Flexible circuits in the d-dimensional rigidity matroid

Georg Grasegger, Hakan Guler, Bill Jackson, and Anthony Nixon,

Abstract

A bar-joint framework (G, p) in \mathbb{R}^d is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of \mathbb{R}^d . It is known that, when (G, p) is generic, its rigidity depends only on the underlying graph G, and is determined by the rank of the edge set of G in the generic d-dimensional rigidity matroid \mathcal{R}_d . Complete combinatorial descriptions of the rank function of this matroid are known when d=1,2, and imply that all circuits in \mathcal{R}_d are generically rigid in \mathbb{R}^d when d=1,2. Determining the rank function of \mathcal{R}_d is a long standing open problem when $d\geq 3$, and the existence of non-rigid circuits in \mathcal{R}_d for $d\geq 3$ is a major contributing factor to why this problem is so difficult. We begin a study of non-rigid circuits by characterising the non-rigid circuits in \mathcal{R}_d which have at most d+6 vertices.

1 Introduction

A bar-joint framework (G, p) in \mathbb{R}^d is the combination of a finite graph G = (V, E) and a realisation $p: V \to \mathbb{R}^d$. The framework is said to be rigid if the only edge-length preserving continuous motions of its vertices arise from isometries of \mathbb{R}^d , and otherwise it is said to be flexible. The study of the rigidity of frameworks has its origins in work of Cauchy and Euler on Euclidean polyhedra [5] and Maxwell [14] on frames.

Abbot [1] showed that it is NP-hard to determine whether a given d-dimensional framework is rigid whenever $d \geq 2$. The problem becomes more tractable for generic frameworks (G, p) since we can linearise the problem and consider 'infinitesimal rigidity' instead. We define the rigidity matrix R(G, p) as the $|E| \times d|V|$ matrix in which, for $e = v_i v_i \in E$,

 $^{^*}$ Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences. E-mail: georg.grasegger@ricam.oeaw.ac.at

 $^{^\}dagger Department$ of Mathematics, Faculty of Arts & Sciences, Kastamonu University, Kastamonu, Turkey. E-mail: hakanguler19@gmail.com

[‡]School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. E-mail: b.jackson@qmul.ac.uk

[§]Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom. E-mail: a.nixon@lancaster.ac.uk

the submatrices in row e and columns v_i and v_j are $p(v_i) - p(v_j)$ and $p(v_j) - p(v_i)$, respectively, and all other entries are zero. We say that (G, p) is infinitesimally rigid if rankR $(G, p) = d|V| - {d+1 \choose 2}$. Asimow and Roth [2] showed that infinitesimal rigidity is equivalent to rigidity for generic frameworks (and hence that generic rigidity depends only on the underlying graph of the framework).

The d-dimensional rigidity matroid of a graph G = (V, E) is the matroid $\mathcal{R}_d(G)$ on E in which a set of edges $F \subseteq E$ is independent whenever the corresponding rows of R(G, p) are independent, for some (or equivalently every) generic p. We denote the rank function of $\mathcal{R}_d(G)$ by r_d and put $r_d(G) = r_d(E)$. We say that G is: \mathcal{R}_d -independent if $r_d(G) = |E|$; \mathcal{R}_d -rigid if G is a complete graph on at most d+1 vertices or $r_d(G) = d|V| - \binom{d+1}{2}$; minimally \mathcal{R}_d -rigid if G is \mathcal{R}_d -rigid and \mathcal{R}_d -independent; and an \mathcal{R}_d -circuit if G is not \mathcal{R}_d -independent but G - e is \mathcal{R}_d -independent for all $e \in E$.

It is not difficult to see that the 1-dimensional rigidity matroid of a graph G is equal to its cycle matroid. Landmark results of Pollaczek-Geiringer [12, 15], and Lovász and Yemini [13] characterise independence and the rank function in \mathcal{R}_2 . These results imply that every \mathcal{R}_d -circuit is rigid when d=1,2. This is no longer true when $d\geq 3$ (see Figures 1 and 2 below), and the existence of flexible circuits is a fundamental obstuction to obtaining a combinatorial characterisation of independence in \mathcal{R}_d .

Previous work on flexible \mathcal{R}_d -circuits has concentrated on constructions, see Tay [16], and Cheng, Sitharam and Streinu [6]. We will adopt a different approach: that of characterising the flexible \mathcal{R}_d -circuits in which the number of vertices is small compared to the dimension. To state our theorem we will have to define two families of graphs.

For $d \geq 3$ and $2 \leq t \leq d-1$, the graph $B_{d,t}$ is defined by putting $B_{d,t} = (G_1 \cup G_2) - e$ where $G_i \cong K_{d+2}$, $G_1 \cap G_2 \cong K_t$ and $e \in E(G_1 \cap G_2)$. The family $\mathcal{B}_{d,d-1}^+$ consists of all graphs $B_{d,d-1}^+ = (G_1 \cup G_2) - \{e, f, g\}$ where: $G_1 \cong K_{d+3}$ and $e, f, g \in E(G_1)$; $G_2 \cong K_{d+2}$ and $e \in E(G_2)$; $G_1 \cap G_2 \cong K_{d-1}$; e, f, g do not all have a common end-vertex; if $\{f, g\} \subset E(G_1) \setminus E(G_2)$ then f, g do not have a common end-vertex. See Figure 1 for an illustration of the general construction and Figure 2 for specific examples.

Theorem 1. Suppose G is a flexible \mathcal{R}_d -circuit with at most d+6 vertices. Then either

(a)
$$d = 3$$
 and $G \in \{B_{3,2}\} \cup \mathcal{B}_{3,2}^+$ or

(b)
$$d \ge 4$$
 and $G \in \{B_{d,d-1}, B_{d,d-2}\} \cup \mathcal{B}_{d,d-1}^+$.

A recent preprint of Jordán [11] characterises \mathcal{R}_d -rigid graphs with at most d+4 vertices. His characterisation implies that every \mathcal{R}_d -circuit with at most d+4 vertices is \mathcal{R}_d -rigid. Theorem 1 immediately gives the following characterisation of \mathcal{R}_d -rigid graphs with at most d+6 vertices in terms of d-tight subgraphs (which are defined in the next section).

Corollary 2. Let G = (V, E) be a graph with $|V| \le d + 6$. Then G is \mathcal{R}_d -rigid if and only if G has a d-tight, d-connected spanning subgraph H such that $B_{d,d-1}, B_{d,d-2} \nsubseteq H$.

Figure 1: $B_{d,d-1}$ on the left, $B_{d,d-2}$ in the middle and $B_{d,d-1}^+$ on the right.

Figure 2: $B_{3,2}$ on the left, $B_{4,2}$ in the middle and $B_{3,2}^+$ on the right.

2 Preliminary Lemmas

Given a vertex v in a graph G=(V,E), we will use $d_G(v)$ and $N_G(v)$ to denote the degree and neighbour set respectively of v. For a set $V'\subseteq V$, we define by $N_G(V')=(\bigcup_{v\in V'}N_G(v))-V'$. We will use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degree, respectively, in G, and $\mathrm{dist}_G(x,y)$ to denote the length of a shortest path between two vertices $x,y\in V$. We will suppress the subscript in these notations whenever the graph is clear from the context. The graph G is d-sparse if $|E'|\leq d|V'|-\binom{d+1}{2}$ for all subgraphs G'=(V',E') of G with $|V'|\geq d+2$. It is d-tight if it is d-sparse and has $d|V|-\binom{d+1}{2}$ edges. We will need the following standard results from rigidity theory.

Lemma 3. [19, Lemma 11.1.3] Let G = (V, E) be \mathcal{R}_d -independent with $|V| \ge d + 2$. Then $r_d(G) \le d|V| - \binom{d+1}{2}$.

Lemma 3 implies that every \mathcal{R}_d -independent graph is d-sparse. The characterisations of \mathcal{R}_d -independence when $d \leq 2$ show that the converse holds for these values of d. The existence of flexible \mathcal{R}_d -circuits implies that the converse fails for all $d \geq 3$.

A graph G' is said to be obtained from another graph G by: a θ -extension if G = G' - v for a vertex $v \in V(G')$ with $d_{G'}(v) = d$; or a 1-extension if G = G' - v + xy for a vertex $v \in V(G')$ with $d_{G'}(v) = d + 1$ and $x, y \in N(v)$.

Lemma 4. [19, Lemma 11.1.1, Theorem 11.1.7] Let G be \mathcal{R}_d -independent and let G' be obtained from G by a 0-extension or a 1-extension. Then G' is \mathcal{R}_d -independent.

A vertex split of a graph G = (V, E) is defined as follows: choose $v \in V, x_1, x_2, \ldots, x_{d-1} \in N(v)$ and a partition N_1, N_2 of $N(v) \setminus \{x_1, x_2, \ldots, x_{d-1}\}$; then delete v from G and add two new vertices v_1, v_2 joined to N_1, N_2 , respectively; finally add new edges $v_1v_2, v_1x_1, v_2x_1, v_1x_2, v_2x_2, \ldots, v_1x_{d-1}, v_2x_{d-1}$.

Lemma 5. [18, Proposition 10] Let G be \mathcal{R}_d -independent and let G' be obtained from G by a vertex split. Then G' is \mathcal{R}_d -independent.

Lemma 6. [17] Let $d \geq 1$ be an integer, G be a graph and let G' be obtained from G by adding a new vertex adjacent to every vertex of G. Then G is \mathcal{R}_d -independent if and only if G' is \mathcal{R}_{d+1} -independent.

Lemma 6 immediately implies that G is \mathcal{R}_d -rigid if and only if G' is \mathcal{R}_{d+1} -rigid and G is an \mathcal{R}_d -circuit if and only if G' is an \mathcal{R}_{d+1} -circuit.

Lemma 7. [19, Lemma 11.1.9] Let G_1 , G_2 be subgraphs of a graph G and suppose that $G = G_1 \cup G_2$.

- (a) If $|V(G_1) \cap V(G_2)| \ge d$ and G_1, G_2 are \mathcal{R}_d -rigid then G is \mathcal{R}_d -rigid.
- (b) If $G_1 \cap G_2$ is \mathcal{R}_d -rigid and G_1, G_2 are \mathcal{R}_d -independent then G is \mathcal{R}_d -independent.
- (c) If $|V(G_1) \cap V(G_2)| \leq d-1$, $u \in V(G_1) V(G_2)$ and $v \in V(G_2) V(G_1)$ then $r_d(G + uv) = r_d(G) + 1$.

We also require some new lemmas. Lemma 7(b) immediately implies that every \mathcal{R}_{d} -circuit G = (V, E) is 2-connected and that, if $G - \{u, v\}$ is disconnected for some $u, v \in V$, then $uv \notin E$. Our first new lemma gives more structural information when $G - \{u, v\}$ is disconnected.

Given three graphs G = (V, E), $G_1 = (V_1, E_1)$, and $G_2 = (V_2, E_2)$, we say that G is a 2-sum of G_1 and G_2 along a pair of vertices u, v if $V_1 \cap V_2 = \{u, v\}$, $E_1 \cap E_2 = \{uv\}$, $V = V_1 \cup V_2$ and $E = (E_1 \cup E_2) - uv$.

Lemma 8. Suppose that G = (V, E) is the 2-sum of $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Then G is an \mathcal{R}_d -circuit if and only if G_1 and G_2 are both \mathcal{R}_d -circuits.

Proof. We first prove necessity. Suppose that G is an \mathcal{R}_d -circuit. If G_1 and G_2 are both \mathcal{R}_d -independent then G + uv is \mathcal{R}_d -independent by Lemma 7(b), a contradiction since G is an \mathcal{R}_d -circuit. If exactly one of G_1 and G_2 , say G_1 , is \mathcal{R}_d -independent then uv belongs to the unique \mathcal{R}_d -circuit contained in G_2 . We may extend uv to a base of E_i , for i = 1, 2, and then apply Lemma 7(b) to obtain $r_d(G + uv) = r_d(G_1) + r_d(G_2) - 1$. Thus we have

 $r_d(G) = r_d(G + uv) = |E_1| + |E_2| - 2 = |E|$, a contradiction since G is an \mathcal{R}_d -circuit. Hence G_1 and G_2 are both \mathcal{R}_d -dependent. Then the matroid circuit elimination axiom combined with the fact that G is an \mathcal{R}_d -circuit imply that G_1 and G_2 are both \mathcal{R}_d -circuits.

We next prove sufficiency. Suppose that G_1 and G_2 are both \mathcal{R}_d -circuits. The circuit elimination axiom implies that G is \mathcal{R}_d -dependent and hence that G contains an \mathcal{R}_d -circuit G' = (V', E'). Since $G_i - uv$ is \mathcal{R}_d -independent for i = 1, 2, we have $E' \cap E_i \neq \emptyset$. This implies that G' is a 2-sum of $G'_1 = (G_1 \cap G') + uv$ and $G'_2 = (G_2 \cap G') + uv$. The proof of necessity in the previous paragraph now tells us that G'_1 and G'_2 are both \mathcal{R}_d -circuits. Since G_i is an \mathcal{R}_d -circuit and $G'_i \subseteq G_i$ we must have $G'_i = G_i$ for i = 1, 2 and hence G = G'. \square

The special cases of Lemma 8 when d=2,3 were proved by Berg and Jordán [3] and Tay [16], respectively.

We may apply Lemma 8 to the \mathcal{R}_3 -circuit K_5 to deduce that $B_{3,2}$ is an \mathcal{R}_3 -circuit. The same argument applied to the \mathcal{R}_4 -circuit K_6 implies that $B_{4,2}$ is an \mathcal{R}_4 -circuit. We can now use Lemma 6 to deduce that $B_{d,d-1}$ and $B_{d,d-2}$ are \mathcal{R}_d -circuits for all $d \geq 4$. Similarly, we may apply Lemma 8 to the \mathcal{R}_3 -circuits K_5 and $K_6 - \{f,g\}$, for two non-adjacent edges f,g, to deduce that $B_{3,2}^+$ is an \mathcal{R}_3 -circuit, and then use Lemma 6 to deduce that $B_{d,d-1}^+$ is an \mathcal{R}_d -circuit unless f or g has an end-vertex in $V_1 \cap V_2$. Our next result extends this to all graphs in $\mathcal{B}_{d,d-1}^+$.

Lemma 9. Every graph in $\mathcal{B}_{d,d-1}^+$ is an \mathcal{R}_d -circuit.

Proof. Let $B_{d,d-1}^+ \in \mathcal{B}_{d,d-1}^+$ and suppose that $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, and e, f, g are as in the definition of $\mathcal{B}_{d,d-1}^+$. Since $B_{d,d-1}^+$ is d-tight and not \mathcal{R}_d -rigid (since it is not d-connected), it is \mathcal{R}_d -dependent.

We will complete the proof by showing that $B_{d,d-1}^+ - h$ is \mathcal{R}_d -independent for all edges h of $B_{d,d-1}^+$. If h is incident with a vertex $x \in V_2 \setminus V_1$, then we can reduce $B_{d,d-1}^+ - h$ to $G_1 - \{e, f, g\}$ by recursively deleting vertices of degree at most d (starting from x). Since $G_1 - \{e, f, g\}$ is \mathcal{R}_d -independent, Lemma 4 and the fact that edge deletion preserves independence now imply that $B_{d,d-1}^+ - h$ is \mathcal{R}_d -independent. Thus we may assume that $h \in E_2$.

Suppose that f, g, h do not have a common end-vertex. Choose a vertex $x \in V_2 \setminus V_1$ and let $H = B_{d,d-1}^+ - h - x + e$ be the graph obtained by applying a 1-reduction at x. We can reduce H to $G_1 - \{f, g, h\}$ by recursively deleting vertices of degree at most d. Since f, g, h do not have a common end-vertex, $G_1 - \{f, g, h\}$ is \mathcal{R}_d -independent. We can now use Lemma 4 to deduce that $B_{d,d-1}^+ - h$ is \mathcal{R}_d -independent.

Hence we may assume that f, g, h have a common end-vertex u. The definition of $\mathcal{B}_{d,d-1}$ now implies that at least one of f and g, say f, is an edge of $G_1 \cap G_2$. Since e, f, g do not have a common end-vertex, e is not incident with u and hence e, g, h do not have a common end-vertex. We can now apply the argument in the previous paragraph with the roles of e and f reversed to deduce that $B_{d,d-1}^+ - h$ is \mathcal{R}_d -independent.

Figure 3: Construction of G in the proof of Lemma 10.

Lemma 10. Suppose $G = G_1 \cup G_2$ where: $G_1 \cap G_2 = \emptyset$; G_1 is minimally \mathcal{R}_d -rigid; $G_2 = K_3$; each vertex of G_2 has d-1 neighbours in G_1 ; the set of all neighbours of the vertices of G_2 in G_1 has size at least d. Then G is minimally \mathcal{R}_d -rigid.

Proof. Let $V(G_2) = \{x, y, z\}$. Since the set of all neighbours in G_1 of the vertices in G_2 has size at least d, we may suppose that some vertex $w \in G_1$ is a neighbour of z, but not x or y. Then G can be obtained from G_1 by a 0-extension adding x and edges from x to its d-1 neighbours in G_1 as well as w, followed by two 1-extensions adding y and deleting yw and then adding y and deleting yw. (See Figure 3.) Hence y is y-independent by Lemma 4. Minimal rigidity follows by a simple edge count.

Lemma 11. (a) Every 6-regular graph on 10 vertices is \mathcal{R}_4 -independent.

(b) Every 12-regular graph on 15 vertices is \mathcal{R}_9 -independent.

Proof. There are 21 6-regular graphs on 10 vertices (see OEIS sequence A165627) and 17 12-regular graphs on 15 vertices (by direct computation). That they are \mathcal{R}_d -independent for the stated dimensions can now be checked by any computer algebra systems.

Our final lemma is purely graph theoretic.

Lemma 12. Suppose that G = (V, E) is a graph with $|V| \ge 11$, minimum degree two and maximum degree three. Then there exist vertices $x, y \in V$ with d(x) = 2, d(y) = 3 and $dist(x, y) \ge 3$.

Proof. Assume G = (V, E) is a counterexample to the lemma. Choose a vertex $v \in V$ of degree 2. Then there are at most 6 vertices at distance 1 or 2 from v. Hence there are at most 6 vertices of degree 3. Now choose a vertex $u \in V$ of degree 3. Each neighbour of u is either a vertex of degree 2 which has at most one other neighbour of degree 2 or a vertex of degree 3 which has at most two other neighbours of degree 2. Therefore we have at most 6 vertices of degree 2. If there does not exist 6 vertices of degree 3 then the number of

vertices of degree 3 is at most 4, and we would have $|V| \leq 10$. Hence there are exactly 6 vertices of degree 3 and v is adjacent to two vertices of degree 3. Since v is an arbitrary vertex of degree two, every vertex of degree 2 is adjacent to two vertices of degree 3. Now choose w to be a vertex of degree 3 at distance 2 from v and a vertex $y \neq v$, of degree 2, not adjacent to w. Then $dist(w, y) \geq 3$.

3 Main results

We will prove Theorem 1 and then use it to obtain a lower bound on the number of edges in a flexible \mathcal{R}_d -circuit.

Proof of Theorem 1

We proceed by contradiction. Suppose the theorem is false and choose a counterexample G = (V, E) such that d is as small as possible and, subject to this condition, |V| is as small as possible. Since all \mathcal{R}_d -circuits are \mathcal{R}_d -rigid when $d \leq 2$, we have $d \geq 3$. Since G is an \mathcal{R}_d -circuit, G - v is \mathcal{R}_d -independent for all $v \in V$, and we can now use the fact that 0-extension preserves \mathcal{R}_d -independence (by Lemma 4) to deduce that $\delta(G) \geq d + 1$. Since G is a flexible \mathcal{R}_d -circuit, G is d-sparse by Lemma 3.

Case 1. d(v) = d + 1 for some $v \in V$.

Since G does not contain the rigid \mathcal{R}_d -circuit K_{d+2} , v has two non-adjacent neighbours v_1, v_2 . If $H = G - v + v_1 v_2$ was \mathcal{R}_d -independent then G would be \mathcal{R}_d -independent by Lemma 4. Hence H contains an \mathcal{R}_d -circuit C. The minimality of G implies that C is \mathcal{R}_{d} -rigid or $C = B_{d,d-1}$ which implies that $G \in \mathcal{B}_{d,d-1}^+$. The latter alternative contradicts the choice of G, hence G contains a minimally \mathcal{R}_d -rigid subgraph, $C - v_1 v_2$, with at least d+2 vertices. Let G' be a minimally \mathcal{R}_d -rigid subgraph of G with at least d+2 vertices which is maximal with respect to inclusion, and put $X = V \setminus V(G')$. Then $1 \leq |X| \leq 4$. If some vertex $x \in X$ had at least d neighbours in G', then we could create a larger \mathcal{R}_d -rigid subgraph by adding x to G'. Hence each $x \in X$ has at most d-1 neighbours in G' and since G has minimum degree at least d+1, x has at least 2 neighbours in X. Thus $3 \le |X| \le 4$. Suppose |X| = 3. Then $G[X] = K_3$ and $G' = K_{d+2} - e$ for some edge e, or G' = $K_{d+3} - \{e, f, g\}$ for some edges e, f, g which are not incident with the same vertex. If $|N_G(X)| \geq d$ then we could construct an \mathcal{R}_d -rigid spanning subgraph of G by Lemma 10. Hence $|N_G(X)| = d - 1$, and at least one edge, say e, with its end-vertices in $N_G(X)$ is missing from G, since otherwise G would contain a copy of K_{d+2} . This gives $G = B_{d,d-1}$ when $G' = K_{d+2} - e$, so we must have $G' = K_{d+3} - \{e, f, g\}$. If f, g are adjacent and neither of them have both their end-vertices in $N_G(X)$ then G' would contain one of the \mathcal{R}_d -circuits K_{d+2} or $B_{d,d-2}$. Hence $G \in \mathcal{B}_{d,d-1}^+$.

It remains to consider the case |X|=4. Then $C_4\subseteq G[X]\subseteq K_4$ and $G'=K_{d+2}-e$.

Claim 13. N(X) = V(G').

Proof of claim. Suppose not. Let $Y = X \cup N_G(X)$. Then $G[Y] \subsetneq G$ and hence is independent. If $G[N_G(X)]$ was complete, then G would be independent by Lemma 7(b), since $G = G' \cup G[Y]$, G' and G[Y] are independent, and $G' \cap G[Y]$ is complete. Hence both end-vertices of e belong to $N_G(X)$. Choose a vertex $w \in V(G') \setminus N_G(X)$ and an edge $f \in G'$ which is incident with w. Consider the graph G'' = G + e - f.

Suppose G''[Y] is \mathcal{R}_d -independent. Since $G''[N_G(X)]$ induces a complete graph, we can use Lemma 7(b) as above to deduce that G'' is \mathcal{R}_d -independent. Then $G' + e \cong K_{d+2}$ is the unique \mathcal{R}_d -circuit in G'' + f and hence G = G'' + f - e is \mathcal{R}_d -independent. This contradiction implies that G''[Y] is \mathcal{R}_d -dependent.

Let C be an \mathcal{R}_d -circuit in G''[Y]. Since $G' \cong K_{d+2} - e$, w has degree degree d in G'' and hence $w \notin V(C)$. If $C = B_{d,d-1}$ then we can construct G from C by a 1-extension which adds w and deletes e. This would imply that $G \in \mathcal{B}_{d,d-1}^+$ and contradict the choice of G. Hence $C \neq B_{d,d-1}$ and the minimality of G now implies that C is rigid.

Since $G'+e\cong K_{d+2}$ and $e\in E(C)\cap E(G'+e)$, we may use the circuit elimination axiom to deduce that $(C-e)\cup G'$ is \mathcal{R}_d -dependent. Since $(C-e)\cup G'\subseteq G$, we must have $(C-e)\cup G'=G$. This implies that X and all edges of G incident to X are contained in C. Thus $N_G(X)\subset V(C)$. If $|N(X)|\geq d$, then $G=G'\cup (C-e)$ would be rigid by Lemma 7(a). Hence $|N_G(X)|\leq d-1$. If $|N_G(X)|=d-2$, then $C=K_{d+2}$ and $G=B_{d,d-2}$. Hence $|N_G(X)|=d-1$. Then $C=K_{d+3}-f-g$ for two non-adjacent edges f,g and $G\in \mathcal{B}_{d,d-1}^+$.

Suppose $G[X] = C_4$. Since $\delta(G) = d+1$ and no vertex of X has more than d-1 neighbours in G', each vertex of X has degree d+1 in G. By Claim 13, we can choose $u \in X$ such that $|N(X-u) \cap V(G')| \geq d$. We can perform a 1-reduction of G at u which adds an edge between its two neighbours in X. We can now apply Lemma 10 to the resulting graph H on d+5 vertices to deduce that H is \mathcal{R}_d -rigid. This would imply that G is \mathcal{R}_d -rigid, contradicting the choice of G.

Suppose $G[X] = C_4 + f$. Then each vertex in X has degree d + 1 or d + 2 in G and the two vertices which are not incident to f have degree d + 1. If both of the vertices incident to f have degree d + 2 then G has more than $d|V| - {d+1 \choose 2}$ edges, so cannot be a flexible \mathcal{R}_d -circuit. Hence we may choose an end-vertex w of f with degree d + 1 in G. Construct H from G by performing a 1-reduction at w which adds an edge between its two non-adjacent neighbours in X. If all vertices in X have degree d + 1 in G, then we can reduce H to G' by recursively deleting the remaining 3 vertices of X in such a way that every deleted vertex has degree at most d. Since G' is \mathcal{R}_d -independent this would imply that G is \mathcal{R}_d -independent. Hence we may assume that the end-vertex of f distinct from w has has degree d+2 in G. We can now apply Lemma 10 to deduce that either H is \mathcal{R}_d -rigid

Figure 4: Construction of \hat{G} in the proof of Case 1.

or $|N(X-w)\cap V(G')|=d-1$ and H is $B_{d,d-1}$. The first alternative would imply that G is \mathcal{R}_d -rigid, and the second alternative would imply that either G is \mathcal{R}_d -rigid or $G \in \mathcal{B}_{d,d-1}^+$.

It remains to consider the subcase when $G[X] = K_4$. Then each vertex in X has degree at least d+1, and at most two of them have degree d+2 otherwise G would have more than $d|V|-\binom{d+1}{2}$ edges. Let \hat{G} be obtained from G by adding edges from vertices in X to vertices in G' in such a way that X has exactly two vertices of degree d+1 and exactly two vertices of degree d+2 in \hat{G} . We will show that G is \mathcal{R}_d -independent by proving that \hat{G} is minimally \mathcal{R}_d -rigid.

Since $N_{\hat{G}}(X) = V(G')$ by Claim 13, we may choose vertices $x, y \in X$ such that x has degree d+1, y has degree d+2 and some vertex $w \in V(G')$ is a neighbour of x in \hat{G} but not y. Let $X = \{x, y, z, t\}$ where z has degree d+2 and t has degree d+1 in \hat{G} . We can construct \hat{G} from G' by first performing a 0-extension which adds y and all edges from y to its neighbours in G' as well as to w, then add z and then t by successive 0-extensions, and finally add x by a 1-extension which removes the edge yw. (See Figure 4.)

Since G' is minimally \mathcal{R}_d -rigid this implies that \hat{G} is also minimally \mathcal{R}_d -rigid. This contradicts the fact that G is an \mathcal{R}_d -circuit and completes the proof of Case 1.

Case 2. $\delta(G) \ge d + 2$.

Choose $v \in V$ with $d(v) = \Delta(G)$. If G - v was \mathcal{R}_{d-1} -independent then G would be \mathcal{R}_{d} -independent by Lemma 6. This is impossible since G is an \mathcal{R}_{d} -circuit. Hence G - v contains an \mathcal{R}_{d-1} -circuit C. By the minimality of d, C is \mathcal{R}_{d-1} -rigid or $C \in \{B_{d-1,d-2}, B_{d-1,d-3}\} \cup \mathcal{B}_{d-1,d-2}^+$.

Claim 14. G - v is \mathcal{R}_{d-1} -rigid.

Proof of Claim. Suppose $C \in \{B_{d-1,d-2}, B_{d-1,d-3}\} \cup \mathcal{B}_{d-1,d-2}^+$. Then C has d+4, d+5 or d+5 vertices respectively, whereas G-v has at most d+5 vertices. If C spans G-v then the facts that C contains vertices of degree d+1 and $\delta(G-v) \geq d+1$ imply that we can

add edges of G-v to C to make it \mathcal{R}_{d-1} -rigid. Hence we may suppose that $C=B_{d-1,d-2}$ and $(G-v)\setminus C$ has exactly one vertex u. Since $d_{G-v}(u)\geq d+1$, G-v is \mathcal{R}_{d-1} -rigid unless all neighbours of u belong to the same copy of $K_{d+1}-e$ in $B_{d-1,d-2}$. Suppose the second alternative occurs and let H be the spanning subgraph of G-v obtained by adding u and all its incident edges to $B_{d-1,d-2}$. Since the other copy of $K_{d+1}-e$ in $B_{d-1,d-2}$ contains vertices of degree d in H, and degree at least d+1 in G-v, we can now add an edge of G-v to H to make it \mathcal{R}_{d-1} -rigid.

Suppose C is \mathcal{R}_{d-1} -rigid. Then $|V(C)| \geq d+1$. Let H be a maximal \mathcal{R}_{d-1} -rigid subgraph of G-v. Suppose $H \neq G-v$ and note that (G-v)-H has at most 4 vertices. Since each vertex of (G-v)-H has at most d-2 neighbours in H and $\delta(G-v) \geq d+1$ we have $(G-v)-H=K_4$ and $H=C=K_{d+1}$. We can now apply Lemma 10 to a minimally rigid spanning subgraph of H, and to each K_3 in (G-v)-H, in order to deduce that all vertices of (G-v)-H are adjacent to the same set of d-2 vertices of H. This cannot occur since every vertex of H which is not joined to a vertex of G-v-H would have degree at most d+1 in G, contradicting the assumption of Case 2. Hence H=G-v and G-v is \mathcal{R}_{d-1} -rigid.

Let $(G - v)^*$, respectively C^* , be obtained from G - v, respectively C, by adding v and all edges from v to G - v, respectively C. Then $(G - v)^*$ is \mathcal{R}_d -rigid by Claim 14 and Lemma 6, and, when C is \mathcal{R}_{d-1} -rigid, C^* is an \mathcal{R}_d -circuit again by Lemma 6.

Let S be the set of all edges of G^* which are not in G. Since C^* is rigid or $C^* \in \{B_{d,d-1}, B_{d,d-2}\} \cup \mathcal{B}_{d,d-1}^+$, C^* is not an \mathcal{R}_d -circuit in G. Hence $E(C^*) \cap S \neq \emptyset$. If $S = \{f\}$ then $G = (G - v)^* - f$ would be \mathcal{R}_d -rigid since $(G - v)^*$ is \mathcal{R}_d -rigid and $f \in E(C^*)$. Hence $|S| \geq 2$ and $\Delta(G) = d(v) \leq |V| - 3$. Let \bar{G} be the complement of G.

Suppose $|V| \leq d+5$. Then |V| = d+5 and G is (d+2)-regular. This implies that \bar{G} is a 2-regular graph on $d+5 \geq 8$ vertices and we may choose two non-adjacent vertices v_1, v_2 with no common neighbours in \bar{G} . Then $v_1v_2 \in E$ and $|N_G(v_1) \cap N_G(v_2)| = d-1$. We can use the facts that G is d-sparse, (d+2)-regular and |V| = d+5 to deduce that G/v_1v_2 is d-sparse. (If not, then some set $X \subseteq V(G/v_1v_2)$ would induce more that $d|X| - {d+1 \choose 2}$ edges. Then $|X| \geq d+2$ and the fact that each vertex of $V(G/v_1v_2) \setminus X$ has degree at least d+1 will imply that G/v_1v_2 has more that $d|V(G/v_1v_2)| - {d+1 \choose 2}$ edges. This will contradict the fact that G has at most $d|V(G)| - {d+1 \choose 2}$ edges.) Since G/v_1v_2 has no flexible \mathcal{R}_d -circuits (by the minimality of G), G/v_1v_2 is \mathcal{R}_d -independent. We can now use Lemma 5 to deduce that G is \mathcal{R}_d -independent. Hence |V| = d+6. Since $\delta(G) \geq d+2$ and $\Delta(G) \leq d+3$ we have $\delta(\bar{G}) \geq 2$ and $\Delta(\bar{G}) \leq 3$.

Suppose $\delta(\bar{G}) = 2$ and $\Delta(\bar{G}) = 3$. Then we can find two vertices $x, y \in V$ with $d_{\bar{G}}(x) = 2$, $d_{\bar{G}}(y) = 3$ and $\mathrm{dist}_{\bar{G}}(x,y) \geq 3$ by Lemma 12. We can deduce as in the previous paragraph that G/xy is d-sparse. If G/xy contains an \mathcal{R}_d -circuit then $G/xy = B_{d,d-1}$ by the minimality and d-sparsity of G. Since $B_{d,d-1}$ has d-3 vertices of degree d+4 and six vertices of degree d+1, this would contradict the fact that G has minimum degree d+2

(when $d \leq 6$) and maximum degree d+3 (when $d \geq 5$). Hence G/v_1v_2 is \mathcal{R}_d -independent. We can now use Lemma 5 to deduce that G is \mathcal{R}_d -independent.

Next we consider the case when \bar{G} is 2-regular. Then |S| = 2 and G is (d+3)-regular. The fact that $(G-v)^*$ is \mathcal{R}_d -rigid and contains at least two \mathcal{R}_d -circuits $(G \text{ and } C^*)$ tells us that $|E((G-v)^*)| \geq d|V| - {d+1 \choose 2} + 2$. Since $|E| = |E((G-v)^*)| - |S|$ and G is d-sparse this gives

$$\frac{(d+3)(d+6)}{2} = |E| = d|V| - \binom{d+1}{2} = \frac{d(d+11)}{2}.$$

This implies that d = 9 and |V| = 15. We can now use Lemma 11(b) to deduce that G is \mathcal{R}_9 -independent, contradicting the fact that G is an \mathcal{R}_9 -circuit.

It remains to consider the final subcase when \bar{G} is 3-regular. Then |S| = 3 and G is (d+2)-regular. Since $(G-v)^*$ is \mathcal{R}_d -rigid and contains at least two \mathcal{R}_d -circuits we have $|E(G)| \geq d|V| - {d+1 \choose 2} - 1$. The fact that G is d-sparse now gives

$$\frac{(d+2)(d+6)}{2} = |E| = d|V| - \binom{d+1}{2} - \alpha = \frac{d(d+11)}{2} - \alpha$$

for some $\alpha = 0, 1$. This implies that $\alpha = 0$ and d = 4. We can now use Lemma 11(a) to deduce that G is \mathcal{R}_4 -independent, contradicting the fact that G is an \mathcal{R}_4 -circuit.

We can use Theorem 1 to obtain a lower bound on the number of edges in a flexible \mathcal{R}_d -circuit. For G = (V, E) and $X \subset V$, we use the notation $E(X, V \setminus X)$ to denote the set of edges with one endvertex in X and one in $V \setminus X$.

Corollary 15. Suppose G = (V, E) is a flexible \mathcal{R}_d -circuit. Then $|E| \geq d(d+9)/2$, with equality if and only if $G = B_{d,d-1}$.

Proof. The corollary follows immediately from Theorem 1 if $|V| \leq d+6$. Since $\delta(G) \geq d+1$ we have |E| > d(d+9)/2 when either $|V| \geq d+8$, or |V| = d+7 and $\delta(G) \geq d+2$. Hence we may assume that |V| = d+7 and $\delta(G) = d+1$. Choose a vertex v with d(v) = d+1. Then v has two non-adjacent neighbours v_1, v_2 since otherwise G would contain the rigid \mathcal{R}_d -circuit K_{d+2} . Let $H = G - v + v_1v_2$. If H was \mathcal{R}_d -independent then G would be \mathcal{R}_d -independent by Lemma 4. Hence H contains an \mathcal{R}_d -circuit C. If C is flexible then Theorem 1 implies that $C \in \{B_{d,d-2}\} \cup \mathcal{B}_{d,d-1}^+$ and hence |E| > |E(C)| > d(d+9)/2. Thus we may assume that C is \mathcal{R}_d -rigid. Then $C - v_1v_2$ is an \mathcal{R}_d -rigid subgraph with at least d+2 vertices. Let

 $X = V(G) \setminus V(C)$. Then $1 \le |X| \le 5$. Since $\delta(G) = d + 1$ and $|X| \le 5$ we have

$$|E| = |E(C - v_1 v_2)| + |E(X)| + |E(X, V \setminus X)|$$

$$\geq d|V \setminus X| - \binom{d+1}{2} + \binom{|X|}{2} + |X|(d+1-|X|+1)$$

$$= d|V| - \binom{d+1}{2} - \frac{|X|(|X|-3)}{2}$$

$$\geq \frac{d(d+13)}{2} - 5.$$

We can now use the fact that $d \ge 3$ to deduce that |E| > d(d+9)/2.

4 Closing Remarks

4.1 Generalised 2-sums

Let G = (V, E), $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. We say that G is a t-sum of G_1, G_2 along an edge e if $G = (G_1 \cup G_2) - e$, $G_1 \cap G_2 = K_t$ and $e \in E_1 \cap E_2$. We conjecture that Lemma 8 can be extended to t-sums.

Conjecture 16. Suppose that G is a t-sum of G_1, G_2 along an edge e for some $2 \le t \le d+1$. Then G is an \mathcal{R}_d -circuit if and only if G_1, G_2 are \mathcal{R}_d -circuits.

Our proof technique for Lemma 8 gives the following partial result.

Lemma 17. Let G = (V, E), $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs such that G is a t-sum of G_1, G_2 along an edge e for some $2 \le t \le d+1$.

- (a) If G is an \mathcal{R}_d -circuit, then G_1 and G_2 are both \mathcal{R}_d -circuits.
- (b) If G_1 and G_2 are both \mathcal{R}_d -circuits, then G contains a unique \mathcal{R}_d -circuit G' and $E \setminus (E_1 \cap E_2) \subseteq E(G')$.

Proof. (a) If G_1 and G_2 are both \mathcal{R}_d -independent, then Lemma 7(b) implies that $G_1 \cup G_2$ is \mathcal{R}_d -independent. This contradicts the facts that G is a \mathcal{R}_d -circuit and $G \subseteq G_1 \cup G_2$. If exactly one of G_1 and G_2 , say G_1 , is \mathcal{R}_d -independent then e belongs to the unique \mathcal{R}_d -circuit in G_2 and Lemma 7(b) gives $r_d(G) = r_d(G+e) = |E_1| + |E_2| - {t \choose 2} - 1 = |E|$. This again contradicts the hypothesis that G is an \mathcal{R}_d -circuit. Hence G_1 and G_2 are both \mathcal{R}_d -dependent. Then the matroid circuit elimination axiom combined with the fact that G is an \mathcal{R}_d -circuit imply that G_1 and G_2 are both \mathcal{R}_d -circuit.

(b) The circuit elimination axiom implies that G is \mathcal{R}_d -dependent and hence that G contains an \mathcal{R}_d -circuit G' = (V', E'). Since $G_i - e$ is \mathcal{R}_d -independent for i = 1, 2, we have $E' \setminus E_i \neq \emptyset$.

Let G_i' be obtained from $G_i \cap G'$ by adding an edge between every pair of non-adjacent vertices in $V' \cap V_1 \cap V_2$. If G_i' is a proper subgraph of G_i for i = 1, 2 then each G_i' is \mathcal{R}_d -independent and we can use Lemma 7(b) to deduce that $G_1' \cup G_2'$ is \mathcal{R}_d -independent. This gives a contradiction since $G' \subseteq G_1' \cup G_2'$. Relabelling if necessary we have $G_1' = G_1$. If $G_2' \neq G_2$ then we may deduce similarly that $G_1' \cup G_2' - e$ is independent. This again gives a contradiction since $G' \subseteq G_1' \cup G_2' - e$. Hence $G_2' = G_2$. It remains to show uniqueness. For i = 1, 2, let B_i be a base of $\mathcal{R}_d(G_i)$ which contains $E(G_1) \cap E(G_2)$. Then $|B_i| = |E_i| - 1$ and Lemma 7(b) gives

$$r_d(G) = r_d(G_1 \cup G_2 - e) = r_d(G_1 \cup G_2) = |B_1| + |B_2| - {t \choose 2} = |E| - 1.$$

Hence, G contains a unique \mathcal{R}_d -circuit.

We can also use a result of Connelly [8] to deduce that Conjecture 16 holds when t = d+1 and G_1, G_2 are both globally rigid in \mathbb{R}^d .

4.2 Highly connected flexible circuits

Bolker and Roth [4] determined $r_d(K_{s,t})$ for all complete bipartite graphs $K_{s,t}$. Their result implies that $K_{d+2,d+2}$ is a (d+2)-connected \mathcal{R}_d -circuit for all $d \geq 3$ and is flexible when $d \geq 4$, see [9, Theorem 5.2.1]. We know of no (d+3)-connected flexible \mathcal{R}_d -circuits and it is tempting to conjecture that they do not exist.

For the case when d=3, Tay [16] gives examples of 4-connected flexible \mathcal{R}_3 -circuits and Jackson and Jordán [10] conjecture that all 5-connected \mathcal{R}_3 -circuits are rigid. An analogous statement has recently been verified for circuits in the closely related C_2^1 -cofactor matroid by Clinch, Jackson and Tanigawa [7].

4.3 Extending Theorem 1

We saw in the previous subsection that $K_{d+2,d+2}$ is a flexible \mathcal{R}_d -circuit with 2d+4 vertices for all $d \geq 4$. We can use Lemma 6 to obtain a smaller flexible \mathcal{R}_d -circuit: we can recursively apply the coning operation to the flexible \mathcal{R}_4 -circuit $K_{6,6}$ to obtain a flexible \mathcal{R}_d -circuit on d+8 vertices. This suggests that it may be difficult to extend Theorem 1 to graphs on d+8 vertices, but it is conceivable that all flexible \mathcal{R}_d -circuits on d+7 vertices have the form $(G_1 \cup G_2) - S$ where $G_i \in \{K_{d+2}, K_{d+3}, K_{d+4}\}$, $G_1 \cap G_2 \in \{K_{d-3}, K_{d-2}, K_{d-1}\}$ and S is a suitably chosen set of edges.

For the case when d = 3, Tay [16] gives examples of 3-connected flexible \mathcal{R}_3 -circuits with 13 vertices but it is possible that all flexible circuits on at most 12 vertices can be obtained by taking 2-sums of rigid circuits on at most 9 vertices.

Acknowledgement

The authors would like to thank the London Mathematical Society, and the Heilbronn Institute for Mathematical Research, for providing partial financial support through a scheme 5 grant, and a focused research group grant, respectively.

Georg Grasegger was supported by the Austrian Science Fund (FWF): P31888.

References

- [1] T. Abbott. Generalizations of Kempe's universality theorem. Master's thesis, Massachusetts Institute of Technology, 2008.
- [2] L. Asimow and B. Roth. The rigidity of graphs. Transactions of the American Mathematical Society, 245:279–289, 1978. doi:10.1090/S0002-9947-1978-0511410-9.
- [3] A. R. Berg and T. Jordán. A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid. *Journal of Combinatorial Theory, Series B*, 88(1):77–97, 2003. doi:10.1016/S0095-8956(02)00037-0.
- [4] E. D. Bolker and B. Roth. When is a bipartite graph a rigid framework? *Pacific Journal of Mathematics*, 90(1):27-44, 1980. doi:10.2140/pjm.1980.90.27.
- [5] A. Cauchy. Sur les polygones et polyèdres second mémoire. Journal de l'École Polytechnique, 9:87–98, 1813. URL: https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f13.
- [6] J. Cheng, M. Sitharam, and I. Streinu. Nucleation-free 3d rigidity. Technical report, Computer Science: Faculty Publications, Smith College, Northampton, MA, 2013. URL: https://scholarworks.smith.edu/csc_facpubs/6/.
- [7] K. Clinch, B. Jackson, and S. Tanigawa. Abstract 3-rigidity and bivariate c_2^1 -splines ii: combinatorial characterization, 2019. arXiv:1911.00207.
- [8] R. Connelly. Combining globally rigid frameworks. *Proceedings of the Steklov Institute of Mathematics*, 275:191–198, 2011. doi:10.1134/S008154381108013X.
- [9] J. Graver, B. Servatius, and H. Servatius. *Combinatorial rigidity*. American Mathematical Society, Providence, RI, 1993.
- [10] B. Jackson and T. Jordán. On the rank function of the 3-dimensional rigidity matroid. International Journal of Computational Geometry & Applications, 16(05n06):415–429, 2006. doi:10.1142/S0218195906002117.

- [11] T. Jordán. A note on generic rigidity of graphs in higher dimension. Technical Report 2020-01, EGRES.
- [12] G. Laman. On graphs and rigidity of plane skeletal structures. *Journal of Engineering Mathematics*, 4:331–340, 1970. doi:10.1007/BF01534980.
- [13] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM Journal on Algebraic Discrete Methods, 3(1):91–98, 1982. doi:10.1137/0603009.
- [14] J. C. Maxwell. On the calculation of the equilibrium and stiffness of frames. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27(182):294–299, 1864. doi:10.1080/14786446408643668.
- [15] H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 7:58–72, 1927. doi:10.1002/zamm.19270070107.
- [16] T.-S. Tay. On generically dependent bar frameworks in space. *Structural Topology*, 20:27–48, 1993. URL: https://hdl.handle.net/2099/1003.
- [17] W. Whiteley. Cones, infinity and one-story buildings. *Structural Topology*, 8:53–70, 1983. URL: https://hdl.handle.net/2099/1003.
- [18] W. Whiteley. Vertex splitting in isostatic frameworks. *Structural Topology*, 16:23–30, 1990. URL: https://hdl.handle.net/2099/1055.
- [19] W. Whiteley. Some matroids from discrete applied geometry. Number 197 in Contemporary Mathematics, pages 171–311. American Mathematical Society, Providence, RI, 1996.