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On the genera of moment-angle manifolds
associated to dual-neighborly polytopes,
combinatorial formulas and sequences.

Santiago López de Medrano.

Abstract. For a family of polytopes of even dimension 2p, known as dual-

neighborly, it has been shown for p 6= 2 that the associated intersection of quadrics

is a connected sum of sphere products Sp × Sp. In this article we give formulas

for the number of terms in that connected sum. Certain combinatorial operations

produce new polytopes whose associated intersections are also connected sums of

sphere products and we give also formulas for their number. These include a large

amount of simple polytopes, including many odd-dimensional ones.

Introduction

To every simple polytope P there is associated a manifold Z(P ) of the same
dimension known in different works as its (real) moment-angle manifold, uni-
versal abelian cover ([D-J]), polyhedral product ([B-B-C-G]) or intersection
of quadrics (more precisely, of coaxial ellipsoids) ([LdM], [Go-LdM2]).

The topology of Z(P ) cannot be described in full generality, but it has
been described for some large families of polytopes P . One of them is the
family of dual-neighborly polytopes P of even dimension 2p 6= 4 for which
it was shown in [Gi-LdM] that they are connected sums of copies of the
sphere product Sp × Sp. For P of odd dimension 2p + 1 ≥ 5 it was proved
under a certain additional hypothesis (probably unnecessary) that they are
connected sums of copies of the sphere product Sp × Sp+1. Together with
them, for each such polytope P of dimension at least 5 there is an infinite
lattice of polytopes obtained by applying iteratively in all possible ways a
well-known operation P 7→ P ′, known as the book 1 or the wedge construction
for which it was shown that the associated manifold is a connected sum of
sphere products Sa×Sb with factors of different dimensions. The number of

1This name has been used for many years in the theory of intersection of quadrics. In

the literature on polytopes this construction is called the wedge on P .
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combinatorially different dual-neighborly polytopes of even dimension grows
enormously fast with their dimension and number of facets ([P]) and all their
corresponding infinite lattices are disjoint, so we know that a huge part of
the simple polytopes have associated manifolds which are connected sums of
sphere products.

However, only when p = 1 or when the number of facets of the poly-
tope is at most 2p + 3 do we know the exact number of summands and
precisely which sphere products appear. For p = 1 and P the n-gon the
number of those summands (i.e., the genus of the surface Z(P )) is known to
be 2n−3(n − 4) + 1. The same sequence of numbers appears in many other
geometric and combinatorial questions, see [Sl] and [Go-LdM]. It appeared
for the first time (to our knowledge) in a 1935 paper by Coxeter as the genera
of surfaces obtained by a certain construction of his ([Co]) and was found
independently around 1980 by Hirzebruch (unpublished, but see [Hi]) as the
genera of a certain family of real surfaces that are intersections of quadrics.
Only much later it was recognized Coxeter’s construction as a precursor of
what is now called a polyhedral product and that intersections of quadrics of
the type that Hirzebruch had considered are another instance of the same
construction. I have seen no evidence that they were ever conscious of that
coincidence.

We will give now a generalization of this formula to the above described
manifolds for all even dimensions that gives the number of summands in the
connected sum, which is natural to call the genus of Z(P ). The formula is
actually valid homologically even in those cases where it can be conjectured
(but not yet proved) that Z is a connected sum of sphere products and can
be extended to all the polytopes obtained from P through the book construc-
tion. It remains to understand how the combinatorics of P determines the
precise products that appear in the connected sum after several applications
of the book construction and not only their number.

The genus formula follows, in the case of a dual-neighborly polytope of
dimension d = 2p and n facets, from known combinatorial formulas for the
number of the faces in every dimension of a neighborly polytope. One can
obtain from them he Euler characteristic of Z(P ) and therefore its genus.

This direct result is useful for computations, but very messy and not too
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useful. The real work consisted in the search of a better formula. After
several failed attempts, two elements opened the road for a solution. First,
the appearance of the sequences of genera for a few small values of p in the
Sloane Encyclopedia of Sequences ([Sl]), which included generating functions
for them that suggested immediately a nice and simple conjecture for all
dimensions. Secondly, a specific direct formula for the number of faces of
a dual-neighborly polytope in the book by Brøndsted ([Br]) that was more
suited for our computations. From these facts, a long computation led us to
a proof of the conjecture (Theorems 1 and 2).

This gave a collateral proof of various combinatorial identities that we
had tried to prove in our first attempts. Another by-products are a new
interpretation and some new formulas for the cases appearing in the Sloane
Encyclopedia of Sequences, as well as an infinite generalization of them. One
could search for extensions of the various interpretations of those cases.

Additionally, it was shown in [Gi-LdM] that other geometric operations
on the polytopes, such as truncation of vertices, induce in the associated
manifolds operations that preserve connected sums of sphere products. We
give the genus also for all P obtained from the ones above by iterated vertex
truncations and book constructions in any order.

So this work is a quantitative continuation of [Gi-LdM], giving the explicit
number of sphere products in the connected sums. Alas, this time Sam Gitler
was no more among us to participate and enjoy this extension of our work.

1 Background.

The construction of Z(P ) for a simple d-polytope P with n facets can be
described as follows: one can assume that P is embedded in a d-dimensional
affine subspace A of Rn in such a way that A ∩ Rn

+ = P and A intersects
transversely every coordinate subspace of Rn

+. Then Z(P ) is the union of all
the images of P under all compositions of reflections of Rn on its coordinate
subspaces {xi = 0}. Z(P ) is a combinatorial d-manifold that can be eas-
ily smoothed as a transversal intersection of ellipsoids ([LdM], [Go-LdM2]).
Z(P ) can also be constructed abstractly as a quotient of P × Zn

2 under the
identifications in the facets of P corresponding to the fixed points under the
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reflections on the coordinate subspaces ([LdM],[D-J]).
The book construction consists in taking the product P × [0, 1] and iden-

tifying for all points x in a given facet of P the set of points (x, t) in a single
point x for all t ∈ I. Under this operation, the dimension and the number of
facets of the polytope increases by 1 and we denote by P ′ the polytope so ob-
tained and by Z ′ the corresponding manifold. A geometric construction of Z ′

and manipulations with homology exact sequences shows that the total ho-
mology (i.e., the direct sum of the homology groups) of Z and Z ′ is the same.

One can consider compositions of an arbitrary number of book construc-
tions along different facets. Following [B-B-C-G2] we denote by P J , ZJ ,
where J = (j1, j2, . . . , jn), the result of applying ji times the book construc-
tion on the i-th facet of P for i = 1, . . . , n. See [B-B-C-G2] for details of a
more general construction and a combinatorial description of P J in the dual
context of simplicial complexes.

The simple polytope P is called dual-neighborly if every collection of k
facets of P has a non-empty intersection, for all k ≤ d/2 (Cf. [Br], p.92 and
[B-M], p.114). They are dual to the much studied neighborly ones. It can be
proved that Z(P ) is [d/2− 1]-connected if, and only if, P is dual-neighborly.
So, for a 2p-dimensional (respectively, (2p + 1)-dimensional dual-neighborly
P ), Z(P ) has homology only in dimension p (respectively, in dimensions p
and p + 1), other than the 0 and top dimensional ones.

It is known that if two dual-neighborly polytopes have the same dimen-
sion d and the same number of facets n, then they have the same number
of k-dimensional faces for all k from 0 to d. Various explicit formulas are
known for this number of k−faces as a function of (d, n), one of which will
be more suited to our purposes. We will give this formula in the next section.

Now suppose that P is dual-neighborly polytope and of even dimension
d = 2p and n facets. Then the homology of Z(P ) is free and is non-trivial
only in the middle dimension p, so it has the homology of a connected sum
of copies of the sphere product Sp × Sp. It was shown in [Gi-LdM] that it is
actually diffeomorphic to such a connected sum if d > 4, but the number of
those products was not given. The book construction applied on any facet
of P gives also a dual-neighborly polytope P ′ of dimension 2p + 1 and the
manifold Z(P ′) is a connected sum of copies of Sd × Sd+1 (even in the case
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d = 4). Since the book construction preserves connected sums of sphere
products, after any number of further applications of it one obtains again
manifolds that are connected sums of products Sa × Sb for various pairs of
dimensions (a, b).

2 The Euler characteristic χ(Z(P )) for dual-

neighborly polytopes P of even dimension.

Let P be a dual-neighborly polytope of even dimension d = 2p with n facets.
Since n ≥ d + 1 (with equality only for the simplex) it is better to use the
parameters p = d/2 and m defined as

m = n− d− 1 = n− 2p− 1

that starts with m = 0.

The numbers fk of k-faces of P (for k = 0, . . . , d) are determined only
by the numbers p,m. Explicit formulas for them can be deduced from the
formulas for the number of k-faces of a neighborly d-polytope with n vertices
in [Gr], section 9.2. A direct explicit formula for fk is given in [Br], p.113,
which in our notation becomes:

fk = Σp
j=0

(

j

k

) (

m+j

j

)

+Σp−1
j=0

(

2p−j

k

) (

m+j

j

)

Now, the polytope P is reflected on the coordinate hyperplanes of Rn

to give a cell decomposition of Z formed by 2n cells of dimension d which
are all copies of P . A face of dimension k has d − k coordinates equal to
zero so it is reflected only on n− d + k hyperplanes and therefore produces
2n−d+k = 2m+k+1 faces. Thus the total number of k-faces of Z is fk×2m+k+1.

Therefore, the Euler characteristic of Z(P ), which we denote by χ(p,m)),
is the alternating sum

χ(p,m) = Σ2p
k=0(−1)k2m+k+1(Σp

j=0

(

j

k

) (

m+j

j

)

+Σp−1
j=0

(

2p−j

k

) (

m+j

j

)

)

This formula is useful for computations, even for d,m in the thousands,
since it can be easily programmed in the computer. It also shows that, for
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any fixed p, χ(p,m) is of the form 2m+1 times a polynomial in m of degree
p. But otherwise it is quite messy and opaque. In any case, it is convenient
to simplify it: factoring 2m+1, our formula can be re-arranged as follows:

χ(p,m) = 2m+1(Σp
j=0Σ

2p
k=0(−2)k

(

j

k

) (

m+j

j

)

+Σp−1
j=0Σ

2p
k=0(−2)k

(

2p−j

k

) (

m+j

j

)

)

Now, since
(

j

k

)

= 0 if k > j, we have:

Σ2p
k=0(−2)k

(

j

k

)

= Σj
k=0(−2)k

(

j

k

)

= (−2 + 1)j = (−1)j

And, since
(

2p−j

k

)

= 0 if k > 2p− j, we have:

Σ2p
k=0(−2)k

(

2p−j

k

)

= Σ2p−j
k=0 (−2)k

(

2p−j

k

)

= (−2 + 1)2p−j = (−1)2p−j = (−1)j

And therefore we obtain a better formula

χ(p,m) = 2m+1(Σp
j=0(−1)j

(

m+j

j

)

+Σp−1
j=0(−1)j

(

m+j

j

)

)

An even simpler formula can be obtained by computing the generating
function of the above expression parametrized by m for a fixed p:

Σm≥0χ(p,m)zm

Since the formula for χ(p,m) involves two sums which differ only in their
length, we can cover both cases with the general sequence

S(r,m) = 2Σr
j=0(−1)j2m

(

m+j

j

)

and its corresponding generating function

Σm≥0S(r,m)zm

which is the sum for j = 0, . . . r, of the generating functions

2Σm≥0(−1)j2m
(

m+j

j

)

zm = 2(−1)jΣm≥0

(

m+j

j

)

(2z)m.

Now, it is well known (and easy to prove) that

Σm≥0

(

m+j

j

)

ym = 1
(1−y)j+1 (*)
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which gives

Σm≥0S(r,m)zm = 2Σr
j=0(−1)j

1

(1− 2z)j+1
= −2Σr

j=0

1

(2z − 1)j+1

This is a geometric progression with sum

= −2(
1

(2z − 1)
−

1

(2z − 2)(2z − 1)r+1
)

The generating function for χ(p,m) is the sum of two instances of the above
expression evaluated a r = p and r = p− 1:

−2(
1

2z − 1
−

1

(2z − 2)(2z − 1)p+1
+

1

2z − 1
−

1

(2z − 2)(2z − 1)p
)

which add up to
2

1− z
+

2z

(z − 1)(2z − 1)p+1

We can obtain another expression for the general term of this series, by
working each part separately:

The first term of the function 2
1−z

is Σm≥02z
n.

And the second term has two factors: 2z/(z − 1) and 1/(2z− 1)p+1. The
first one is simply

2z

z − 1
= −2zΣm≥0z

m

and for the second factor (using formula (*) again):

1
(2z−1)p+1 = (−1)p+1

(1−2z)p+1 = (−1)p+1Σm≥0

(

m+p

p

)

(2z)m

Taking the product we get:

−Σm≥0(Σ
m−1
j=0 2z (−1)p+12j

(

j+p

p

)

) zm= (−1)pΣm≥0Σ
m−1
j=0 2

j+1
(

j+p

p

)

) zm

to which we still have to add the first term. So, finally, the coefficient of zm,
which is χ(p,m), is

χ(p,m) = 2 + (−1)pΣm−1
j=0 2

j+1
(

j+p

p

)

.
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We have proved:

Theorem 1. If P is a dual-neighborly polytope of even dimension d = 2p
and n = d + m + 1 facets, then χ(p,m), the Euler characteristic of Z(P ),
can be expressed in any of the following equivalent forms:

(i) χ(p,m) = 2m+1(Σp
j=0(−1)j

(

m+j

j

)

+Σp−1
j=0(−1)j

(

m+j

j

)

)

(ii) χ(p,m) = (−1)pΣm−1
j=0 2

j+1
(

j+p

p

)

+2

(iii) χ(p,m), as a sequence parametrized by m, has generating function

2

1− z
+

2z

(z − 1)(2z − 1)p+1

These formulas are valid for any p and m, and in the cases where we know
that Z(P ) is a connected sum of sphere products Sp × Sp, we can derive the
number of them from the formulas.

But these formulas do not extend to the manifolds obtained by the book
construction on P : just the first application gives an odd dimensional mani-
fold with χ = 0. And also, the even dimensional ones obtained by iteration
of the book construction on P may include products of two odd-dimensional
spheres that contribute with negative terms to χ, so χ will not depend only
on the dimension and number of facets of the corresponding polytope.

We will solve these problems by the introduction of the concept of genus
of such a connected sum.

3 The genus g(Z(P )) for dual-neighborly poly-

topes P of even dimension and associated

polytopes.

For a connected sum of sphere products M , we can naturally define its genus
g(M), as the number of products in the sum, as in the case of surfaces.
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Let β(M) the sum of the Betti numbers βi(M), then β(M) = 2g(M)+2,
or

g(M) =
β(M)

2
− 1

This definition can be extended to any manifold or even any topological
space with finite β by the above formula. In some cases this may not be an
integer (if X is a point then g(X) = −1/2). Some properties of this gener-
alized genus (for example, that it is additive with respect to the connected
sum of manifolds) will be considered elsewhere.

In the case that all the summands are of the form Sp × Sp, there is a
simple relation between g(M) and the Euler characteristic of M :

χ(M) = 2 + (−1)p2g(M)

or
g(p,m) = (−1)pχ(p,m)/2− (−1)p

and again, this relation is valid for any manifold with the same homology
groups. This includes the manifolds Z(P ) where P is a dual-neighborly poly-
tope and for which the formulas for the Euler characteristic are still valid.
So with this extension of the concept of genus we can state:

Theorem 2. If P is a dual-neighborly polytope of even dimension 2d and
n = d +m + 1 facets, then g(p,m), the genus of Z(P ), can be expressed in
any of the following equivalent forms:

(i) g(p,m) = (−1)p(2m(Σp
j=0(−1)j

(

m+j

j

)

+Σp−1
j=0(−1)j

(

m+j

j

)

)− (−1)p

(ii) g(p,m) = Σm−1
j=0

(

j+p

p

)

2j

(iii) g(p,m), as a sequence parametrized by m, has generating function

z

(1− z)(1− 2z)p+1

The same expressions are valid for any polytope P J obtained from P by iter-
ated book operations, where J is any n-tuple of non-negative integers.
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The last part of the theorem follows from the fact that the book con-
struction preserves the total homology of the manifold Z. In particular, in
the first application P ′ is a dual-neighborly polytope of dimension 2p + 1
the homology of Z(P ′) is concentrated in dimensions p and p + 1 and the
above formula also gives its genus. This includes many odd-dimensional dual-
neighborly polytopes, including all the cyclic ones.

Probably this is true also for any dual-neighborly polytope of odd dimen-
sion greater than 3, but we do not know yet how the genus of Z(P ) depends
only on the combinatorics of P .

For a 3-dimensional simple polytope P the genus of Z(P ) is not deter-
mined by the number of facets (the simplest examples are the cube and the
pentagonal book), but this is a particularity of this dimension where every
simple polyhedron is dual-neighborly.

It must be mentioned that the experts in the field consider that, viewed
from different angles, a large proportion of the simple polytopes are dual-
neighborly. See [Gr], pp.129, 129a, 129b, [Z], section 4 and [P], section 1. And
these are only the roots of infinite lattices of polytopes P J stemming from
them, latices that can be shown to be disjoint for two non-combinatorially
equivalent roots P .

The formula for the genus of other polytopes obtained from P and its
derivates by applying other operations, such as the truncation of vertices or
edges (see [Gi-LdM]), can be derived from the same formulas. So the result
applies to a large number of simple polytopes. We illustrate this with the
case of the operation of truncating a vertex:

If P with associated manifold Z(P ) is any simple d-polytope with n facets,
and P ∨ the result of truncating one of its vertices, then ([Gi-LdM])

Z(P ∨) = 2Z(P )#(2n−d − 1)(S1 × Sd−1)

so the genus is duplicated and then increased by 2n−d − 1.

A simple induction shows that if the number of vertex truncations is t
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then the genus of the resulting Z is

2t(g(Z(P ))− 1) + t2n+t−d−1 + 1

or, in terms of the parameter m = n− d− 1 used in section 2:

2t(g(Z(P ))− 1) + t2m+t + 1

showing that the result depends only on the parameters m and t.

Observe that P ′ is a (d + 1)-polytope with n + 1 facets, so truncating
one of its vertices duplicates the genus and increases it by 2n−1−(d−1) − 1.
So it produces the same effect on the genus as the truncation of a vertex of
Z(P ). Since the book construction P ′ does not affect the genus of Z(P ) it
follows that the effect of compositions of both operations in any order has
the same effect on the genus of Z(P ) as the application of the truncations
only. The combinatorial type of the result of such a chain of operations on
P depends on the choice of facets for the book constructions, the choice of
vertices to be truncated and the order of their application. The dimension of
the associated manifold depends only on the number of book constructions
while its genus depends only on the number of vertex truncations.

For example, when P is a d-simplex, the result of t vertex truncations
and any number of P ′ operations in any order is

(2t(t− 1) + 1)(S1 × Sd−1)

which gives the same sequence of genera g(1, m) of surfaces (which can all
be obtained by vertex truncation), as well as that of many 3-dimensional
polytopes for which Z(P ) is connected sums of copies of S1 × S2 (maybe all
of them). The fact that the result of vertex truncation does not depend on
the vertex chosen was first observed (in the context of intersection of real
quadrics in complex space) in [B-M].

The effect of deeper truncations is more complicated: the genus of the
result depends on the choice of simplex removed and depends on the order of
the operations when combined with the book construction. Nevertheless, it
can be described in terms of the combinatorics of P with adequate hypothe-
ses. We will only say, for the moment, that for many more polytopes one
can obtain their genera.
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4 On the sequences of genera.

Formula (i) for the sequence of genera in Theorem 2 shows that g(p,m) is
of the form 2m times a polinomial Rp(m) of degree p minus (−1)p. For any
value of p this polynomial can be computed easily. Formulas (ii) and (iii) are
more compact, but do not immediately reflect this property.

For p = 1 formula (i) gives g(1, m) = 2m(m − 1) + 1, which in terms of
the number of sides n of the polygon (n = m + 3) gives the usual formula
2n−3(n− 4) + 1. Formula (ii) gives the sum g(1, m) = Σm−1

j=0 (j + 1)2j. Both
formulas and the generating function appear in https //oeis.org/A000337
together with a long list of appearances of this sequence in questions of
Topology, Combinatorics, Polytope Theory and Algebraic Geometry.

For p = 2, 3, 4 and 5 the corresponding sequences also appear as en-
tries /A055580, /A027608, /A211386 and /A21138, with their generating
sequences, some formulas and various appearances in combinatorial prob-
lems.

Sequences for higher values of p do not seem to appear. It is a curious
fact that the sequences of the corresponding Euler characteristics or other
variants do not seem to appear at all in the Sloane Encyclopedia of Sequences.

The generating functions given in the Sloane Encyclopedia of Sequences
for those few cases gave us the clue to solve our problem. Our debt to the
Encyclopedia is partially covered by giving new formulas and a new topolog-
ical interpretation to some of its sequences, as well as an infinite family of
sequences generalizing them and, hopefully, by suggesting generalizations of
their interpretations.

As a by-product of our computations we have also obtained some com-
binatorial identities. For example, from the formula for the number of faces
of a given dimension of a neighborly polytope in [Gr] p.166, after dualizing
and taking their alternating sum we get the following formula for the Euler
characteristic of the manifold associated to the dual-neighborly one:

Σ2p
k=0(−1)k2m+k+1Σp

j=0
m+2p+1
m+k+1

(

m+2p−j

2p−k−j

) (

m+k+1
2p−j−2∗p+k

)
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So this expression is equal to any of the three versions of χ(p,m) given
in Theorem 1 above. Perhaps this is easy to see for the experts on combina-
torial identities, which is not the case of this author.

The article [O-S], which solved a topological problem by daring to deal
with complicated combinatorial identities, was very stimulating for not giving
up in our struggle with them.
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