INTEGER SEQUENCES AND MONOMIAL IDEALS

CHANCHAL KUMAR AND AMIT ROY

Abstract

Let \mathfrak{S}_{n} be the set of all permutations of $[n]=\{1, \ldots, n\}$ and let W be the subset consisting of permutations $\sigma \in \mathfrak{S}_{n}$ avoiding 132 and 312-patterns. The monomial ideal $I_{W}=$ $\left\langle\mathbf{x}^{\sigma}=\prod_{i=1}^{n} x_{i}^{\sigma(i)}: \sigma \in W\right\rangle$ in the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ over a field k is called a hypercubic ideal in [6]. The Alexander dual $I_{W}^{[\mathbf{n}]}$ of I_{W} with respect to $\mathbf{n}=(n, \ldots, n)$ has the minimal cellular resolution supported on the first barycentric subdivision $\mathbf{B d}\left(\Delta_{n-1}\right)$ of an $n-1$-simplex Δ_{n-1}. We show that the number of standard monomials of the Artinian quotient $\frac{R}{I_{W}^{[n]}}$ equals the number of rooted-labelled unimodal forests on the vertex set $[n]$. In other words, $$
\operatorname{dim}_{k}\left(\frac{R}{I_{W}^{[\mathbf{n}]}}\right)=\sum_{r=1}^{n} r!s(n, r)=\operatorname{Per}\left(\left[m_{i j}\right]_{n \times n}\right)
$$ where $s(n, r)$ is the (signless) Stirling number of the first kind and $\operatorname{Per}\left(\left[m_{i j}\right]_{n \times n}\right)$ is the permanent of the matrix $\left[m_{i j}\right.$] with $m_{i i}=i$ and $m_{i j}=1$ for $i \neq j$. For various subsets S of \mathfrak{S}_{n} consisting of permutations avoiding patterns, the corresponding integer sequences $\left\{\operatorname{dim}_{k}\left(\frac{R}{I_{S}^{[\mathbf{n]}}}\right)\right\}_{n=1}^{\infty}$ are identified.

KEY WORDS: Permutations avoiding patterns, standard monomials, parking functions.

1. Introduction

Let G be an oriented graph on the vertex set $\{0,1, \ldots, n\}$ rooted at 0 . A nonoriented graph on $\{0,1, \ldots, n\}$ has the symmetric adjacency matrix and it is identified with a unique rooted oriented graph on $\{0,1, \ldots, n\}$ having the same (symmetric) adjacency matrix. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the standard polynomial ring in n variables over a field k. Postnikov and Shapiro [12] associated a monomial ideal \mathcal{M}_{G} in R such that the number of standard monomials of the Artinian quotient $\frac{R}{\mathcal{M}_{G}}$ is precisely the number of oriented-spanning trees of G. A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{N}^{n}$ is called a G-parking function if $\mathbf{x}^{\mathbf{p}}=\prod_{i=1}^{n} x_{i}^{p_{i}}$ is a standard monomial of $\frac{R}{\mathcal{M}_{G}}$ (i.e., $\mathbf{x}^{\mathbf{p}} \notin \mathcal{M}_{G}$). Let $\operatorname{SPT}(G)$ be the set of (oriented) spanning trees of G rooted at 0 and $\operatorname{PF}(G)$ be the set of G-parking functions of G. Then $|\operatorname{PF}(G)|=|\operatorname{SPT}(G)|$ (see [12]).

2010 Mathematics Subject Classification. 13D02, 05E40.

If G is the complete graph K_{n+1} on the vertex set $\{0,1, \ldots, n\}$, then

$$
\mathcal{M}_{K_{n+1}}=\left\langle\left(\prod_{i \in I} x_{i}\right)^{n-|I|+1}: \emptyset \neq I \subseteq[n]\right\rangle
$$

is called a tree ideal. Cayley's formula for enumeration of labelled trees states that $\left|\operatorname{SPT}\left(K_{n+1}\right)\right|=$ $(n+1)^{n-1}$. Also the set $\mathrm{PF}\left(K_{n+1}\right)$ of K_{n+1}-parking functions is the set PF_{n} of (ordinary) parking functions of length n. A finite sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{N}^{n}$ with $0 \leq p_{i}<n$ is called a parking function of length n if a nondecreasing rearrangement $p_{i_{1}} \leq p_{i_{2}} \leq \ldots \leq p_{i_{n}}$ of \mathbf{p} satisfies $p_{i_{j}}<j$ for $1 \leq j \leq n$. A recursively defined bijection $\phi: \mathrm{PF}_{n} \longrightarrow \mathrm{SPT}\left(K_{n+1}\right)$ has been constructed by Kreweras [5]. Parking functions or more generally, vector parking functions have appeared in many areas of mathematics. For more on parking functions, we refer to [11, 16]. An algorithmic bijection $\phi: \operatorname{PF}(G) \longrightarrow \mathrm{SPT}(G)$, called DFS-burning algorithm, is given by Perkinsons et. al. [10] for a simple graph G and by Gaydarov and Hopkins [4] for multigraph G.

Let \mathfrak{S}_{n} be the set of all permutations of $[n]=\{1,2, \ldots, n\}$. For $r \leq n$, consider a $\tau \in \mathfrak{S}_{r}$, called a pattern. A permutation $\sigma \in \mathfrak{S}_{n}$ is said to avoid a pattern τ if there is no subsequence in $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)$ that is in the same relative order as τ. Let $\mathfrak{S}_{n}(\tau)$ be the subset consisting of permutations $\sigma \in \mathfrak{S}_{n}$ that avoid pattern τ. If $r>n$, then $\mathfrak{S}_{n}(\tau)=\mathfrak{S}_{n}$. Also, if $\tau^{(i)} \in \mathfrak{S}_{r_{i}}$ for $1 \leq i \leq s$, then $\mathfrak{S}_{n}\left(\tau^{(1)}, \ldots, \tau^{(s)}\right)=\bigcap_{j=1}^{s} \mathfrak{S}_{n}\left(\tau^{(j)}\right)$. Enumeration and combinatorial properties of the set of permutations avoiding patterns are obtained in [13.

For a nonempty subset $S \subseteq \mathfrak{S}_{n}$, consider the monomial ideal $I_{S}=\left\langle\mathbf{x}^{\sigma}=\prod_{i=1}^{n} x_{i}^{\sigma(i)}: \sigma \in S\right\rangle$ in $R=k\left[x_{1}, \ldots, x_{n}\right]$ induced by S. The monomial ideal $I_{\mathfrak{S}_{n}}$ is called a permotuhedron ideal and the Alexander dual $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ is the tree ideal $\mathcal{M}_{K_{n+1}}$. The $i^{t h}$ Betti number $\beta_{i}\left(I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}\right)$ of $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ is given by

$$
\beta_{i}\left(I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}\right)=\beta_{i+1}\left(\frac{R}{I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}}\right)=(i!) S(n+1, i+1) ; \quad(0 \leq i \leq n-1),
$$

where $S(n, r)$ is the Stirling number of the second kind, i.e., the number of set-partitions of $[n]$ into r blocks (see [12]). Further, we have already observed that the standard monomials of $\frac{R}{I_{\mathfrak{S}_{n}}^{[n]}}$ is given by $\operatorname{dim}_{k}\left(\frac{R}{I_{\mathbb{G}_{n}}^{\mathrm{nj}}}\right)=\left|\mathrm{PF}_{n}\right|=(n+1)^{n-1}$.

For various subsets $S \subseteq \mathfrak{S}_{n}$, the Alexander dual $I_{S}^{[\mathbf{n}]}$ of I_{S} with respect to $\mathbf{n}=(n, \ldots, n)$ has many interesting properties similar to the Alexander dual of permutohedron ideal. The Betti numbers and enumeration of standard monomials of the Alexander dual $I_{S}^{[\mathbf{n}]}$ for subsets $S=$ $\mathfrak{S}_{n}(132,231), \mathfrak{S}_{n}(123,132)$ and $\mathfrak{S}_{n}(123,132,213)$ are obtained in [7, 8]

Let $W=\mathfrak{S}_{n}(132,312)$. The monomial ideal I_{W} of R is called a hypercubic ideal in [6]. The standard monomials of $\frac{R}{I_{W}^{[n]}}$ correspond bijectively to a subset $\widetilde{\mathrm{PF}_{n}}$ of PF_{n}. An element $\mathbf{p} \in \widetilde{\mathrm{PF}}_{n}$
is called a restricted parking function of length n. We show that the number of restricted parking functions of length n is given by

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{W}^{[\mathbf{n}]}}\right)=\left|\widetilde{\mathrm{PF}}_{n}\right|=\sum_{r=1}^{n}(r!) s(n, r)
$$

where $s(n, r)$ is the (signless) Stirling number of the first kind, i.e., the number of permutations of $[n]$ having exactly r cycles in its cyclic decomposition. Thus the nth term of integer sequence (A007840) in OEIS [14] can be interpreted as the number of restricted parking functions of length n, or equivalently, as the number of standard monomials of the Artinian quotient $\frac{R}{I_{W}^{[\mathbf{n}}}$.

The concept of pattern avoiding permutations has been generalized to many combinatorial objects. A notion of rooted forests that avoids a set of permutations is introduced and many classes of such objects are enumerated in [1]. Let F_{n} be the set of rooted-labelled forests on $[n]$. Let $F_{n}(\tau)$ (or more generally, $F_{n}\left(\tau^{(1)}, \ldots, \tau^{(r)}\right)$) be the subset of F_{n} consisting of rooted-labelled forests avoiding a pattern τ (or a set of patterns $\left\{\tau^{(1)}, \ldots, \tau^{(r)}\right\}$). We have

$$
\left|F_{n}(213,312)\right|=\sum_{r=1}^{n}(r!) s(n, r)=\left|\widetilde{\mathrm{PF}}_{n}\right| .
$$

It is surprising that enumeration of standard monomials of $\frac{R}{I_{W}^{(n)}}$ and enumeration of rooted-labelled forests $F_{n}(213,312)$ avoiding 213 and 312-patterns are related. It is an interesting problem to construct an algorithmic bijection $\phi: \widetilde{\mathrm{PF}}_{n} \longrightarrow F_{n}(213,312)$, analogous to DFS-burning algorithm that could explain the relationship between these objects.

The monomial ideal I_{S} for many other subsets $S \subseteq \mathfrak{S}_{n}$, consisting of permutations avoiding patterns are considered in the last section.

2. Hypercubic ideals and restricted Parking functions

Consider the subset $W=\mathfrak{S}_{n}(132,312)$ of permutations of $[n]$ that avoid 132 and 312-patterns. For $\sigma \in \mathfrak{S}_{n}$, it can be easily checked that $\sigma \in W$ if and only if $\sigma(1) \in[n]$ is arbitrary, and $\sigma(j)=\ell$ for $j>1$ if either $\sigma(i)=\ell+1$ or $\sigma(i)=\ell-1$ for some $i<j$. Clearly, $|W|=2^{n-1}$. The monomial ideal I_{W} appeared in [6], where it is called a hypercubic ideal. Many properties of I_{W} and its Alexander dual $I_{W}^{[\mathbf{n}]}$ with respect to $\mathbf{n}=(n, \ldots, n) \in \mathbb{N}^{n}$ have been obtained in [6]. We proceed to enumerate the standard monomials of $\frac{R}{I_{W}^{\text {n. }}}$. For this purpose, we consider a little generalization.

Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}$ with $1 \leq u_{1}<u_{2}<\ldots<u_{n}$. For $\sigma \in \mathfrak{S}_{n}$, let $\sigma \mathbf{u}=$ $\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right)$ and $\mathbf{x}^{\sigma \mathbf{u}}=\prod_{i=1}^{n} x_{i}^{u_{\sigma(i)}}$. For any nonempty subset $S \subseteq \mathfrak{S}_{n}$, we consider the monomial ideal $I_{S}(\mathbf{u})=\left\langle\mathbf{x}^{\sigma \mathbf{u}}: \sigma \in S\right\rangle$ in the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$. Clearly, $I_{S}((1,2, \ldots, n))=$
I_{S}. The ideals $I_{\mathfrak{S}_{n}}(\mathbf{u})$ and $I_{W}(\mathbf{u})$ are also called a permutohedron ideal and a hypercubic ideal, respectively. For an integer $c \geq 1$, we consider the Alexander dual $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ of the hypercubic ideal $I_{W}(\mathbf{u})$ with respect to $\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}=\left(u_{n}+c-1, \ldots, u_{n}+c-1\right) \in \mathbb{N}^{n}$.

Proposition 2.1. The minimal generators of $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ are given by

$$
I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}=\left\langle\prod_{j \in T} x_{j}^{\mu_{j, T}^{\mathbf{u}}}: \emptyset \neq T=\left\{j_{1}, \ldots, j_{t}\right\} \subseteq[n] ; j_{1}<\ldots<j_{t}\right\rangle,
$$

where $\mu_{j_{1}, T}^{\mathbf{u}}=u_{n}-u_{t}+c$ and $\mu_{j_{i}, T}^{\mathbf{u}}=u_{n}-u_{t+j_{i}-i}+c$ for $2 \leq i \leq t$.
Proof. The minimal generators of $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}\right]}$ are given in Theorem 3.3 of [6]. Just replace $\left[\mathbf{u}_{\mathbf{n}}\right]$ by $\left[\mathbf{u}_{\mathrm{n}}+\mathbf{c}-\mathbf{1}\right]$.

The Alexander dual $I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ of the permutohedron ideal $I_{\mathfrak{S}_{n}}(\mathbf{u})$ is given by

$$
I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathrm{n}}+\mathbf{c}-\mathbf{1}\right]}=\left\langle\left(\prod_{j \in T} x_{j}\right)^{u_{n}-u_{|T|}+c}: T \in \Sigma_{n}\right\rangle
$$

where Σ_{n} is the poset of all nonempty subsets of $[n]$ ordered by inclusion. Postnikov and Shapiro [12] showed that the monomial ideal $I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ is an order monomial ideal. Moreover, the minimal resolution of $I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1]}\right.}$ is the cellular resolution supported on the order complex $\Delta\left(\Sigma_{n}\right)$ of Σ_{n}. Thus, the $i^{\text {th }}$ Betti number

$$
\beta_{i}\left(I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}\right)=(i!) S(n+1, i+1) ; \quad(0 \leq i \leq n-1),
$$

where $S(n+1, i+1)$ is the Stirling number of the second kind. Further, standard monomials of $\frac{R}{I_{\mathfrak{E}_{n}}(\mathbf{u})^{\left[\mathbf{u n}_{n}+\mathbf{c - 1]}\right.}}$ are given in terms of λ-parking functions. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}=u_{n}-u_{i}+c$. A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{N}^{n}$ is called a λ-parking function of length n, if non-decreasing rearrangement $p_{i_{1}} \leq p_{i_{2}} \leq \ldots \leq p_{i_{n}}$ of \mathbf{p} satisfies $p_{i_{j}}<\lambda_{n-j+1}$ for $1 \leq j \leq n$. Let $\mathrm{PF}_{n}(\lambda)$ be the set of λ-parking functions of length n. Then $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_{\mathscr{S}_{n}}(\mathbf{u})^{\left[\mathbf{u n}_{n}+\mathbf{c - 1]}\right.}}$ if and only if $\mathbf{p} \in \mathrm{PF}_{n}(\lambda)$. Also, λ-parking functions for $\lambda=(n, n-1, \ldots, 1)$ are precisely (ordinary) parking functions of length n, that is, $\mathrm{PF}_{n}((n, n-1, \ldots, 1))=\mathrm{PF}_{n}$.

The Alexander dual $I_{S}^{[\mathbf{n}]}$ of I_{S} is an order monomial ideal for $S=\mathfrak{S}_{n}(132,231), \mathfrak{S}_{n}(123,132)$ and $\mathfrak{S}_{n}(123,132,213)$ (see [7, 8]). The minimal generators of $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ correspond to elements of poset Σ_{n}. The monomial ideal $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ is also an order monomial ideal and its minimal resolution is the cellular resolution supported on the order complex $\Delta\left(\Sigma_{n}\right)$ of Σ_{n}. Thus, the $i^{\text {th }}$ Betti number $\beta_{i}\left(I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}\right)=(i!) S(n+1, i+1)$ for $0 \leq i \leq n-1$.

We now describe standard monomials of $\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u n}_{n}+\mathbf{c - 1]}\right.}}$. Since $I_{W}(\mathbf{u}) \subseteq I_{\mathfrak{S}_{n}}(\mathbf{u})$, we have $I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]} \subseteq I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$. Hence, standard monomials of $\frac{R}{I_{W}(\mathbf{u})^{[\mathbf{u}}+\mathbf{c}-\mathbf{1]}}$ are of the form $\mathbf{x}^{\mathbf{p}}$ for some $\mathbf{p} \in \operatorname{PF}_{n}(\lambda)$.

Definition 2.2. A λ-parking function $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{PF}_{n}(\lambda)$ is said to be a restricted λ-parking function of length n if there exists a permutation $\alpha \in \mathfrak{S}_{n}$ such that $p_{\alpha_{i}}<\mu_{\alpha_{i}, T_{i}}^{\mathbf{u}}$ for all $1 \leq i \leq n$, where $\alpha_{i}=\alpha(i), T_{1}=[n], T_{i}=[n] \backslash\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\} ;(i \geq 2)$ and $\mu_{j, T}^{\mathbf{u}}$ is as in Proposition 2.1.

Let $\widetilde{\mathrm{PF}}_{n}(\lambda)$ be the set of restricted λ-parking functions of length n. For $\mathbf{u}=(1,2, \ldots, n)$ and $c=1$, we have $\lambda=(n, n-1, \ldots, 1)$. In this case, a restricted λ-parking function is called a restricted parking function of length n and we simply write $\widetilde{\mathrm{PF}}_{n}$ for $\widetilde{\mathrm{PF}}_{n}(\lambda)$. Also, $\mu_{j, T}=\mu_{j, T}^{\mathbf{u}}$ is given by $\mu_{j_{1}, T}=n-t+1$ and $\mu_{j_{i}, T}=(n-t+1)-\left(j_{i}-i\right) ; i \geq 2$, where $\emptyset \neq T=\left\{j_{1}, \ldots, j_{t}\right\} \subseteq[n]$ with $j_{1}<\ldots<j_{t}$.
Proposition 2.3. A monomial $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_{W}(\mathbf{u})\left(\mathbf{u}_{\mathbf{n}}+\mathbf{c - 1]}\right.}$ if and only if $\mathbf{p} \in \widetilde{\mathrm{PF}}_{n}(\lambda)$ is a restricted λ-parking function of length n, with $\lambda_{i}=u_{n}-u_{i}+c ;(1 \leq i \leq n)$. In particular, a monomial $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_{W}^{(n)}}$ if and only if $\mathbf{p} \in \widetilde{\mathrm{PF}}_{n}$ is a restricted parking function of length n.

Proof. Standard monomials of $\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u n}_{\mathbf{n}}\right]}}$ are characterized in Theorem 4.3 of [6]. Proceeding on similar lines, we get the desired result.

Using the cellular resolution of $I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}$ supported on the order complex $\Delta\left(\Sigma_{n}\right)$, we obtain the multigraded Hilbert series $H\left(\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathrm{n}}+\mathbf{c}-1\right]}}\right)$ of $\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathrm{n}}+\mathbf{c}-\mathbf{1]}\right.}}$. Proceeding as in the proof of Proposition 4.5 of [6], we get a combinatorial formula

$$
\begin{align*}
\left|\widetilde{\mathrm{PF}}_{n}(\lambda)\right| & =\operatorname{dim}_{k}\left(\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}}\right) \tag{2.1}\\
& =\sum_{i=1}^{n}(-1)^{n-i} \sum_{\emptyset=A_{0} \subsetneq A_{1} \subsetneq \ldots \subsetneq A_{i}=[n]} \prod_{q=1}^{i}\left(\prod_{j \in A_{q} \backslash A_{q-1}} \mu_{j, A_{q}}^{\mathbf{u}}\right)
\end{align*}
$$

for enumeration of standard monomials of $\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-1\right]}}$, where $\mu_{j, A_{q}}^{\mathbf{u}}$ is as in Proposition 2.1. Let \mathcal{C} be a chain in Σ_{n} of the form

$$
\mathcal{C}: A_{1} \subsetneq A_{2} \subsetneq \ldots \subsetneq A_{i}=[n]
$$

of length $\ell(\mathcal{C})=i-1$ and let $\mu^{\mathbf{u}}(\mathcal{C})=\prod_{q=1}^{i}\left(\prod_{j \in A_{q} \backslash A_{q-1}} \mu_{j, A_{q}}^{\mathbf{u}}\right)$, where $A_{0}=\emptyset$. Suppose $\mathfrak{C h}([n])$ is the set of such chains \mathcal{C} in Σ_{n}. Then formula (2.1) can be expressed compactly as

$$
\begin{equation*}
\left|\widetilde{\mathrm{PF}}_{n}(\lambda)\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}}\right)=\sum_{\mathcal{C} \in \mathfrak{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}) \tag{2.2}
\end{equation*}
$$

We now take $u_{i}=i$ in 2.2 . For $c \geq 1$, let $\operatorname{dim}_{k}\left(\frac{R}{I_{W}^{[\mathbf{n}+\mathrm{c}-1]}}\right)=a_{n}(c)$. Then we see that $a_{n}(c)$ is a polynomial expression in c of degree n for $n \geq 1$. In fact, $a_{1}(c)=c$ and $a_{2}(c)=c^{2}+2 c$.

Lemma 2.4. Let $n \geq 3, \mathbf{u}=(1,2, \ldots, n)$ and $c \geq 1$. For a chain $\mathcal{C} \in \mathfrak{C h}[n]$ of length $i-1$ of the form $A_{1} \subsetneq \ldots A_{r} \subsetneq A_{r+1} \subsetneq \ldots \subsetneq A_{i}=[n]$ with $n \in A_{r+1} \backslash A_{r}$ and $\left|A_{r+1} \backslash A_{r}\right| \geq 2$, there exists a unique chain, namely $\widetilde{\mathcal{C}}: A_{1} \subsetneq \ldots A_{r} \subsetneq A_{r} \cup\{n\} \subsetneq A_{r+1} \subsetneq \ldots \subsetneq A_{i}=[n]$ in $\mathfrak{C h}[n]$ of length i such that $\mu^{\mathbf{u}}(\mathcal{C})=\mu^{\mathbf{u}}(\widetilde{\mathcal{C}})$.

Proof. Since $\mu^{\mathbf{u}}(\mathcal{C})=\prod_{q=1}^{i}\left(\prod_{j \in A_{q} \backslash A_{q-1}} \mu_{j, A_{q}}^{\mathbf{u}}\right)$, the equality $\mu^{\mathbf{u}}(\mathcal{C})=\mu^{\mathbf{u}}(\widetilde{\mathcal{C}})$ holds if $\mu_{n, A_{r} \cup\{n\}}^{\mathbf{u}}=$ $\mu_{n, A_{r+1}}^{\mathrm{u}}$. Clearly, $\mu_{n, A_{r} \cup\{n\}}^{\mathrm{u}}=n-\left(\left|A_{r}\right|+1+n-\left(\left|A_{r}\right|+1\right)\right)+c=c$ and $\mu_{n, A_{r+1}}^{\mathrm{u}}=n-\left(\left|A_{r+1}\right|+n-\right.$ $\left.\left|A_{r+1}\right|\right)+c=c$.

Let $\mathfrak{C h}^{\prime}[n]$ be the set of chains in Σ_{n} obtained from $\mathfrak{C h}[n]$ on deleting chains \mathcal{C} and $\widetilde{\mathcal{C}}$ appearing in Lemma 2.4. Then

$$
a_{n}(c)=\sum_{\mathcal{C} \in \mathcal{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C})=\sum_{\mathcal{C} \in \mathfrak{C h}^{\prime}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C})
$$

For $\mathbf{u}=(1,2, \ldots, n)$ and $c \geq 1$, the value $\mu^{\mathbf{u}}(\mathcal{C})$ depends on the chain \mathcal{C} and c. Thus, we write $\mu^{c}(\mathcal{C})$ for $\mu^{\mathbf{u}}(\mathcal{C})$. Hence, $a_{n}(c)=\sum_{\mathcal{C} \in \mathfrak{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})=\sum_{\mathcal{C} \in \mathcal{C h}^{\prime}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})$.

For $n \geq 3$, the chains in $\mathfrak{C h}^{\prime}[n]$ can be divided into three types.

- A chain $\mathcal{C}: A_{1} \subsetneq \ldots \subsetneq A_{i}=[n]$ in $\mathfrak{C h}^{\prime}[n]$ is called a Type- I chain if $A_{1}=\{n\}$. The Type-I chains in $\mathfrak{C h}^{\prime}[n]$ are in one-to-one correspondence with chains in $\mathfrak{C h}[n-1]$. This correspondence is given by

$$
\mathcal{C} \mapsto \mathcal{C} \backslash A_{1}: A_{2} \backslash\{n\} \subsetneq \ldots \subsetneq A_{i} \backslash\{n\}=[n-1] .
$$

As $\ell(\mathcal{C})-1=\ell\left(\mathcal{C} \backslash A_{1}\right)$ and $\mu^{c}(\mathcal{C})=(n-1+c) \mu^{c}\left(\mathcal{C} \backslash A_{1}\right)$, we have

$$
\sum_{\substack{\mathcal{C} \in \mathcal{C} \mathfrak{C}^{\prime}[n] ; \\ \text { Type-1 }}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})=(n-1+c) a_{n-1}(c)
$$

- A chain $\mathcal{C}: A_{1} \subsetneq \ldots \subsetneq A_{i}=[n]$ in $\mathfrak{C h}^{\prime}[n]$ is called a Type-II chain if $A_{i-1}=[n-1]$. The Type-II chains in $\mathfrak{C h}^{\prime}[n]$ are in one-to-one correspondence with chains in $\mathfrak{C h}[n-1]$. This correspondence is given by

$$
\left.\mathcal{C} \mapsto \mathcal{C}\right|_{[n-1]}: A_{1} \subsetneq \ldots \subsetneq A_{i-1}=[n-1] .
$$

As $\ell(\mathcal{C})-1=\ell\left(\left.\mathcal{C}\right|_{[n-1]}\right)$ and $\mu^{c}(\mathcal{C})=(c) \mu^{c+1}\left(\left.\mathcal{C}\right|_{[n-1]}\right)$, we have

$$
\sum_{\substack{\mathcal{C} \in \mathcal{C h}^{\prime}[n] ; \\ \text { Type-II }}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})=(c) a_{n-1}(c+1)
$$

- A chain $\mathcal{C}: A_{1} \subsetneq \ldots \subsetneq A_{i}=[n]$ in $\mathfrak{C h}^{\prime}[n]$ is called a Type-III chain if $n \in A_{1}$ and $\left|A_{1}\right| \geq 2$. The Type-III chains in $\mathfrak{C h}^{\prime}[n]$ are in one-to-one correspondence with chains in $\mathfrak{C h}[n-1]$.

This correspondence is given by

$$
\mathcal{C} \mapsto \mathcal{C} \backslash\{n\}: A_{1} \backslash\{n\} \subsetneq \ldots \subsetneq A_{i} \backslash\{n\}=[n-1]
$$

As $\ell(\mathcal{C})=\ell(\mathcal{C} \backslash\{n\})$ and $\mu^{c}(\mathcal{C})=(c) \mu^{c}(\mathcal{C} \backslash\{n\})$, we have

$$
\sum_{\substack{\left.\mathcal{C} \in \mathcal{C} \cdot \mathcal{C}^{\prime} \mid n\right] ; \\ \text { Type }\\}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})=(-c) a_{n-1}(c) .
$$

Consider the poset Σ_{n} and form a poset $\Lambda_{n}=\Sigma_{n-1} \coprod\left(\Sigma_{n-1} *\{n\}\right)$; for $n \geq 2$, where $\Sigma_{n-1} *\{n\}=$ $\left\{A \cup\{n\}: A \in \Sigma_{n-1}\right\}$ is a subposet of Σ_{n}. Two elements $A, B \in \Lambda_{n}$ are comparable if either $A, B \in \Sigma_{n-1}$ are comparable or $A, B \in \Sigma_{n-1} *\{n\}$ are comparable or $\{A, B\}=\{[n-1],[n]\}$. The Hasse diagram of Λ_{n} for $n=3,4$ are given in Figure-1.

Figure 1

Clearly, Type-II chains in $\mathfrak{C h}^{\prime}[n]$ are chains in Λ_{n} with an edge $[n-1] \subsetneq[n]$, while Type-III chains in $\mathfrak{C h}^{\prime}[n]$ are chains in Λ_{n} containing $[n]$ but not $[n-1]$.

Proposition 2.5. For $n \geq 3$ and $c \geq 1, a_{n}(c)=\operatorname{dim}_{k}\left(\frac{R}{I_{W}^{[n+\mathrm{c}-1]}}\right)$ satisfies the recurrence relation

$$
a_{n}(c)=(n-1) a_{n-1}(c)+c a_{n-1}(c+1) .
$$

Proof. As $a_{n}(c)=\sum_{\mathcal{C} \in \mathfrak{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})=\sum_{\mathcal{C} \in \mathfrak{C h}^{\prime}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})$, we have

$$
\begin{aligned}
a_{n}(c) & =\left[\sum_{\substack{\mathcal{C} \in \mathcal{C h h}^{\prime}[n] ; \\
\text { Type-I }}}+\sum_{\substack{\mathcal{C} \in \mathcal{C H}^{\prime}[n] ; \\
\text { Type-II }}}+\sum_{\substack{\mathcal{C} \in \mathcal{C H}^{\prime}[n] ; \\
\text { Type-III }}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})\right. \\
& =(n-1+c) a_{n-1}(c)+(c) a_{n-1}(c+1)+(-c) a_{n-1}(c) \\
& =(n-1) a_{n-1}(c)+(c) a_{n-1}(c+1) .
\end{aligned}
$$

Replacing c by an indeterminate x, we consider polynomial $a_{n}(x)$. The recurrence relation in Proposition 2.5 holds for all $c \geq 1$, thus there exists a polynomial identity

$$
\begin{equation*}
a_{n}(x)=(n-1) a_{n-1}(x)+x a_{n-1}(x+1) \quad \text { for } n \geq 3 \tag{2.3}
\end{equation*}
$$

Since $a_{1}(x)=x$ and $a_{2}(x)=x^{2}+2 x$, on setting $a_{0}(x)=1$, the recurrence relation (2.3) is valid for $n \geq 1$. Note that $a_{n}(0)=0$ for $n \geq 1$.

Proposition 2.6. For $n \geq 1, a_{n}(x)=\sum_{r=1}^{n} s(n, r) x(x+1) \cdots(x+r-1)$.
Proof. Let $x^{\bar{r}}=x(x+1) \cdots(x+r-1)$ be the $r^{\text {th }}$ rising power of x. Then $\left\{x^{\bar{r}}: r=0,1, \ldots\right\}$ is a \mathbb{Q}-basis of $\mathbb{Q}[x]$, where $x^{\overline{0}}=1$. As $a_{n}(0)=0$ for $n \geq 1$, we can express $a_{n}(x)=\sum_{r=1}^{n} \alpha_{n}(r) x^{\bar{r}}$. As $a_{n}(x)$ satisfy recurrence relation (2.3) for $n \geq 1$, it follows that $\alpha_{n}(r)$ and the (signless) Stirling number $s(n, r)$ of the first kind satisfy the same recurrence relation with the same initial conditions (see [15]). Thus $\alpha_{n}(r)=s(n, r)$.
Theorem 2.7. For $n \geq 1, \operatorname{dim}_{k}\left(\frac{R}{I_{W}^{[n]}}\right)=a_{n}=\sum_{r=1}^{n}(r!) s(n, r)$.
Proof. Since $a_{n}=a_{n}(1)$, theorem follows from Proposition 2.6 .
Consider the integer sequence (A007840) in OEIS [14]. The nth term b_{n} of this sequence is the number of factorization of permutations of $[n]$ into ordered cycles and $b_{n}=\sum_{r=1}^{n}(r!) s(n, r)$. It can be verified that

$$
b_{n}=\operatorname{Per}\left(\left[m_{i j}\right]_{n \times n}\right)=\operatorname{Per}\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 1 & \ldots & 1 \\
1 & 1 & 3 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & n
\end{array}\right],
$$

where $m_{i i}=i$ and $m_{i j}=1$ for $i \neq j$. We recall that permanent $\operatorname{Per}\left(\left[m_{i j}\right]_{n \times n}\right)$ of the matrix [$\left.m_{i j}\right]_{n \times n}$ is given by $\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} m_{i \sigma(i)}$. There are many combinatorial interpretation of the integer sequence (A007840). Theorem 2.7 gives a description of the integer sequence (A007840) in terms
of enumeration of standard monomials of $\frac{R}{I_{W}^{[n]}}$, or equivalently, in terms of the number $\left|\widetilde{\mathrm{PF}}_{n}\right|$ of restricted parking functions of length n.

We now show that enumeration of standard monomials of $\frac{R}{I_{W}^{[n]}}$ is related to enumeration of rooted-labelled unimodal forests on $[n]$. The concept of permutations avoiding patterns has been extended to many combinatorial objects, such as, trees, graphs and posets. Let F_{n} be the set of (unordered) rooted-labelled forests on the vertex set $[n]$. Then $\left|F_{n}\right|=(n+1)^{n-1}$. A rooted-labelled forest on $[n]$ is said to avoid a pattern $\tau \in \mathfrak{S}_{r}$ if along each path from a root to a vertex, the sequence of labels do not contain a subsequence with the same relative order as in the patterns $\tau=\tau(1) \tau(2) \ldots \tau(r)$. Let $F_{n}(\tau)$ be the set of rooted-labelled forests on $[n]$ that avoid pattern τ. For example, if $\tau=21$ is a transposition, then $F_{n}(21)$ is the set of rooted-labelled increasing forests on $[n]$. In other words, labels on any path from a root to a vertex for a forest in $F_{n}(21)$ form an increasing sequence. Let $F_{n}\left(\tau^{(1)}, \ldots, \tau^{(s)}\right)$ be the set of rooted-labelled forests on $[n]$ that avoid a set $\left\{\tau^{(1)}, \ldots, \tau^{(s)}\right\}$ of patterns. The enumeration of rooted-labelled forests on $[n]$ that avoid various patterns are obtained in [1]. In particular, it is shown that $\left|F_{n}(213,312)\right|=\sum_{r=1}^{n}(r!) s(n, r)$ for $n \geq 1$. The rooted-labelled forests on [n] avoiding 213 and 312 -patterns are precisely the unimodal forests. Since $\left|\widetilde{\mathrm{PF}}_{n}\right|=\left|F_{n}(213,312)\right|$, an explicit or algorithmic bijection $\phi: \widetilde{\mathrm{PF}}{ }_{n} \longrightarrow F_{n}(213,312)$ is desired.

Before we end this section, we describe an easy extension of Theorem 2.7.
Let $b, c \geq 1$ and $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}$ with $u_{i}=u_{1}+(i-1) b$. We have seen that the standard monomials of $\frac{R}{I_{\mathfrak{S}_{n}}(\mathbf{u})^{\left.\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}}$ are of the form $\mathbf{x}^{\mathbf{p}}$, where $\mathbf{p} \in \operatorname{PF}_{n}(\lambda)$ is a λ-parking function of length n and $\lambda_{i}=u_{n}-u_{i}+c=(n-i) b+c$. Then $\left|\operatorname{PF}_{n}(\lambda)\right|=c(c+n b)^{n-1}$ (see [11, 12]). Let $\left|\widetilde{\mathrm{PF}_{n}}(\lambda)\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c - 1]}\right.}}\right)=\widetilde{a_{n}}(c)$. Actually, $\widetilde{a_{n}}(c)$ depends on b also, but we are treating b to be a fixed constant. Also, $\widetilde{a_{n}}(c)$ is a polynomial expression in c.
Proposition 2.8. For $n \geq 3, b, c \geq 1$, $\widetilde{a_{n}}(c)$ satisfies a recurrence relation

$$
\widetilde{a_{n}}(c)=((n-1) b) \widetilde{a_{n-1}}(c)+(c) \widetilde{a_{n-1}}(c+b) .
$$

Proof. From equation (2.2), we have

$$
\widetilde{a_{n}}(c)=\operatorname{dim}_{k}\left(\frac{R}{I_{W}(\mathbf{u})^{\left[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}\right]}}\right)=\sum_{\mathcal{C} \in \mathcal{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}),
$$

where $u_{i}=u_{1}+(i-1) b$. For such \mathbf{u}, Lemma 2.4 holds. Thus

$$
\widetilde{a_{n}}(c)=\sum_{\mathcal{C} \in \mathfrak{C h}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C})=\sum_{\mathcal{C} \in \mathfrak{C h}^{\prime}([n])}(-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}) .
$$

Now proceed as in the proof of Proposition 2.5.

Replacing c with an indeterminate x, we consider polynomial $\widetilde{a_{n}}(x)$. Thus there is a polynomial identity

$$
\begin{equation*}
\widetilde{a_{n}}(x)=((n-1) b) \widetilde{a_{n-1}}(x)+x \widetilde{a_{n-1}}(x+b) \text { for } n \geq 3 \text {. } \tag{2.4}
\end{equation*}
$$

Since $\widetilde{a_{1}}(x)=x$ and $\widetilde{a_{2}}(x)=x^{2}+2 b x$, on setting $\widetilde{a_{0}}(x)=1$, the recurrence relation (2.4) is valid for $n \geq 1$. Again, we have $\widetilde{a_{n}}(0)=0$ for $n \geq 1$.

Theorem 2.9. For $n \geq 1, \widetilde{a_{n}}(x)=\sum_{r=1}^{n}\left(b^{n-r} s(n, r)\right) x(x+b) \cdots(x+(r-1) b)$. In particular, for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}=(n-i) b+c$

$$
\left|\widetilde{\mathrm{PF}}_{n}(\lambda)\right|=\widetilde{a_{n}}(c)=b^{n} \sum_{r=1}^{n} s(n, r) \frac{\Gamma\left(\frac{c}{b}+r\right)}{\Gamma\left(\frac{c}{b}\right)},
$$

where Γ is the gamma function, i.e., $\Gamma(x+1)=x \Gamma(x)$ for $x>0$ and $\Gamma(1)=1$.
Proof. As in the proof of Theorem 2.7, let

$$
\widetilde{a_{n}}(x)=\sum_{r=1}^{n} \widetilde{\alpha_{n}}(r) x(x+b) \cdots(x+(r-1) b)
$$

Then from recurrence relation (2.4), $\widetilde{\alpha_{n}}(r)$ satisfies the recurrence relation

$$
\widetilde{\alpha_{n}}(r)=(n-1) b \widetilde{\alpha_{n-1}}(r)+\widetilde{\alpha_{n-1}}(r-1) ; \quad \text { for } 1 \leq r \leq n,
$$

with initial conditions $\widetilde{\alpha_{0}}(1)=0$ and $\widetilde{\alpha_{1}}(1)=1$. It is straight forward to see that $\widetilde{\alpha_{n}}(r)=$ $b^{n-r} s(n, r)$.

3. Some other cases

The Betti numbers and enumeration of standard monomials of the Artinian quotient $\frac{R}{I_{S}^{[n]}}$ for $S=\mathfrak{S}_{n}(132,231), \mathfrak{S}_{n}(123,132)$ and $\mathfrak{S}_{n}(123,132,213)$ are give in [7, 8]. In this section, the monomial ideal I_{S} and its Alexander dual $I_{S}^{[\mathbf{n}]}$ are studied for various other subsets $S \subseteq \mathfrak{S}_{n}$ consisting of permutations avoiding patterns. For clarity of presentation, we divide these subsets into three cases.
Case 1. $\quad S_{1}=\mathfrak{S}_{n}(123,132,312), S_{2}=\mathfrak{S}_{n}(123,213,231), S_{3}=\mathfrak{S}_{n}(132,213,231)$.
Case 2. $\quad T_{1}=\mathfrak{S}_{n}(123,132,231), T_{2}=\mathfrak{S}_{n}(213,312,321)$.
Case 3. $\quad U=\mathfrak{S}_{n}(123,231,312)$.
We have, $\left|S_{a}\right|=\left|T_{b}\right|=|U|=n$ for $1 \leq a \leq 3$ and $1 \leq b \leq 2$ (see [13]).
Lemma 3.1. The minimal generators of the Alexander dual $I_{S}^{[\mathbf{n}]}$ for $S=S_{a}, T_{b}$ or U are given as follows.
(i) $I_{S_{1}}^{[\mathbf{n}]}=\left\langle x_{\ell}^{\ell+1}, x_{i}^{i}\left(\prod_{j>i}^{n} x_{j}\right): 1 \leq \ell \leq n-1 ; 1 \leq i \leq n\right\rangle$.
(ii) $I_{S_{2}}^{[\mathbf{n}]}=\left\langle x_{\ell}^{n}, x_{i}^{i} x_{j}^{j-1}: 1 \leq \ell \leq n ; 1 \leq i<j \leq n\right\rangle$.
(iii) $I_{S_{3}}^{[\mathbf{n}]}=\left\langle x_{\ell}^{n}, x_{i}^{i} x_{j}^{n-(j-i)}: 1 \leq \ell \leq n ; 1 \leq i<j \leq n\right\rangle$.
(iv) $I_{T_{1}}^{[\mathbf{n}]}=\left\langle x_{\ell}^{\ell+1}, x_{n}^{n}, x_{i}^{i} x_{n}^{i}: 1 \leq \ell \leq n-1 ; 1 \leq i<n\right\rangle$.
(v) $I_{T_{2}}^{[\mathbf{n}]}=\left\langle x_{\ell}^{n-\ell+1}, x_{n}^{n}, x_{i}^{n-i} x_{n}^{n-i}: 1 \leq \ell \leq n-1 ; 1 \leq i<n\right\rangle$.
(vi) $I_{U}^{[\mathbf{n}]}=\left\langle\prod_{j \in A} x_{j}^{\nu_{j, A}}: A=\left\{j_{1}, \ldots, j_{t}\right\} \in \Sigma_{n}\right\rangle$, where $\nu_{j_{1}, A}=n-\left(j_{|A|}-j_{1}\right)$ and $\nu_{j_{i}, A}=j_{i}-j_{i-1}$ for $i \geq 2$, provided $j_{1}<j_{2}<\ldots<j_{t}$.

Proof. We recall that a vector $\mathbf{b} \in \mathbb{N}^{n}$ satisfying $\mathbf{b} \leq \mathbf{n}$ (i.e., $b_{i} \leq n$) is maximal with $\mathbf{x}^{\mathbf{b}} \notin I_{S}$ if and only if $\mathbf{x}^{\mathbf{n - b}}$ is a minimal generator of $I_{S}^{[\mathbf{n}]}$ (see Proposition 5.23 of [9]). Now proceeding as in the proof of Lemma 2.1 and 2.2 of [8], it is easy to get the minimal generators of the Alexander duals. We sketch a proof of part (i) and (vi) as proof of other parts are on similar lines.

For $\ell \in[n-1]$, let $\mathbf{b}_{\ell}=(n, \ldots, n-\ell-1, \ldots, n)$ ($\ell^{\text {th }}$ coordinate $n-\ell-1$, elsewhere n). Then $\mathbf{x}^{\mathbf{b}_{\ell}} \notin I_{S_{1}}$ and this gives the minimal generator $x_{\ell}^{\ell+1} \in I_{S_{1}}^{[\mathbf{n}]}$. For $i \in[n]$, let $\mathbf{b}_{i, n}=(n, \ldots, n, n-i, n-$ $1, \ldots, n-1) \in \mathbb{N}^{n}$ (i.e., $i^{\text {th }}$ coordinate $n-i$, first $i-1$ coordinates n, and the last $n-i$ coordinates $n-1)$. Again, $\mathbf{x}^{\mathbf{b}_{i, n}} \notin I_{S_{1}}$ and this gives the minimal generator $x_{i}^{i}\left(x_{i+1} \ldots x_{n}\right) \in I_{S_{1}}^{[\mathbf{n}]}$. This proves part (i).

If $A=\{\ell\} \in \Sigma_{n}$, then taking $\widehat{\mathbf{b}}_{\ell}=(n, \ldots, 0, \ldots, n)$ (i.e., 0 at $\ell^{\text {th }}$ place and elsewhere n), we get the minimal generator $x_{\ell}^{n} \in I_{U}^{[\mathbf{n}]}$. For $A=\left\{j_{1}, \ldots, j_{t}\right\} \in \Sigma_{n}$ with $t \geq 2$ and $j_{1}<\ldots<j_{t}$, let $\widehat{\mathbf{b}}_{A}=\left(b_{1}, \ldots, b_{n}\right)$, where $b_{j_{1}}=j_{t}-j_{1}, b_{j_{i}}=n-\left(j_{i}-j_{i-1}\right)$ (for $\left.i \geq 2\right)$ and $b_{r}=n$ (for $r \notin A$). Claim : $\quad \mathbf{x}^{\widehat{\mathbf{b}}_{A}} \notin I_{U}$.

Otherwise, there exists a $\sigma \in U$ such that \mathbf{x}^{σ} divides $\mathbf{x}^{\widehat{\mathbf{b}}_{A}}$. Thus $\sigma\left(j_{1}\right) \leq j_{t}-j_{1}$ and $\sigma\left(j_{i}\right) \leq$ $n-\left(j_{i}-j_{i-1}\right)$ for $2 \leq i \leq t$. We see that

$$
\sigma\left(j_{1}\right)>\sigma\left(j_{2}\right)>\ldots>\sigma\left(j_{t}\right)
$$

If $\sigma\left(j_{i-1}\right)<\sigma\left(j_{i}\right)$ for $1<i \leq t$, then $\sigma\left(j_{i-1}\right), \sigma\left(j_{i}\right) \in\left[n-\left(j_{i}-j_{i-1}\right)\right]$. But $\left|\left[n-\left(j_{i}-j_{i-1}\right)\right]\right|=$ $n-\left(j_{i}-j_{i-1}\right)$ and $\left|\left[j_{i-1}\right] \amalg\left[j_{i}, n\right]\right|=n-\left(j_{i}-j_{i-1}\right)+1$, where $[a, b]=\{m \in \mathbb{Z}: a \leq m \leq b\}$ denotes an integer interval for $a, b \in \mathbb{Z}$. Thus there exists $\ell \in[n] \backslash\left[j_{i-1}, j_{i}\right]$ such that $\sigma(\ell) \notin\left[n-\left(j_{i}-j_{i-1}\right)\right]$. This shows that $\sigma\left(j_{i-1}\right)<\sigma\left(j_{i}\right)<\sigma(\ell)$. Hence, σ has a 123 or a 312-pattern, a contradiction to $\sigma \in U$. Now $\sigma\left(j_{t}\right)<\sigma\left(j_{1}\right) \leq j_{t}-j_{1}$ implies that $j_{t}-j_{1} \geq 2$. Again, $\sigma\left(j_{1}\right), \sigma\left(j_{t}\right) \in\left[j_{t}-j_{1}\right]$, but $\left|\left[j_{t}-j_{1}\right]\right|=j_{t}-j_{1}<\left|\left[j_{1}, j_{t}\right]\right|=j_{t}-j_{1}+1$. Thus there exists $\ell \in\left[j_{1}+1, j_{t}-1\right]$ such that $\sigma(\ell)>j_{t}-j_{1}$. This shows that, $\sigma\left(j_{t}\right)<\sigma\left(j_{1}\right)<\sigma(\ell)$ with $j_{1}<\ell<j_{t}$ demonstrating that σ has a 231-pattern, a contradiction. This proves our claim. It can be shown that $\widehat{\mathbf{b}}_{A}$ has the desired maximality property and hence $\mathbf{x}^{\mathbf{n}-\widehat{\mathbf{b}}_{A}}$ is a minimal generator of $I_{U}^{[\mathbf{n}]}$.

We shall show that all monomial ideals in Lemma 3.1 are order monomial ideals. Let (P, \preceq) be a finite poset and let $\left\{\omega_{u}: u \in P\right\}$ be a set of monomials in R. The monomial ideal $I=\left\langle\omega_{u}: u \in P\right\rangle$
is said to be an order monomial ideal if for any pair $u, v \in P$, there is an upper bound $w \in P$ of u and v such that ω_{w} divides the least common multiple $\operatorname{LCM}\left(\omega_{u}, \omega_{v}\right)$ of ω_{u} and ω_{v}. The order complex $\Delta(P)$ of a finite poset P is a simplicial complex, whose r-dimensional faces are chains $u_{1} \prec u_{2} \prec \ldots \prec u_{r+1}$ of length r in P. If F is a face of $\Delta(P)$, then monomial label $\mathbf{x}^{\alpha(F)}$ (say) on F is the $\operatorname{LCM}\left(\omega_{u}: u \in F\right)$. Let

$$
\mathbb{F}_{*}(\Delta(P)): \cdots \rightarrow \mathbb{F}_{i} \rightarrow \mathbb{F}_{i-1} \rightarrow \cdots \rightarrow \mathbb{F}_{1} \rightarrow \mathbb{F}_{0} \rightarrow 0
$$

be the free R-complex associated to the (labelled) simplicial complex $\Delta(P)$. If $\mathbb{F}_{*}(\Delta(P))$ is exact at \mathbb{F}_{i} for $i \geq 1$, then we say that $\mathbb{F}_{*}(\Delta(P))$ is a cellular resolution of I supported on $\Delta(P)$ (see [2, 3, 9]).

It is convenient to study the monomial ideal I_{S} in Lemma 3.1 according to the three cases already described.
CASE-1. To each monomial ideal $I_{S_{a}}^{[\mathbf{n}]}$, we associate a poset $\Sigma_{n}\left(S_{a}\right)$ (for $1 \leq a \leq 3$) as follows.
(i) Let $\Sigma_{n}\left(S_{1}\right)=\{\{\ell\}: 1 \leq \ell \leq n-1\} \cup\{[i, n]: 1 \leq i \leq n\}$, where $[i, n]=\{a \in \mathbb{N}: i \leq a \leq n\}$ and $[n, n]=\{n\}$. We define a poset structure on $\Sigma_{n}\left(S_{1}\right)$ by describing cover relations. For $\ell, \ell^{\prime} \in[n-1]$ and $i, i^{\prime} \in[n],\{\ell\}$ covers $\left\{\ell^{\prime}\right\}$ (or $\left[i^{\prime}, n\right]$), if $\ell^{\prime}=\ell+1$ (respectively, $i^{\prime}=\ell+2$). Also, $[i, n]$ covers $\left\{\ell^{\prime}\right\}$ (or $\left[i^{\prime}, n\right]$) if $i=\ell^{\prime}$ (respectively, $i^{\prime}=i+1$). The monomial labels $\omega_{\{\ell\}}=x_{\ell}^{\ell+1}$ and $\omega_{[i, n]}=x_{i}^{i} x_{i+1} \ldots x_{n}$. Set $\mu_{j, C}^{1}$ for $C \in \Sigma_{n}\left(S_{1}\right)$ so that $\omega_{C}=\prod_{j \in C} x_{j}^{\mu_{j, C}^{1}}$. The finite poset $\Sigma_{n}\left(S_{1}\right)$ appeared in [8].
(ii) Let $\Sigma_{n}\left(S_{2}\right)=\{\{\ell\}: 1 \leq \ell \leq n\} \cup\{\{i, j\}: 1 \leq i<j \leq n\}$. A poset structure on $\Sigma_{n}\left(S_{2}\right)$ is given by the following cover relations. For $i, j, i^{\prime}, j^{\prime} \in[n]$ with $i<j$ and $i^{\prime}<j^{\prime},\{i, j\}$ covers $\left\{i^{\prime}, j^{\prime}\right\}$, if either $\left(i=i^{\prime}\right.$ and $\left.j^{\prime}=j+1\right)$ or $\left(j=i^{\prime}\right.$ and $\left.j^{\prime}=j+1\right)$. Also, $\{i, j\}$ covers $\left\{i^{\prime}\right\}$ if either ($i=i^{\prime}$ and $j=n$) or ($i^{\prime}=j=n$). In this case, the monomial labels $\omega_{\{\ell\}}=x_{\ell}^{n}$ and $\omega_{\{i, j\}}=x_{i}^{i} x_{j}^{j-1}$. Set $\mu_{j, C}^{2}$ for $C \in \Sigma_{n}\left(S_{2}\right)$ so that $\omega_{C}=\prod_{j \in C} x_{j}^{\mu_{j, C}^{2}}$.
(iii) Let $\Sigma_{n}\left(S_{3}\right)=\{\{\ell\}: 1 \leq \ell \leq n\} \cup\{\{i, j\}: 1 \leq i<j \leq n\}$. Again, a poset structure on $\Sigma_{n}\left(S_{3}\right)$ is given by the following cover relations. For $i, j, i^{\prime}, j^{\prime} \in[n]$ with $i<j$ and $i^{\prime}<j^{\prime}$, $\{i, j\}$ covers $\left\{i^{\prime}, j^{\prime}\right\}$, if either $\left(i=i^{\prime}\right.$ and $j=j^{\prime}+1$) or ($i=i^{\prime}-1$ and $j^{\prime}=j$). Also, $\{i, j\}$ covers $\left\{i^{\prime}\right\}$ if either ($i=i^{\prime}$ and $j=i+1$) or ($j=i^{\prime}$ and $j=i+1$). Again, the monomial labels $\omega_{\{\ell\}}=x_{\ell}^{n}$ and $\omega_{\{i, j\}}=x_{i}^{i} x_{j}^{n-(j-i)}$. Set $\mu_{j, C}^{3}$ for $C \in \Sigma_{n}\left(S_{3}\right)$ so that $\omega_{C}=\prod_{j \in C} x_{j}^{\mu_{j, C}^{3}}$.
The Hasse diagrams of $\Sigma_{4}\left(S_{1}\right), \Sigma_{4}\left(S_{2}\right), \Sigma_{4}\left(S_{3}\right)$ are given in Figure-2.
Proposition 3.2. (i). The ideal $I_{S_{a}}^{[\mathbf{n}]}$ is an order monomial ideal for $1 \leq a \leq 3$.
(ii). The free complex $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)\right)$ is the cellular resolution of $I_{S_{a}}^{[\mathbf{n}]}$ supported on the order complex $\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)$ for $1 \leq a \leq 3$.

Figure 2

Proof. Given the poset structure on $\Sigma_{n}\left(S_{a}\right)$, it is a straight forward verification that $I_{S_{a}}^{[\mathbf{n}]}$ is an order monomial ideal. Postnikov and Shapiro [12] showed that the free complex $\mathbb{F}_{*}(\Delta(P))$ is a cellular resolution of the order monomial ideal $I=\left\langle\omega_{u}: u \in P\right\rangle$ (see Theorem 2.4 of [8]).

Remark 3.3. The cellular resolution $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)\right)$ is minimal for $a=1$, but nonminimal for $a=2,3$. Also, the $r^{\text {th }}$ Betti number $\beta_{r}\left(I_{S_{1}}^{[\mathbf{n}]}\right)$ is given by (see Theorem 2.7 of [8])

$$
\beta_{r}\left(I_{S_{1}}^{[\mathbf{n}]}\right)=\sum_{s=0}^{r+1}\binom{n-1}{s}\binom{n-s}{r+1-s} ; \quad(0 \leq r \leq n-1) .
$$

We now identify standard monomials of $\frac{R}{I_{S_{a}}^{[\mathrm{nj}}}$. Consider the following subsets of the set PF_{n} of parking functions $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ of length n.
(i) $\mathrm{PF}_{n}^{1}=\left\{\mathbf{p} \in \mathrm{PF}_{n}: p_{t} \leq t, \forall t\right.$ and if $p_{i}=i$, then $p_{j}=0$ for some $\left.j \in[i, n]\right\}$.
(ii) $\mathrm{PF}_{n}^{2}=\left\{\mathbf{p} \in \mathrm{PF}_{n}\right.$: if $p_{i} \geq i$, then $p_{j}<j-1$ for all $\left.j \in[i+1, n]\right\}$.
(iii) $\mathrm{PF}_{n}^{3}=\left\{\mathbf{p} \in \mathrm{PF}_{n}\right.$: if $p_{i} \geq i$, then $p_{j}<n-(j-i)$ for all $\left.j \in[i+1, n]\right\}$.

In view of Lemma 3.1, $\mathbf{x}^{\mathbf{p}} \notin I_{S_{a}}^{[\mathbf{n}]}$ if and only if $\mathbf{p} \in \mathrm{PF}_{n}^{a}$ for $1 \leq a \leq 3$. Thus (fine) Hilbert series $H\left(\frac{R}{I_{S_{a}}^{(n]}}, \mathbf{x}\right)$ of $\frac{R}{I_{S_{a}}^{[\mathrm{nj}}}$ is given by $H\left(\frac{R}{I_{S_{a}}^{[\mathrm{n}}}, \mathbf{x}\right)=\sum_{\mathbf{p} \in \mathrm{PF}_{n}^{a}} \mathbf{x}^{\mathbf{p}}$. In particular, $\left|\mathrm{PF}_{n}^{a}\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[\mathrm{nj}]}}\right)=$ $H\left(\frac{R}{I_{S_{a}}^{(\mathrm{n}},}, \mathbf{1}\right)$, where $\mathbf{1}=(1, \ldots, 1)$. Using the cellular resolution $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)\right)$ supported on the order complex $\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)$, the (fine) Hilber series $H\left(\frac{R}{I_{S_{a}}^{[n]}}, \mathbf{x}\right)$ is given by

$$
\begin{equation*}
H\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}]}}, \mathbf{x}\right)=\frac{\sum_{i=0}^{n}(-1)^{i} \sum_{\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{a}} \prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} x_{j}^{\mu_{j, C_{q}}^{a}}\right)}{\left(1-x_{1}\right) \cdots\left(1-x_{n}\right)} \tag{3.1}
\end{equation*}
$$

where \mathcal{F}_{i-1}^{a} is the set of i - 1 -dimensional faces of $\Delta\left(\Sigma_{n}\left(S_{a}\right)\right),\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{a}$ is a (strict) chain $C_{1} \prec \ldots \prec C_{i}$ of length $i-1, C_{0}=\emptyset$ and $\mu_{j, C}^{a}$ is as in the definition of poset $\Sigma_{n}\left(S_{a}\right)$.

Proposition 3.4. The number of standard monomials of $\frac{R}{I_{S_{a}}^{[\mathrm{nn}}}$ is given by

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}]}}\right)=\sum_{i=1}^{n}(-1)^{n-i} \sum_{\substack{\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{a} \\ C_{1} \cup \ldots \cup \cup \cup_{i}=[n]}} \prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} \mu_{j, C_{q}}^{a}\right),
$$

where summation is carried over all i - 1-dimensional faces $\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{a}$ of $\Delta\left(\Sigma_{n}\left(S_{a}\right)\right)$ with $C_{1} \cup \ldots \cup C_{i}=[n]$ and $C_{0}=\emptyset$. Also,

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}]}}\right)=\sum_{\substack{0 \leq i \leq n ; \\\left(C_{1}, \ldots, C_{i} \in \in \mathcal{F}_{i-1}^{a}\right.}}(-1)^{i}\left(\prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}}\left(\mu_{j,\{j\}}^{a}-\mu_{j, C_{q}}^{a}\right)\right)\right)\left(\prod_{l \notin C_{i}} \mu_{l,\{l\}}^{a}\right),
$$

where summation is carried over all faces $\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{a}$ including the empty face $C_{0}=\emptyset$.
Proof. As $\left|\mathrm{PF}_{n}^{a}\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{\left.S_{a}\right]}^{\mathrm{nj}}}\right)=H\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}}}, \mathbf{1}\right)$, letting $\mathbf{x} \rightarrow \mathbf{1}$ in the rational function expression 3.1 of $H\left(\frac{R}{I_{S_{a}}^{[\mathrm{n}}}, \mathbf{x}\right)$, and applying L'Hospital's rule, we get the first formula. For more detail, see the proof of Proposition 4.5 of [6]. In order to get the second formula, put $y_{j}=\frac{1}{x_{j}}$ in 3.1) to get a rational function, say $\tilde{H}\left(\frac{R}{I_{S_{a}}^{(\mathbf{n}]}}, \mathbf{y}\right)$. Now letting $\mathbf{y} \rightarrow \mathbf{1}$ in the product $\left(\prod_{j=1}^{n} y_{j}^{\mu_{j,\{j\}}^{a}-1}\right) \tilde{H}\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}}}, \mathbf{y}\right)$, we get the second formula, which is due to Postnikov and Shapiro [12].

Theorem 3.5. The number of standard monomials of $\frac{R}{I_{S_{a}}^{[n]}}$ is given by

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[\mathbf{n}]}}\right)=\left|\mathrm{PF}_{n}^{a}\right|=\frac{(n+1)!}{2}, \quad(1 \leq a \leq 3) .
$$

Proof. As $\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[n]}}\right)=1$ for $n=1$, we assume that $n>1$.
(i) Let $a=1$. Using the second formula

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{1}}^{[\mathbf{n]}}}\right)=\sum_{\substack{0 \leq i \leq n ; \\\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{1}}}(-1)^{i}\left(\prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}}\left(\mu_{j,\{j\}}^{1}-\mu_{j, C_{q}}^{1}\right)\right)\right)\left(\prod_{l \notin C_{i}} \mu_{l,\{l\}}^{1}\right)
$$

in Proposition 3.4, we shall show that

$$
\begin{equation*}
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{1}}^{[\mathbf{n}]}}\right)=n(n!)+(n-1)((n-1)!) \sum_{\substack{1 \leq i \leq n ; \\ 0=j_{0}<j_{1}<\ldots<j_{i}<n}}(-1)^{i} \frac{1}{\prod_{q=2}^{i} j_{q}} . \tag{3.2}
\end{equation*}
$$

The term corresponding to the empty chain is $n(n!)$. Also, for a (strict) chain $C_{1} \prec \ldots \prec C_{i}$ in \mathcal{F}_{i-1}^{1}, the corresponding term in the second formula is zero if the chain has a singleton member. Thus surviving terms are of the form $C_{l}=\left[j_{i-l+1}, n\right]$ for some sequence $0=j_{0}<j_{1}<\ldots<j_{i}<n$. Note that the term corresponding to such a chain is precisely, $(-1)^{i} \frac{(n-1)((n-1)!)}{j_{2} j_{3} \ldots j_{i}}$. This proves 3.2 . Let $\alpha_{n}=\sum_{i \geq 1}(-1)^{i+1} \sum_{0=j_{0}<j_{1}<\ldots<j_{i}<n} \frac{1}{\prod_{q=2}^{i} j_{q}}$. Clearly, $\alpha_{1}=0$. For $n>1$, we claim that $\alpha_{n}=\frac{n}{2}$. We have,

$$
\begin{aligned}
\alpha_{n} & =\sum_{i \geq 1}(-1)^{i+1} \sum_{0=j_{0}<j_{1}<\ldots<j_{i}<n-1} \frac{1}{\prod_{q=2}^{i} j_{q}}+\sum_{i \geq 1}(-1)^{i+1} \sum_{0=j_{0}<j_{1}<\ldots<j_{i}=n-1} \frac{1}{\prod_{q=2}^{i} j_{q}} \\
& =\alpha_{n-1}+\frac{1}{n-1} \sum_{i \geq 2}(-1)^{i+1} \sum_{0=j_{0}<j_{1}<\ldots<j_{i-1}<n-1} \frac{1}{\prod_{q=2}^{i-1} j_{q}}+1 \\
& =\alpha_{n-1}-\frac{1}{n-1} \alpha_{n-1}+1=\frac{n-2}{n-1} \alpha_{n-1}+1 .
\end{aligned}
$$

On solving this recurrence relation, we get $\alpha_{n}=\frac{n}{2}$ for $n>1$. Now in view of 3.2 ,

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{1}}^{[\mathbf{n}]}}\right)=n(n!)+(n-1)((n-1)!)\left(\frac{-n}{2}\right)=\frac{(n+1)!}{2}
$$

(ii) Let $a=2$. As $\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}^{[n]}}\right)=1$ or 3 for $n=1$ or 2 , respectively, we assume that $n>2$. Suppose $\mathcal{F}^{2}[n]=\cup_{i=1}^{n}\left\{\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}_{i-1}^{2}: \cup_{j=1}^{i} C_{j}=[n]\right\}$. For $\mathcal{C}=\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}^{2}[n]$, we write $\mu^{2}(\mathcal{C})=\prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} \mu_{j, C_{q}}^{2}\right)$. In view of the first formula in Proposition 3.4, we have

$$
\tilde{\alpha}_{n}=\operatorname{dim}_{k}\left(\frac{R}{I_{S_{2}}^{[\mathbf{n}]}}\right)=\sum_{\mathcal{C} \in \mathcal{F}^{2}[n]}(-1)^{n-\ell(\mathcal{C})-1} \mu^{2}(\mathcal{C})
$$

Now decompose $\mathcal{F}^{2}[n]=\mathcal{F}^{2}[n]^{\prime} \amalg \mathcal{F}^{2}[n]^{\prime \prime}$, where $\mathcal{C}=\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}^{2}[n]^{\prime}$ if $\left|C_{1}\right|=1$ and $\mathcal{C} \in$ $\mathcal{F}^{2}[n]^{\prime \prime}$ if $\left|C_{1}\right|=2$. Then $\tilde{\alpha}_{n}=\tilde{\alpha}_{n}^{\prime}+\tilde{\alpha}_{n}^{\prime \prime}$, where

$$
\tilde{\alpha}_{n}^{\prime}=\sum_{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{2}(\mathcal{C}) \quad \text { and } \quad \tilde{\alpha}_{n}^{\prime \prime}=\sum_{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime \prime}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{2}(\mathcal{C})
$$

A chain $\mathcal{C}=\left(C_{1}, \ldots, C_{i}\right) \in \mathcal{F}^{2}[n]^{\prime}$ is called a Type-I, Type-II or Type-III chain, if $\left(C_{1}, C_{2}\right)=$ $(\{i\},\{i, n\})$ for $i<n,\left(C_{1}, C_{2}\right)=(\{n\},\{i, n\})$ for $i<n$ or $\left(C_{1}, C_{2}\right)=(\{n\},\{i, n-1\})$ for $i<n-1$,
respectively. Now

$$
\begin{aligned}
\tilde{\alpha}_{n}^{\prime} & =\left[\sum_{\substack{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime} ; \\
\text { Type-I }}}+\sum_{\substack{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime} ; \\
\text { Type }-I I}}+\sum_{\substack{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime} ; \\
\text { Type-III }}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{2}(\mathcal{C})\right. \\
& =n \tilde{\alpha}_{n-1}^{\prime}-\frac{n}{n-1} \tilde{\alpha}_{n}^{\prime \prime}+n \tilde{\alpha}_{n-1}^{\prime \prime}=n \tilde{\alpha}_{n-1}-\frac{n}{n-1} \tilde{\alpha}_{n}^{\prime \prime} .
\end{aligned}
$$

Claim: $\tilde{\alpha}_{n}^{\prime \prime}=-\frac{(n-1)(n!)}{2}$.
For $1 \leq t \leq n-1$, consider saturated chains $\mathcal{C}^{(t)}$ in $\mathcal{F}^{2}[n]^{\prime \prime}$ of the form

$$
\mathcal{C}^{(t)}:\{t, n\} \prec\{t, n-1\} \prec \ldots \prec\{t, t+1\} \prec\{t-1, t\} \prec \ldots \prec\{1,2\} .
$$

Then $\mu^{2}\left(\mathcal{C}^{(t)}\right)=t((n-1)!)$. Any other chain in $\mathcal{F}^{2}[n]^{\prime \prime}$ is either of the form

$$
\mathcal{C}:\{r, n\} \prec \ldots \prec\{r, r+1\} \prec \ldots \prec\{s-1, s\} \prec\{l, s-1\} \prec\{l, s-2\} \prec \ldots \prec \ldots
$$

or

$$
\mathcal{C}^{\prime}:\{r, n\} \prec \ldots \prec\{r, r+1\} \prec \ldots \prec\left\{s^{\prime}-1, s^{\prime}\right\} \prec\left\{l^{\prime}, s^{\prime}-2\right\} \prec \ldots \prec \ldots, \quad(\text { for } 3 \leq r \leq n-1),
$$

where s (or s^{\prime}) is the largest integer such that $\{l, s-1\}$ covers $\{s-1, s\}$ in \mathcal{C} (or $\left\{l^{\prime}, s^{\prime}-1\right\}$ is not in \mathcal{C}^{\prime}) for some $l<s-2$ (or $l^{\prime}<s^{\prime}-2$). Let $\tilde{\mathcal{C}}=\mathcal{C} \backslash\{\{l, s-1\}\}$ be the chain obtained from \mathcal{C} on deleting $\{l, s-1\}$ and $\mathcal{C}^{\prime}=\mathcal{C}^{\prime} \cup\left\{\left\{l^{\prime}, s^{\prime}-1\right\}\right\}$ be the chain obtained from \mathcal{C}^{\prime} on adjoining $\left\{l^{\prime}, s^{\prime}-1\right\}$. Clearly, $\mu^{2}(\mathcal{C})=\mu^{2}(\tilde{\mathcal{C}})$ and $\mu^{2}\left(\mathcal{C}^{\prime}\right)=\mu^{2}\left(\tilde{\mathcal{C}}^{\prime}\right)$. As length $\ell(\mathcal{C})=\ell(\tilde{\mathcal{C}})+1$ and $\ell\left(\mathcal{C}^{\prime}\right)=\ell\left(\tilde{\mathcal{C}}^{\prime}\right)-1$, the terms in $\tilde{\alpha}_{n}^{\prime \prime}=\sum_{\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime \prime}}(-1)^{n-\ell(\mathcal{C})-1} \mu^{2}(\mathcal{C})$ corresponding to chains $\mathcal{C} \in \mathcal{F}^{2}[n]^{\prime \prime}$ different from $\mathcal{C}^{(t)}$ cancel out. Thus

$$
\tilde{\alpha}_{n}^{\prime \prime}=\sum_{t=1}^{n-1}(-1)^{n-\ell\left(\mathcal{C}^{(t)}\right)-1} \mu^{2}\left(\mathcal{C}^{(t)}\right)=\sum_{t=1}^{n-1}(-1)^{n-(n-2)-1} t((n-1)!)=-\frac{(n-1)(n!)}{2} .
$$

Now $\tilde{\alpha}_{n}=\tilde{\alpha}_{n}^{\prime}+\tilde{\alpha}_{n}^{\prime \prime}=n \tilde{\alpha}_{n-1}-\frac{n}{n-1} \tilde{\alpha}_{n}^{\prime \prime}+\tilde{\alpha}_{n}^{\prime \prime}=n \tilde{\alpha}_{n-1}+\frac{n!}{2}$. On solving this recurrence, we get $\tilde{\alpha}_{n}=\frac{(n+1)!}{2}$, as desired.
(iii) Let $a=3$ and assume $n>2$. Proceeding as in part(ii), we write

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{3}}^{[\mathbf{n}]}}\right)=\sum_{\mathcal{C} \in \mathcal{F}^{3}[n]}(-1)^{n-\ell(\mathcal{C})-1} \mu^{3}(\mathcal{C}),
$$

where $\mathcal{F}^{3}[n]$ is the collection of all chains $\overline{\mathcal{C}}=\left(C_{1}, \ldots, C_{i}\right)$ in \mathcal{F}_{i-1}^{3} (for some i) with $\cup_{j=1}^{i} C_{j}=[n]$ and $\mu^{3}(\overline{\mathcal{C}})=\prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} \mu_{j, C_{q}}^{3}\right)$. For $1 \leq t \leq n-1$, let $\overline{\mathcal{C}}^{(t)}$ be the chain in $\mathcal{F}^{3}[n]$ of the form

$$
\overline{\mathcal{C}}^{(t)}:\{t\} \prec\{t, t+1\} \prec \ldots \prec\{t, n-1\} \prec\{t, n\} \prec\{t-1, n\} \prec \ldots \prec\{1, n\}
$$

and $\overline{\mathcal{C}}^{(t)} \backslash\{\{t\}\}$ is the chain obtained from $\overline{\mathcal{C}}^{(t)}$ by deleting the first element $\{t\}$. Now $\mu^{3}\left(\overline{\mathcal{C}}^{(t)}\right)=n$! and $\mu^{3}\left(\overline{\mathcal{C}}^{(t)} \backslash\{\{t\}\}\right)=t((n-1)!)$. There is one more chain $\overline{\mathcal{C}}:\{n\} \prec\{n-1, n\} \prec \ldots \prec\{1, n\}$ in $\mathcal{F}^{3}[n]$, with $\mu^{3}(\overline{\mathcal{C}})=n$!. As in part (ii), it can be shown that the terms corresponding to remaining chains cancel out. Thus

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{S_{3}}^{[\mathbf{n}]}}\right)=n(n!)-(1+2+\ldots+(n-1))((n-1)!)=\frac{(n+1)!}{2}
$$

Theorem 3.5 shows that the integer sequence $\left\{\operatorname{dim}_{k}\left(\frac{R}{I_{S_{a}}}\right)=\frac{(n+1)!}{2}\right\}_{n=1}^{\infty}$ for $1 \leq a \leq 3$ is the integer sequence (A001710) in OEIS [14]. As $\left|\mathrm{PF}_{n}^{a}\right|=\frac{(n+1)!}{2}$, it is expected that the set PF_{n}^{a} could be easily enumerated. Let $\mathbf{p} \in \mathrm{PF}_{n}^{1}$. Then $p_{t} \leq t ; \forall t$ and $p_{i}=i$ implies that $p_{j}=0$ for some $j \in[i+1, n]$. We count $\mathbf{p} \in \mathrm{PF}_{n}^{1}$ according to the value s of the largest $t \in[n]$ with $p_{t}=t$. If $p_{t}<t ; \forall t \in[n]$, then we take $s=0$. As $p_{n}<n$, we have $0 \leq s \leq n-1$. For $s=0$, any $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{N}^{n}$ such that $p_{t}<t ; \forall t$ is a parking function and number of such $\mathbf{p} \in \mathrm{PF}_{n}^{1}$ is precisely $\prod_{t=1}^{n}(t)=n$!. Now let $s \geq 1$. Any sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{N}^{n}$ satisfying conditions

$$
\begin{equation*}
p_{t} \leq t \forall t<s, p_{s}=s, \text { and } p_{j}<j \forall j>s, \text { with at least one } p_{j}=0 \tag{3.3}
\end{equation*}
$$

is always a parking function. The number of \mathbf{p} satisfying conditions (3.3) is

$$
\prod_{t=1}^{s-1}(t+1)\left[\prod_{j=s+1}^{n} j-\prod_{j^{\prime}=s+1}^{n}\left(j^{\prime}-1\right)\right]=(n-s)((n-1)!)
$$

This shows that $\left|\mathrm{PF}_{n}^{1}\right|=\sum_{s=0}^{n-1}(n-s)((n-1)!)=\frac{(n+1)!}{2}$. Similarly, PF_{n}^{a} for $a=2,3$ can also be enumerated. However, it is still an interesting problem to construct an (explicit) bijection $\phi: \mathrm{PF}_{n}^{a} \longrightarrow F_{n+1}(21)$, where $F_{n+1}(21)$ is the set of rooted-labelled increasing forests on $[n+1]$.

CASE-2 : To monomial ideals $I_{T_{1}}^{[\mathbf{n}]}$ and $I_{T_{2}}^{[\mathbf{n}]}$, we associate finite posets $\Sigma_{n}\left(T_{1}\right)$ and $\Sigma_{n}\left(T_{2}\right)$ respectively, as below.
(i) Let $\Sigma_{n}\left(T_{1}\right)=\{\{\ell\},\{i, n\}: 1 \leq \ell \leq n-1 ; 1 \leq i \leq n\}$, where $\{n, n\}=\{n\}$. We define a poset structure on $\Sigma_{n}\left(T_{1}\right)$ by describing cover relations. For $\ell, \ell^{\prime} \in[n-1]$ and $i, i^{\prime} \in[n],\{\ell\}$ covers $\left\{\ell^{\prime}\right\}$, if $\ell^{\prime}=\ell+1$. Also, $\{i, n\}$ covers $\left\{\ell^{\prime}\right\}$ (or $\left\{i^{\prime}, n\right\}$) if $i=\ell^{\prime}$ (respectively, $i^{\prime}=i+1$). The monomial labels $\omega_{\{\ell\}}=x_{\ell}^{\ell+1}, \omega_{\{n\}}=x_{n}^{n}$ and $\omega_{\{i, n\}}=x_{i}^{i} x_{n}^{i}$ for $1 \leq \ell, i<n$. Set $\hat{\mu}_{j, C}^{1}$ for $C \in \Sigma_{n}\left(T_{1}\right)$ so that $\omega_{C}=\prod_{j \in C} x_{j}^{\hat{\mu}_{j, C}^{1}}$.
(ii) Let $\Sigma_{n}\left(T_{2}\right)=\Sigma_{n}\left(T_{1}\right)$. But the poset structure on $\Sigma_{n}\left(T_{2}\right)$ is obtained by interchanging $\{i\}$ with $\{n-i\}$ (and also, $\{i, n\}$ with $\{n-i, n\})($ for $1 \leq i<n)$ in the poset $\Sigma_{n}\left(T_{1}\right)$. The cover relations of the poset $\Sigma_{n}\left(T_{2}\right)$ are given as follows. For $\ell, \ell^{\prime}, i, i^{\prime} \in[n-1]$, $\{\ell\}$ covers $\left\{\ell^{\prime}\right\}$, if $\ell^{\prime}=\ell-1$ and $\{i, n\}$ covers $\left\{\ell^{\prime}\right\}$ (or $\left\{i^{\prime}, n\right\}$) if $i=\ell^{\prime}$ (respectively, $i^{\prime}=i-1$). In addition,
$\{1, n\}$ covers $\{n\}$. The monomial labels $\omega_{\{\ell\}}=x_{\ell}^{n-\ell+1}, \omega_{\{n\}}=x_{n}^{n}$ and $\omega_{\{i, n\}}=x_{i}^{n-i} x_{n}^{n-i}$ for $1 \leq \ell, i<n$. Set $\hat{\mu}_{j, C}^{2}$ for $C \in \Sigma_{n}\left(T_{1}\right)$ so that $\omega_{C}=\prod_{j \in C} x_{j}^{\hat{\mu}_{j, C}^{2}}$.
The Hasse diagram of $\Sigma_{4}\left(T_{1}\right)$ and $\Sigma_{4}\left(T_{2}\right)$ are given in Figure-3.

Figure 3

Proposition 3.6. (i). The ideals $I_{T_{1}}^{[\mathbf{n}]}$ and $I_{T_{2}}^{[\mathbf{n}]}$ are order monomial ideals. (ii). The free complex $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\left(T_{b}\right)\right)\right)$ is the minimal cellular resolution of $I_{S_{a}}^{[\mathbf{n}]}$ supported on the order complex $\Delta\left(\Sigma_{n}\left(T_{b}\right)\right)$ for $1 \leq b \leq 2$. Thus the $r^{\text {th }}$ Betti number $\beta_{r}\left(I_{T_{b}}^{[\mathbf{n}]}\right)$ is given by

$$
\beta_{r}\left(I_{T_{b}}^{[\mathbf{n}]}\right)=\binom{n}{r+1}+(r+1)\binom{n-1}{r+1}+r\binom{n-1}{r}, \quad(1 \leq r \leq n-1) .
$$

Proof. From the definitions of the poset $\Sigma_{n}\left(T_{b}\right)$, it is clear that the ideal $I_{T_{b}}^{[\mathbf{n}]}$ is an order monomial ideal. Further, the cellular resolution $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\left(T_{b}\right)\right)\right)$ is the minimal resolution of $I_{S_{a}}^{[\mathrm{n}]}$ supported on the order complex $\Delta\left(\Sigma_{n}\left(T_{b}\right)\right)$ because monomial label on any face of $\Delta\left(\Sigma_{n}\left(T_{b}\right)\right)$ is different from the monomial label on subfaces. Thus the $r^{t h}$ Betti number $\beta_{r}\left(I_{T_{b}}^{[\mathbf{n]}}\right)$ equals the number (strict) chains of length r in the poset $\Sigma_{n}\left(T_{b}\right)$. Since $\Sigma_{n}\left(T_{2}\right)$ is obtained from $\Sigma_{n}\left(T_{1}\right)$ by changing i to $n-i$ for $i \in[n]$, number of chains of length r in both the posets are same. We count chains of length r in $\Sigma_{n}\left(T_{1}\right)$ for $0 \leq r \leq n-1$. Consider a (strict) chain

$$
\mathcal{C}: C_{1} \prec C_{2} \prec \ldots \prec C_{s} \prec C_{s+1} \prec \ldots \prec C_{r+1} .
$$

If all C_{j} are of the form $\left\{t_{j}, n\right\}$ for $t_{j} \in[n]$, then the chain \mathcal{C} can be identified with a $r+1$-subset $\left\{t_{1}, \ldots, t_{r+1}\right\}$ of [n]. Thus number of such chains is $\binom{n}{r+1}$. If $C_{s}=\left\{t_{s}\right\}$ and $C_{s+1}=\left\{t_{s+1}, n\right\}$ for
some s with $t_{s+1}<t_{s}$, then the chain \mathcal{C} can be identified with a $r+1$-subset $\left\{t_{1}, \ldots, t_{r+1}\right\}$ of $[n-1]$ with a chosen element t_{s}. Any $j \in\left\{t_{1}, \ldots, t_{r+1}\right\}$ represent singleton $\{j\}$ if $j \geq t_{s}$, while it represent $\{j, n\}$ for $j<t_{s}$. The number of such chains is precisely $(r+1)\binom{n-1}{r+1}$. Now we count chains \mathcal{C} with $C_{s}=\left\{t_{s}\right\}$ and $C_{s+1}=\left\{t_{s}, n\right\}$ (i.e., $t_{s}=t_{s+1}$). In this case, chain \mathcal{C} can be identified with a r-subset $\left\{t_{1}, \ldots, t_{s}=t_{s+1}, \ldots, t_{r+1}\right\}$ of $[n-1]$ with a chosen element t_{s}. Thus number of such chains is $r\binom{n-1}{r}$. Since any r-chain \mathcal{C} in $\Sigma_{n}\left(T_{1}\right)$ is a chain of one of the three types, we get the desired result.

Consider the following subsets of PF_{n} of parking function $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.
(i) $\widehat{\mathrm{PF}}_{n}^{1}=\left\{\mathbf{p} \in \mathrm{PF}_{n}: p_{t} \leq t, \forall t\right.$ and if $p_{i}=i$, then $\left.p_{n}<i\right\}$.
(ii) $\widehat{\mathrm{PF}}_{n}^{2}=\left\{\mathbf{p} \in \mathrm{PF}_{n}: p_{n-t} \leq t, \forall t\right.$ and if $p_{n-i}=i$, then $\left.p_{n}<i\right\}$.

In view of Lemma 2.4, $\mathbf{x}^{\mathbf{p}} \notin I_{T_{b}}^{[\mathbf{n}]}$ if and only if $\mathbf{p} \in \widehat{\mathrm{PF}}_{n}^{b}$ for $b=1,2$. Thus, $\left|\widehat{\mathrm{PF}_{n}^{b}}\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{T_{b}}^{[\mathbf{n}]}}\right)$.
Also, the mapping $\left(p_{1}, p_{2}, \ldots, p_{n-1}, p_{n}\right) \mapsto\left(p_{n-1}, p_{n-2}, \ldots, p_{1}, p_{n}\right)$ induces a bijection between $\widehat{\mathrm{PF}}_{n}^{1}$ and $\widehat{\mathrm{PF}}_{n}^{2}$.

Theorem 3.7. The number of standard monomials of $\frac{R}{I_{T_{b}}^{[\mathrm{n}]}}$ is given by

$$
\left|\widehat{\mathrm{PF}}_{n}^{b}\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{T_{b}}^{[\mathbf{n}]}}\right)=s(n+1,2) ; \quad(b=1,2),
$$

where $s(n+1,2)$ is the (signless) Stirling number of the first kind.
Proof. We take $b=1$. Proceeding as in Proposition 3.4, we get

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{T_{1}}^{[\mathbf{n}]}}\right)=\sum_{\mathcal{C} \in \widehat{\mathcal{F}}^{1}[n]}(-1)^{n-\ell(\mathcal{C})-1} \widehat{\mu}^{1}(\mathcal{C}),
$$

where $\widehat{\mathcal{F}}^{1}[n]$ is the collection of all chains $\mathcal{C}=\left(C_{1}, \ldots, C_{i}\right)$ in $\Sigma_{n}\left(T_{1}\right)$ such that $C_{1} \cup \ldots \cup C_{i}=[n]$ and $\widehat{\mu}^{1}(\mathcal{C})=\prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} \widehat{\mu}_{j, C_{q}}^{1}\right)$. For $1 \leq t \leq n$, let $\widehat{\mathcal{C}}^{(n)}:\{n\} \prec\{n-1, n\} \prec \ldots \prec\{1, n\}$,

$$
\widehat{\mathcal{C}}^{(t)}:\{n-1\} \prec \ldots \prec\{t\} \prec\{t, n\} \prec\{t-1, n\} \prec \ldots \prec\{1, n\} ; \quad(1 \leq t \leq n-1)
$$

and $\widehat{\mathcal{C}}^{(t)}$ be the chain obtained from $\widehat{\mathcal{C}}^{(t)}$ on deleting $\{t, n\}$. For $t=n$, we have $\{n, n\}=\{n\}$. It is clear that $\widehat{\mathcal{F}}^{1}[n]=\left\{\widehat{\mathcal{C}}^{(t)}, \widehat{\mathcal{C}}^{(t)}: 1 \leq t \leq n\right\}$. Also, $\widehat{\mu}^{1}\left(\widehat{\mathcal{C}}^{(t)}\right)=n$! and $\widehat{\mu}^{1}\left(\widehat{\mathcal{C}}^{\prime(t)}\right)=\frac{t-1}{t}(n!)$ for $1 \leq t \leq n$.

As $\ell\left(\widehat{\mathcal{C}}^{(t)}\right)=\ell\left(\widehat{\mathcal{C}}^{(t)}\right)+1=n-1$, we see that

$$
\begin{aligned}
\operatorname{dim}_{k}\left(\frac{R}{I_{T_{1}}^{[n]}}\right) & =\sum_{t=1}^{n}\left(\widehat{\mu}^{1}\left(\widehat{\mathcal{C}}^{(t)}\right)-\widehat{\mu}^{1}\left(\widehat{\mathcal{C}}^{(t)}\right)\right)=\sum_{t=1}^{n}\left(n!-\frac{t-1}{t} n!\right) \\
& =\sum_{t=1}^{n} \frac{n!}{t}=\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) n!=s(n+1,2) .
\end{aligned}
$$

A nice formula $\left|\widehat{\mathrm{PF}}_{n}^{1}\right|=\left|\widehat{\mathrm{PF}}_{n}^{2}\right|=s(n+1,2)$, deserves a combinatorial proof. We count parking functions $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ in $\widehat{\mathrm{PF}}_{n}^{1}$ according to the value of p_{n}. Clearly, $0 \leq p_{n} \leq n-1$. For any $0 \leq t \leq n-1$, we see that $p_{n}=t$ implies that $p_{i}<i$ for all $i \leq t$ and $p_{j} \leq j$ for $j>t$. Also, any $\left(p_{1}, \ldots, p_{n}\right)$ with $p_{n}=t$ and $p_{i}<i$ for all $i \leq t$, while $p_{j} \leq j$ for all $t<j \leq n-1$ is always a parking function of length n. Thus number of $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \widehat{\mathrm{PF}}_{n}^{1}$ with $p_{n}=t$ is $\left(\prod_{i=1}^{t} i\right)\left(\prod_{j=t+1}^{n-1}(j+1)\right)=\frac{n!}{t+1}$. Hence, $\left|\widehat{\mathrm{PF}}_{n}^{1}\right|=\sum_{t=0}^{n-1} \frac{n!}{t+1}$.

Theorem 3.7 shows that the integer sequence $\left\{\operatorname{dim}_{k}\left(\frac{R}{I_{T_{b}}^{[\mathbf{n j}}}\right)=s(n+1,2)\right\}_{n=1}^{\infty}$ for $b=1,2$ is the integer sequence (A000254) in OEIS [14].

CASE-3: We finally consider the monomial ideal $I_{U}^{[\mathbf{n}]}$. The minimal generators $\prod_{j \in A} x_{j}^{\nu_{j, A}}$ of $I_{U}^{[\mathbf{n}]}$ are parametrized by the poset Σ_{n}. Again, it is straight forward to verify that the ideal $I_{U}^{[\mathbf{n}]}$ is an order monomial ideal and the cellular resolution $\mathbb{F}_{*}\left(\Delta\left(\Sigma_{n}\right)\right)$ supported on the order complex $\Delta\left(\Sigma_{n}\right)$ is the minimal free resolution of $I_{U}^{[\mathbf{n}]}$. Thus $r^{t h}$ Betti number $\beta_{r}\left(I_{U}^{[\mathbf{n}]}\right)=(r!) S(n+1, r+1)$ for $0 \leq r \leq n-1$.

Now we describe standard monomials of $\frac{R}{I_{U}^{[\mathrm{n}]}}$. Let $\overline{\mathrm{PF}}_{n}=\left\{\mathbf{p} \in \mathrm{PF}_{n}: \mathbf{x}^{\mathbf{p}} \notin I_{U}^{[\mathbf{n}]}\right\}$.
Lemma 3.8. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathrm{PF}_{n}$. Then $\mathbf{p} \in \overline{\mathrm{PF}}_{n}$ if and only if, there exists a permutation $\alpha \in \mathfrak{S}_{n}$ such that $p_{\alpha_{i}}<\nu_{\alpha_{i}, T_{i}}$ for all i, where $\alpha_{i}=\alpha(i), T_{1}=[n]$ and $T_{j}=[n] \backslash\left\{\alpha_{1}, \ldots, \alpha_{j-1}\right\}$ for $j \geq 2$. Also, $\nu_{j, T}$ is in the Lemma 2.4.

Proof. Proof is similar to the proof of Theorem 4.3 of [6].
Proceeding as in Proposition 3.4, we get a combinatorial formula for the number of standard monomials of $\frac{R}{I_{U}^{(\mathrm{n}]}}$.
Proposition 3.9. The number of standard monomials of $\frac{R}{I_{U}^{[\mathbf{n}}}$ is given by

$$
\left|\overline{\mathrm{PF}}_{n}\right|=\operatorname{dim}_{k}\left(\frac{R}{I_{U}^{[\mathbf{n}]}}\right)=\sum_{i=1}^{n}(-1)^{n-i} \sum_{\emptyset=C_{0} \subsetneq C_{1} \subsetneq \ldots \subsetneq C_{i}=[n]} \prod_{q=1}^{i}\left(\prod_{j \in C_{q} \backslash C_{q-1}} \nu_{j, C_{q}}\right),
$$

where summation is carried over all strict chains $\emptyset=C_{0} \subsetneq C_{1} \subsetneq \ldots \subsetneq C_{i}=[n]$.
Neither using Proposition 3.9, nor by any combinatorial tricks, we could determine $\left|\overline{\mathrm{PF}}_{n}\right|=$ $\operatorname{dim}_{k}\left(\frac{R}{I_{U}^{\mathrm{na}}}\right)$. Thus, we ask the following question.

Question : Is it possible to identify the sequence $\left\{\operatorname{dim}_{k}\left(\frac{R}{I_{U}^{\text {(n] }}}\right)\right\}_{n=1}^{\infty}$ with some well known combinatorially interesting integer sequence?

Computations for smaller values of n suggest that this integer sequence could be (A003319) in OEIS [14].

Acknowledgements : The second author is thankful to CSIR, Government of India for financial support.

References

[1] Anders K. and Archer K., Rooted forests that avoid sets of permutations, European J. Combin. 77 (2019), 1-16.
[2] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research Letters 5 (1998), 31-46.
[3] Bayer D. and Sturmfels B., Cellular resolutions of monomial modules, Journal für die Reine und Angewandte Mathematik 502 (1998), 123-140.
[4] Gaydarov P. and Hopkins S., Parking functions and tree inversions revisited, Adv. in Appl. Math. 80 (2016), 151-179.
[5] Kreweras G., Une famille de polynômes ayant plusieurs propriétés énumeratives, Period. Math. Hungar. 11(4), (1980), 309-320.
[6] Kumar A. and Kumar C., Certain variants of multipermutohedron ideals, Proc. Indian Acad. Sci.(Math Sci.) Vol.126, No.4, (2016), 479-500.
[7] Kumar A. and Kumar C., An integer sequence and standard monomials, Journal of Algebra and Its Applications Vol.17, No.2, (2018).
[8] Kumar A. and Kumar C., Monomial ideals induced by permutations avoiding patterns, Proc. Indian Acad. Sci.(Math Sci.) Vol.129, (2019).
[9] Miller E. and Sturmfels B., Combinatorial commutative algebra, Graduate Texts in Mathematics Vol 227, Springer-Verlag, New York, 2005.
[10] Perkinson D.,Yang Q. and Yu K., G-parking functions and tree inversions, Combinatorica 37, no. 2, (2017), 269-282.
[11] Pitman J. and Stanley R., A polytope related to empirical distributions, plane Trees, parking functions, and the associahedron, Discrete and Computational Geometry 27 (2002), 603-634.
[12] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformations of Monomial ideals, Trans. Amer. Math. Soc. 356, (2004), 3109-3142.
[13] Simion R. and Schmidt F. W., Restricted permutations, European J. Combin. 6 (1985), 383-406.
[14] Sloane N. J. A., On-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/
[15] Stanley R., Enumerative combinatorics: volume 1, Cambridge University Press (2nd edition), 2012.
[16] Yan C. H., On the enumeration of generalized parking functions, Proceedings of the 31-st Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000), Congressus Numerantium 147 (2000), 201-209.

IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab - 140 306, India.
E-mail address: chanchal@iisermohali.ac.in
IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab -140 306, India.
E-mail address: amitroy@iisermohali.ac.in

