcal{R}_{d}.

Previous work on flexible \mathcal{R}_{d}-circuits has concentrated on constructions, see Tay [16], and Cheng, Sitharam and Streinu [6]. We will adopt a different approach: that of characterising the flexible \mathcal{R}_{d}-circuits in which the number of vertices is small compared to the dimension. To state our theorem we will have to define two families of graphs.

For $d \geq 3$ and $2 \leq t \leq d-1$, the graph $B_{d, t}$ is defined by putting $B_{d, t}=\left(G_{1} \cup G_{2}\right)-e$ where $G_{i} \cong K_{d+2}, G_{1} \cap G_{2} \cong K_{t}$ and $e \in E\left(G_{1} \cap G_{2}\right)$. The family $\mathcal{B}_{d, d-1}^{+}$consists of all graphs $B_{d, d-1}^{+}=\left(G_{1} \cup G_{2}\right)-\{e, f, g\}$ where: $G_{1} \cong K_{d+3}$ and $e, f, g \in E\left(G_{1}\right) ; G_{2} \cong K_{d+2}$ and $e \in E\left(G_{2}\right) ; G_{1} \cap G_{2} \cong K_{d-1} ; e, f, g$ do not all have a common end-vertex; if $\{f, g\} \subset$ $E\left(G_{1}\right) \backslash E\left(G_{2}\right)$ then f, g do not have a common end-vertex. See Figure 1 for an illustration of the general construction and Figure 2 for specific examples.
Theorem 1. Suppose G is a flexible \mathcal{R}_{d}-circuit with at most $d+6$ vertices. Then either
(a) $d=3$ and $G \in\left\{B_{3,2}\right\} \cup \mathcal{B}_{3,2}^{+}$or
(b) $d \geq 4$ and $G \in\left\{B_{d, d-1}, B_{d, d-2}\right\} \cup \mathcal{B}_{d, d-1}^{+}$.

A recent preprint of Jordán [11] characterises \mathcal{R}_{d}-rigid graphs with at most $d+4$ vertices. His characterisation implies that every \mathcal{R}_{d}-circuit with at most $d+4$ vertices is \mathcal{R}_{d}-rigid. Theorem 1 immediately gives the following characterisation of \mathcal{R}_{d}-rigid graphs with at most $d+6$ vertices in terms of d-tight subgraphs (which are defined in the next section).
Corollary 2. Let $G=(V, E)$ be a graph with $|V| \leq d+6$. Then G is \mathcal{R}_{d}-rigid if and only if G has a d-tight, d-connected spanning subgraph H such that $B_{d, d-1}, B_{d, d-2} \nsubseteq H$.

Figure 1: $B_{d, d-1}$ on the left, $B_{d, d-2}$ in the middle and $B_{d, d-1}^{+}$on the right.

Figure 2: $B_{3,2}$ on the left, $B_{4,2}$ in the middle and $B_{3,2}^{+}$on the right.

2 Preliminary Lemmas

Given a vertex v in a graph $G=(V, E)$, we will use $d_{G}(v)$ and $N_{G}(v)$ to denote the degree and neighbour set respectively of v. For a set $V^{\prime} \subseteq V$, we define by $N_{G}\left(V^{\prime}\right)=$ $\left(\bigcup_{v \in V^{\prime}} N_{G}(v)\right)-V^{\prime}$. We will use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degree, respectively, in G, and $\operatorname{dist}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})$ to denote the length of a shortest path between two vertices $x, y \in V$. We will suppress the subscript in these notations whenever the graph is clear from the context. The graph G is d-sparse if $\left|E^{\prime}\right| \leq d\left|V^{\prime}\right|-\binom{d+1}{2}$ for all subgraphs $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G with $\left|V^{\prime}\right| \geq d+2$. It is d-tight if it is d-sparse and has $d|V|-\binom{d+1}{2}$ edges.

We will need the following standard results from rigidity theory.
Lemma 3. [19, Lemma 11.1.3] Let $G=(V, E)$ be \mathcal{R}_{d}-independent with $|V| \geq d+2$. Then $r_{d}(G) \leq d|V|-\binom{d+1}{2}$.

Lemma 3 implies that every \mathcal{R}_{d}-independent graph is d-sparse. The characterisations of \mathcal{R}_{d}-independence when $d \leq 2$ show that the converse holds for these values of d. The existence of flexible \mathcal{R}_{d}-circuits implies that the converse fails for all $d \geq 3$.

A graph G^{\prime} is said to be obtained from another graph G by: a 0 -extension if $G=G^{\prime}-v$ for a vertex $v \in V\left(G^{\prime}\right)$ with $d_{G^{\prime}}(v)=d$; or a 1 -extension if $G=G^{\prime}-v+x y$ for a vertex $v \in V\left(G^{\prime}\right)$ with $d_{G^{\prime}}(v)=d+1$ and $x, y \in N(v)$.

Lemma 4. [19, Lemma 11.1.1, Theorem 11.1.7] Let G be \mathcal{R}_{d}-independent and let G^{\prime} be obtained from G by a 0 -extension or a 1-extension. Then G^{\prime} is \mathcal{R}_{d}-independent.

A vertex split of a graph $G=(V, E)$ is defined as follows: choose $v \in V, x_{1}, x_{2}, \ldots, x_{d-1} \in$ $N(v)$ and a partition N_{1}, N_{2} of $N(v) \backslash\left\{x_{1}, x_{2}, \ldots, x_{d-1}\right\}$; then delete v from G and add two new vertices v_{1}, v_{2} joined to N_{1}, N_{2}, respectively; finally add new edges $v_{1} v_{2}, v_{1} x_{1}, v_{2} x_{1}$, $v_{1} x_{2}, v_{2} x_{2}, \ldots, v_{1} x_{d-1}, v_{2} x_{d-1}$.

Lemma 5. [18, Proposition 10] Let G be \mathcal{R}_{d}-independent and let G^{\prime} be obtained from G by a vertex split. Then G^{\prime} is \mathcal{R}_{d}-independent.

Lemma 6. [17] Let $d \geq 1$ be an integer, G be a graph and let G^{\prime} be obtained from G by adding a new vertex adjacent to every vertex of G. Then G is \mathcal{R}_{d}-independent if and only if G^{\prime} is \mathcal{R}_{d+1}-independent.

Lemma 6 immediately implies that G is \mathcal{R}_{d}-rigid if and only if G^{\prime} is \mathcal{R}_{d+1}-rigid and G is an \mathcal{R}_{d}-circuit if and only if G^{\prime} is an \mathcal{R}_{d+1}-circuit.

Lemma 7. [19, Lemma 11.1.9] Let G_{1}, G_{2} be subgraphs of a graph G and suppose that $G=G_{1} \cup G_{2}$.
(a) If $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq d$ and G_{1}, G_{2} are \mathcal{R}_{d}-rigid then G is \mathcal{R}_{d}-rigid.
(b) If $G_{1} \cap G_{2}$ is \mathcal{R}_{d}-rigid and G_{1}, G_{2} are \mathcal{R}_{d}-independent then G is \mathcal{R}_{d}-independent.
(c) If $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq d-1$, $u \in V\left(G_{1}\right)-V\left(G_{2}\right)$ and $v \in V\left(G_{2}\right)-V\left(G_{1}\right)$ then $r_{d}(G+u v)=r_{d}(G)+1$.

We also require some new lemmas. Lemma $7(\mathrm{~b})$ immediately implies that every $\mathcal{R}_{d^{-}}$ circuit $G=(V, E)$ is 2-connected and that, if $G-\{u, v\}$ is disconnected for some $u, v \in V$, then $u v \notin E$. Our first new lemma gives more structural information when $G-\{u, v\}$ is disconnected.

Given three graphs $G=(V, E), G_{1}=\left(V_{1}, E_{1}\right)$, and $G_{2}=\left(V_{2}, E_{2}\right)$, we say that G is a 2-sum of G_{1} and G_{2} along a pair of vertices u, v if $V_{1} \cap V_{2}=\{u, v\}, E_{1} \cap E_{2}=\{u v\}$, $V=V_{1} \cup V_{2}$ and $E=\left(E_{1} \cup E_{2}\right)-u v$.

Lemma 8. Suppose that $G=(V, E)$ is the 2-sum of $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Then G is an \mathcal{R}_{d}-circuit if and only if G_{1} and G_{2} are both \mathcal{R}_{d}-circuits.

Proof. We first prove necessity. Suppose that G is an \mathcal{R}_{d}-circuit. If G_{1} and G_{2} are both \mathcal{R}_{d}-independent then $G+u v$ is \mathcal{R}_{d}-independent by Lemma $7(\mathrm{~b})$, a contradiction since G is an \mathcal{R}_{d}-circuit. If exactly one of G_{1} and G_{2}, say G_{1}, is \mathcal{R}_{d}-independent then $u v$ belongs to the unique \mathcal{R}_{d}-circuit contained in G_{2}. We may extend $u v$ to a base of E_{i}, for $i=1,2$, and then apply Lemma $7(\mathrm{~b})$ to obtain $r_{d}(G+u v)=r_{d}\left(G_{1}\right)+r_{d}\left(G_{2}\right)-1$. Thus we have
$r_{d}(G)=r_{d}(G+u v)=\left|E_{1}\right|+\left|E_{2}\right|-2=|E|$, a contradiction since G is an \mathcal{R}_{d}-circuit. Hence G_{1} and G_{2} are both \mathcal{R}_{d}-dependent. Then the matroid circuit elimination axiom combined with the fact that G is an \mathcal{R}_{d}-circuit imply that G_{1} and G_{2} are both \mathcal{R}_{d}-circuits.

We next prove sufficiency. Suppose that G_{1} and G_{2} are both \mathcal{R}_{d}-circuits. The circuit elimination axiom implies that G is \mathcal{R}_{d}-dependent and hence that G contains an \mathcal{R}_{d}-circuit $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Since $G_{i}-u v$ is \mathcal{R}_{d}-independent for $i=1,2$, we have $E^{\prime} \cap E_{i} \neq \emptyset$. This implies that G^{\prime} is a 2-sum of $G_{1}^{\prime}=\left(G_{1} \cap G^{\prime}\right)+u v$ and $G_{2}^{\prime}=\left(G_{2} \cap G^{\prime}\right)+u v$. The proof of necessity in the previous paragraph now tells us that G_{1}^{\prime} and G_{2}^{\prime} are both \mathcal{R}_{d}-circuits. Since G_{i} is an \mathcal{R}_{d}-circuit and $G_{i}^{\prime} \subseteq G_{i}$ we must have $G_{i}^{\prime}=G_{i}$ for $i=1,2$ and hence $G=G^{\prime}$.

The special cases of Lemma 8 when $d=2,3$ were proved by Berg and Jordán [3] and Tay [16], respectively.

We may apply Lemma 8 to the \mathcal{R}_{3}-circuit K_{5} to deduce that $B_{3,2}$ is an \mathcal{R}_{3}-circuit. The same argument applied to the \mathcal{R}_{4}-circuit K_{6} implies that $B_{4,2}$ is an \mathcal{R}_{4}-circuit. We can now use Lemma 6 to deduce that $B_{d, d-1}$ and $B_{d, d-2}$ are \mathcal{R}_{d}-circuits for all $d \geq 4$. Similarly, we may apply Lemma 8 to the \mathcal{R}_{3}-circuits K_{5} and $K_{6}-\{f, g\}$, for two non-adjacent edges f, g, to deduce that $B_{3,2}^{+}$is an \mathcal{R}_{3}-circuit, and then use Lemma 6 to deduce that $B_{d, d-1}^{+}$is an \mathcal{R}_{d}-circuit unless f or g has an end-vertex in $V_{1} \cap V_{2}$. Our next result extends this to all graphs in $\mathcal{B}_{d, d-1}^{+}$.
Lemma 9. Every graph in $\mathcal{B}_{d, d-1}^{+}$is an $\mathcal{R}_{d^{-}}$-circuit.
Proof. Let $B_{d, d-1}^{+} \in \mathcal{B}_{d, d-1}^{+}$and suppose that $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$, and e, f, g are as in the definition of $\mathcal{B}_{d, d-1}^{+}$. Since $B_{d, d-1}^{+}$is d-tight and not \mathcal{R}_{d}-rigid (since it is not d-connected), it is \mathcal{R}_{d}-dependent.

We will complete the proof by showing that $B_{d, d-1}^{+}-h$ is \mathcal{R}_{d}-independent for all edges h of $B_{d, d-1}^{+}$. If h is incident with a vertex $x \in V_{2} \backslash V_{1}$, then we can reduce $B_{d, d-1}^{+}-h$ to $G_{1}-\{e, f, g\}$ by recursively deleting vertices of degree at most d (starting from x). Since $G_{1}-\{e, f, g\}$ is \mathcal{R}_{d}-independent, Lemma 4 and the fact that edge deletion preserves independence now imply that $B_{d, d-1}^{+}-h$ is \mathcal{R}_{d}-independent. Thus we may assume that $h \in E_{2}$.

Suppose that f, g, h do not have a common end-vertex. Choose a vertex $x \in V_{2} \backslash V_{1}$ and let $H=B_{d, d-1}^{+}-h-x+e$ be the graph obtained by applying a 1 -reduction at x. We can reduce H to $G_{1}-\{f, g, h\}$ by recursively deleting vertices of degree at most d. Since f, g, h do not have a common end-vertex, $G_{1}-\{f, g, h\}$ is \mathcal{R}_{d}-independent. We can now use Lemma 4 to deduce that $B_{d, d-1}^{+}-h$ is \mathcal{R}_{d}-independent.

Hence we may assume that f, g, h have a common end-vertex u. The definition of $\mathcal{B}_{d, d-1}$ now implies that at least one of f and g, say f, is an edge of $G_{1} \cap G_{2}$. Since e, f, g do not have a common end-vertex, e is not incident with u and hence e, g, h do not have a common end-vertex. We can now apply the argument in the previous paragraph with the roles of e and f reversed to deduce that $B_{d, d-1}^{+}-h$ is \mathcal{R}_{d}-independent.

Figure 3: Construction of G in the proof of Lemma 10.

Lemma 10. Suppose $G=G_{1} \cup G_{2}$ where: $G_{1} \cap G_{2}=\emptyset ; G_{1}$ is minimally \mathcal{R}_{d}-rigid; $G_{2}=K_{3}$; each vertex of G_{2} has $d-1$ neighbours in G_{1}; the set of all neighbours of the vertices of G_{2} in G_{1} has size at least d. Then G is minimally \mathcal{R}_{d}-rigid.

Proof. Let $V\left(G_{2}\right)=\{x, y, z\}$. Since the set of all neighbours in G_{1} of the vertices in G_{2} has size at least d, we may suppose that some vertex $w \in G_{1}$ is a neighbour of z, but not x or y. Then G can be obtained from G_{1} by a 0 -extension adding x and edges from x to its $d-1$ neighbours in G_{1} as well as w, followed by two 1 -extensions adding y and deleting $x w$ and then adding z and deleting $y w$. (See Figure 3.) Hence G is \mathcal{R}_{d}-independent by Lemma 4. Minimal rigidity follows by a simple edge count.

Lemma 11. (a) Every 6 -regular graph on 10 vertices is \mathcal{R}_{4}-independent.
(b) Every 12-regular graph on 15 vertices is \mathcal{R}_{9}-independent.

Proof. There are 216 -regular graphs on 10 vertices (see OEIS sequence A165627) and 17 12 -regular graphs on 15 vertices (by direct computation). That they are \mathcal{R}_{d}-independent for the stated dimensions can now be checked by any computer algebra systems.

Our final lemma is purely graph theoretic.
Lemma 12. Suppose that $G=(V, E)$ is a graph with $|V| \geq 11$, minimum degree two and maximum degree three. Then there exist vertices $x, y \in V$ with $d(x)=2, d(y)=3$ and $\operatorname{dist}(\mathrm{x}, \mathrm{y}) \geq 3$.

Proof. Assume $G=(V, E)$ is a counterexample to the lemma. Choose a vertex $v \in V$ of degree 2. Then there are at most 6 vertices at distance 1 or 2 from v. Hence there are at most 6 vertices of degree 3 . Now choose a vertex $u \in V$ of degree 3 . Each neighbour of u is either a vertex of degree 2 which has at most one other neighbour of degree 2 or a vertex of degree 3 which has at most two other neighbours of degree 2 . Therefore we have at most 6 vertices of degree 2. If there does not exist 6 vertices of degree 3 then the number of
vertices of degree 3 is at most 4 , and we would have $|V| \leq 10$. Hence there are exactly 6 vertices of degree 3 and v is adjacent to two vertices of degree 3 . Since v is an arbitrary vertex of degree two, every vertex of degree 2 is adjacent to two vertices of degree 3 . Now choose w to be a vertex of degree 3 at distance 2 from v and a vertex $y \neq v$, of degree 2 , not adjacent to w. Then $\operatorname{dist}(\mathrm{w}, \mathrm{y}) \geq 3$.

3 Main results

We will prove Theorem 1 and then use it to obtain a lower bound on the number of edges in a flexible \mathcal{R}_{d}-circuit.

Proof of Theorem 1

We proceed by contradiction. Suppose the theorem is false and choose a counterexample $G=(V, E)$ such that d is as small as possible and, subject to this condition, $|V|$ is as small as possible. Since all \mathcal{R}_{d}-circuits are \mathcal{R}_{d}-rigid when $d \leq 2$, we have $d \geq 3$. Since G is an \mathcal{R}_{d}-circuit, $G-v$ is \mathcal{R}_{d}-independent for all $v \in V$, and we can now use the fact that 0 -extension preserves \mathcal{R}_{d}-independence (by Lemma 4) to deduce that $\delta(G) \geq d+1$. Since G is a flexible \mathcal{R}_{d}-circuit, G is d-sparse by Lemma 3 .

Case 1. $d(v)=d+1$ for some $v \in V$.
Since G does not contain the rigid \mathcal{R}_{d}-circuit K_{d+2}, v has two non-adjacent neighbours v_{1}, v_{2}. If $H=G-v+v_{1} v_{2}$ was \mathcal{R}_{d}-independent then G would be \mathcal{R}_{d}-independent by Lemma 4. Hence H contains an \mathcal{R}_{d}-circuit C. The minimality of G implies that C is \mathcal{R}_{d}-rigid or $C=B_{d, d-1}$ which implies that $G \in \mathcal{B}_{d, d-1}^{+}$. The latter alternative contradicts the choice of G, hence G contains a minimally \mathcal{R}_{d}-rigid subgraph, $C-v_{1} v_{2}$, with at least $d+2$ vertices. Let G^{\prime} be a minimally \mathcal{R}_{d}-rigid subgraph of G with at least $d+2$ vertices which is maximal with respect to inclusion, and put $X=V \backslash V\left(G^{\prime}\right)$. Then $1 \leq|X| \leq 4$. If some vertex $x \in X$ had at least d neighbours in G^{\prime}, then we could create a larger \mathcal{R}_{d}-rigid subgraph by adding x to G^{\prime}. Hence each $x \in X$ has at most $d-1$ neighbours in G^{\prime} and since G has minimum degree at least $d+1, x$ has at least 2 neighbours in X. Thus $3 \leq|X| \leq 4$.

Suppose $|X|=3$. Then $G[X]=K_{3}$ and $G^{\prime}=K_{d+2}-e$ for some edge e, or $G^{\prime}=$ $K_{d+3}-\{e, f, g\}$ for some edges e, f, g which are not incident with the same vertex. If $\left|N_{G}(X)\right| \geq d$ then we could construct an \mathcal{R}_{d}-rigid spanning subgraph of G by Lemma 10. Hence $\left|N_{G}(X)\right|=d-1$, and at least one edge, say e, with its end-vertices in $N_{G}(X)$ is missing from G, since otherwise G would contain a copy of K_{d+2}. This gives $G=B_{d, d-1}$ when $G^{\prime}=K_{d+2}-e$, so we must have $G^{\prime}=K_{d+3}-\{e, f, g\}$. If f, g are adjacent and neither of them have both their end-vertices in $N_{G}(X)$ then G^{\prime} would contain one of the \mathcal{R}_{d}-circuits K_{d+2} or $B_{d, d-2}$. Hence $G \in \mathcal{B}_{d, d-1}^{+}$.

It remains to consider the case $|X|=4$. Then $C_{4} \subseteq G[X] \subseteq K_{4}$ and $G^{\prime}=K_{d+2}-e$.
Claim 13. $N(X)=V\left(G^{\prime}\right)$.
Proof of claim. Suppose not. Let $Y=X \cup N_{G}(X)$. Then $G[Y] \subsetneq G$ and hence is independent. If $G\left[N_{G}(X)\right]$ was complete, then G would be independent by Lemma 7(b), since $G=G^{\prime} \cup G[Y], G^{\prime}$ and $G[Y]$ are independent, and $G^{\prime} \cap G[Y]$ is complete. Hence both end-vertices of e belong to $N_{G}(X)$. Choose a vertex $w \in V\left(G^{\prime}\right) \backslash N_{G}(X)$ and an edge $f \in G^{\prime}$ which is incident with w. Consider the graph $G^{\prime \prime}=G+e-f$.

Suppose $G^{\prime \prime}[Y]$ is \mathcal{R}_{d}-independent. Since $G^{\prime \prime}\left[N_{G}(X)\right]$ induces a complete graph, we can use Lemma 7 (b) as above to deduce that $G^{\prime \prime}$ is \mathcal{R}_{d}-independent. Then $G^{\prime}+e \cong K_{d+2}$ is the unique \mathcal{R}_{d}-circuit in $G^{\prime \prime}+f$ and hence $G=G^{\prime \prime}+f-e$ is \mathcal{R}_{d}-independent. This contradiction implies that $G^{\prime \prime}[Y]$ is \mathcal{R}_{d}-dependent.

Let C be an \mathcal{R}_{d}-circuit in $G^{\prime \prime}[Y]$. Since $G^{\prime} \cong K_{d+2}-e, w$ has degree degree d in $G^{\prime \prime}$ and hence $w \notin V(C)$. If $C=B_{d, d-1}$ then we can construct G from C by a 1-extension which adds w and deletes e. This would imply that $G \in \mathcal{B}_{d, d-1}^{+}$and contradict the choice of G. Hence $C \neq B_{d, d-1}$ and the minimality of G now implies that C is rigid.

Since $G^{\prime}+e \cong K_{d+2}$ and $e \in E(C) \cap E\left(G^{\prime}+e\right)$, we may use the circuit elimination axiom to deduce that $(C-e) \cup G^{\prime}$ is $\mathcal{R}_{d^{\prime}}$-dependent. Since $(C-e) \cup G^{\prime} \subseteq G$, we must have $(C-e) \cup G^{\prime}=G$. This implies that X and all edges of G incident to X are contained in C. Thus $N_{G}(X) \subset V(C)$. If $|N(X)| \geq d$, then $G=G^{\prime} \cup(C-e)$ would be rigid by Lemma 7 (a). Hence $\left|N_{G}(X)\right| \leq d-1$. If $\left|N_{G}(X)\right|=d-2$, then $C=K_{d+2}$ and $G=B_{d, d-2}$. Hence $\left|N_{G}(X)\right|=d-1$. Then $C=K_{d+3}-f-g$ for two non-adjacent edges f, g and $G \in \mathcal{B}_{d, d-1}^{+}$.

Suppose $G[X]=C_{4}$. Since $\delta(G)=d+1$ and no vertex of X has more than $d-1$ neighbours in G^{\prime}, each vertex of X has degree $d+1$ in G. By Claim 13, we can choose $u \in X$ such that $\left|N(X-u) \cap V\left(G^{\prime}\right)\right| \geq d$. We can perform a 1-reduction of G at u which adds an edge between its two neighbours in X. We can now apply Lemma 10 to the resulting graph H on $d+5$ vertices to deduce that H is \mathcal{R}_{d}-rigid. This would imply that G is \mathcal{R}_{d}-rigid, contradicting the choice of G.

Suppose $G[X]=C_{4}+f$. Then each vertex in X has degree $d+1$ or $d+2$ in G and the two vertices which are not incident to f have degree $d+1$. If both of the vertices incident to f have degree $d+2$ then G has more than $d|V|-\binom{d+1}{2}$ edges, so cannot be a flexible \mathcal{R}_{d}-circuit. Hence we may choose an end-vertex w of f with degree $d+1$ in G. Construct H from G by performing a 1 -reduction at w which adds an edge between its two non-adjacent neighbours in X. If all vertices in X have degree $d+1$ in G, then we can reduce H to G^{\prime} by recursively deleting the remaining 3 vertices of X in such a way that every deleted vertex has degree at most d. Since G^{\prime} is \mathcal{R}_{d}-independent this would imply that G is \mathcal{R}_{d}-independent. Hence we may assume that the end-vertex of f distinct from w has has degree $d+2$ in G. We can now apply Lemma 10 to deduce that either H is \mathcal{R}_{d}-rigid

Figure 4: Construction of \hat{G} in the proof of Case 1.
or $\left|N(X-w) \cap V\left(G^{\prime}\right)\right|=d-1$ and H is $B_{d, d-1}$. The first alternative would imply that G is \mathcal{R}_{d}-rigid, and the second alternative would imply that either G is \mathcal{R}_{d}-rigid or $G \in \mathcal{B}_{d, d-1}^{+}$.

It remains to consider the subcase when $G[X]=K_{4}$. Then each vertex in X has degree at least $d+1$, and at most two of them have degree $d+2$ otherwise G would have more than $d|V|-\binom{d+1}{2}$ edges. Let \hat{G} be obtained from G by adding edges from vertices in X to vertices in G^{\prime} in such a way that X has exactly two vertices of degree $d+1$ and exactly two vertices of degree $d+2$ in \hat{G}. We will show that G is \mathcal{R}_{d}-independent by proving that \hat{G} is minimally \mathcal{R}_{d}-rigid.

Since $N_{\hat{G}}(X)=V\left(G^{\prime}\right)$ by Claim 13, we may choose vertices $x, y \in X$ such that x has degree $d+1, y$ has degree $d+2$ and some vertex $w \in V\left(G^{\prime}\right)$ is a neighbour of x in \hat{G} but not y. Let $X=\{x, y, z, t\}$ where z has degree $d+2$ and t has degree $d+1$ in \hat{G}. We can construct \hat{G} from G^{\prime} by first performing a 0 -extension which adds y and all edges from y to its neighbours in G^{\prime} as well as to w, then add z and then t by successive 0 -extensions, and finally add x by a 1 -extension which removes the edge $y w$. (See Figure 4.)

Since G^{\prime} is minimally \mathcal{R}_{d}-rigid this implies that \hat{G} is also minimally \mathcal{R}_{d}-rigid. This contradicts the fact that G is an \mathcal{R}_{d}-circuit and completes the proof of Case 1.

Case 2. $\delta(G) \geq d+2$.
Choose $v \in V$ with $d(v)=\Delta(G)$. If $G-v$ was \mathcal{R}_{d-1}-independent then G would be $\mathcal{R}_{d^{-}}$ independent by Lemma 6. This is impossible since G is an \mathcal{R}_{d}-circuit. Hence $G-v$ contains an \mathcal{R}_{d-1}-circuit C. By the minimality of d, C is \mathcal{R}_{d-1}-rigid or $C \in\left\{B_{d-1, d-2}, B_{d-1, d-3}\right\} \cup$ $\mathcal{B}_{d-1, d-2}^{+}$.

Claim 14. $G-v$ is \mathcal{R}_{d-1}-rigid.
Proof of Claim. Suppose $C \in\left\{B_{d-1, d-2}, B_{d-1, d-3}\right\} \cup \mathcal{B}_{d-1, d-2}^{+}$. Then C has $d+4, d+5$ or $d+5$ vertices respectively, whereas $G-v$ hast at most $d+5$ vertices. If C spans $G-v$ then the facts that C contains vertices of degree $d+1$ and $\delta(G-v) \geq d+1$ imply that we can
add edges of $G-v$ to C to make it \mathcal{R}_{d-1}-rigid. Hence we may suppose that $C=B_{d-1, d-2}$ and $(G-v) \backslash C$ has exactly one vertex u. Since $d_{G-v}(u) \geq d+1, G-v$ is \mathcal{R}_{d-1}-rigid unless all neighbours of u belong to the same copy of $K_{d+1}-e$ in $B_{d-1, d-2}$. Suppose the second alternative occurs and let H be the spanning subgraph of $G-v$ obtained by adding u and all its incident edges to $B_{d-1, d-2}$. Since the other copy of $K_{d+1}-e$ in $B_{d-1, d-2}$ contains vertices of degree d in H, and degree at least $d+1$ in $G-v$, we can now add an edge of $G-v$ to H to make it \mathcal{R}_{d-1}-rigid.

Suppose C is \mathcal{R}_{d-1}-rigid. Then $|V(C)| \geq d+1$. Let H be a maximal \mathcal{R}_{d-1}-rigid subgraph of $G-v$. Suppose $H \neq G-v$ and note that $(G-v)-H$ has at most 4 vertices. Since each vertex of $(G-v)-H$ has at most $d-2$ neighbours in H and $\delta(G-v) \geq d+1$ we have $(G-v)-H=K_{4}$ and $H=C=K_{d+1}$. We can now apply Lemma 10 to a minimally rigid spanning subgraph of H, and to each K_{3} in $(G-v)-H$, in order to deduce that all vertices of $(G-v)-H$ are adjacent to the same set of $d-2$ vertices of H. This cannot occur since every vertex of H which is not joined to a vertex of $G-v-H$ would have degree at most $d+1$ in G, contradicting the assumption of Case 2. Hence $H=G-v$ and $G-v$ is \mathcal{R}_{d-1}-rigid.

Let $(G-v)^{*}$, respectively C^{*}, be obtained from $G-v$, respectively C, by adding v and all edges from v to $G-v$, respectively C. Then $(G-v)^{*}$ is \mathcal{R}_{d}-rigid by Claim 14 and Lemma 6 , and, when C is \mathcal{R}_{d-1}-rigid, C^{*} is an \mathcal{R}_{d}-circuit again by Lemma 6.

Let S be the set of all edges of G^{*} which are not in G. Since C^{*} is rigid or $C^{*} \in$ $\left\{B_{d, d-1}, B_{d, d-2}\right\} \cup \mathcal{B}_{d, d-1}^{+}, C^{*}$ is not an \mathcal{R}_{d}-circuit in G. Hence $E\left(C^{*}\right) \cap S \neq \emptyset$. If $S=\{f\}$ then $G=(G-v)^{*}-f$ would be \mathcal{R}_{d}-rigid since $(G-v)^{*}$ is \mathcal{R}_{d}-rigid and $f \in E\left(C^{*}\right)$. Hence $|S| \geq 2$ and $\Delta(G)=d(v) \leq|V|-3$. Let \bar{G} be the complement of G.

Suppose $|V| \leq d+5$. Then $|V|=d+5$ and G is $(d+2)$-regular. This implies that \bar{G} is a 2-regular graph on $d+5 \geq 8$ vertices and we may choose two non-adjacent vertices v_{1}, v_{2} with no common neighbours in \bar{G}. Then $v_{1} v_{2} \in E$ and $\left|N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)\right|=d-1$. We can use the facts that G is d-sparse, $(d+2)$-regular and $|V|=d+5$ to deduce that $G / v_{1} v_{2}$ is d-sparse. (If not, then some set $X \subseteq V\left(G / v_{1} v_{2}\right)$ would induce more that $d|X|-\binom{d+1}{2}$ edges. Then $|X| \geq d+2$ and the fact that each vertex of $V\left(G / v_{1} v_{2}\right) \backslash X$ has degree at least $d+1$ will imply that $G / v_{1} v_{2}$ has more that $d\left|V\left(G / v_{1} v_{2}\right)\right|-\binom{d+1}{2}$ edges. This will contradict the fact that G has at most $d|V(G)|-\binom{d+1}{2}$ edges.) Since $G / v_{1} v_{2}$ has no flexible \mathcal{R}_{d}-circuits (by the minimality of G), $G / v_{1} v_{2}$ is \mathcal{R}_{d}-independent. We can now use Lemma 5 to deduce that G is \mathcal{R}_{d}-independent. Hence $|V|=d+6$. Since $\delta(G) \geq d+2$ and $\Delta(G) \leq d+3$ we have $\delta(\bar{G}) \geq 2$ and $\Delta(\bar{G}) \leq 3$.

Suppose $\delta(\bar{G})=2$ and $\Delta(\bar{G})=3$. Then we can find two vertices $x, y \in V$ with $d_{\bar{G}}(x)=2, d_{\bar{G}}(y)=3$ and $\operatorname{dist}_{\bar{G}}(x, y) \geq 3$ by Lemma 12. We can deduce as in the previous paragraph that $G / x y$ is d-sparse. If $G / x y$ contains an \mathcal{R}_{d}-circuit then $G / x y=B_{d, d-1}$ by the minimality and d-sparsity of G. Since $B_{d, d-1}$ has $d-3$ vertices of degree $d+4$ and six vertices of degree $d+1$, this would contradict the fact that G has minimum degree $d+2$
(when $d \leq 6$) and maximum degree $d+3$ (when $d \geq 5$). Hence $G / v_{1} v_{2}$ is \mathcal{R}_{d}-independent. We can now use Lemma 5 to deduce that G is \mathcal{R}_{d}-independent.

Next we consider the case when \bar{G} is 2 -regular. Then $|S|=2$ and G is ($d+3$)-regular. The fact that $(G-v)^{*}$ is \mathcal{R}_{d}-rigid and contains at least two \mathcal{R}_{d}-circuits (G and C^{*}) tells us that $\left|E\left((G-v)^{*}\right)\right| \geq d|V|-\binom{d+1}{2}+2$. Since $|E|=\left|E\left((G-v)^{*}\right)\right|-|S|$ and G is d-sparse this gives

$$
\frac{(d+3)(d+6)}{2}=|E|=d|V|-\binom{d+1}{2}=\frac{d(d+11)}{2} .
$$

This implies that $d=9$ and $|V|=15$. We can now use Lemma 11(b) to deduce that G is \mathcal{R}_{9}-independent, contradicting the fact that G is an \mathcal{R}_{9}-circuit.

It remains to consider the final subcase when \bar{G} is 3-regular. Then $|S|=3$ and G is $(d+2)$-regular. Since $(G-v)^{*}$ is \mathcal{R}_{d}-rigid and contains at least two \mathcal{R}_{d}-circuits we have $|E(G)| \geq d|V|-\binom{d+1}{2}-1$. The fact that G is d-sparse now gives

$$
\frac{(d+2)(d+6)}{2}=|E|=d|V|-\binom{d+1}{2}-\alpha=\frac{d(d+11)}{2}-\alpha
$$

for some $\alpha=0,1$. This implies that $\alpha=0$ and $d=4$. We can now use Lemma 11(a) to deduce that G is \mathcal{R}_{4}-independent, contradicting the fact that G is an \mathcal{R}_{4}-circuit.

We can use Theorem 1 to obtain a lower bound on the number of edges in a flexible \mathcal{R}_{d}-circuit. For $G=(V, E)$ and $X \subset V$, we use the notation $E(X, V \backslash X)$ to denote the set of edges with one endvertex in X and one in $V \backslash X$.

Corollary 15. Suppose $G=(V, E)$ is a flexible \mathcal{R}_{d}-circuit. Then $|E| \geq d(d+9) / 2$, with equality if and only if $G=B_{d, d-1}$.

Proof. The corollary follows immediately from Theorem 1 if $|V| \leq d+6$. Since $\delta(G) \geq d+1$ we have $|E|>d(d+9) / 2$ when either $|V| \geq d+8$, or $|V|=d+7$ and $\delta(G) \geq d+2$. Hence we may assume that $|V|=d+7$ and $\delta(G)=d+1$. Choose a vertex v with $d(v)=d+1$. Then v has two non-adjacent neighbours v_{1}, v_{2} since otherwise G would contain the rigid \mathcal{R}_{d}-circuit K_{d+2}. Let $H=G-v+v_{1} v_{2}$. If H was \mathcal{R}_{d}-independent then G would be \mathcal{R}_{d}-independent by Lemma 4. Hence H contains an \mathcal{R}_{d}-circuit C. If C is flexible then Theorem 1 implies that $C \in\left\{B_{d, d-2}\right\} \cup \mathcal{B}_{d, d-1}^{+}$and hence $|E|>|E(C)|>d(d+9) / 2$. Thus we may assume that C is \mathcal{R}_{d}-rigid. Then $C-v_{1} v_{2}$ is an \mathcal{R}_{d}-rigid subgraph with at least $d+2$ vertices. Let
$X=V(G) \backslash V(C)$. Then $1 \leq|X| \leq 5$. Since $\delta(G)=d+1$ and $|X| \leq 5$ we have

$$
\begin{aligned}
|E| & =\left|E\left(C-v_{1} v_{2}\right)\right|+|E(X)|+|E(X, V \backslash X)| \\
& \geq d|V \backslash X|-\binom{d+1}{2}+\binom{|X|}{2}+|X|(d+1-|X|+1) \\
& =d|V|-\binom{d+1}{2}-\frac{|X|(|X|-3)}{2} \\
& \geq \frac{d(d+13)}{2}-5 .
\end{aligned}
$$

We can now use the fact that $d \geq 3$ to deduce that $|E|>d(d+9) / 2$.

4 Closing Remarks

4.1 Generalised 2-sums

Let $G=(V, E), G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. We say that G is a t-sum of G_{1}, G_{2} along an edge e if $G=\left(G_{1} \cup G_{2}\right)-e, G_{1} \cap G_{2}=K_{t}$ and $e \in E_{1} \cap E_{2}$. We conjecture that Lemma 8 can be extended to t-sums.

Conjecture 16. Suppose that G is a t-sum of G_{1}, G_{2} along an edge e for some $2 \leq t \leq d+1$. Then G is an \mathcal{R}_{d}-circuit if and only if G_{1}, G_{2} are \mathcal{R}_{d}-circuits.

Our proof technique for Lemma 8 gives the following partial result.
Lemma 17. Let $G=(V, E), G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs such that G is a t-sum of G_{1}, G_{2} along an edge e for some $2 \leq t \leq d+1$.
(a) If G is an \mathcal{R}_{d}-circuit, then G_{1} and G_{2} are both \mathcal{R}_{d}-circuits.
(b) If G_{1} and G_{2} are both \mathcal{R}_{d}-circuits, then G contains a unique \mathcal{R}_{d}-circuit G^{\prime} and $E \backslash\left(E_{1} \cap E_{2}\right) \subseteq E\left(G^{\prime}\right)$.

Proof. (a) If G_{1} and G_{2} are both \mathcal{R}_{d}-independent, then Lemma 7(b) implies that $G_{1} \cup G_{2}$ is \mathcal{R}_{d}-independent. This contradicts the facts that G is a \mathcal{R}_{d}-circuit and $G \subseteq G_{1} \cup G_{2}$. If exactly one of G_{1} and G_{2}, say G_{1}, is \mathcal{R}_{d}-independent then e belongs to the unique $\mathcal{R}_{d^{-}}$ circuit in G_{2} and Lemma $7(\mathrm{~b})$ gives $r_{d}(G)=r_{d}(G+e)=\left|E_{1}\right|+\left|E_{2}\right|-\binom{t}{2}-1=|E|$. This again contradicts the hypothesis that G is an \mathcal{R}_{d}-circuit. Hence G_{1} and G_{2} are both \mathcal{R}_{d}-dependent. Then the matroid circuit elimination axiom combined with the fact that G is an \mathcal{R}_{d}-circuit imply that G_{1} and G_{2} are both \mathcal{R}_{d}-circuits.
(b) The circuit elimination axiom implies that G is \mathcal{R}_{d}-dependent and hence that G contains an \mathcal{R}_{d}-circuit $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Since $G_{i}-e$ is \mathcal{R}_{d}-independent for $i=1,2$, we have $E^{\prime} \backslash E_{i} \neq \emptyset$.

Let G_{i}^{\prime} be obtained from $G_{i} \cap G^{\prime}$ by adding an edge between every pair of non-adjacent vertices in $V^{\prime} \cap V_{1} \cap V_{2}$. If G_{i}^{\prime} is a proper subgraph of G_{i} for $i=1,2$ then each G_{i}^{\prime} is \mathcal{R}_{d}-independent and we can use Lemma $7(\mathrm{~b})$ to deduce that $G_{1}^{\prime} \cup G_{2}^{\prime}$ is \mathcal{R}_{d}-independent. This gives a contradiction since $G^{\prime} \subseteq G_{1}^{\prime} \cup G_{2}^{\prime}$. Relabelling if necessary we have $G_{1}^{\prime}=G_{1}$. If $G_{2}^{\prime} \neq G_{2}$ then we may deduce similarly that $G_{1}^{\prime} \cup G_{2}^{\prime}-e$ is independent. This again gives a contradiction since $G^{\prime} \subseteq G_{1}^{\prime} \cup G_{2}^{\prime}-e$. Hence $G_{2}^{\prime}=G_{2}$. It remains to show uniqueness. For $i=1,2$, let B_{i} be a base of $\mathcal{R}_{d}\left(G_{i}\right)$ which contains $E\left(G_{1}\right) \cap E\left(G_{2}\right)$. Then $\left|B_{i}\right|=\left|E_{i}\right|-1$ and Lemma 7(b) gives

$$
r_{d}(G)=r_{d}\left(G_{1} \cup G_{2}-e\right)=r_{d}\left(G_{1} \cup G_{2}\right)=\left|B_{1}\right|+\left|B_{2}\right|-\binom{t}{2}=|E|-1
$$

Hence, G contains a unique \mathcal{R}_{d}-circuit.
We can also use a result of Connelly [8] to deduce that Conjecture 16 holds when $t=d+1$ and G_{1}, G_{2} are both globally rigid in \mathbb{R}^{d}.

4.2 Highly connected flexible circuits

Bolker and Roth [4] determined $r_{d}\left(K_{s, t}\right)$ for all complete bipartite graphs $K_{s, t}$. Their result implies that $K_{d+2, d+2}$ is a $(d+2)$-connected \mathcal{R}_{d}-circuit for all $d \geq 3$ and is flexible when $d \geq 4$, see [9, Theorem 5.2.1]. We know of no $(d+3)$-connected flexible \mathcal{R}_{d}-circuits and it is tempting to conjecture that they do not exist.

For the case when $d=3$, Tay [16] gives examples of 4 -connected flexible \mathcal{R}_{3}-circuits and Jackson and Jordán [10] conjecture that all 5-connected \mathcal{R}_{3}-circuits are rigid. An analogous statement has recently been verified for circuits in the closely related C_{2}^{1}-cofactor matroid by Clinch, Jackson and Tanigawa [7].

4.3 Extending Theorem 1

We saw in the previous subsection that $K_{d+2, d+2}$ is a flexible \mathcal{R}_{d}-circuit with $2 d+4$ vertices for all $d \geq 4$. We can use Lemma 6 to obtain a smaller flexible \mathcal{R}_{d}-circuit: we can recursively apply the coning operation to the flexible \mathcal{R}_{4}-circuit $K_{6,6}$ to obtain a flexible \mathcal{R}_{d}-circuit on $d+8$ vertices. This suggests that it may be difficult to extend Theorem 1 to graphs on $d+8$ vertices, but it is conceivable that all flexible \mathcal{R}_{d}-circuits on $d+7$ vertices have the form $\left(G_{1} \cup G_{2}\right)-S$ where $G_{i} \in\left\{K_{d+2}, K_{d+3}, K_{d+4}\right\}, G_{1} \cap G_{2} \in\left\{K_{d-3}, K_{d-2}, K_{d-1}\right\}$ and S is a suitably chosen set of edges.

For the case when $d=3$, Tay [16] gives examples of 3 -connected flexible \mathcal{R}_{3}-circuits with 13 vertices but it is possible that all flexible circuits on at most 12 vertices can be obtained by taking 2 -sums of rigid circuits on at most 9 vertices.

Acknowledgement

The authors would like to thank the London Mathematical Society, and the Heilbronn Institute for Mathematical Research, for providing partial financial support through a scheme 5 grant, and a focussed research group grant, respectively.

Georg Grasegger was supported by the Austrian Science Fund (FWF): P31888.

References

[1] T. Abbott. Generalizations of Kempe's universality theorem. Master's thesis, Massachusetts Institute of Technology, 2008.
[2] L. Asimow and B. Roth. The rigidity of graphs. Transactions of the American Mathematical Society, 245:279-289, 1978. doi:10.1090/S0002-9947-1978-0511410-9.
[3] A. R. Berg and T. Jordán. A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid. Journal of Combinatorial Theory, Series B, 88(1):77-97, 2003. doi:10.1016/S0095-8956(02)00037-0.
[4] E. D. Bolker and B. Roth. When is a bipartite graph a rigid framework? Pacific Journal of Mathematics, 90(1):27-44, 1980. doi:10.2140/pjm.1980.90.27.
[5] A. Cauchy. Sur les polygones et polyèdres - second mémoire. Journal de l'École Polytechnique, 9:87-98, 1813. URL: https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f13.
[6] J. Cheng, M. Sitharam, and I. Streinu. Nucleation-free 3d rigidity. Technical report, Computer Science: Faculty Publications, Smith College, Northampton, MA, 2013. URL: https://scholarworks.smith.edu/csc_facpubs/6/.
[7] K. Clinch, B. Jackson, and S. Tanigawa. Abstract 3-rigidity and bivariate c_{2}^{1}-splines ii: combinatorial characterization, 2019. arXiv:1911.00207.
[8] R. Connelly. Combining globally rigid frameworks. Proceedings of the Steklov Institute of Mathematics, 275:191-198, 2011. doi:10.1134/S008154381108013X.
[9] J. Graver, B. Servatius, and H. Servatius. Combinatorial rigidity. American Mathematical Society, Providence, RI, 1993.
[10] B. Jackson and T. Jordán. On the rank function of the 3-dimensional rigidity matroid. International Journal of Computational Geometry \& Applications, 16(05n06):415-429, 2006. doi:10.1142/S0218195906002117.
[11] T. Jordán. A note on generic rigidity of graphs in higher dimension. Technical Report 2020-01, EGRES.
[12] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering Mathematics, 4:331-340, 1970. doi:10.1007/BF01534980.
[13] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM Journal on Algebraic Discrete Methods, 3(1):91-98, 1982. doi:10.1137/0603009.
[14] J. C. Maxwell. On the calculation of the equilibrium and stiffness of frames. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(182):294-299, 1864. doi:10.1080/14786446408643668.
[15] H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 7:58-72, 1927. doi:10.1002/zamm. 19270070107.
[16] T.-S. Tay. On generically dependent bar frameworks in space. Structural Topology, 20:27-48, 1993. URL: https://hdl. handle.net/2099/1003.
[17] W. Whiteley. Cones, infinity and one-story buildings. Structural Topology, 8:53-70, 1983. URL: https://hdl.handle.net/2099/1003.
[18] W. Whiteley. Vertex splitting in isostatic frameworks. Structural Topology, 16:23-30, 1990. URL: https://hdl.handle.net/2099/1055.
[19] W. Whiteley. Some matroids from discrete applied geometry. Number 197 in Contemporary Mathematics, pages 171-311. American Mathematical Society, Providence, RI, 1996.

[^0]: * Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences. E-mail: georg.grasegger@ricam.oeaw.ac.at
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Arts \& Sciences, Kastamonu University, Kastamonu, Turkey. E-mail: hakanguler19@gmail.com
 ${ }^{\ddagger}$ School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. E-mail: b.jackson@qmul.ac.uk
 ${ }^{\S}$ Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom. E-mail: a.nixon@lancaster.ac.uk

