
ORCHARDS IN ELLIPTIC CURVES OVER FINITE FIELDS

R. PADMANABHAN AND ALOK SHUKLA

Abstract. Consider a set of n points on a plane. A line containing exactly
3 out of the n points is called a 3-rich line. The classical orchard problem
asks for a configuration of the n points on the plane that maximizes the
number of 3-rich lines. In this note, using the group law in elliptic curves
over finite fields, we exhibit several (infinitely many) group models for or-
chards wherein the number of 3-rich lines agrees with the expected number
given by Green-Tao (or, Burr, Grünbaum and Sloane) formula for the max-
imum number of lines. We also show, using elliptic curves over finite fields,
that there exist infinitely many point-line configurations with the number
of 3-rich lines exceeding the expected number given by Green-Tao formula
by two, and this is the only other optimal possibility besides the case when
the number of 3-rich lines agrees with the Green-Tao formula.

1. Introduction

Orchard problem has a rich history going back to 1821. Jackson posed this
problem in a poetic style in his book, aptly entitled, “Rational Amusement for
Winter Evenings . . . ” [4]. This problem was also posed by Sylvester in 1868
[11]. The orchard problem is to plant n trees in an orchard maximizing the
number of possible rows which contain exactly three trees. Of course, trees
can be considered as points on a plane and rows as lines. We say that a line is
3-rich if it contains exactly three points out of the n specified points. A (n, t)-
arrangement is a set of n points and t 3-rich lines in the real projective plane.
The classical orchard problem is to find an arrangement in the real projective
plane with greatest number of 3-rich lines t for each given value of n. We say
that (n, t) is optimal and Or(n) = t, if t is the solution of the orchard problem
for n points. Clearly, for 3 (also, 4) points there is only one 3-rich line possible,
so arrangement (3, 1) (also, (4, 1)) is optimal, and Or(3) = Or(4) = 1. Fig. 1
shows optimal arrangements (5, 2), (6, 4), (7, 6) and (8, 7).

Sylvester proved that Or(n) ≥ b1
6
(n − 1)(n − 2)c, where, as noted earlier,

Or(n) is the maximum number of 3-rich lines for n points. (Here, and in what
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(5 points, 2 lines) (6 points, 4 lines)

(7 points, 6 lines) (8 points, 7 lines)

Figure 1. Examples of optimal (p, t) arrangements for the or-
chard problem for 5 ≤ p ≤ 8.

follows, bxc denotes the integer part of x.) Burr, Grünbaum and Sloane [1],
discussed this problem in a paper in 1973, and proved that

Or(n) ≥ bn(n− 3)/6c+ 1. (1.1)

More recently, in 2013 Green and Tao solved the orchard problem for all
but finitely many cases. More precisely, they have solved the orchard problem
for such cases wherein the number of points n is greater than some sufficiently
large constant.

Theorem 1 (Green-Tao, [3]). Suppose that P is a finite set of n points in the
plane. Suppose that n ≥ n0 for some sufficiently large absolute constant n0.
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Then there are no more than bn(n − 3)/6c + 1 lines that are 3-rich, that is
they contain precisely 3 points of P .

In conjunction with (1.1), Green-Tao theorem shows that for all n ≥ n0,

Or(n) = bn(n− 3)/6c+ 1. (1.2)

For brevity, we will call the bound given by Eq. (1.2), “Green-Tao” bound
in the sequel. Although, it should more appropriately be addressed as “Burr,
Grünbaum, Sloane, Green, Tao” bound owing to the result of Burr, Grünbaum
and Sloane given in Eq. (1.1).

Since, every line cuts a cubic in three points, and four points on a cubic will
never be collinear, cubic curves defined over real or complex numbers provide
a natural tool to construct orchards. This has been done before, for example,
by Burr, Grünbaum and Sloane [1] and Green-Tao [3] in obtaining their results
described earlier.

In this note, we give analogs of the classical orchard problem, by changing
the ‘ground plane’ of orchards from a real projective plane to a projective
plane defined over a finite field.

Orchard problem over finite fields: Consider a set of N points in a pro-
jective plane defined over a finite field. Find an optimal configuration of the
given N points, such that the number of 3-rich lines is maximum.

Notation: In the sequel, by a slight abuse of notation, the number of 3-rich
lines in an optimal configuration for the orchard problem over finite fields will
also be denoted by Or(N). the finite field with q elements will be denoted by
Fq, where q = pn for some prime p and some positive integer n. For an elliptic
curve E given by a Weierstrass equation y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6

defined over a field K, E(K) will denote the set {(x, y) ∈ K2 | y2+a1xy+a3y =
x3 + a2x

2 + a4x+ a6} ∪ {O}.

Certain elliptic curves defined over finite fields will be used to obtain concrete
group models for the orchards (N, t). In these group models, three points
P,Q,R form a 3-rich line, if and only if, P+Q+R = O in the underlying group
structure. This enables one to count the number of lines and we give infinite
families of examples using both ordinary and supersingular elliptic curves over
finite fields wherein the Green-Tao bounds (see (1.2)) are attained. Also, we
show that there is just one other possibility, which also occurs infinitely many
times, that the Green-Tao bounds are exceeded by two 3-rich lines. Our result
also put some constraint on all the orchard realizable over a projective plane
over Q (see Theorem 11 and the first remark after that.)
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Next we consider a numerical example to illustrate how the orchard problem
can be treated on an elliptic curve over a finite field.

Example (6 points, 4 lines): Consider the elliptic curve E given by a min-
imal Weierstrass equation y2 = x3 + 3 over F5. It can be verified that
#E(F5) = 6 and E(F5) contains the following points:

A = (1, 2), B = (1, 8), C = (2, 1),

D = (2, 4), E = (3, 0), O = (0, 1, 0) (the point at infinity).

The following four 3-rich lines could be formed using the points in
E(F5) (see Fig. 2):

l1 : containing {O,A,B},
l2 : containing {O,C,D},
l3 : containing {A,C,E},
l4 : containing {B,D,E}.

It can be verified that E(F5) ∼= Z6 and A = (1, 2) is a generator of the
group. It can be verified that all the points above lie on the elliptic
curve y2 + 5xy − 15y = x3 − 10x2 + 35x − 42, which is y2 = x3 + 3
mod 5.

Now we give a brief organization of the paper. In the next section, i.e.
Sect. 2, some important results on elliptic curves over finite fields will be
reviewed. In Sect. 3 our main results are proved. Finally, in Sect. 4 we discuss
some numerical examples and the question of realizability of our solutions on
a real projective plane.

2. Elliptic curves over finite fields

The main purpose of this section is to collect some known structural results
on elliptic curves over finite fields for later uses. Readers are referred to stan-
dard textbooks, such as [10] or [12], for details on the material related to this
section.

An elliptic curve over a field K is a smooth cubic curve of genus one with a
specified basepoint O ∈ E(K). It is a consequence of Riemann-Roch theorem
that every elliptic curve E/K can be given by an explicit Weierstrass equation
of the form y2 +a1xy+a3y = x3 +a2x

2 +a4x+a6, with ai ∈ K, and the extra
point [0, 1, 0] at infinity. If characteristic of K is not 2 or 3 one can always
write equation of an elliptic curve in the following minimal Weierstrass form

E : y2 = x3 + Ax+B, (2.1)
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Figure 2. Orchard configuration with (6 points, 4 lines) using
elliptic curve given by a minimal Weierstrass equation y2 = x3+3
over F5. Note that all the five elliptic curves shown in the figure
reduce to y2 = x3 + 3 modulo 5.
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with the discriminant ∆ = −16(4A3 + 27B2) 6= 0. Here the condition ∆ 6= 0
ensures that the elliptic curve is non-singular with no-repeated roots (equiva-
lently, the partial derivatives do not vanish simultaneously for any point on E),
which geometrically means the curve has no cusps or nodes (self-intersections).
For an elliptic curve E there is an important invariant, called j-invariant which

is defined as j(E) = 1728
4A3

4A3 + 27B2
. Two elliptic curves having the same

j-invariant are isomorphic. An elliptic curve is equipped with an abelian group
structure and the group law is such that three points P,Q and R in E(K) are
collinear if and only if P + Q + R = O, with O being the identity element of
the group, i.e., the point at infinity (0, 1, 0).

An isogeny between E1/K and E2/K is a non-constant morphism φ : E1 →
E2 defined over K such that φ(OE1) = OE2 . (i.e., φ is a morphism of curves
given by rational functions with coefficients in K, which respects identity.) El-
liptic curves E1 and E2 are called isogenous if there exists an isogeny φ : E1 →
E2. Endomorphism ring of E/K, EndK(E) (or End(E), to ease notation) con-
sists of all the isogenies φ : E → E, with natural addition and multiplication
given by composition. For any integer m, there is a natural definition of an
isogeny multiplicaiton by m given as [m] : E → E, with [m]P = mP . The
kernel of the isogeny [m] is denoted by E[m] (i.e., E[m] = {P ∈ E | mP = 0}),
and it is called the m-torsion subgroup of E.

Mordell proved that the group of rational points E(Q) is finitely generated.
Moreover, over a finite field E(Fq) is a finite abelian group of order #E(Fq),
where a bound for #E(Fq) is given by Hasse’s theorem.

Theorem 2 (Hasse).

Let #E(Fq) = q + 1− t.Then |t| ≤ 2
√
q. (2.2)

Next, we note a formula to determine the number #E(Fq).

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 + Ax+B

Fq

)
, (2.3)

where
(

x
Fq

)
is the generalized Legendre symbol which takes the value 1 if x is

a square in F×q , and −1 if x is not a square in F×q , otherwise, it takes the value
0 if x = 0.

Theorem 3 (Deuring, [2]). Let E be an elliptic curve over the finite field

Fq. For each integer m ≥ 1, let φm : E → E(pm) and φ̂m : E(pm) → E be the
pm-Frobenius map and its dual respectively. Then the following are equivalent.
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(1) E[pm] = 0 for one(all) m ≥ 1.
(2) End(E) is an order in a quaternion algebra.

(3) φ̂m is (purely) inseparable for one (all) m ≥ 1.
(4) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

Definition 1. An elliptic curve E/Fq is called supersingular if it satisfies any
of the equivalent conditions given in Theorem 3. Otherwise, it is called an
ordinary elliptic curve.

Another characterization of supersingular curves is that a curve is supersin-
gular if and only if t ≡ 0 mod p, where #E(Fq) = q + 1− t.

The next result describes all the possible values of #E(qn) that one can get
by varying E over all the elliptic curves over Fq.

Theorem 4 (Schoof, [9]). Let q = pn. There exists an elliptic curve E/Fq of
order q + 1− t if and only if one of the following condition holds:

(1) t 6≡ 0 mod p, and t2 ≤ 4q.
(2) n is odd and one of the following holds:

• t = 0.
• t2 = 2q, and p = 2.
• t2 = 3q, and p = 3.

(3) n is even and one of the following holds:
• t2 = 4q.
• t2 = q and p 6≡ 1 mod 3.
• t = 0, and p ≡ 1 mod 4.

Corollary 1 (of Theorem 4 ). Let E be as in Theorem 4. Then E is super-
singular if and only if t2 = 0, q, 2q, 3q, or 4q.

Theorem 5 (Rück, [8]). Let N = q + 1− t such that it occurs as an order of
an elliptic curve over Fq. Let N = pen1n2 with p - n1n2, and n1|n2 (possibly
n1 = 1). There is an elliptic curve E/Fq such that

E(Fq) ∼= Zpe ⊕ Zn1 ⊕ Zn2 (2.4)

if and only if

(1) n1 = n2 in the case n is even and t2 = 4q of Theorem 4.
(2) n1|q − 1 in all other cases of Theorem 4.

In view of Corollary 1 the following theorem characterizes the possible group
structures of supersingular elliptic curves E(Fq).

Theorem 6 (Schoof, [9]). Let #E(Fq) = q + 1− t.
(1) If t2 = q, 2q, or 3q, then E(Fq) is cyclic.
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(2) If t2 = 4q, then E(Fq) is of the form of Zm ⊕ Zm with m =
√
q − 1 if

t = 2
√
q, otherwise if t = −2

√
q then m =

√
q + 1.

(3) If t = 0 and q 6≡ 3 mod 4, then E(Fq) is cyclic. If t = 0 and q ≡ 3
mod 4, then either E(Fq) is cyclic, or E(Fq) ∼= Zm⊕ Z2, with m = q+1

2
.

The following theorem gives a simple method for determining whether an
elliptic curve is supersingular.

Theorem 7 (Deuring, [2]). Let p > 2. The elliptic curve E over Fq, with
Weierstrass equation y2 = f(x), is supersingular if and only if the coefficient

of xp−1 in f(x)
p−1
2 is 0.

Next, for a finite field with even characteristic we have the following results
taken from [5] and listed in Table 1 and Table 2. For q = 2n, a representative
curve E/Fq from each of the isomorphism classes of supersingular curve over
Fq is listed. The order and the group structure of E(Fq) is also listed along
with the curve for both the case when n is odd (see Table 1)) and n even (see
Table 2).

Curve over 2n n Order Group

y2 + y = x3 odd q + 1 cyclic

y2 + y = x3 + x
n ≡ 1, 7 mod 8
n ≡ 3, 5 mod 8

q + 1 +
√

2q
q + 1−

√
2q

cyclic
cyclic

y2 + y = x3 + x+ 1
n ≡ 1, 7 mod 8
n ≡ 3, 5 mod 8

q + 1−
√

2q
q + 1 +

√
2q

cyclic
cyclic

Table 1. Elliptic curves over F2n , where n is odd.

In order to use supersingular elliptic curves and their group structure to
solve the orchard problem on a projective plane over F, we consider some
representative supersingular elliptic curves. The results of the following lemma
are well-known.

Lemma 1.

(1) Let q be odd and q ≡ 2 mod 3. Let the elliptic curve E : y2 = x3 + b
be defined over Fq, with b ∈ F×q . Then E(Fq) ∼= Zq+1.

(2) Let q ≡ 3 mod 4. Let the elliptic curve E : y2 = x3−x be defined over
Fq. Then E(Fq) ∼= Z q+1

2
⊕ Z2.

(3) Let q ≡ 3 mod 4. Let the elliptic curve E : y2 = x3 +x be defined over
Fq. Then E(Fq) ∼= Zq+1.
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Curve over 2n n Order Group

y2 + y = x3 + δx even q + 1 cyclic

y2 + γy = x3
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1 +
√
q

q + 1−√q
cyclic
cyclic

y2 + γy = x3 + α
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1−√q
q + 1 +

√
q

cyclic
cyclic

y2 + γ2y = x3
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1 +
√
q

q + 1−√q
cyclic
cyclic

y2 + γ2y = x3 + β
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1−√q
q + 1 +

√
q

cyclic
cyclic

y2 + y = x3
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1−
√

2q
q + 1 +

√
2q

Z√q−1 ⊕ Z√q−1

Z√q+1 ⊕ Z√q+1

y2 + y = x3 + ω
n ≡ 0 mod 4
n ≡ 2 mod 4

q + 1 +
√

2q
q + 1−

√
2q

Z√q+1 ⊕ Z√q+1

Z√q−1 ⊕ Z√q−1

Table 2. Elliptic curves over F2n , where n is even.

Proof.

(1) See Prop. 4.33, [12] or Example 4.4, [10]) and Example 2.17, [6].
(2) See Example 2.18, [6].
(3) See Example 2.18, [6].

�

As a side remark, we note that recently supersingular elliptic curves have
found applications in cryptography. For example, the supersingular elliptic
curve y2 = x3 + 7 is used in Bitcoin’s public-key cryptography.

3. Orchard problem using elliptic curves over finite fields

Next we prove a lemma which will be essential for proving our main result.

Lemma 2. Let G be a finite abelian group, such that G ∼= Zn1 ⊕Zn2 ⊕Zn3 ⊕
· · ·Znk

, with ni|ni+1 for i = 1, 2, 3, · · · k− 1. If 3|nk, then let j with 1 ≤ j ≤ k
be the smallest index such that 3|nj, i.e., j is such that 3|nj but 3 - nj−1 (with
n0 = 1). Let

Ψ(G) =

{
0 if 3 - nk,

k − j if 3|nj, 3 - nj−1.
(3.1)
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Then the number of distinct solutions (where order does not matter) of x +
y + z = 0 in G is

1

6

((
k∏

i=1

n2
i

)
− 3

(
k∏

i=1

ni

)
+ 2(3)Ψ(G)

)
. (3.2)

Proof. Let x = (α1, α2, · · ·αk), y = (β1, β2, · · · βk), and z = (γ1, γ2, · · · γk),
with αi, βi, γi ∈ Zni

. Now x + y + z = 0 in Zn1 ⊕ Zn2 ⊕ Zn3 ⊕ · · ·Znk
if and

only if

αi + βi + γi = 0 in Zni
, for i = 1, 2, 3, · · · k. (3.3)

In (3.3) αi and βi both can take ni different values and corresponding to each
of the pairs (αi, βi) there is a unique γi, giving n2

i solutions to αi +βi +γi = 0,
including solutions with αi, βi and γi non-distinct. Varying i from 1 to k yields∏k

i=1 n
2
i such solutions. Next in order to get distinct solutions,

∏k
i=1 3ni needs

to be subtracted, since for each of the cases αi = βi, βi = γi and γi = αi,
for i = 1 to k, there are

∏k
i=1 ni solutions; and to this twice the number of

solution when αi = βi = γi, for i = 1 to k, should be added.
Next we compute the number of solutions in case when αi = βi = γi, for

i = 1 to k. If αi = βi = γi and 3 - ni, then there is a unique solution to
αi + βi + γi = 0, namely αi = βi = γi = 0; otherwise if 3|ni, then there are 3
different solutions to αi + βi + γi = 0, namely αi = βi = γi = 0, ni

3
and 2ni

3
.

Using this observation it is easy to see that as i varies form 1 to k, there are
total 3Ψ(G) such solutions.

Therefore, we obtain total((
k∏

i=1

n2
i

)
− 3

(
k∏

i=1

ni

)
+ 2(3)Ψ(G)

)
solutions, which should be divided by 3! = 6 to obtain the total number of
distinct solutions to (3.3) where order does not matter. �

As immediate corollaries to Lemma 2, we obtain the following results.

Corollary 2. Then the number of distinct solutions (up to ordering) of x +
y + z = 0 in Zn1 ⊕ Zn2, with n1|n2, is

n2
1n

2
2−3n1n2+18

6
if 3|n1,

n2
1n

2
2−3n1n2+2

6
if 3 - n1,

n2
1n

2
2−3n1n2+6

6
if 3 - n1, 3|n2,

=

{
bN(N−3)

6
c+ 3 if 3|N,

bN(N−3)
6
c+ 1 if 3 - N,

where N = n1n2.
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Corollary 3. Then the number of distinct solutions (up to ordering) of x +
y + z = 0 in Zm ⊕ Zm is{

m4−3m2+18
6

if 3|m,
m4−3m2+2

6
if 3 - m,

=

{
bN(N−3)

6
c+ 3 if 3|N,

bN(N−3)
6
c+ 1 if 3 - N,

where N = m2.

Corollary 4. Then the number of distinct solutions (up to ordering) of x +
y + z = 0 in ZN is{

N2−3N+6
6

if 3|N,
N2−3N+2

6
if 3 - N,

=
{
bN(N−3)

6
c+ 1.

Theorem 8. Assume Fq to be a finite field of odd characteristic, with q = pn.

(1) Let q ≡ 3 mod 4. There exist point-line arrangements (N, bN(N−3)
6
c+

1), with N = q + 1, in the projective plane over the finite field Fq with
group models Zq+1 and Z q+1

2
⊕ Z2.

(2) Let n be odd and q 6≡ 3 mod 4, or let n be even and p 6≡ 3 mod 4.

There exits a point-line arrangement (N, bN(N−3)
6
c+1), with N = q+1,

in the projective plane over the finite field Fq with the group model Zq+1.

In all the cases above

Or(N) ≥ bN(N − 3)

6
c+ 1, (3.4)

with N = q + 1.

Proof.

(1) Let q ≡ 3 mod 4. Let E1 : y2 = x3 − x and E2 : y2 = x3 + x be
elliptic curves defined over Fq. Then from Lemma 1 we have E1(Fq) ∼=
Z q+1

2
⊕ Z2, and E2(Fq) ∼= Zq+1.

First, we consider q + 1 points on E1(Fq). Let m = q+1
2

. It is given
that q ≡ 3 mod 4, so 2|m. Since, E1(Fq) ∼= Z2 ⊕ Z q+1

2
, there exist

points P and Q in E1(Fq) such that 2P = O and mQ = O, where O is
the point at infinity. The three distinct points Ai = αiP + βiQ, with
αi ∈ Z2, βi ∈ Zm, for i = 1, 2, 3, are collinear if and only if

3∑
i=1

αiP+βiQ = O ⇐⇒ α1+α2+α3 = 0 mod 2, and β1+β2+β3 = 0 mod m.

(3.5)
Therefore, finding the number of 3-rich lines is equivalent to finding the
number of distinct solutions (up to ordering) to the equation x+y+z =
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0 in Z2 ⊕ Zm. Now the result follows from Corollary 2, with n1 = 2
and n2 = m = q+1

2
.

Next we consider q+1 points on E2(Fq) ∼= Zq+1. Let P be a generator
of the underlying group of E2(Fq). Let points Pi ∈ E2(Fq), for i =
1, 2, 3. Then P1 = xP , P2 = yP and P3 = zP for some x, y, z ∈ Zq+1.
Clearly, P1, P2 and P3 are collinear if and only if

P1 + P2 + P3 = O ⇐⇒ xP + yP + zP = O ⇐⇒ x+ y + z = 0 mod q + 1.
(3.6)

Therefore, the number of 3-rich lines is equal to the number of solutions
of the equation x + y + z = 0 in Zq+1. Now, the result follows from
Corollary 4, with N = q + 1.

(2) Let q = pn with n odd. Then from Theorem 4 there exist an elliptic
curve such that #E(Fq) = q + 1, i.e., t = 0 in Theorem 4. Then
Theorem 6 implies that FFq

∼= Zq+1, as q 6≡ 3 mod 4. On the other
hand, if q = pn with n even, then from Theorem 4 it follows that there
exists an elliptic curve such that #E(Fq) = q + 1 if and only if p ≡ 1
mod 4. Once again, Theorem 6 implies that FFq

∼= Zq+1. Now the
proof proceeds similar to the proof of part (1).

�

Theorem 9. Assume Fq to be a finite field with q = 2n.

(1) Let q = 2n with n odd. There exits a point-line arrangement (N, b(N)(N−
3)/6c+ 1) in the projective plane over the finite field Fq with the group
model ZN for each of the following values of N
(a) N = q + 1,
(b) N = q + 1 +

√
2q,

(c) N = q + 1−
√

2q .
(2) Let q = 2n with n even. There exits a point-line arrangement (N, b(N)(N−

3)/6c+ 1) in the projective plane over the finite field Fq with the group
models ZN for N = q + 1 and for N = q + 1±√q.

For both the cases (1) and (2),

Or(N) ≥ bN(N − 3)

6
c+ 1, (3.7)

and it agrees with the Green-Tao bound.

Proof. From Table 1 one can pick the elliptic curves y2+y = x3, y2+y = x3+x
and y2 + y = x3 + x + 1 to get the desired group models. Then the number
of 3-rich lines can be calculated using Corollaries to Lemma 2, similar to the
calculation carried out in Theorem 8. This proves part (1) of the theorem.
Similarly, part(2) of the theorem follows from Table 2. �
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Theorem 10.
Let N = q + 1 + 2

√
q with either q odd or q = 2n with n even. There exist

point-line arrangements (N, t) in the projective plane over the finite field Fq

with

(1) the group model Z√q−1 ⊕ Z√q−1 for N = q + 1− 2
√
q, and

t =


1
6

(
q2 − 4q

3
2 + 3q + 2

√
q + 16

)
, if

√
q ≡ 1 mod 3,

1
6

(
q2 − 4q

3
2 + 3q + 2

√
q
)
, if

√
q 6≡ 1 mod 3.

(2) the group model Z√q+1 ⊕ Z√q+1 for N = q + 1 + 2
√
q, and

t =


1
6

(
q2 + 4q

3
2 + 3q − 2

√
q + 16

)
, if

√
q ≡ 1 mod 3,

1
6

(
q2 + 4q

3
2 + 3q − 2

√
q
)
, if

√
q 6≡ 1 mod 3,

with

Or(N) ≥

{
bN(N−3)

6
c+ 3 if 3|N, (Green-Tao bound is exceeded.)

bN(N−3)
6
c+ 1 if 3 - N.

(3.8)

Proof. The proof is very similar to the previous Theorem and follows from
Table 1 and Table 2. We omit the details. �

Theorem 11. Assume |t| ≤ 2
√
p. Let N = p+1+ t such that N = n1n2, with

n1|n2. Then there exists an elliptic curve E over the finite field Fp, such that
E(Fp) = N . Then there exists a point-line arrangement (N, t) in the projective
plane over the finite field Fp with the group model Zn1 ⊕ Zn2, with

Or(N) ≥

{
bN(N−3)

6
c+ 3 if 3|n1, (Green-Tao bound is exceeded.)

bN(N−3)
6
c+ 1 if 3 - n1.

(3.9)

Proof. There exists an elliptic curve with #E(Fp) = N for each integer N in
the interval [p + 1 − 2

√
p, p + 1 +

√
p] is well-known (for example, it follows

from the work of Deuring [2].) The statement about the group-structure of
E(Fp) follows form Theorem 5. It is clear from the proof of Theorem 8 that
the number of 3-rich lines depends upon the underlying group-structure of
E(Fp), and more precisely, the number of distinct solutions to the equation
x+ y + z = 0 in the underlying group of E(Fp). Now, the result follows from
the Corollaries of Lemma 2.

�

Remark 1. If an orchard point-line configuration with a certain group model
could be realized using a cubic over a projective plane over Q, then for a large
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enough prime p it can also be realized over a projective plane over Fp. There-
fore, Theorem 11 puts a serious constraint on all the orchard realizable over
a projective plane over Q (or on a real projective plane such that points must
have integral coordinates.)

Remark 2. Some examples of orchard group models are shown in Table 3.

Curve q Group N t
Green-Tao

bound

y2 + y = x3 + x 8 Z5 5 2 2
y2 + y = x3 + x 128 Z145 145 3432 3432
y2 = x3 + 1 5 Z6 6 4 4
y2 = x3 + 1 49 Z48 48 361 361
y2 = x3 + x 7 Z8 8 7 7
y2 = x3 + x 13 Z2 ⊕ Z10 20 57 57
y2 + y = x3 − x2 − 10x− 20 19 Z20 20 57 57
y2 + y = x3 4 Z3 ⊕ Z3 9 12 10
y2 + y = x3 16 Z9 ⊕ Z9 81 1056 1054
y2 + y = x3 256 Z15 ⊕ Z15 225 8328 8326
y2 = x3 + 1 25 Z6 ⊕ Z6 36 201 199
y2 = x3 + 1 7 Z2 ⊕ Z6 12 19 19

Table 3. Examples.

4. Realization on a real projective plane

Let us consider the example of the elliptic curve E : y2 = x3 + 5x2 + 4x
over F7. It can be checked that #E(F7) = 8 and E(F7) contains the following
8 points:

A = (0, 0), B = (2, 1), C = (2, 6), D = (3, 0),

E = (5, 2), F = (5, 5), G = (6, 0), H = (0, 1, 0) (the point at infinity).

The following seven 3-rich lines could be formed using the points in E(F5)
(see Fig. 3):

l1 : containing {A,D,G}, l2 : containing {O,B,C},
l3 : containing {O,E, F}, l4 : containing {B,D, F},
l5 : containing {B,E,G}, l6 : containing {C,D,E},
l7 : containing {C,F,G}.
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Figure 3. Orchard configuration with (8 points, 7 lines) using
elliptic curve given by a minimal Weierstrass equation y2 = x3 +
5x2 + 4x over F7. The point at infinity (0, 1, 0) is not shown.

It can be verified that E(F7) ∼= Z4 × Z2 and the generators of the group are
C = (2, 6) and D = (3, 0). Thus, we have a model showing that Or(8) ≥
7. The orchard configuration with (8 points, 7 lines) in a projective plane
over F7 is shown in Fig. 3. Some lines, for example, l4 going through points
B, D and F , ‘visually’ does not appear to be a straight line. Is it possible
to ‘straightened’ these lines by picking some other equivalent points in the
projective plane over F7, i.e., can this point-line configuration be embedded
into a real projective plane to give an orchard model? The answer in this case
is in affirmative, as shown in Fig. 4. Note that

A1 = A = (0, 0), B1 = (2,−6) ≡ B = (2, 1) mod 7, C1 = C = (2, 6)

D1 = (−4, 0) ≡ D = (3, 0) mod 7, E1 = (−2, 2) ≡ (5, 2) mod 7

F1 = (−2,−2) ≡ F = (5, 5, ) mod 7, G1 ≡ G = (−1, 0) ≡ (6, 0) mod 7.
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Figure 4. Orchard configuration with (8 points, 7 lines) using
elliptic curve given by a minimal Weierstrass equation y2 = x3 +
5x2 + 4x on a projective plane over R. The point at infinity
(0, 1, 0) is not shown.

In Fig. 4 seven points A1, B1, C1, D1, E1, F1 and G1 are arranged so that
they yield total 7 ‘straight’ 3-rich lines. In fact, the configuration shown in
Fig. 4 gives an orchard model with (8 points, 7 lines) for y2 = x3 + 5x2 + 4x
over any finite Fp, for all prime p ≥ 7. Moreover, it is easy to check that
the above points on y2 = x3 + 5x2 + 4x also give an orchard model on a real
projective plane. This is nice, as one obtains a classical orchard model (8
points, 7 lines) with integral points (i.e., points with integral coordinates) and
the group structure Z4 × Z2 over real projective plane.
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A natural question arises: is it always possible to obtain an orchard group
model on a real projective plane corresponding to an orchard model on a
projective plane over a finite field? Of course, for orchard group model with

(n points, t lines), such that t = bn(n−3)
6
c+ 3, i.e., where the Green-Tao bound

is exceeded, the answer to this question would be no for sufficiently large n,
otherwise it will contradict Theorem 1. Indeed, the answer is no for even a
small n = 9, as evident from the following example.

Consider the elliptic Curve defined by y2 = x3 +2 over F7. It can be checked
that #E(F7) = 9 and E(F7) contains the following 9 points:

A = (0, 3), B = (0, 4), C = (3, 1), D = (3, 6), E = (5, 1),

F = (5, 6), G = (6, 1), H = (6, 6), O = (0, 1, 0) (the point at infinity).

The following twelve 3-rich lines could be formed using the points in E(F7)

l1 : containing {O,A,B}, l2 : containing {O,C,D},
l3 : containing {O,E, F}, l4 : containing {O,G,H},
l5 : containing {A,C,H}, l6 : containing {A,D,E},
l7 : containing {A,F,G}. l8 : containing {B,C, F},
l9 : containing {B,D,G}, l10 : containing {B,E,H},
l11 : containing {C,E,G}, l12 : containing {D,F,H}.

It can be verified that E(F7) ∼= Z3×Z3 and the generators of the group are
C = (6, 6) and D = (6, 0). Thus, we have a model showing that Or(9) ≥ 12.
The orchard configuration with (9 points, 12 lines) in a projective plane over
F7. But, this configuration can not be realized over the real projective plane
as it is known that an optimal configuration of 9 points can yield at most 10
3-rich lines (see [7]).
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