ON TWO CONJECTURAL SUPERCONGRUENCES OF Z.-W. SUN

CHEN WANG

Abstract. In this paper, we mainly prove two conjectural supercongruences of Sun by using the following identity

$$
\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=16^{n} \sum_{k=0}^{n} \frac{\binom{n+k}{k}\binom{n}{k}\binom{2 k}{k}^{2}}{(-16)^{k}}
$$

which arises from a ${ }_{4} F_{3}$ hypergeometric transformation. For any prime $p>3$, we prove that

$$
\begin{aligned}
& \sum_{n=0}^{p-1} \frac{n+1}{8^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p+5 p^{3} E_{p-3} \quad\left(\bmod p^{4}\right) \\
& \sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p+3 p^{3} E_{p-3} \quad\left(\bmod p^{4}\right)
\end{aligned}
$$

where E_{p-3} is the $(p-3)$ th Euler number.

1. Introduction

The truncated hypergeometric series are defined by

$$
{ }_{n} F_{n-1}\left[\left.\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
& y_{1} & \cdots & y_{n-1}
\end{array} \right\rvert\, z\right]_{m}=\sum_{k=0}^{m} \frac{\left(x_{1}\right)_{k}\left(x_{2}\right)_{k} \cdots\left(x_{n}\right)_{k}}{\left(y_{1}\right)_{k}\left(y_{2}\right)_{k} \cdots\left(y_{n-1}\right)_{k}} \frac{z^{k}}{k!},
$$

where

$$
(x)_{k}= \begin{cases}1, & k=0 \\ x(x+1) \cdots(x+k-1), & k>0\end{cases}
$$

denotes the so-called Pochhammer symbol (or rising factorial). Clearly, they are truncations of the classical hypergeometric series. Since $(-x)_{k} /(1)_{k}=(-1)^{k}\binom{x}{k}$, sometimes we may write the truncated hypergeometric series as sums involving products of binomial coefficients. In recent years, there is a rising interest in studying supercongruences involving truncated hypergeometric series (cf., for example, [11, 13, 17, 20, 21, 22, 27]).

In 2003, Rodriguez-Villegas [17] studied hypergeometric families of Calabi-Yau manifolds and discovered (numerically) 22 supercongruences concerning truncated hypergeometric series.

[^0]For example, he conjectured that for any odd prime p,

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}} \equiv(-1)^{(p-1) / 2} \quad\left(\bmod p^{2}\right), \tag{1.1}
\end{equation*}
$$

which was later confirmed by Mortenson [14] using Gaussian hypergeometric series and GrossKoblitz formula (see [16] for details about Gross-Koblitz formula). Quite recently, Barman and Saikia [2] obtained a parametric generalization of (1.1) without using Gaussian hypergeometric series. Note that $\binom{2 k}{k} \equiv 0(\bmod p)$ for $k \in\{(p+1) / 2, \ldots, p-1\}$. Thus

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}} \equiv \sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{16^{k}} \quad\left(\bmod p^{2}\right) .
$$

For more parametric generalizations of (1.1), the reader may consult [7, 8, , 9, 10, 13, 15, 20].
Recall that the Euler numbers $E_{n}(n \in \mathbb{N})$ are defined by

$$
E_{0}=1, \text { and } \sum_{\substack{k=0 \\ 2 \mid k}}^{n}\binom{n}{k} E_{n-k}=0 \text { for } n=1,2, \ldots
$$

In 2011, Sun [21] investigated some congruences related to the Euler numbers. Especially, for any prime $p>3$ he proved the following two congruences as extensions of (1.1):

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{16^{k}} \equiv(-1)^{(p-1) / 2}+p^{2} E_{p-3} \quad\left(\bmod p^{3}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=(p+1) / 2}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}} \equiv-2 p^{2} E_{p-3} \quad\left(\bmod p^{3}\right) . \tag{1.3}
\end{equation*}
$$

In [21], Sun also conjectured many congruences most of which have been confirmed. One of them is as follows: for any prime $p>3$,

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{3 k+1}{(-8)^{k}}\binom{2 k}{k}^{3} \equiv(-1)^{(p-1) / 2} p+p^{3} E_{p-3} \quad\left(\bmod p^{4}\right) \tag{1.4}
\end{equation*}
$$

This was confirmed by Chen, Xie and He [4] in 2016. We also note that for any prime $p>3$ Mao [11] showed that

$$
\sum_{k=0}^{(p-1) / 2} \frac{3 k+1}{(-8)^{k}}\binom{2 k}{k}^{3} \equiv(-1)^{(p-1) / 2} p+\frac{(-1)^{\left(p^{2}-1\right) / 8} p^{3}}{4} E_{p-3}\left(\frac{1}{4}\right) \quad\left(\bmod p^{4}\right)
$$

where the Euler polynomials $E_{n}(x)(n \in \mathbb{N})$ are given by

$$
E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \frac{E_{k}}{2^{k}}\left(x-\frac{1}{2}\right)^{n-k}
$$

In 2012, Sun [22] studied congruences for sums involving products of three binomial coefficients systematically. Recall that for any prime $p \equiv 1(\bmod 4)$, we may write $p=x^{2}+y^{2}$ with $x \equiv 1(\bmod 4)$ and $y \equiv 0(\bmod 2)$. In [22], Sun determined $x\left(\bmod p^{2}\right)$ as follows:

$$
\begin{equation*}
(-1)^{(p-1) / 4} x \equiv \sum_{k=0}^{(p-1) / 2} \frac{k+1}{8^{k}}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{(p-1) / 2} \frac{2 k+1}{(-16)^{k}}\binom{2 k}{k}^{2} \quad\left(\bmod p^{2}\right) \tag{1.5}
\end{equation*}
$$

In the proof of (1.5), Sun also obtained the following congruences:

$$
\begin{equation*}
\sum_{n=0}^{p-1} \frac{n+1}{8^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p \quad\left(\bmod p^{3}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p \quad\left(\bmod p^{3}\right) \tag{1.7}
\end{equation*}
$$

for any odd prime p.
The main goal of this paper is to establish the following generalizations of (1.6) and (1.7) which ware conjectured by Sun (see both [24, Conjecture 4.1] and [26, Conjecture 33(ii)]).
Theorem 1.1. For any prime $p>3$, we have

$$
\begin{align*}
& \sum_{n=0}^{p-1} \frac{n+1}{8^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p+5 p^{3} E_{p-3} \quad\left(\bmod p^{4}\right) \tag{1.8}\\
& \sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv(-1)^{(p-1) / 2} p+3 p^{3} E_{p-3} \quad\left(\bmod p^{4}\right) \tag{1.9}
\end{align*}
$$

Remark 1.1. In [24, Conjecture 4.1], Sun also conjectured that

$$
\sum_{n=0}^{p-1} \frac{n}{32^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \equiv-2 p^{3} E_{p-3} \quad\left(\bmod p^{4}\right)
$$

This was confirmed by Mao and Cao [12, Theorem 2.1] recently.
In next section, we shall first prove (1.9) by establishing a new transformation for the summation $\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}$. Then via a hypergeometric transformation due to Chaundy and Bullard we will show that (1.8) is actually a corollary of (1.9).

2. Proof of Theorem 1.1

In order to show (1.9) we need the following lemmas.
Lemma 2.1. Let n be a nonnegative integer. Then we have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=16^{n} \sum_{k=0}^{n} \frac{\binom{n+k}{k}\binom{n}{k}\binom{2 k}{k}^{2}}{(-16)^{k}} \tag{2.1}
\end{equation*}
$$

Proof. It is easy to check that

$$
\binom{2 k}{k}\binom{2 n-2 k}{n-k}=4^{n} \frac{\left(\frac{1}{2}\right)_{k}\left(\frac{1}{2}\right)_{n-k}}{(1)_{k}(1)_{n-k}}
$$

and

$$
\frac{\left(\frac{1}{2}\right)_{n-k}}{(1)_{n-k}}=\frac{\left(\frac{1}{2}\right)_{n}(-n)_{k}}{(1)_{n}\left(\frac{1}{2}-n\right)_{k}}=\frac{\binom{2 n}{n}(-n)_{k}}{4^{n}\left(\frac{1}{2}-n\right)_{k}} .
$$

Hence we obtain

$$
\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=\binom{2 n}{n}^{2}{ }_{4} F_{3}\left[\left.\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & -n & -n \tag{2.2}\\
& 1 & \frac{1}{2}-n & \frac{1}{2}-n
\end{array} \right\rvert\, 1\right]
$$

here we note that the hypergeometric series in the right-hand side is actually a finite sum since $(-n)_{k}=0$ for all $k>n$.

It is known from [1, Theorem 3.3.3] that

$$
{ }_{4} F_{3}\left[\begin{array}{cccc|c}
-n & a & b & c & \tag{2.3}\\
& d & e & f & 1
\end{array}\right]=\frac{(e-a)_{n}(f-a)_{n}}{(e)_{n}(f)_{n}}{ }_{4} F_{3}\left[\begin{array}{cccc}
-n & a & d-b & d-c \\
& d & a+1-n-e & a+1-n-f \mid 1
\end{array}\right]
$$

provided that $a+b+c-n+1=d+e+f$. Letting $a=c=1 / 2, b=-n, d=1, e=f=1 / 2-n$ in (2.3) we arrive at

$$
\begin{align*}
{ }_{4} F_{3}\left[\left.\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & -n & -n \\
& 1 & \frac{1}{2}-n & \frac{1}{2}-n
\end{array} \right\rvert\, 1\right] & =\frac{(-n)_{n}^{2}}{\left(\frac{1}{2}-n\right)_{n}^{2}} 4 F_{3}\left[\left.\begin{array}{cccc|}
-n & n+1 & \frac{1}{2} & \frac{1}{2} \\
1 & 1 & 1
\end{array} \right\rvert\, 1\right] \\
& =\frac{16^{n}}{\binom{n n}{n}^{2}} \sum_{k=0}^{n} \frac{\binom{n+k}{k}\binom{n}{k}\binom{2 k}{k}^{2}}{(-16)^{k}} \tag{2.4}
\end{align*}
$$

Now substituting (2.4) into (2.2) we immediately obtain the desired (2.1).
Remark 2.1. Note that in [22, Lemma 3.1] Sun obtained another transformation of the summation $\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}$ as follows:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=\sum_{k=0}^{n}\binom{2 k}{k}^{3}\binom{k}{n-k}(-16)^{n-k} \tag{2.5}
\end{equation*}
$$

and he used (2.5) to prove (1.6) and (1.7). We attempted to prove (1.9) by (2.5) but failed. However, this transformation is useful for proving a congruence relation between (1.8) and (1.9).

Lemma 2.2. For nonnegative integers k and l with $l \geq k$, we have

$$
\begin{equation*}
\sum_{n=k}^{l}(-1)^{n}(2 n+1)\binom{n+k}{2 k}=(-1)^{l}(l-k+1)\binom{l+k+1}{2 k} \tag{2.6}
\end{equation*}
$$

Proof. It can be verified directly by induction on l.

Proof of (1.9). In view of Lemmas 2.1 and 2.2, we have

$$
\begin{align*}
& \sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=\sum_{n=0}^{p-1}(-1)^{n}(2 n+1) \sum_{k=0}^{n} \frac{\binom{n+k}{k}\binom{n}{k}\binom{2 k}{k}^{2}}{(-16)^{k}} \\
= & \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{3}}{(-16)^{k}} \sum_{n=k}^{p-1}(-1)^{n}(2 n+1)\binom{n+k}{2 k}=\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{3}}{(-16)^{k}}(p-k)\binom{p+k}{2 k} \\
= & p \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{p-1}{k}\binom{p+k}{k}}{(-16)^{k}} \\
\equiv & p \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(1-p^{2} H_{k}^{(2)}\right) \quad\left(\bmod p^{5}\right), \tag{2.7}
\end{align*}
$$

where $H_{k}^{(2)}=\sum_{j=1}^{k} 1 / j^{2}$ denotes the k th harmonic number of order 2 and the last step follows from the fact

$$
\binom{p-1}{k}\binom{p+k}{k}=(-1)^{k} \prod_{j=1}^{k}\left(1-\frac{p^{2}}{j^{2}}\right) \equiv(-1)^{k}\left(1-p^{2} H_{k}^{(2)}\right) \quad\left(\bmod p^{4}\right)
$$

for k among $0,1, \ldots, p-1$.
In 2015, Sun [25, Theorem 4.1] obtained that

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{16^{k}} H_{k}^{(2)} \equiv \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}} H_{k}^{(2)} \equiv-4 E_{p-3} \quad(\bmod p) \tag{2.8}
\end{equation*}
$$

for any prime $p>3$.
Substituting (1.2), (1.3) and (2.8) into (2.7) we finally obtain (1.9).
To show (1.8) we need the following preliminary results.
Lemma 2.3. For any nonnegative integer k, we have

$$
\begin{equation*}
\sum_{n=0}^{k}\binom{n+k}{n} 2^{n}=(-1)^{k+1}-(-2)^{k+1} \sum_{n=0}^{k}\binom{n+k}{n}(-1)^{n} . \tag{2.9}
\end{equation*}
$$

Remark 2.2. This is a corollary of the following identity due to Chaundy and Bullard [3]:

$$
1=(1-x)^{n+1} \sum_{k=0}^{m}\binom{n+k}{k} x^{k}+x^{m+1} \sum_{k=0}^{n}\binom{m+k}{k}(1-x)^{k} .
$$

Lemma 2.4. For any positive integer k we have

$$
\begin{equation*}
\sum_{n=0}^{k-1}(2 n+k)\binom{-k}{n}=\frac{(-1)^{k-1} k}{2}\binom{2 k}{k} \tag{2.10}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{aligned}
& \sum_{n=0}^{k-1}(2 n+k)\binom{-k}{n}=\sum_{n=0}^{k-1}(n+k)\binom{-k}{n}+\sum_{n=0}^{k-1} n\binom{-k}{n} \\
= & k \sum_{n=0}^{k-1}\binom{-k-1}{n}-k \sum_{n=0}^{k-2}\binom{-k-1}{n}=k\binom{-k-1}{k-1}=\frac{(-1)^{k-1} k}{2}\binom{2 k}{k} .
\end{aligned}
$$

This concludes the proof.
Lemma 2.5. For any positive integer k, we have

$$
\begin{equation*}
\sum_{n=0}^{k-1}(-2)^{n}(n-k+1)\binom{-k}{n}=(-1)^{k+1}(3 k-1)-(-2)^{k} \sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n} . \tag{2.11}
\end{equation*}
$$

Proof. Note that $\binom{-k}{n}=(-1)^{n}\binom{n+k-1}{n}$. Thus by Lemma 2.3 we have

$$
\begin{aligned}
& \sum_{n=0}^{k-1}(-2)^{n}(n-k+1)\binom{-k}{n}=-k \sum_{n=1}^{k-1}(-2)^{n}\binom{-k-1}{n-1}-(k-1) \sum_{n=0}^{k-1}\binom{n+k-1}{n} 2^{n} \\
= & 2 k \sum_{n=0}^{k}\binom{n+k}{n} 2^{n}-(k-1) \sum_{n=0}^{k-1}\binom{n+k-1}{n} 2^{n}-5 k\binom{2 k}{k} 2^{k-1} \\
= & (-1)^{k+1}(3 k-1)-2 k(-2)^{k+1} \sum_{n=0}^{k}\binom{n+k}{n}(-1)^{n}+(k-1)(-2)^{k} \sum_{n=0}^{k-1}\binom{n+k-1}{n}(-1)^{n} \\
& -5 k\binom{2 k}{k} 2^{k-1} \\
= & (-1)^{k+1}(3 k-1)+(-2)^{k} \sum_{n=0}^{k-1}(4 n+5 k-1)\binom{-k}{n}+3 k\binom{2 k}{k} 2^{k-1} .
\end{aligned}
$$

Now by Lemma 2.4 we have

$$
\begin{aligned}
\sum_{n=0}^{k-1}(4 n+5 k-1)\binom{-k}{n} & =\sum_{n=0}^{k-1}(6 n+3 k)\binom{-k}{n}-\sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n} \\
& =\frac{3(-1)^{k-1} k}{2}\binom{2 k}{k}-\sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n} .
\end{aligned}
$$

Combining the above, we finally obtain (2.11).
Lemma 2.6. For any nonnegative integer k, we have the following identities:

$$
\begin{equation*}
\sum_{n=0}^{k}(-2)^{n}(n+k+1)\binom{k}{n}=(-1)^{k}(3 k+1) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{k}(2 n+2 k+1)\binom{k}{n}=2^{k}(3 k+1) \tag{2.13}
\end{equation*}
$$

Proof. These two identities can be easily deduced by binomial theorem. Here we just prove (2.12) as an example. It is clear that

$$
\begin{aligned}
& \sum_{n=0}^{k}(-2)^{n}(n+k+1)\binom{k}{n}=(-1)^{k}(k+1)+k \sum_{n=1}^{k}(-2)^{n}\binom{k-1}{n-1} \\
= & (-1)^{k}(k+1)-2 k \sum_{n=0}^{k-1}(-2)^{n}\binom{k-1}{n}=(-1)^{k}(3 k+1) .
\end{aligned}
$$

Proof of (1.8). By (2.5) and Lemma 2.6, we have

$$
\begin{align*}
& \sum_{n=0}^{p-1} \frac{n+1}{8^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}=\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{3}}{(-16)^{k}} \sum_{n=k}^{p-1}(-2)^{n}(n+1)\binom{k}{n-k} \\
= & \sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{8^{k}} \sum_{n=0}^{p-1-k}(-2)^{n}(n+k+1)\binom{k}{n} \\
= & \sum_{k=0}^{(p-1) / 2}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}}+\sum_{k=(p+1) / 2}^{p-1} \frac{\binom{2 k}{k}^{3}}{8^{k}} \sum_{n=0}^{p-1-k}(-2)^{n}(n+k+1)\binom{k}{n} \\
= & \sum_{k=0}^{(p-1) / 2}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}}+\sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}}{8^{p-k}} \sum_{n=0}^{k-1}(-2)^{n}(n+p-k+1)\binom{p-k}{n} \\
\equiv & \sum_{k=0}^{(p-1) / 2}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}}+\sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}}{8^{p-k}} \sum_{n=0}^{k-1}(-2)^{n}(n-k+1)\binom{-k}{n} \quad\left(\bmod p^{4}\right) \tag{2.14}
\end{align*}
$$

where in the last step we noting that $\binom{2 p-2 k}{p-k} \equiv 0(\bmod p)$ for $k \in\{1,2, \ldots,(p-1) / 2\}$. Similarly, we obtain that

$$
\begin{align*}
& \sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \\
\equiv & \sum_{k=0}^{(p-1) / 2}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}}+\sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}^{3}}{(-16)^{p-k}} \sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n} \quad\left(\bmod p^{4}\right) . \tag{2.15}
\end{align*}
$$

Furthermore, with the help of Lemma 2.5 we have

$$
\begin{align*}
& \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}^{3}}{8^{p-k}} \sum_{n=0}^{k-1}(-2)^{n}(n-k+1)\binom{-k}{n} \\
= & \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}^{3}}{8^{p-k}}\left((-1)^{k+1}(3 k-1)-(-2)^{k} \sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n}\right) \\
\equiv & -\sum_{k=(p+1) / 2}^{p-1}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}}+2 \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 p-2 k}{p-k}}{(-16)^{p-k}} \sum_{n=0}^{k-1}(2 n-2 k+1)\binom{-k}{n} \quad\left(\bmod p^{4}\right) . \tag{2.16}
\end{align*}
$$

Combining (2.14)-(2.16) we arrive at

$$
\begin{align*}
& \sum_{n=0}^{p-1} \frac{n+1}{8^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2} \\
\equiv & 2 \sum_{n=0}^{p-1} \frac{2 n+1}{(-16)^{n}} \sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2 n-2 k}{n-k}^{2}-\sum_{k=0}^{p-1}(3 k+1) \frac{\binom{2 k}{k}^{3}}{(-8)^{k}} \quad\left(\bmod p^{4}\right) . \tag{2.17}
\end{align*}
$$

Substituting (1.4) and (1.9) into (2.17) we obtain (1.8). This completes the proof.
Acknowledgments. This work is supported by the National Natural Science Foundation of China (Grant No. 11971222).

References

[1] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
[2] R. Barman and N. Saikia, Supercongruences for truncated hypergeometric series and p-adic Gamma function, Math. Proc. Camb. Phil. Soc. 168 (2020), 171-195.
[3] T.W. Chaundy, J.E. Bullard, John Smith's problem, Math. Gazette 44 (1960), 253-260.
[4] Y.G. Chen, X.Y. Xie and B. He, On some congruences of certain binomial sums, Ramanujan J. 40 (2016), 237-244.
[5] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., West Virginia, 1972.
[6] J. Guillera and W. Zudilin, "Divergent" Ramanujan-type supercongruences, Proc. Amer. Math. Soc. 140 (2012), 765-777
[7] V.J.W. Guo, Some q-congruences with parameters, Acta Arith. 190 (2019), 381-393.
[8] V.J.W. Guo, H. Pan, Y. Zhang, The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions, J. Number Theory 174 (2017), 358-368.
[9] V.J.W. Guo, J. Zeng, Some q-analogues of supercongruences of Rodriguez-Villegas, J. Number Theory 145 (2014), 301-316.
[10] J.-C. Liu, Congruences for truncated hypergeometric series ${ }_{2} F_{1}$, Bull. Aust. Math. Soc. 96 (2017), 14-23.
[11] G.-S. Mao, Proof of two supercongruences by the Wilf-Zeilberger method, preprint, arXiv:1911.01790.
[12] G.-S. Mao and Z.-J. Cao, On two congruence conjectures, C. R. Math. Acad. Sci. Paris 357 (2019), 815-822.
[13] G.-S. Mao and H. Pan, p-adic analogues of hypergeometric identities, preprint, arXiv:1703.01215.
[14] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory 99 (2003), 139-147.
[15] H.-X. Ni, H. Pan, On a conjectured q-congruence of Guo and Zeng, Int. J. Number Theory 14 (2018), 1699-1707.
[16] A. M. Robert, A Course in p-adic Analysis, Springer, New York, 2000.
[17] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003, pp. 223-231.
[18] N.J.A. Sloane, Sequence A002426 in OEIS, http://oeis.org/A002426.
[19] N.J.A. Sloane, Sequence A002895 in OEIS, http://oeis.org/A002895.
[20] Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory 143 (2014) 293-319.
[21] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), no. 12, 2509-2535.
[22] Z.-W. Sun, On sums involving products of three binomial coefficients, Acta Arith. 156 (2012), no. 2, 123-141.
[23] Z.-W. Sun, Conjectures and results on $x^{2}\left(\bmod p^{2}\right)$ with $4 p=x^{2}+d y^{2}$, in: Number Theory and Related Area (eds., Y. Ouyang, C. Xing, F. Xu and P. Zhang), Adv. Lect. Math. 27, Higher Education Press and International Press, Beijing-Boston, 2013, pp. 149-197.
[24] Z.-W. Sun, Some new series for $1 / \pi$ and related congruences, Nanjing Univ. J. Math. Biquarterly 31 (2014), no.2, 150-164.
[25] Z.-W. Sun, A new series for π^{3} and related congruences, Internat. J. Math. 26 (2015), no. 8, 1550055 (23 pages).
[26] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36 (2019), no. 1, 1-99.
[27] L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 223-236.

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

E-mail address: cwang@smail.nju.edu.cn

[^0]: 2020 Mathematics Subject Classification. Primary 33C20, 11A07; Secondary 11B65, 05A10.
 Key words and phrases. supercongruences, hypergeometric series, binomial coefficients.

