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INTEGER SEQUENCES AND MONOMIAL IDEALS

CHANCHAL KUMAR AND AMIT ROY

ABSTRACT. Let &,, be the set of all permutations of [n] = {1,...,n} and let W be the subset
consisting of permutations ¢ € &,, avoiding 132 and 312-patterns. The monomial ideal Iy =
<x" =11, x?(l) to € W> in the polynomial ring R = k[z1,...,2,] over a field k is called a hyper-
cubic ideal in [0]. The Alexander dual I‘[;] of Iy with respect to n = (n,...,n) has the minimal

cellular resolution supported on the first barycentric subdivision Bd(A,—1) of an n — 1-simplex
A,_1. We show that the number of standard monomials of the Artinian quotient I[i equals the
w

n]

number of rooted-labelled unimodal forests on the vertex set [n]. In other words,

dimy % = Zr! s(n,r) = Per ([mijlnxn)
IW r=1

where s(n,r) is the (signless) Stirling number of the first kind and Per([m;;]nx») is the permanent
of the matrix [m;;] with m;; = and m;; = 1 for ¢ # j. For various subsets S of &,, consisting of

oo
permutations avoiding patterns, the corresponding integer sequences {dim;€ (I?’,]) } are identi-
fied.

n=1

KEY wWORDS: Permutations avoiding patterns, standard monomials, parking functions.

1. INTRODUCTION

Let G be an oriented graph on the vertex set {0, 1,...,n} rooted at 0. A nonoriented graph on
{0,1,...,n} has the symmetric adjacency matrix and it is identified with a unique rooted oriented
graph on {0,1,...,n} having the same (symmetric) adjacency matrix. Let R = k[zy,...,x,] be
the standard polynomial ring in n variables over a field k. Postnikov and Shapiro [12] associated
a monomial ideal Mg in R such that the number of standard monomials of the Artinian quotient
/\% is precisely the number of oriented-spanning trees of G. A sequence p = (py,...,p,) € N" is
called a G-parking function if xP = []'_, 2" is a standard monomial of /v% (i.e., xP ¢ Mg). Let
SPT(G) be the set of (oriented) spanning trees of G rooted at 0 and PF(G) be the set of G-parking

functions of G. Then |PF(G)| = |[SPT(G)| (see [12]).
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2 C. KUMAR AND A. ROY

If G is the complete graph K, 1 on the vertex set {0,1,...,n}, then

n—|I|+1
T R

is called a tree ideal. Cayley’s formula for enumeration of labelled trees states that |SPT(K,,11)| =
(n + 1)"1. Also the set PF(K, 1) of K, -parking functions is the set PF,, of (ordinary) parking
functions of length n. A finite sequence p = (p1,...,p,) € N” with 0 < p; < n is called a parking
function of length n if a nondecreasing rearrangement p;, < p;, < ... < p;, of p satisfies p;;, < j
for 1 < j < n. A recursively defined bijection ¢ : PF,, — SPT(K,.1) has been constructed by
Kreweras [5]. Parking functions or more generally, vector parking functions have appeared in many
areas of mathematics. For more on parking functions, we refer to [I1} [16]. An algorithmic bijection
¢ : PF(G) — SPT(G), called DFS-burning algorithm, is given by Perkinsons et. al. [I0] for a
simple graph G and by Gaydarov and Hopkins [4] for multigraph G.

Let &,, be the set of all permutations of [n] = {1,2,...,n}. For r < n, consider a 7 € &,,
called a pattern. A permutation o € &, is said to avoid a pattern 7 if there is no subsequence in
o =o0(l)o(2)...0(n) that is in the same relative order as 7. Let &,,(7) be the subset consisting
of permutations o € &, that avoid pattern 7. If r > n, then &, (1) = &,.. Also, if 7) € &,, for
1 <i<s, then &,(7W, ... 7)) = N1 &, (7). Enumeration and combinatorial properties of
the set of permutations avoiding patterns are obtained in [13].

For a nonempty subset S C &,,, consider the monomial ideal Ig = (x7 =[]}, mf(i) co€S)
in R = k[xy,...,z,] induced by S. The monomial ideal Ig,, is called a permotuhedron ideal and the
Alexander dual Igli is the tree ideal My, . The i"" Betti number ﬁZ(Igli) of Igli is given by

n R , , ,

Bi(I&)) = Bin <m> =@)Sn+1Li+1); (0<i<n-—1),
Sn

where S(n,r) is the Stirling number of the second kind, i.e., the number of set-partitions of [n] into

r blocks (see [12]). Further, we have already observed that the standard monomials of [[i;] is given
&n

by dimy, <ﬂ%> = |PF,| = (n+1)"1.

&n

For various subsets S C &,,, the Alexander dual [ gﬂ of I with respect to n = (n,...,n)
has many interesting properties similar to the Alexander dual of permutohedron ideal. The Betti
numbers and enumeration of standard monomials of the Alexander dual [ L[gn] for subsets S =
S,(132,231), 6,,(123,132) and &,,(123,132,213) are obtained in [7], §]

Let W = 6,,(132,312). The monomial ideal Iy of R is called a hypercubic ideal in [6]. The
standard monomials of 1[_R] correspond bijectively to a subset ﬁﬁn of PF,,. An element p € ﬁ’n

n
w
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is called a restricted parking function of length n. We show that the number of restricted parking
functions of length n is given by

dim, (%) = PR = 30 s(n,7),
W r=1
where s(n,r) is the (signless) Stirling number of the first kind, i.e., the number of permutations
of [n] having exactly r cycles in its cyclic decomposition. Thus the nth term of integer sequence
(A007840) in OEIS [I4] can be interpreted as the number of restricted parking functions of length
n, or equivalently, as the number of standard monomials of the Artinian quotient %

The concept of pattern avoiding permutations has been generalized to many combinatorial
objects. A notion of rooted forests that avoids a set of permutations is introduced and many classes
of such objects are enumerated in [I]. Let F), be the set of rooted-labelled forests on [n|. Let
F,(7) (or more generally, F, (7", ..., 7(")) be the subset of F,, consisting of rooted-labelled forests
avoiding a pattern 7 (or a set of patterns {7V, ... 7(}). We have

|F,(213,312)] = Y (1) s(n,r) = [PF,|.

r=1
It is surprising that enumeration of standard monomials of —r and enumeration of rooted-labelled

forests F),(213,312) avoiding 213 and 312-patterns are related It is an interesting problem to
construct an algorithmic bijection ¢ : PF — F,(213,312), analogous to DFS-burning algorithm
that could explain the relationship between these objects.

The monomial ideal Ig for many other subsets S C &,,, consisting of permutations avoiding
patterns are considered in the last section.

2. HYPERCUBIC IDEALS AND RESTRICTED PARKING FUNCTIONS

Consider the subset W = &,,(132, 312) of permutations of [n] that avoid 132 and 312-patterns.
For o € &, it can be easily checked that o € W if and only if o(1) € [n] is arbitrary, and o(j) = ¢
for j > 1 if either 0(i) = £+ 1 or o(i) = £ — 1 for some i < j. Clearly, |IW| = 2"~!. The monomial
ideal Iy appeared in [6], where it is called a hypercubic ideal. Many properties of Iy and its
Alexander dual Iy, ) with respect to n = (n,...,n) € N" have been obtained in [6]. We proceed to
enumerate the standard monomials of R For th1s purpose, we consider a little generalization.

Let u = (uy,...,u,) € N” Wlth 1 <u < uy < ... < u, Foroe &, let ou =
(Ug(1), - - - Uo(ny) and x7* = [, 1'@' . For any nonempty subset S C &,,, we consider the mono-
mial ideal Ig(u) = (x7" : 0 € S) in the polynomial ring R = k[zy, ..., x,]. Clearly, I5((1,2,...,n)) =
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Is. The ideals Ig, (u) and Iy (u) are also called a permutohedron ideal and a hypercubic ideal, re-
spectively. For an integer ¢ > 1, we consider the Alexander dual Iw(u)[“““_l
ideal Iy (u) with respect tou, +¢—1= (u, +c—1,...,u, +c—1) € N

I of the hypercubic

Proposition 2.1. The minimal generators of Iy (u)™+e=1 are given by

IW(u)[Un+C_1] = <ngj’T : @ 7é T = {jla'-‘7jt} g [n]7]1 <...< jt>7
JjeT

where Wi = Un — U+ and W = Up — Uppj,—i + C for2 <1< t.

Proof. The minimal generators of Iy (u)Ml are given in Theorem 3.3 of [6]. Just replace [u,] by
[u, + ¢ —1]. O
The Alexander dual I, (u)"n+¢=1 of the permutohedron ideal I, (u) is given by

un—u‘T‘—f—c
[@n(u)[u“Jrc’l] = <<H xj> T e En> ,
JeT

where ¥, is the poset of all nonempty subsets of [n] ordered by inclusion. Postnikov and Shapiro [12]
showed that the monomial ideal Is, (u)M»+=1 is an order monomial ideal. Moreover, the minimal
resolution of Ig, ()M +¢=1 is the cellular resolution supported on the order complex A(X,,) of X,,.
Thus, the i** Betti number

Bi(Is, (0)nte=ty = (iNS(n +1,i+1); (0<i<n—1),

where S(n + 1,7 + 1) is the Stirling number of the second kind. Further, standard monomials of
WIE"*“” are given in terms of A-parking functions. Let A = (A1, ..., \,) with A\; = u,, — u; + c.
A sequence p = (p1,...,p,) € N" is called a A-parking function of length n, if non-decreasing
rearrangement p;, < p;, < ... < p;, of p satisfies p;; < A\,_j41 for 1 < j < n. Let PF,(\) be the

set of Ad-parking functions of length n. Then xP is a standard monomial of ——7 if and only

R
Is,, (u)l
if p € PF,(\). Also, A-parking functions for A = (n,n —1,...,1) are preciselgz )(ordinary) parking
functions of length n, that is, PF,,((n,n —1,...,1)) = PF,,.

The Alexander dual [gn] of Is is an order monomial ideal for S = &,,(132,231), &,,(123,132)
and &,,(123,132,213) (see [7,[§]). The minimal generators of Iy (u)»*¢=1l correspond to elements
of poset ¥,. The monomial ideal Iy (u)®»+¢~1 is also an order monomial ideal and its minimal
resolution is the cellular resolution supported on the order complex A(X,) of ¥,. Thus, the it
Betti number §;(Liy (w)Fe=t) = (i) S(n+ 1,5+ 1) for 0 <i <n— 1.

We now describe standard monomials of WRMC_I]. Since Iy (u) C Ig,(u), we have
Is, (w)ate=1 C [y (u)nte=1 Hence, standard monomials of WRﬁc—n are of the form xP

for some p € PF, ().
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Definition 2.2. A \-parking function p = (py,...,p,) € PF,()) is said to be a restricted A-parking
Junction of length n if there exists a permutation o € &,, such that p,, < p, 1, for all 1 <i < n,
where o; = a(i), Th = [n], T; = [n] \ {a1,...,;1}; (i > 2) and pf'y is as in Proposition .

Let ﬁ’n(A) be the set of restricted A-parking functions of length n. For u = (1,2,...,n)
and ¢ = 1, we have A = (n,n — 1,...,1). In this case, a restricted A-parking function is called a
restricted parking function of length n and we simply write ﬁ‘n for ﬁ‘n(A) Also, pjr = piz is
given by pj,r =n—t+1land pj,r=(n—t+1)—(j; —4); i > 2, where 0 £ T = {j1,...,ji} C [n]
with j; < ... <.

Proposition 2.3. A monomial xP is a standard monomial OfWRﬁc—u if and only if p € ﬁ‘n(A)

is a restricted A\-parking function of length n, with A\; = u, —u; + ¢; (1 < i < n). In particular, a
monomial XP is a standard monomial of I[—IV?,;] if and only if p € PF, is a restricted parking function

of length n.
Proof. Standard monomials of WR)[un] are characterized in Theorem 4.3 of [6]. Proceeding on
similar lines, we get the desired result. U

Using the cellular resolution of Iy (u)M»*+e=1 supported on the order complex A(X,), we
obtain the multigraded Hilbert series H ( T (u)[f“n +c,l]) of yom (u)[f“n +-—17- Proceeding as in the proof
of Proposition 4.5 of [6], we get a combinatorial formula

. . R
=2 o > I I
i=1 0=AoCAIC..CA=[n] =1 \jEAS\Ag_1

for enumeration of standard monomials of WRDR_I], where 7, is as in Proposition . Let C

be a chain in ,, of the form
of length ¢(C) =i — 1 and let pu*(C) = szl (HjeAq\Aq_l u;Aq>, where Ay = (). Suppose €h([n]) is

the set of such chains C in ¥,,. Then formula (2.1) can be expressed compactly as

DL : R n— -1, u
(22) [PF,(A)] = dimy (W) = Z (1) “© t(C).
ceey([nl)

We now take u; =i in 1} For ¢ > 1, let dimy, (%) = a,(c). Then we see that a,(c)
w

is a polynomial expression in ¢ of degree n for n > 1. In fact, ai(c) = ¢ and as(c) = ¢ + 2c.
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Lemma 2.4. Letn > 3,u = (1,2
form Ay € .. A C A1 C ... C

-

,n) and ¢ > 1. For a chain C € €h[n] of length i — 1 of the
= [n] withn € Ari1 \ Ay and |Ari1 \ Ar| > 2, there exists a
C A U{n}C A C... C A =[n] in €h[n] of length i such

Ai
unique chain, narﬁely C:A C... A
that 1*(C) = p*(C).

Proof. Since p*(C) = szl (HjeAq\Aq_l u;{Aq>, the equality p*(C) = 1*(C) holds if fy 4 0fn) =
fin A, Cleatly, uh 4 oy =n— (A +1+n—(JA [+ 1) +te=cand py 4 ., =n— (|4 + 71—
|AT+ID+CZC‘ B [l

Let €h'[n] be the set of chains in 33,, obtained from €h[n] on deleting chains C and C appearing
in Lemma 2.4l Then

an(c)= > (=)= Y (—)"rOTre).
ceen([n)) ceay' ([n])

For u = (1,2,...,n) and ¢ > 1, the value u*(C) depends on the chain C and ¢. Thus, we write
ué(C) for u*(C). Hence, a,(c) = ZCG%(M)(—1)”’5(6)’%0(0) = ZCE%,(M)(—1)””3(@’1#6(6).

For n > 3, the chains in €h'[n] can be divided into three types.

e Achain C: Ay € ... € A; = [n] in €h'[n] is called a Type-I chain if A; = {n}. The
Type-I chains in €h'[n] are in one-to-one correspondence with chains in €h[n — 1]. This
correspondence is given by

C—C\A A \{n}C...CA\{n}=[n—-1].
Asl(C)—1=4(C\ Ay) and pu(C) = (n — 1+ ¢) p(C\ Ay), we have
S (1O () = (1 1+ €) (o)

ceey’[n);
Type—I

e Achain C: Ay € ... C A; = [n] in €h'[n] is called a Type-II chain if A; ; = [n — 1]. The
Type-1I chains in €h'[n] are in one-to-one correspondence with chains in €h[n — 1]. This
correspondence is given by

CP—>C|[n_1] ZAl g gAi—l = [TL—]_]
As 0(C) =1 ={(Cp-1)) and p(C) = (¢) pt(Clim-1)), we have

Y DO €)= () anale + 1),

ceen'[n];
Type—II

e Achain C: A; C ... C A; = [n] in €h'[n] is called a Type-III chain if n € A; and |A;| > 2.
The Type-III chains in €h’[n] are in one-to-one correspondence with chains in €h[n — 1].
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This correspondence is given by
C—C\{n}: AA\{n}C...C A4\ {n}=[n—-1].
As (C) =L(C\ {n}) and pu°(C) = (c¢) u(C\ {n}), we have

S (O €)= () (o)
ceey’[n];
Type—III
Consider the poset %,, and form a poset A,, = X, 1 [[(X,-1 * {n}); for n > 2, where %,,_; x {n} =
{AU{n} : A € 3,1} is a subposet of ¥,. Two elements A, B € A,, are comparable if either
A, B € %, 1 are comparable or A, B € ¥.,,_1 * {n} are comparable or {A, B} = {[n — 1], [n]}. The
Hasse diagram of A,, for n = 3,4 are given in FIGURE-1.

123 123 124 134 234

SN N XX
S|

A3 A4

FIGURE 1

Clearly, Type-II chains in €h'[n] are chains in A,, with an edge [n — 1] C [n], while Type-III
chains in €h'[n] are chains in A,, containing [n] but not [n — 1].

Proposition 2.5. Forn >3 and ¢ > 1, a,(c) = dimy, (%) satisfies the recurrence relation
w

an(c) = (n—1a,_1(c) + ¢ ap_1(c+1).
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Proof. As a,(¢) = X ecenuy (=" O 1C) = X eeer @ (— 1" 10(C), we have

afc) = | D+ D>+ > | O

Ceey'[n];  Cee€h'[n]; Ceeh/'[n];
Type—1 Type— II Type—III

(n—14c¢) ap_1(c)+ (¢) an_1(c+ 1)+ (—¢) a,_1(c)
= (n—=1)a,_1(c) + (¢) ap_1(c+1).
OJ

Replacing ¢ by an indeterminate x, we consider polynomial a, (x). The recurrence relation in
Proposition holds for all ¢ > 1, thus there exists a polynomial identity

(2.3) an(r) =(n—1) ap_1(x) + v ap_1(x+1) forn > 3.

Since ai(x) = z and ay(z) = x* + 2x, on setting ag(x) = 1, the recurrence relation ({2.3)) is valid for
n > 1. Note that a,(0) =0 for n > 1.

Proposition 2.6. Forn>1, a,(z) =Y, s(n,r) z(x+1)--- (z +r—1).

Proof. Let 2" = z(x + 1) (z + 17 — 1) be the r** rising power of x. Then {2" :r =10,1,...} is a
Q-basis of Q[z], where 2° = 1. As a,(0) = 0 for n > 1, we can express a,(z) = >, an(r)z". As
an(z) satisfy recurrence relation (2.3) for n > 1, it follows that a,(r) and the (signless) Stirling
number s(n,r) of the first kind satisfy the same recurrence relation with the same initial conditions
(see [15]). Thus a,(r) = s(n,r). O

Theorem 2.7. Forn > 1, dimy (I[—EO =a, =y () s(n,r).

Proof. Since a,, = a,(1), theorem follows from Proposition U
Consider the integer sequence (A007840) in OEIS [I4]. The nth term b, of this sequence is

the number of factorization of permutations of [n] into ordered cycles and b, = Y _"_,(r!) s(n,r). It

can be verified that

1 11 ... 1
121 ... 1
bn = Per([m,]]an) = Per 113 ... 1 7
111 ... n
where m;; = i and m;; = 1 for i # j. We recall that permanent Per([m;;],x,) of the matrix

[Mij]nxn 1s given by degn [T, mir(). There are many combinatorial interpretation of the integer
sequence (A007840). Theorem [2.7] gives a description of the integer sequence (A007840) in terms
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of enumeration of standard monomials of I[—Iji], or equivalently, in terms of the number ]PTlin] of
w
restricted parking functions of length n.

We now show that enumeration of standard monomials of I[—EJ is related to enumeration of

rooted-labelled unimodal forests on [n]. The concept of permutativc[)/ns avoiding patterns has been
extended to many combinatorial objects, such as, trees, graphs and posets. Let F, be the set of
(unordered) rooted-labelled forests on the vertex set [n]. Then |F,| = (n+1)""1. A rooted-labelled
forest on [n] is said to avoid a pattern T € &, if along each path from a root to a vertex, the
sequence of labels do not contain a subsequence with the same relative order as in the patterns
T =71(1)7(2)...7(r). Let F,(7) be the set of rooted-labelled forests on [n| that avoid pattern 7.
For example, if 7 = 21 is a transposition, then F,(21) is the set of rooted-labelled increasing forests
on [n]. In other words, labels on any path from a root to a vertex for a forest in F,(21) form an
increasing sequence. Let F,,(7(), ..., 7(*)) be the set of rooted-labelled forests on [n] that avoid a
set {7, ..., 7()} of patterns. The enumeration of rooted-labelled forests on [n] that avoid various
patterns are obtained in [I]. In particular, it is shown that |F},(213,312)] = > "_,(r!) s(n,r) for
n > 1. The rooted-labelled forests on [n] avoiding 213 and 312-patterns are precisely the unimodal
forests. Since |ﬁ‘n\ = |F,,(213,312)], an explicit or algorithmic bijection ¢ : PF, —> F,(213,312)
is desired.

Before we end this section, we describe an easy extension of Theorem [2.7]

Let b,c > 1 and u = (u1,...,u,) € N* with u; = u; + (¢ — 1)b. We have seen that the
standard monomials of W}jﬁc,” are of the form xP, where p € PF, () is a A-parking function
of length n and \; = u,, — u; + ¢ = (n — )b+ ¢. Then |PF,(\)| = c¢(c+ nb)"! (see [11}, 12]). Let
[PFL(N)] = dimy, (5t

to be a fixed constant. Also, a,(c) is a polynomial expression in c.

= ap(c). Actually, a,(c) depends on b also, but we are treating b

Proposition 2.8. Forn >3, b,c > 1, a,(c) satisfies a recurrence relation
G(e) = (n = 1)b) @) + (¢) s (c+ b).

Proof. From equation ([2.2]), we have

an(c) = dimy (WRuﬁcl]) = Y (=) e,

ceen([n])
where u; = uy + (¢ — 1)b. For such u, Lemma [2.4] holds. Thus
a(c)= Y (~)OTre) = Y (-9,
ceep([n)) ceen’([n))
Now proceed as in the proof of Proposition [2.5 O
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Replacing ¢ with an indeterminate x, we consider polynomial a,(z). Thus there is a polynomial
identity
(2.4) an(z) = ((n—1)b) ap_1(z) + = ap_1(x +b) forn > 3.
Since a;(x) = x and dy(x) = x? + 2bx, on setting dp(x) = 1, the recurrence relation (2.4)) is valid
for n > 1. Again, we have a,(0) =0 for n > 1.

Theorem 2.9. Forn > 1, a,(x) =>"_ (b"" s(n,r)) x(x+0b) - (x+ (r—1)b). In particular, for
A= (A1, An) with Ay = (n—i)b+c
—~ _ n ¢+
PE, ()] = dn(c) =" S s(n,7) %

b

r=1

where I is the gamma function, i.e., U'(x + 1) =z ['(x) for x > 0 and T'(1) = 1.
Proof. As in the proof of Theorem let

Gu(@) = 3 an(r) ala+b) - (@ + (r — 1.

Then from recurrence relation (2.4]), o, (r) satisfies the recurrence relation
an(r) = (n—1)b 0/47;/10") + ant/l(r —1); forl<r<n,

with initial conditions ap(1) = 0 and «a;(1) = 1. It is straight forward to see that ay(r) =
b s(n,r). O

3. SOME OTHER CASES

The Betti numbers and enumeration of standard monomials of the Artinian quotient 1[_}3‘]

for S = 6,(132,231),6,(123,132) and &,,(123,132,213) are give in [7, §]. In this section, the
monomial ideal /g and its Alexander dual 1 én] are studied for various other subsets S C &,, consisting
of permutations avoiding patterns. For clarity of presentation, we divide these subsets into three
cases.
Case 1. 51 =6,(123,132,312), 5,
Case 2. T =6,(123,132,231), T
Case 3. U = 6,(123,231,312).
We have, |S,| = |Ty| = |U|=nfor 1 <a<3and 1 <b <2 (see [13]).

= 6,(123,213,231), 53 = 6,,(132,213,231).
= 6,(213,312,321).

Lemma 3.1. The minimal generators of the Alexander dual IL[qn] for S =S,, T, or U are given as
follows.

(i) I = <xg+17 . (H;.;ixj) 1<l<n—1: 1§i§n>.
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]‘[SI;]:<I'?7 x§x§—1;1§€§n; 1<i<j<n).

= <x2, riat U << 1<i<j< n>

I = (of™!, ap, wizl 1< 0<n—1; 1<i<n).

I = (™ a1 < <n—1; 1< <),

(Vl [([/I}] — <Hj€Ax‘lj/j7A N A = {j17. .. ,jt} e 2n>7 where V]‘LA —= n_(]‘A‘ _.]1> and Vji,A :ji_jifl
fori > 2, provided 7, < jo < ... < J;.

Proof. We recall that a vector b € N” satisfying b < n (i.e., b; < n) is maximal with xP ¢ Ig if and
only if x®~P is a minimal generator of [ L[q“} (see Proposition 5.23 of [9]). Now proceeding as in the
proof of Lemma 2.1 and 2.2 of [§], it is easy to get the minimal generators of the Alexander duals.
We sketch a proof of part (i) and (vi) as proof of other parts are on similar lines.

For (€ [n—1],letb;=(n,...,n—{¢—1,...,n) (¢ coordinate n — £ — 1, elsewhere n). Then
xP¢ ¢ Ig and this gives the minimal generator x5 € Igll]. Fori € [n],let b;,, = (n,...,n,n—1i,n—
1,...,n—1) € N" (i.e., i" coordinate n — i, first i — 1 coordinates n, and the last n — i coordinates
n —1). Again, xPn ¢ Ig and this gives the minimal generator z¢(z;y1...7,) € I [SII] This proves
part (i).

If A= {¢} €%,, then taking b, = (n,...,0,...,n) (ie., 0 at £*" place and elsewhere n), we
get the minimal generator zj} & Igl]. For A = {j,...,5:} € ¥, with ¢t > 2 and j; < ... < j;, let
by = (by,...,b,), where bj, = ji — j1, bj, =n— (ji — ji—1) (for i > 2) and b, =n (for r ¢ A).
Claim :  xP4 ¢ Iy.

Otherwise, there exists a o € U such that x? divides x4, Thus o(71) < ji—j1 and o(j;) <
n— (7; — Ji—1) for 2 <1 <t. We see that

o(j1) > 0o(ja) > ... > a(J).

If 0(ji—1) < o(j;) for 1 < i < ¢, then o(j;—1),0(j5;) € [n— (4; — ji—1)]. But |[n — (ji — jiz1)]| =
n— (ji — ji—1) and |[ji—1] [1[ji, nl| = n — (Ji — Jiz1) + 1, where [a,b] = {m € Z : a < m < b} denotes
an integer interval for a,b € Z. Thus there exists ¢ € [n]\ [ji—1,Ji] such that o(¢) & [n — (j; — ji—1)].
This shows that o(j;—1) < 0(j;) < o(f). Hence, o has a 123 or a 312-pattern, a contradiction to
o€ U. Now o(j;) < 0(j1) < jy — j1 implies that j, — 71 > 2. Again, o(j1),0(j:) € [j: — j1], but
\l7:— 71| = Je— 71 < |41, Je]| = je—71+1. Thus there exists £ € [j; +1, j; — 1] such that o (£) > j;— 1.
This shows that, o(j;) < 0(j1) < o(¢) with j; < ¢ < j; demonstrating that o has a 231-pattern, a
contradiction. This proves our claim. It can be shown that b A has the desired maximality property
and hence x* P4 is a minimal generator of [ ([]n I, ([l

We shall show that all monomial ideals in Lemma are order monomial ideals. Let (P, <) be
a finite poset and let {w, : u € P} be a set of monomials in R. The monomial ideal I = (w, : u € P)
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is said to be an order monomial ideal if for any pair u,v € P, there is an upper bound w € P of
u and v such that w, divides the least common multiple LCM(w,,w,) of w, and w,. The order
complex A(P) of a finite poset P is a simplicial complex, whose r-dimensional faces are chains
up < Uy < ... = Upyq of length 7 in P. If F is a face of A(P), then monomial label x*¥) (say) on
F is the LCM(w, : u € F). Let

F.(AP)): -+ —=F,->F,_1—-—=F -F —0

be the free R-complex associated to the (labelled) simplicial complex A(P). If F.(A(P)) is exact
at IF; for ¢ > 1, then we say that F,(A(P)) is a cellular resolution of I supported on A(P) (see
2, 3, 0]).

It is convenient to study the monomial ideal Ig in Lemma [3.1] according to the three cases
already described.
CASE-1. To each monomial ideal ]g:], we associate a poset 2, (S,) (for 1 < a < 3) as follows.

(i) Let £,(S1) ={{{} : 1 <l <n—-1}yU{[i,n] : 1 <i<n}, where [i,n]={a e N:i<a<n}
and [n,n] = {n}. We define a poset structure on %,,(S;) by describing cover relations. For
0,0" € [n—1] and 4,4 € [n], {¢} covers {¢'} (or [i',n]), if ¢/ = €+ 1 (respectively, i’ = ¢+ 2).
Also, [i,n] covers {¢'} (or [i/,n]) if i = ¢ (respectively, i’ = i + 1). The monomial labels
Wiy = xﬁ“ and Wy ] = Tixip1 ... T, Set u}’c for C' € ¥,(S1) so that we = HjeC a:ﬁc The
finite poset ¥,,(S7) appeared in [§].

(i) Let £,(S2) ={{f}:1 < <n}U{{i,j}:1<i<j<n}. A posetstructure on %, (Ss) is
given by the following cover relations. For ¢, 5,7, j € [n] with i < j and i’ < j, {i,j} covers
{#',7'}, if either (i =7 and j'=j+ 1) or (j =4 and 5/ = j + 1). Also, {i,j} covers {i'} if
either (i =4 and j = n) or (¢ = j = n). In this case, the monomial labels wgy = 2} and

Wyij) = xﬁx;_l Set 1} o for C' € ¥,,(S2) so that wo =[], m?gc
(ili) Let £,(S5) = {{¢} : 1 < ¢ <n}U{{i,j} : 1 <i < j<n}. Again, a poset structure on
¥,.(S3) is given by the following cover relations. For ¢, 7,4, j" € [n] with ¢ < j and ' < §/,
{i,7} covers {i’, j'}, if either (i =4’ and j = j'+ 1) or (i =4 — 1 and j' = j). Also, {i,j}
covers {i'} if either (i =4 and j =i+ 1) or (j =¢ and j =i+ 1). Again, the monoamial
e

labels wypy = 27 and wy; j3 = mfx?_(j_i). Set ﬂic for C' € ¥,,(S53) so that we = H]EC T

The Hasse diagrams of ¥4(57), ¥4(S52), 24(S3) are given in FIGURE-2.

Proposition 3.2. (i). The ideal IE:} s an order monomial ideal for 1 < a < 3.

(ii). The free complex F.(A(X,(Sa))) is the cellular resolution of Ig:} supported on the order complex
A(X,(S,)) for 1 <a < 3.



INTEGER SEQUENCES AND MONOMIAL IDEALS 13

1234 12 14

7N RN SN
1 23 13 23 13 2
| > S TN VAR NN
2><34 /14 24 34\ /12\ /23\ /34\
|
3 4 1 2 3 4 1 2 3 4
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FIGURE 2

Proof. Given the poset structure on ¥,(5,), it is a straight forward verification that I gﬂ is an order

a

monomial ideal. Postnikov and Shapiro [12] showed that the free complex F.(A(P)) is a cellular
resolution of the order monomial ideal I = (w, : u € P) (see Theorem 2.4 of [§]). O

Remark 3.3. The cellular resolution F,(A(X,(S,))) is minimal for ¢ = 1, but nonminimal for
a = 2,3. Also, the r*" Betti number BT(]E]) is given by (see Theorem 2.7 of [§])

r+1
/BT(IEI]) :Z (ngl) (rf_;js); 0<r<n-1).

s=0

We now identify standard monomials of %. Consider the following subsets of the set PF,, of
Sa

parking functions p = (p1,...,p,) of length n.
(i) PF), = {p € PF, : p; < t, Vt and if p; = i, then p; = 0 for some j € [i,n]}.
(ii) PF2 = {p € PF,, :if p; > i, then p; < j — 1 for all j € [i + 1,n]}.
(iii) PF? = {p € PF,, : if p; >4, then p; < n — (j — ) for all j € [i + 1,n]}.
In view of Lemma , xP & [ gj if and only if p € PF; for 1 < a < 3. Thus (fine) Hilbert series
H <1[_1§“X) of I[—}E] is given by H <I[—1§],x) = Y pepre XP. In particular, [PF}| = dimy <I[—E}) =

Sa Sa Sa Sa

H <I[—}E], 1>, where 1 = (1,...,1). Using the cellular resolution F,(A(X,(S,))) supported on the

Sa

order complex A(X,(S,)), the (fine) Hilber series H (%’X) is given by

Sa

(3.1)

n i 7 '“‘q, q
a7 2 imo(—1)" Xien.cners , = (Hjecq\cqfl " )
’ (1—z1)- - (1 —x,) ’
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where F , is the set of ¢ — 1-dimensional faces of A(X,(5,)), (C4,...,C;) € Ff, is a (strict) chain
Ci<...<C;of lengthi—1, Cy =0 and 15 ¢ is as in the definition of poset X, (S,).

Proposition 3.4. The number of standard monomials of % 15 given by

Sa
d' R _ - 1 n—i i a
imy | g | =2 (1) > IV I #e )
Sa =1 (Cl ..... Ci)E}—ia_l q:1 jECq\Cq_l
ClU...UCi:[n]
where summation is carried over all i — 1-dimensional faces (Cy,...,C;) € Fy of A(X,(S.)) with

C1U...UC; = [n] and Cy = 0. Also,

dimy, (%)z > o IIC IT W —wse)) ) | T wi | -

Sa 0<i<n; q=1 jeC,\Cq-1 1¢C;
where summation is carried over all faces (Ch,...,C;) € F including the empty face Co = ().

Proof. As |PF%| = dimy (%) =H (%, 1), letting x — 1 in the rational function expression
Sa

Sa

of H ][—IE],X , and applying L’Hospital’s rule, we get the first formula. For more detail, see the
Sa

proof of Proposition 4.5 of [6]. In order to get the second formula, put y; = Ii in 1’ to get a
J

- a1\ ~
rational function, say H (%, y). Now letting y — 1 in the product <H?:1 yf“” ) H (%, y>,

we get the second formula, which is due to Postnikov and Shapiro [12].

Theorem 3.5. The number of standard monomials of 1[_}3‘] 15 given by
Sa

R 1)!
dimy, | _pre = D <y
I3 2

Proof. As dimy (I[—If,]) =1 for n = 1, we assume that n > 1.
Sa

(i) Let a = 1. Using the second formula

dimy, (%) = Z (1)’ H( H (#},{j} - /igl‘,cq)) H Nzl,{Z}

S1 0<i<n; 4=1 JEC\Cy 1 1¢C;
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in Proposition [3.4] we shall show that

R ;1
(3.2) dimy, (ﬁ) =n(n!) + (n—1)((n — 1)} Z (1) =
e — [T=2i
S1 1<i<n; q=2J4
0=j0<j1<...<j;i<n

The term corresponding to the empty chain is n(n!). Also, for a (strict) chain C; < ... < C; in
F! , the corresponding term in the second formula is zero if the chain has a singleton member.
Thus surviving terms are of the form C; = [j;_;41,n| for some sequence 0 = jo < j; < ... < ji <n.
Note that the term corresponding to such a chain is precisely, (_1)1'% This proves .

J2J3---0i
Let o = 3oy (= 1) 300y wnciicn Hl . Clearly, oy = 0. For n > 1, we claim that o, = 3.
We have,
. 1
_ 1+1 Z+l
D D S ST R
i>1 0=jo<j1<...<ji<n—1 —2Js =1 0=jo<ji<...<ji=n—1 1 1g=2Ja
1 - 1
T SR S e
n 1>2 0=jo<j1<...<ji—1<n— 1Hq 2Jq

n—2
= QOp_1 — a1+ 1= ap—1 + 1.
n—1

-1
On solving this recurrence relation, we get a,, = § for n > 1. Now in view of (3.2,

: R —n (n+1)!
dimy, (W) =n(n!)+ (n—1)((n —1)!) (7) =g

S1

(ii) Let a = 2. As dimy ( []) = 1 or 3 for n = 1 or 2, respectively, we assume that n > 2.

Sa

Suppose F2[n] = Ui {(Ch,...,Ci) € F7 - Uj = [n]}. For C = (Cy,...,C;) € F?[n], we write
u*(C) = Hf]:l (Hjecq\cq,l Nj,cq>~ In view of the ﬁrst formula in Proposition E, we have

- . R n—0(C)—
ay, = dimy, (ﬁ) = Z (—1) €(C) 1M2(C).

Sa CeF2[n]
Now decompose F2[n] = F?[n]' [[ F?[n]”, where C = (C4,...,C;) € F?n) if |Cy] = 1 and C €
F2n)" if |C] = 2. Then &, = &, + &/, where
= Y (CONAC) ad d= Y (C)Oe)
ceF2[n) ceF2[n)
A chain C = (Cy,...,C;) € F?[n] is called a Type-I, Type-II or Type-III chain, if (Cy,Cy) =
({Z}a {Z7n}) for i < n, (Cla 02) = ({n}a {Zan}> for © <n or (Cla C2> = ({n}a {ivn_ 1}) fori <n— 17
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respectively. Now

~/ n—{(C)—1 2
A DD D D D DR I iy Tal (&
CeF?n]’; CeF?ln); CeF?n],;
Type—I Type—II Type—III
n n
/ ~ 11 ~ 11 ~ ~ 11
_ 10471 T oy, = N0p_1 —

ar.
n—1"

= no, 4 —

Claim : & = —%.
For 1 <t <n — 1, consider saturated chains C® in F2[n]” of the form
CO:{t,n} <{t,n—1}y <...<{t,t +1} < {t —1,t} <... < {1,2}.
Then p2(C®) = t((n — 1)!). Any other chain in F2[n]” is either of the form
C:{rn}<...<{rr+1}<...<{s=Lst<{l,s—1}<{l,s—2}<...<...
or

C:{rn}<...<{rr+1}<...<{-1,}<{ls=2}<...<..., (for3<r<n-1),

where s (or §') is the largest integer such that {l, s — 1} covers {s — 1,s} in C (or {l’, s’ — 1} is not
in C') for some [ < s —2 (or ' < s’ —2). Let C =C \ {{l,s — 1}} be the chain obtained from C on
deleting {I,s —1} and C' = C' U {{l', ' — 1}} be the chain obtained from C’ on adjoining {I’, s’ — 1}.
Clearly, p2(C) = p*(C) and p2(C') = p2(C'). As length £(C) = ¢(C) 4+ 1 and £(C") = £(C") — 1, the
terms in &7 = Y ez (—1)" O 12(C) corresponding to chains C € F?[n]" different from C¢)
cancel out. Thus

= S ) = 31—y - - A0

"

~ | . .
n = Nap_1 + 5. On solving this recurrence, we get

Now &, = &, + & = nd,_ | — =d"! +a
~ 1)!
& — (ntD)

n 2
(iii) Let @ = 3 and assume n > 2. Proceeding as in part(ii), we write

dimy (%) = Z (_1)%6((1)71“3(6),

S3 CeF3n]

, as desired.

where F3[n] is the collection of all chains C = (Cy,...,C;) in F? | (for some i) with U'_,C; = [n]
and p3(C) = H2:1 <Hjecq\cq_1 uicq). For 1 <t <n—1,let C% be the chain in F3[n] of the form

CO -ty <{t,t+1}<...<{t,n—1} <{t,n} < {t—1,n} < ... <{1,n}



INTEGER SEQUENCES AND MONOMIAL IDEALS 17

and C \ {{t}} is the chain obtained from C® by deleting the first element {t}. Now z>(C*)) = n!
and p2(CW\ {{t}}) = t((n — 1)!). There is one more chain C : {n} < {n —1,n} < ... < {1,n} in
F3[n], with 43(C) = n!. As in part (ii), it can be shown that the terms corresponding to remaining
chains cancel out. Thus

R 1)!
dim [ ) = () = (1424 ...+ (- D)(n — 1)) = LD
I 2
Theorem shows that the integer sequence {dim,C (Iﬁ]) = (”;1)’} for 1 < a < 3 is
Sa n=1

the integer sequence (A001710) in OEIS [14]. As |PF;| = (";1)!, it is expected that the set PF
could be easily enumerated. Let p € PF,IL. Then p, < t; Vt and p; = ¢ implies that p; = 0 for
some j € [i +1,n]. We count p € PF} according to the value s of the largest t € [n] with p, = t.
If p; < t;Vt € [n], then we take s = 0. As p, < n, we have 0 < s < n — 1. For s = 0, any
p = (p1,...,pn) € N" such that p; < t; V¢ is a parking function and number of such p € PF}L is

precisely []7_,(t) = nl. Now let s > 1. Any sequence p = (p1,...,p,) € N" satisfying conditions
(3.3) pe <tVt<s, p,=s, and p; < j Vj > s, with at least one p; = 0,
is always a parking function. The number of p satisfying conditions (3.3)) is

ﬂ(t+1) [H i— II ¢ =] =m-s(n-1).

t=1 =s+1 j/:s+1

This shows that [PFL| = " /(n — s)((n — 1)!) = w Similarly, PF} for a = 2,3 can also
be enumerated. However, it is still an interesting problem to construct an (explicit) bijection
¢ PF} — F,11(21), where F,,11(21) is the set of rooted-labelled increasing forests on [n + 1].

CASE-2 : To monomial ideals I:[F? I and I[Tg], we associate finite posets 3,,(77) and X, (75)
respectively, as below.

(i) Let X,(T1) = {{{},{i,n} : 1 <€ <n—-1; 1 <i<n}, where {n,n} = {n}. We define a
poset structure on %,,(77) by describing cover relations. For ¢,¢" € [n—1] and ¢,7 € [n], {¢}
covers {{'}, if ¢/ = {4+ 1. Also, {i,n} covers {¢'} (or {i',n}) if i = ¢' (respectively, i/ =i+1).
The monomial labels wiy = 24!, wiy = 27 and wii ) = 2ial, for 1 < 4,0 < n. Set i} o for

C € X,(Th) so that we = [[c¢ x;@c

(ii) Let X, (Ty) = ¥,(T1). But the poset structure on %, (73) is obtained by interchanging {i}
with {n —i} (and also, {i,n} with {n —i,n})(for 1 <i < n) in the poset ,(77). The cover
relations of the poset X,,(73) are given as follows. For ¢, ¢ i,i" € [n — 1], {¢} covers {¢'}, if

¢ =0 —1and {i,n} covers {¢'} (or {i',n}) if i = ¢’ (respectively, i = i — 1). In addition,
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{1,n} covers {n}. The monomial labels wy, = ZB?_K—H, winy = 2 and wy;y = 2" for
~2
1</¢,i<n. Set ﬂ?,o for C' € %,,(17) so that we = Hjec x?"’c.

The Hasse diagram of ¥4(77) and 34(73) are given in FIGURE-3.

14 34
RN RN
1 24 3 24
S4(Ty) Yu(T)

FIGURE 3

Proposition 3.6. (i). The ideals I[TI:} and I:[FI;] are order monomial ideals.
(ii). The free complex F.(A(X,(T3))) is the minimal cellular resolution of IL[;Z] supported on the order
complex A(3,,(Ty)) for 1 < b < 2. Thus the r'" Betti number BT(I[TIZ]) is given by

Br(Iy)) = (ril) +(7’+1)(Z;i> +r(n;1), (I1<r<n-1).

Proof. From the definitions of the poset X,,(7}), it is clear that the ideal [7[11:] is an order monomial
ideal. Further, the cellular resolution F,(A(X,(73))) is the minimal resolution of / g;] supported on
the order complex A(X,(T})) because monomial label on any face of A(X,,(73)) is different from the
monomial label on subfaces. Thus the 7" Betti number ﬂr([[le]) equals the number (strict) chains
of length r in the poset 3,(T}). Since 3, (T3) is obtained from %, (71) by changing i to n — i for
i € [n], number of chains of length r in both the posets are same. We count chains of length r in
Y, (1) for 0 <r <n— 1. Consider a (strict) chain

CICl<CQ<...<CS<CS+1<...<Cr+1.
If all C; are of the form {¢;,n} for ¢; € [n], then the chain C can be identified with a r 4 1-subset

{t1,...,t,11} of [n]. Thus number of such chains is (7”—7—1)' If Cy = {ts} and Csyq = {ts11,n} for
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some s with ;1 < ¢, then the chain C can be identified with a r 4 1-subset {t1,...,¢. 41} of [n —1]
with a chosen element t;. Any j € {t1,..., 41} represent singleton {j} if j > ¢,, while it represent
{j,n} for j < ts. The number of such chains is precisely (r + 1) (’:;11) Now we count chains C
with Cs = {t;} and Csyq = {ts,n} (i.e., ts = tsy1). In this case, chain C can be identified with

a r-subset {t1,...,ts = ts41,..., 641} of [n — 1] with a chosen element t;. Thus number of such
chains is r (";1) Since any r-chain C in X,(7}) is a chain of one of the three types, we get the
desired result. O

Consider the following subsets of PF,, of parking function p = (p1,...,pn).

(i) 15?,; ={p € PF, :p, <t, Vtand if p; =i, then p, < i}.
(ii) PF, = {p € PF,, : p,_y <, ¥Vt and if p,_; =i, then p, < i}.

—~b —~b
In view of Lemma 2.4, xP ¢ I\ if and only if p € PF, for b = 1,2. Thus, |PF,| = dim, <%>

Ty
_L1
Also, the mapping (p1,p2, .-, Pn-1,0n) = (Pn-1,Pn—2,---,P1,Pn) induces a bijection between PF
2
and PF, .

Theorem 3.7. The number of standard monomials of % s given by
Iy
—~b R
Ty

where s(n + 1,2) is the (signless) Stirling number of the first kind.

Proof. We take b = 1. Proceeding as in Proposition (3.4}, we get

: R N f(C)—1 ~
dimy, (m) = Z (—1)" 1O~ ge),

T CEF1n]

Cz) in En(Tl) such that Cl U...u Cl = [n]
tC™ o {n} <{n—1,n} <...<{1,n},

where F'[n] is the collection of all chains C = (C4, .. .,
and ' (C) = Hf;:1 (Hjecq\cq,l ﬁjlcq) For 1 <t <mn,le

CO:{n—-1} <. . <{ty<{tn}<{t—1n}<...<{ln}; (1<t<n-—1)

and C'® be the chain obtained from C® on deleting {¢,n}. For t = n, we have {n,n} = {n}. It is
clear that F'[n] = {C,C'® : 1 <t < n}. Also, g*(C") = n! and 7' (C'W) = ZL(n!) for 1 < ¢ < n.
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~,

As 0(CW) = ¢(C®) + 1 =n — 1, we see that

, R SR A = t—1
dimy, <m> = Z (MI(CA“)) —a'(c (t))> = Z (n! - Tn')
T t=1 t=1

! 1 1
= Zn?:(1+§+...—|—5)n!:s(n+1,2).

t=1
1 2 -
A nice formula |PF, | = |PF, | = s(n+1,2), deserves a combinatorial proof. We count parking

1
functions p = (p1,...,p,) in PF, according to the value of p,. Clearly, 0 < p, < n — 1. For
any 0 <t < n —1, we see that p, = ¢ implies that p;, < 7 for all ¢ < ¢ and p; < j for j > t.
Also, any (p1,...,pn) with p, =t and p; < i for all ¢ < ¢, while p; < jforallt < j <n-—1

1
is always a parking function of length n. Thus number of p = (py,...,p,) € PF,, with p, =t is
t . n—1 . nl ==1 n—1 p!
(Hi:l Z) <Hj:t+1(] + 1)) = t+—'1 Hence, [PF,|=>"/", t+_'1
Theorem shows that the integer sequence {dim;.C (I[—If:]) =s(n+1, 2)} for b =1,2is

Ty
the integer sequence (A000254) in OEIS [14].
I/j A

CASE-3 : We finally consider the monomial ideal I, [[]n ) The minimal generators Hje Az of
]

n=1

I[[? I are parametrized by the poset ¥,. Again, it is straight forward to verify that the ideal Igl
is an order monomial ideal and the cellular resolution F,(A(X,)) supported on the order complex
A(3,,) is the minimal free resolution of Igl]. Thus r** Betti number ﬁr(][[]“]) = (r)S(n+1,r+1)
for0<r<n-1.

Now we describe standard monomials of %. Let PF, = {p € PF, : xP ¢ 151 ]}.

Lemma 3.8. Let p = (py,...,pn) € PF,. Then p € PF, if and only if, there exists a permutation
a € 6, such that p,, < Va, 1, for all i, where a; = a(i), Ty = [n] and T; = [n] \ {ou, ..., a;_1} for
j > 2. Also, vjr is in the Lemma [2.4)

Proof. Proof is similar to the proof of Theorem 4.3 of [6]. O
Proceeding as in Proposition [3.4] we get a combinatorial formula for the number of standard
monomials of I[—IE].
U

Proposition 3.9. The number of standard monomials of I[—]f,] s given by
U

n

|PF,,| = dimy, (%) = Z(—l)"‘i Z H H Vic, | s

U i=1 0=CoCC1C...CCi=[n] g=1 \jeC\Cq-1
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where summation is carried over all strict chains ) = Cy C C1 € ... C C; = [n].

Neither using Proposition , nor by any combinatorial tricks, we could determine |PF,,| =

i

dimyg (i) Thus, we ask the following question.

Question : Is it possible to identify the sequence {dimk (I[—Bf,]) } with some well known
u n=1
combinatorially interesting integer sequence?

Computations for smaller values of n suggest that this integer sequence could be (A003319)
in OEIS [14].
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