INTEGER SEQUENCES AND MONOMIAL IDEALS

CHANCHAL KUMAR AND AMIT ROY

ABSTRACT. Let \mathfrak{S}_n be the set of all permutations of $[n] = \{1, \ldots, n\}$ and let W be the subset consisting of permutations $\sigma \in \mathfrak{S}_n$ avoiding 132 and 312-patterns. The monomial ideal $I_W = I_{W}$ $\left\langle \mathbf{x}^{\sigma} = \prod_{i=1}^{n} x_{i}^{\sigma(i)} : \sigma \in W \right\rangle$ in the polynomial ring $R = k[x_{1}, \dots, x_{n}]$ over a field k is called a hyper*cubic ideal* in [6]. The Alexander dual $I_W^{[\mathbf{n}]}$ of I_W with respect to $\mathbf{n} = (n, \ldots, n)$ has the minimal cellular resolution supported on the first barycentric subdivision $\mathbf{Bd}(\Delta_{n-1})$ of an n-1-simplex Δ_{n-1} . We show that the number of standard monomials of the Artinian quotient $\frac{R}{I_W^{[\mathbf{n}]}}$ equals the number of rooted-labelled unimodal forests on the vertex set [n]. In other words,

$$\dim_k\left(\frac{R}{I_W^{[\mathbf{n}]}}\right) = \sum_{r=1}^n r! \ s(n,r) = \operatorname{Per}\left([m_{ij}]_{n \times n}\right),$$

where s(n,r) is the (signless) Stirling number of the first kind and $Per([m_{ij}]_{n \times n})$ is the permanent of the matrix $[m_{ij}]$ with $m_{ii} = i$ and $m_{ij} = 1$ for $i \neq j$. For various subsets S of \mathfrak{S}_n consisting of permutations avoiding patterns, the corresponding integer sequences $\left\{ \dim_k \left(\frac{R}{I_S^{[n]}} \right) \right\}_{n=1}^{\infty}$ are identified.

KEY WORDS: Permutations avoiding patterns, standard monomials, parking functions.

1. INTRODUCTION

Let G be an oriented graph on the vertex set $\{0, 1, \ldots, n\}$ rooted at 0. A nonoriented graph on $\{0, 1, \ldots, n\}$ has the symmetric adjacency matrix and it is identified with a unique rooted oriented graph on $\{0, 1, \ldots, n\}$ having the same (symmetric) adjacency matrix. Let $R = k[x_1, \ldots, x_n]$ be the standard polynomial ring in n variables over a field k. Postnikov and Shapiro [12] associated a monomial ideal \mathcal{M}_G in R such that the number of standard monomials of the Artinian quotient $\frac{R}{\mathcal{M}_G}$ is precisely the number of oriented-spanning trees of G. A sequence $\mathbf{p} = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is called a *G*-parking function if $\mathbf{x}^{\mathbf{p}} = \prod_{i=1}^{n} x_i^{p_i}$ is a standard monomial of $\frac{R}{\mathcal{M}_G}$ (i.e., $\mathbf{x}^{\mathbf{p}} \notin \mathcal{M}_G$). Let SPT(*G*) be the set of (oriented) spanning trees of *G* rooted at 0 and PF(*G*) be the set of *G*-parking functions of G. Then |PF(G)| = |SPT(G)| (see [12]).

²⁰¹⁰ Mathematics Subject Classification. 13D02, 05E40.

If G is the complete graph K_{n+1} on the vertex set $\{0, 1, \ldots, n\}$, then

$$\mathcal{M}_{K_{n+1}} = \left\langle \left(\prod_{i \in I} x_i\right)^{n-|I|+1} : \emptyset \neq I \subseteq [n] \right\rangle$$

is called a *tree ideal*. Cayley's formula for enumeration of labelled trees states that $|\text{SPT}(K_{n+1})| = (n+1)^{n-1}$. Also the set $\text{PF}(K_{n+1})$ of K_{n+1} -parking functions is the set PF_n of (ordinary) parking functions of length n. A finite sequence $\mathbf{p} = (p_1, \ldots, p_n) \in \mathbb{N}^n$ with $0 \leq p_i < n$ is called a *parking function* of length n if a nondecreasing rearrangement $p_{i_1} \leq p_{i_2} \leq \ldots \leq p_{i_n}$ of \mathbf{p} satisfies $p_{i_j} < j$ for $1 \leq j \leq n$. A recursively defined bijection $\phi : \text{PF}_n \longrightarrow \text{SPT}(K_{n+1})$ has been constructed by Kreweras [5]. Parking functions or more generally, vector parking functions have appeared in many areas of mathematics. For more on parking functions, we refer to [11, 16]. An algorithmic bijection $\phi : \text{PF}(G) \longrightarrow \text{SPT}(G)$, called *DFS-burning algorithm*, is given by Perkinsons et. al. [10] for a simple graph G and by Gaydarov and Hopkins [4] for multigraph G.

Let \mathfrak{S}_n be the set of all permutations of $[n] = \{1, 2, \ldots, n\}$. For $r \leq n$, consider a $\tau \in \mathfrak{S}_r$, called a *pattern*. A permutation $\sigma \in \mathfrak{S}_n$ is said to *avoid a pattern* τ if there is no subsequence in $\sigma = \sigma(1)\sigma(2)\ldots\sigma(n)$ that is in the same relative order as τ . Let $\mathfrak{S}_n(\tau)$ be the subset consisting of permutations $\sigma \in \mathfrak{S}_n$ that avoid pattern τ . If r > n, then $\mathfrak{S}_n(\tau) = \mathfrak{S}_n$. Also, if $\tau^{(i)} \in \mathfrak{S}_{r_i}$ for $1 \leq i \leq s$, then $\mathfrak{S}_n(\tau^{(1)},\ldots,\tau^{(s)}) = \bigcap_{j=1}^s \mathfrak{S}_n(\tau^{(j)})$. Enumeration and combinatorial properties of the set of permutations avoiding patterns are obtained in [13].

For a nonempty subset $S \subseteq \mathfrak{S}_n$, consider the monomial ideal $I_S = \langle \mathbf{x}^{\sigma} = \prod_{i=1}^n x_i^{\sigma(i)} : \sigma \in S \rangle$ in $R = k[x_1, \ldots, x_n]$ induced by S. The monomial ideal $I_{\mathfrak{S}_n}$ is called a *permotuhedron ideal* and the Alexander dual $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$ is the tree ideal $\mathcal{M}_{K_{n+1}}$. The *i*th Betti number $\beta_i(I_{\mathfrak{S}_n}^{[\mathbf{n}]})$ of $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$ is given by

$$\beta_i(I_{\mathfrak{S}_n}^{[\mathbf{n}]}) = \beta_{i+1}\left(\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}\right) = (i!)S(n+1,i+1); \quad (0 \le i \le n-1),$$

where S(n, r) is the Stirling number of the second kind, i.e., the number of set-partitions of [n] into r blocks (see [12]). Further, we have already observed that the standard monomials of $\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}$ is given by dime $\left(\frac{R}{R}\right) = |\mathrm{PF}| = (n+1)^{n-1}$

by $\dim_k \left(\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}\right) = |\operatorname{PF}_n| = (n+1)^{n-1}.$

For various subsets $S \subseteq \mathfrak{S}_n$, the Alexander dual $I_S^{[\mathbf{n}]}$ of I_S with respect to $\mathbf{n} = (n, \ldots, n)$ has many interesting properties similar to the Alexander dual of permutohedron ideal. The Betti numbers and enumeration of standard monomials of the Alexander dual $I_S^{[\mathbf{n}]}$ for subsets $S = \mathfrak{S}_n(132, 231)$, $\mathfrak{S}_n(123, 132)$ and $\mathfrak{S}_n(123, 132, 213)$ are obtained in [7, 8]

Let $W = \mathfrak{S}_n(132, 312)$. The monomial ideal I_W of R is called a *hypercubic ideal* in [6]. The standard monomials of $\frac{R}{I_W^{[n]}}$ correspond bijectively to a subset $\widetilde{\mathrm{PF}}_n$ of PF_n . An element $\mathbf{p} \in \widetilde{\mathrm{PF}}_n$

is called a *restricted parking function* of length n. We show that the number of restricted parking functions of length n is given by

$$\dim_k\left(\frac{R}{I_W^{[\mathbf{n}]}}\right) = |\widetilde{\mathrm{PF}}_n| = \sum_{r=1}^n (r!) \ s(n,r),$$

where s(n, r) is the (signless) Stirling number of the first kind, i.e., the number of permutations of [n] having exactly r cycles in its cyclic decomposition. Thus the *n*th term of integer sequence (A007840) in OEIS [14] can be interpreted as the number of restricted parking functions of length n, or equivalently, as the number of standard monomials of the Artinian quotient $\frac{R}{t^{[n]}}$.

The concept of pattern avoiding permutations has been generalized to many combinatorial objects. A notion of rooted forests that avoids a set of permutations is introduced and many classes of such objects are enumerated in [1]. Let F_n be the set of rooted-labelled forests on [n]. Let $F_n(\tau)$ (or more generally, $F_n(\tau^{(1)}, \ldots, \tau^{(r)})$) be the subset of F_n consisting of rooted-labelled forests avoiding a pattern τ (or a set of patterns $\{\tau^{(1)}, \ldots, \tau^{(r)}\}$). We have

$$|F_n(213, 312)| = \sum_{r=1}^n (r!) \ s(n, r) = |\widetilde{\mathrm{PF}}_n|.$$

It is surprising that enumeration of standard monomials of $\frac{R}{I_W^{[n]}}$ and enumeration of rooted-labelled forests $F_n(213, 312)$ avoiding 213 and 312-patterns are related. It is an interesting problem to construct an algorithmic bijection $\phi : \widetilde{PF}_n \longrightarrow F_n(213, 312)$, analogous to DFS-burning algorithm that could explain the relationship between these objects.

The monomial ideal I_S for many other subsets $S \subseteq \mathfrak{S}_n$, consisting of permutations avoiding patterns are considered in the last section.

2. Hypercubic ideals and restricted Parking functions

Consider the subset $W = \mathfrak{S}_n(132, 312)$ of permutations of [n] that avoid 132 and 312-patterns. For $\sigma \in \mathfrak{S}_n$, it can be easily checked that $\sigma \in W$ if and only if $\sigma(1) \in [n]$ is arbitrary, and $\sigma(j) = \ell$ for j > 1 if either $\sigma(i) = \ell + 1$ or $\sigma(i) = \ell - 1$ for some i < j. Clearly, $|W| = 2^{n-1}$. The monomial ideal I_W appeared in [6], where it is called a *hypercubic ideal*. Many properties of I_W and its Alexander dual $I_W^{[n]}$ with respect to $\mathbf{n} = (n, \ldots, n) \in \mathbb{N}^n$ have been obtained in [6]. We proceed to enumerate the standard monomials of $\frac{R}{I_W^{[n]}}$. For this purpose, we consider a little generalization.

Let $\mathbf{u} = (u_1, \ldots, u_n) \in \mathbb{N}^n$ with $1 \leq u_1 < u_2 < \ldots < u_n$. For $\sigma \in \mathfrak{S}_n$, let $\sigma \mathbf{u} = (u_{\sigma(1)}, \ldots, u_{\sigma(n)})$ and $\mathbf{x}^{\sigma \mathbf{u}} = \prod_{i=1}^n x_i^{u_{\sigma(i)}}$. For any nonempty subset $S \subseteq \mathfrak{S}_n$, we consider the monomial ideal $I_S(\mathbf{u}) = \langle \mathbf{x}^{\sigma \mathbf{u}} : \sigma \in S \rangle$ in the polynomial ring $R = k[x_1, \ldots, x_n]$. Clearly, $I_S((1, 2, \ldots, n)) =$

 I_S . The ideals $I_{\mathfrak{S}_n}(\mathbf{u})$ and $I_W(\mathbf{u})$ are also called a *permutohedron ideal* and a *hypercubic ideal*, respectively. For an integer $c \geq 1$, we consider the Alexander dual $I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$ of the hypercubic ideal $I_W(\mathbf{u})$ with respect to $\mathbf{u_n} + \mathbf{c} - \mathbf{1} = (u_n + c - 1, \dots, u_n + c - 1) \in \mathbb{N}^n$.

Proposition 2.1. The minimal generators of $I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c-1}]}$ are given by

$$I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]} = \left\langle \prod_{j \in T} x_j^{\mu_{j,T}^{\mathbf{u}}} : \emptyset \neq T = \{j_1, \dots, j_t\} \subseteq [n]; j_1 < \dots < j_t \right\rangle$$

where $\mu_{j_1,T}^{\mathbf{u}} = u_n - u_t + c$ and $\mu_{j_i,T}^{\mathbf{u}} = u_n - u_{t+j_i-i} + c$ for $2 \le i \le t$.

Proof. The minimal generators of $I_W(\mathbf{u})^{[\mathbf{u}_n]}$ are given in Theorem 3.3 of [6]. Just replace $[\mathbf{u}_n]$ by $[\mathbf{u}_n + \mathbf{c} - \mathbf{1}]$.

The Alexander dual $I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-\mathbf{1}]}$ of the permutohedron ideal $I_{\mathfrak{S}_n}(\mathbf{u})$ is given by

$$I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]} = \left\langle \left(\prod_{j\in T} x_j\right)^{u_n-u_{|T|}+c} : T\in\Sigma_n \right\rangle,$$

where Σ_n is the poset of all nonempty subsets of [n] ordered by inclusion. Postnikov and Shapiro [12] showed that the monomial ideal $I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$ is an order monomial ideal. Moreover, the minimal resolution of $I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$ is the cellular resolution supported on the order complex $\Delta(\Sigma_n)$ of Σ_n . Thus, the *i*th Betti number

$$\beta_i(I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-\mathbf{1}]}) = (i!)S(n+1,i+1); \quad (0 \le i \le n-1),$$

where S(n + 1, i + 1) is the Stirling number of the second kind. Further, standard monomials of $\frac{R}{I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}\mathbf{n}+\mathbf{c}-1]}}$ are given in terms of λ -parking functions. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ with $\lambda_i = u_n - u_i + c$. A sequence $\mathbf{p} = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is called a λ -parking function of length n, if non-decreasing rearrangement $p_{i_1} \leq p_{i_2} \leq \ldots \leq p_{i_n}$ of \mathbf{p} satisfies $p_{i_j} < \lambda_{n-j+1}$ for $1 \leq j \leq n$. Let $\mathrm{PF}_n(\lambda)$ be the set of λ -parking functions of length n. Then $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}\mathbf{n}+\mathbf{c}-1]}}$ if and only if $\mathbf{p} \in \mathrm{PF}_n(\lambda)$. Also, λ -parking functions for $\lambda = (n, n-1, \ldots, 1)$ are precisely (ordinary) parking functions of length n, that is, $\mathrm{PF}_n((n, n-1, \ldots, 1)) = \mathrm{PF}_n$.

The Alexander dual $I_S^{[\mathbf{n}]}$ of I_S is an order monomial ideal for $S = \mathfrak{S}_n(132, 231)$, $\mathfrak{S}_n(123, 132)$ and $\mathfrak{S}_n(123, 132, 213)$ (see [7, 8]). The minimal generators of $I_W(\mathbf{u})^{[\mathbf{u}_n + \mathbf{c} - \mathbf{1}]}$ correspond to elements of poset Σ_n . The monomial ideal $I_W(\mathbf{u})^{[\mathbf{u}_n + \mathbf{c} - \mathbf{1}]}$ is also an order monomial ideal and its minimal resolution is the cellular resolution supported on the order complex $\Delta(\Sigma_n)$ of Σ_n . Thus, the i^{th} Betti number $\beta_i(I_W(\mathbf{u})^{[\mathbf{u}_n + \mathbf{c} - \mathbf{1}]}) = (i!) S(n + 1, i + 1)$ for $0 \leq i \leq n - 1$.

We now describe standard monomials of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-1]}}$. Since $I_W(\mathbf{u}) \subseteq I_{\mathfrak{S}_n}(\mathbf{u})$, we have $I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-1]} \subseteq I_W(\mathbf{u})^{[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-1]}$. Hence, standard monomials of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-1]}}$ are of the form $\mathbf{x}^{\mathbf{p}}$ for some $\mathbf{p} \in \mathrm{PF}_n(\lambda)$.

Definition 2.2. A λ -parking function $\mathbf{p} = (p_1, \ldots, p_n) \in \operatorname{PF}_n(\lambda)$ is said to be a *restricted* λ -parking function of length n if there exists a permutation $\alpha \in \mathfrak{S}_n$ such that $p_{\alpha_i} < \mu_{\alpha_i,T_i}^{\mathbf{u}}$ for all $1 \leq i \leq n$, where $\alpha_i = \alpha(i), T_1 = [n], T_i = [n] \setminus \{\alpha_1, \ldots, \alpha_{i-1}\}; (i \geq 2)$ and $\mu_{j,T}^{\mathbf{u}}$ is as in Proposition 2.1.

Let $\widetilde{\operatorname{PF}}_n(\lambda)$ be the set of restricted λ -parking functions of length n. For $\mathbf{u} = (1, 2, \ldots, n)$ and c = 1, we have $\lambda = (n, n - 1, \ldots, 1)$. In this case, a restricted λ -parking function is called a restricted parking function of length n and we simply write $\widetilde{\operatorname{PF}}_n$ for $\widetilde{\operatorname{PF}}_n(\lambda)$. Also, $\mu_{j,T} = \mu_{j,T}^{\mathbf{u}}$ is given by $\mu_{j_1,T} = n - t + 1$ and $\mu_{j_i,T} = (n - t + 1) - (j_i - i); i \geq 2$, where $\emptyset \neq T = \{j_1, \ldots, j_t\} \subseteq [n]$ with $j_1 < \ldots < j_t$.

Proposition 2.3. A monomial $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-1]}}$ if and only if $\mathbf{p} \in \widetilde{\mathrm{PF}}_n(\lambda)$ is a restricted λ -parking function of length n, with $\lambda_i = u_n - u_i + c$; $(1 \leq i \leq n)$. In particular, a monomial $\mathbf{x}^{\mathbf{p}}$ is a standard monomial of $\frac{R}{I_W^{[\mathbf{n}]}}$ if and only if $\mathbf{p} \in \widetilde{\mathrm{PF}}_n$ is a restricted parking function of length n.

Proof. Standard monomials of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{un}]}}$ are characterized in Theorem 4.3 of [6]. Proceeding on similar lines, we get the desired result.

Using the cellular resolution of $I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}$ supported on the order complex $\Delta(\Sigma_n)$, we obtain the multigraded Hilbert series $H\left(\frac{R}{I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}}\right)$ of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}}$. Proceeding as in the proof of Proposition 4.5 of [6], we get a combinatorial formula

(2.1)
$$|\widetilde{\mathrm{PF}}_{n}(\lambda)| = \dim_{k} \left(\frac{R}{I_{W}(\mathbf{u})^{[\mathbf{u}_{n}+\mathbf{c}-1]}} \right)$$
$$= \sum_{i=1}^{n} (-1)^{n-i} \sum_{\emptyset = A_{0} \subsetneq A_{1} \subsetneq ... \subsetneq A_{i} = [n]} \prod_{q=1}^{i} \left(\prod_{j \in A_{q} \setminus A_{q-1}} \mu_{j,A_{q}}^{\mathbf{u}} \right)$$

for enumeration of standard monomials of $\frac{R}{I_W(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-1]}}$, where $\mu_{j,A_q}^{\mathbf{u}}$ is as in Proposition 2.1. Let \mathcal{C} be a chain in Σ_n of the form

$$\mathcal{C}: A_1 \subsetneq A_2 \subsetneq \ldots \subsetneq A_i = [n]$$

of length $\ell(\mathcal{C}) = i - 1$ and let $\mu^{\mathbf{u}}(\mathcal{C}) = \prod_{q=1}^{i} \left(\prod_{j \in A_q \setminus A_{q-1}} \mu_{j,A_q}^{\mathbf{u}} \right)$, where $A_0 = \emptyset$. Suppose $\mathfrak{Ch}([n])$ is the set of such chains \mathcal{C} in Σ_n . Then formula (2.1) can be expressed compactly as

(2.2)
$$|\widetilde{\mathrm{PF}}_{n}(\lambda)| = \dim_{k}\left(\frac{R}{I_{W}(\mathbf{u})^{[\mathbf{u}_{n}+\mathbf{c}-1]}}\right) = \sum_{\mathcal{C}\in\mathfrak{C}\mathfrak{h}([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}).$$

We now take $u_i = i$ in (2.2). For $c \ge 1$, let $\dim_k \left(\frac{R}{I_W^{[n+c-1]}}\right) = a_n(c)$. Then we see that $a_n(c)$ is a polynomial expression in c of degree n for $n \ge 1$. In fact, $a_1(c) = c$ and $a_2(c) = c^2 + 2c$.

Lemma 2.4. Let $n \ge 3$, $\mathbf{u} = (1, 2, ..., n)$ and $c \ge 1$. For a chain $\mathcal{C} \in \mathfrak{Ch}[n]$ of length i - 1 of the form $A_1 \subsetneq ... A_r \subsetneq A_{r+1} \subsetneq ... \subsetneq A_i = [n]$ with $n \in A_{r+1} \setminus A_r$ and $|A_{r+1} \setminus A_r| \ge 2$, there exists a unique chain, namely $\widetilde{\mathcal{C}} : A_1 \subsetneq ... A_r \subsetneq A_r \cup \{n\} \subsetneq A_{r+1} \subsetneq ... \subsetneq A_i = [n]$ in $\mathfrak{Ch}[n]$ of length i such that $\mu^{\mathbf{u}}(\mathcal{C}) = \mu^{\mathbf{u}}(\widetilde{\mathcal{C}})$.

Proof. Since $\mu^{\mathbf{u}}(\mathcal{C}) = \prod_{q=1}^{i} \left(\prod_{j \in A_q \setminus A_{q-1}} \mu_{j,A_q}^{\mathbf{u}} \right)$, the equality $\mu^{\mathbf{u}}(\mathcal{C}) = \mu^{\mathbf{u}}(\widetilde{\mathcal{C}})$ holds if $\mu_{n,A_r \cup \{n\}}^{\mathbf{u}} = \mu_{n,A_{r+1}}^{\mathbf{u}}$. Clearly, $\mu_{n,A_r \cup \{n\}}^{\mathbf{u}} = n - (|A_r| + 1 + n - (|A_r| + 1)) + c = c$ and $\mu_{n,A_{r+1}}^{\mathbf{u}} = n - (|A_{r+1}| + n - (|A_r| + 1)) + c = c$.

Let $\mathfrak{Ch}'[n]$ be the set of chains in Σ_n obtained from $\mathfrak{Ch}[n]$ on deleting chains \mathcal{C} and $\widetilde{\mathcal{C}}$ appearing in Lemma 2.4. Then

$$a_n(c) = \sum_{\mathcal{C} \in \mathfrak{Ch}([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}) = \sum_{\mathcal{C} \in \mathfrak{Ch}'([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^{\mathbf{u}}(\mathcal{C}).$$

For $\mathbf{u} = (1, 2, ..., n)$ and $c \ge 1$, the value $\mu^{\mathbf{u}}(\mathcal{C})$ depends on the chain \mathcal{C} and c. Thus, we write $\mu^{c}(\mathcal{C})$ for $\mu^{\mathbf{u}}(\mathcal{C})$. Hence, $a_{n}(c) = \sum_{\mathcal{C} \in \mathfrak{Ch}([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C}) = \sum_{\mathcal{C} \in \mathfrak{Ch}'([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^{c}(\mathcal{C})$.

For $n \geq 3$, the chains in $\mathfrak{Ch}'[n]$ can be divided into three types.

• A chain $\mathcal{C} : A_1 \subsetneq \ldots \subsetneq A_i = [n]$ in $\mathfrak{Ch}'[n]$ is called a *Type-I* chain if $A_1 = \{n\}$. The Type-I chains in $\mathfrak{Ch}'[n]$ are in one-to-one correspondence with chains in $\mathfrak{Ch}[n-1]$. This correspondence is given by

$$\mathcal{C} \mapsto \mathcal{C} \setminus A_1 : A_2 \setminus \{n\} \subsetneq \dots \subsetneq A_i \setminus \{n\} = [n-1].$$

As $\ell(\mathcal{C}) - 1 = \ell(\mathcal{C} \setminus A_1)$ and $\mu^c(\mathcal{C}) = (n-1+c) \ \mu^c(\mathcal{C} \setminus A_1)$, we have
$$\sum_{\substack{\mathcal{C} \in \mathfrak{Cb}'[n];\\ \text{Type-I}}} (-1)^{n-\ell(\mathcal{C})-1} \ \mu^c(\mathcal{C}) = (n-1+c) \ a_{n-1}(c).$$

• A chain $\mathcal{C} : A_1 \subsetneq \ldots \subsetneq A_i = [n]$ in $\mathfrak{Ch}'[n]$ is called a *Type-II* chain if $A_{i-1} = [n-1]$. The Type-II chains in $\mathfrak{Ch}'[n]$ are in one-to-one correspondence with chains in $\mathfrak{Ch}[n-1]$. This correspondence is given by

$$\mathcal{C} \mapsto \mathcal{C}|_{[n-1]} : A_1 \subsetneq \ldots \subsetneq A_{i-1} = [n-1].$$

As $\ell(\mathcal{C}) - 1 = \ell(\mathcal{C}|_{[n-1]})$ and $\mu^c(\mathcal{C}) = (c) \ \mu^{c+1}(\mathcal{C}|_{[n-1]})$, we have
$$\sum_{\substack{\mathcal{C} \in \mathfrak{Ch}'[n];\\ \text{Type-II}}} (-1)^{n-\ell(\mathcal{C})-1} \ \mu^c(\mathcal{C}) = (c) \ a_{n-1}(c+1).$$

• A chain $\mathcal{C} : A_1 \subsetneq \ldots \subsetneq A_i = [n]$ in $\mathfrak{C}\mathfrak{h}'[n]$ is called a *Type-III* chain if $n \in A_1$ and $|A_1| \ge 2$. The Type-III chains in $\mathfrak{C}\mathfrak{h}'[n]$ are in one-to-one correspondence with chains in $\mathfrak{C}\mathfrak{h}[n-1]$. This correspondence is given by

$$\mathcal{C} \mapsto \mathcal{C} \setminus \{n\} : A_1 \setminus \{n\} \subsetneq \ldots \subsetneq A_i \setminus \{n\} = [n-1].$$

As $\ell(\mathcal{C}) = \ell(\mathcal{C} \setminus \{n\})$ and $\mu^c(\mathcal{C}) = (c) \ \mu^c(\mathcal{C} \setminus \{n\})$, we have

$$\sum_{\substack{\mathcal{C}\in\mathfrak{Ch}'[n];\\\text{Type-III}}} (-1)^{n-\ell(\mathcal{C})-1} \ \mu^c(\mathcal{C}) = (-c) \ a_{n-1}(c).$$

Consider the poset Σ_n and form a poset $\Lambda_n = \Sigma_{n-1} \coprod (\Sigma_{n-1} * \{n\})$; for $n \ge 2$, where $\Sigma_{n-1} * \{n\} = \{A \cup \{n\} : A \in \Sigma_{n-1}\}$ is a subposet of Σ_n . Two elements $A, B \in \Lambda_n$ are comparable if either $A, B \in \Sigma_{n-1}$ are comparable or $A, B \in \Sigma_{n-1} * \{n\}$ are comparable or $\{A, B\} = \{[n-1], [n]\}$. The Hasse diagram of Λ_n for n = 3, 4 are given in FIGURE-1.

FIGURE 1

Clearly, Type-II chains in $\mathfrak{Ch}'[n]$ are chains in Λ_n with an edge $[n-1] \subsetneq [n]$, while Type-III chains in $\mathfrak{Ch}'[n]$ are chains in Λ_n containing [n] but not [n-1].

Proposition 2.5. For $n \ge 3$ and $c \ge 1$, $a_n(c) = \dim_k \left(\frac{R}{I_W^{[n+c-1]}}\right)$ satisfies the recurrence relation $a_n(c) = (n-1)a_{n-1}(c) + c \ a_{n-1}(c+1).$

Proof. As
$$a_n(c) = \sum_{\mathcal{C} \in \mathfrak{Ch}([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^c(\mathcal{C}) = \sum_{\mathcal{C} \in \mathfrak{Ch}'([n])} (-1)^{n-\ell(\mathcal{C})-1} \mu^c(\mathcal{C})$$
, we have

$$a_n(c) = \left[\sum_{\substack{\mathcal{C} \in \mathfrak{Ch}'[n]; \\ \text{Type-I}}} + \sum_{\substack{\mathcal{C} \in \mathfrak{Ch}'[n]; \\ \text{Type-III}}} + \sum_{\substack{\mathcal{C} \in \mathfrak{Ch}'[n]; \\ \text{Type-III}}} \right] (-1)^{n-\ell(\mathcal{C})-1} \mu^c(\mathcal{C})$$

$$= (n-1+c) a_{n-1}(c) + (c) a_{n-1}(c+1) + (-c) a_{n-1}(c)$$

$$= (n-1) a_{n-1}(c) + (c) a_{n-1}(c+1).$$

Replacing c by an indeterminate x, we consider polynomial $a_n(x)$. The recurrence relation in Proposition 2.5 holds for all $c \ge 1$, thus there exists a polynomial identity

(2.3)
$$a_n(x) = (n-1) a_{n-1}(x) + x a_{n-1}(x+1) \text{ for } n \ge 3.$$

Since $a_1(x) = x$ and $a_2(x) = x^2 + 2x$, on setting $a_0(x) = 1$, the recurrence relation (2.3) is valid for $n \ge 1$. Note that $a_n(0) = 0$ for $n \ge 1$.

Proposition 2.6. For $n \ge 1$, $a_n(x) = \sum_{r=1}^n s(n,r) \ x(x+1) \cdots (x+r-1)$.

Proof. Let $x^{\bar{r}} = x(x+1)\cdots(x+r-1)$ be the r^{th} rising power of x. Then $\{x^{\bar{r}}: r=0,1,\ldots\}$ is a \mathbb{Q} -basis of $\mathbb{Q}[x]$, where $x^{\bar{0}} = 1$. As $a_n(0) = 0$ for $n \ge 1$, we can express $a_n(x) = \sum_{r=1}^n \alpha_n(r)x^{\bar{r}}$. As $a_n(x)$ satisfy recurrence relation (2.3) for $n \ge 1$, it follows that $\alpha_n(r)$ and the (signless) Stirling number s(n,r) of the first kind satisfy the same recurrence relation with the same initial conditions (see [15]). Thus $\alpha_n(r) = s(n,r)$.

Theorem 2.7. For
$$n \ge 1$$
, $\dim_k \left(\frac{R}{I_W^{[n]}}\right) = a_n = \sum_{r=1}^n (r!) \ s(n,r).$

Proof. Since $a_n = a_n(1)$, theorem follows from Proposition 2.6.

Consider the integer sequence (A007840) in OEIS [14]. The *n*th term b_n of this sequence is the number of factorization of permutations of [n] into ordered cycles and $b_n = \sum_{r=1}^n (r!) s(n,r)$. It can be verified that

$$b_n = \operatorname{Per}([m_{ij}]_{n \times n}) = \operatorname{Per} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 1 & \dots & 1 \\ 1 & 1 & 3 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & n \end{bmatrix},$$

where $m_{ii} = i$ and $m_{ij} = 1$ for $i \neq j$. We recall that *permanent* $Per([m_{ij}]_{n \times n})$ of the matrix $[m_{ij}]_{n \times n}$ is given by $\sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n m_{i\sigma(i)}$. There are many combinatorial interpretation of the integer sequence (A007840). Theorem 2.7 gives a description of the integer sequence (A007840) in terms

of enumeration of standard monomials of $\frac{R}{I_W^{[n]}}$, or equivalently, in terms of the number $|\widetilde{\mathrm{PF}}_n|$ of restricted parking functions of length n.

We now show that enumeration of standard monomials of $\frac{R}{I_W^{[n]}}$ is related to enumeration of rooted-labelled unimodal forests on [n]. The concept of permutations avoiding patterns has been extended to many combinatorial objects, such as, trees, graphs and posets. Let F_n be the set of (unordered) rooted-labelled forests on the vertex set [n]. Then $|F_n| = (n+1)^{n-1}$. A rooted-labelled forest on [n] is said to avoid a pattern $\tau \in \mathfrak{S}_r$ if along each path from a root to a vertex, the sequence of labels do not contain a subsequence with the same relative order as in the patterns $\tau = \tau(1)\tau(2)\ldots\tau(r)$. Let $F_n(\tau)$ be the set of rooted-labelled forests on [n] that avoid pattern τ . For example, if $\tau = 21$ is a transposition, then $F_n(21)$ is the set of rooted-labelled increasing forests on [n]. In other words, labels on any path from a root to a vertex for a forest in $F_n(21)$ form an increasing sequence. Let $F_n(\tau^{(1)}, \ldots, \tau^{(s)})$ be the set of rooted-labelled forests on [n] that avoid various patterns are obtained in [1]. In particular, it is shown that $|F_n(213,312)| = \sum_{r=1}^n (r!) s(n,r)$ for $n \ge 1$. The rooted-labelled forests on [n] avoiding 213 and 312-patterns are precisely the unimodal forests. Since $|\widetilde{\mathrm{PF}}_n| = |F_n(213,312)|$, an explicit or algorithmic bijection $\phi : \widetilde{\mathrm{PF}}_n \longrightarrow F_n(213,312)|$ is desired.

Before we end this section, we describe an easy extension of Theorem 2.7.

Let $b, c \geq 1$ and $\mathbf{u} = (u_1, \ldots, u_n) \in \mathbb{N}^n$ with $u_i = u_1 + (i-1)b$. We have seen that the standard monomials of $\frac{R}{I_{\mathfrak{S}_n}(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-1]}}$ are of the form $\mathbf{x}^{\mathbf{p}}$, where $\mathbf{p} \in \mathrm{PF}_n(\lambda)$ is a λ -parking function of length n and $\lambda_i = u_n - u_i + c = (n-i)b + c$. Then $|\mathrm{PF}_n(\lambda)| = c(c+nb)^{n-1}$ (see [11, 12]). Let $|\widetilde{\mathrm{PF}}_n(\lambda)| = \dim_k \left(\frac{R}{I_W(\mathbf{u})^{[\mathbf{u}_n+\mathbf{c}-1]}}\right) = \widetilde{a_n}(c)$. Actually, $\widetilde{a_n}(c)$ depends on b also, but we are treating b to be a fixed constant. Also, $\widetilde{a_n}(c)$ is a polynomial expression in c.

Proposition 2.8. For $n \ge 3$, $b, c \ge 1$, $\widetilde{a_n}(c)$ satisfies a recurrence relation $\widetilde{a_n}(c) = ((n-1)b) \widetilde{a_{n-1}}(c) + (c) \widetilde{a_{n-1}}(c+b).$

Proof. From equation (2.2), we have

$$\widetilde{a_n}(c) = \dim_k \left(\frac{R}{I_W(\mathbf{u})^{[\mathbf{u_n} + \mathbf{c} - \mathbf{1}]}} \right) = \sum_{\mathcal{C} \in \mathfrak{Ch}([n])} (-1)^{n - \ell(\mathcal{C}) - 1} \mu^{\mathbf{u}}(\mathcal{C}),$$

where $u_i = u_1 + (i - 1)b$. For such **u**, Lemma 2.4 holds. Thus

$$\widetilde{a_n}(c) = \sum_{\mathcal{C} \in \mathfrak{Ch}([n])} (-1)^{n-\ell(\mathcal{C})-1} \ \mu^{\mathbf{u}}(\mathcal{C}) = \sum_{\mathcal{C} \in \mathfrak{Ch}'([n])} (-1)^{n-\ell(\mathcal{C})-1} \ \mu^{\mathbf{u}}(\mathcal{C}).$$

Now proceed as in the proof of Proposition 2.5.

Replacing c with an indeterminate x, we consider polynomial $\tilde{a}_n(x)$. Thus there is a polynomial identity

(2.4)
$$\widetilde{a_n}(x) = ((n-1)b) \ \widetilde{a_{n-1}}(x) + x \ \widetilde{a_{n-1}}(x+b) \text{ for } n \ge 3.$$

Since $\tilde{a}_1(x) = x$ and $\tilde{a}_2(x) = x^2 + 2bx$, on setting $\tilde{a}_0(x) = 1$, the recurrence relation (2.4) is valid for $n \ge 1$. Again, we have $\tilde{a}_n(0) = 0$ for $n \ge 1$.

Theorem 2.9. For $n \ge 1$, $\widetilde{a_n}(x) = \sum_{r=1}^n (b^{n-r} s(n,r)) x(x+b) \cdots (x+(r-1)b)$. In particular, for $\lambda = (\lambda_1, \ldots, \lambda_n)$ with $\lambda_i = (n-i)b+c$

$$|\widetilde{\mathrm{PF}}_n(\lambda)| = \widetilde{a_n}(c) = b^n \sum_{r=1}^n s(n,r) \; \frac{\Gamma(\frac{c}{b}+r)}{\Gamma(\frac{c}{b})},$$

where Γ is the gamma function, i.e., $\Gamma(x+1) = x \Gamma(x)$ for x > 0 and $\Gamma(1) = 1$.

Proof. As in the proof of Theorem 2.7, let

$$\widetilde{a_n}(x) = \sum_{r=1}^n \widetilde{\alpha_n}(r) \ x(x+b) \cdots (x+(r-1)b).$$

Then from recurrence relation (2.4), $\widetilde{\alpha_n}(r)$ satisfies the recurrence relation

$$\widetilde{\alpha_n}(r) = (n-1)b \ \widetilde{\alpha_{n-1}}(r) + \widetilde{\alpha_{n-1}}(r-1); \text{ for } 1 \le r \le n,$$

with initial conditions $\widetilde{\alpha_0}(1) = 0$ and $\widetilde{\alpha_1}(1) = 1$. It is straight forward to see that $\widetilde{\alpha_n}(r) = b^{n-r} s(n,r)$.

3. Some other cases

The Betti numbers and enumeration of standard monomials of the Artinian quotient $\frac{R}{I_S^{[n]}}$ for $S = \mathfrak{S}_n(132, 231), \mathfrak{S}_n(123, 132)$ and $\mathfrak{S}_n(123, 132, 213)$ are give in [7, 8]. In this section, the monomial ideal I_S and its Alexander dual $I_S^{[n]}$ are studied for various other subsets $S \subseteq \mathfrak{S}_n$ consisting of permutations avoiding patterns. For clarity of presentation, we divide these subsets into three cases.

Case 1. $S_1 = \mathfrak{S}_n(123, 132, 312), S_2 = \mathfrak{S}_n(123, 213, 231), S_3 = \mathfrak{S}_n(132, 213, 231).$ Case 2. $T_1 = \mathfrak{S}_n(123, 132, 231), T_2 = \mathfrak{S}_n(213, 312, 321).$ Case 3. $U = \mathfrak{S}_n(123, 231, 312).$

We have, $|S_a| = |T_b| = |U| = n$ for $1 \le a \le 3$ and $1 \le b \le 2$ (see [13]).

Lemma 3.1. The minimal generators of the Alexander dual $I_S^{[n]}$ for $S = S_a, T_b$ or U are given as follows.

(i)
$$I_{S_1}^{[\mathbf{n}]} = \left\langle x_{\ell}^{\ell+1}, x_i^i \left(\prod_{j>i}^n x_j \right) : 1 \le \ell \le n-1; \ 1 \le i \le n \right\rangle.$$

10

(ii)
$$I_{S_2}^{[\mathbf{n}]} = \langle x_{\ell}^n, x_i^i x_j^{j-1} : 1 \le \ell \le n; \ 1 \le i < j \le n \rangle.$$

(iii) $I_{S_3}^{[\mathbf{n}]} = \langle x_{\ell}^n, x_i^i x_j^{n-(j-i)} : 1 \le \ell \le n; \ 1 \le i < j \le n \rangle.$
(iv) $I_{T_1}^{[\mathbf{n}]} = \langle x_{\ell}^{\ell+1}, x_n^n, x_i^i x_n^i : 1 \le \ell \le n-1; \ 1 \le i < n \rangle.$
(v) $I_{T_2}^{[\mathbf{n}]} = \langle x_{\ell}^{n-\ell+1}, x_n^n, x_i^{n-i} x_n^{n-i} : 1 \le \ell \le n-1; \ 1 \le i < n \rangle.$
(vi) $I_U^{[\mathbf{n}]} = \langle \prod_{j \in A} x_j^{\nu_{j,A}} : A = \{j_1, \dots, j_t\} \in \Sigma_n \rangle, \text{ where } \nu_{j_1,A} = n - (j_{|A|} - j_1) \text{ and } \nu_{j_i,A} = j_i - j_{i-1}$
for $i \ge 2$, provided $j_1 < j_2 < \dots < j_t.$

Proof. We recall that a vector $\mathbf{b} \in \mathbb{N}^n$ satisfying $\mathbf{b} \leq \mathbf{n}$ (i.e., $b_i \leq n$) is maximal with $\mathbf{x}^{\mathbf{b}} \notin I_S$ if and only if $\mathbf{x}^{\mathbf{n}-\mathbf{b}}$ is a minimal generator of $I_S^{[\mathbf{n}]}$ (see Proposition 5.23 of [9]). Now proceeding as in the proof of Lemma 2.1 and 2.2 of [8], it is easy to get the minimal generators of the Alexander duals. We sketch a proof of part (i) and (vi) as proof of other parts are on similar lines.

For $\ell \in [n-1]$, let $\mathbf{b}_{\ell} = (n, \ldots, n-\ell-1, \ldots, n)$ (ℓ^{th} coordinate $n-\ell-1$, elsewhere n). Then $\mathbf{x}^{\mathbf{b}_{\ell}} \notin I_{S_1}$ and this gives the minimal generator $x_{\ell}^{\ell+1} \in I_{S_1}^{[\mathbf{n}]}$. For $i \in [n]$, let $\mathbf{b}_{i,n} = (n, \ldots, n, n-i, n-1, \ldots, n-1) \in \mathbb{N}^n$ (i.e., i^{th} coordinate n-i, first i-1 coordinates n, and the last n-i coordinates n-1). Again, $\mathbf{x}^{\mathbf{b}_{i,n}} \notin I_{S_1}$ and this gives the minimal generator $x_i^i(x_{i+1} \ldots x_n) \in I_{S_1}^{[\mathbf{n}]}$. This proves part (i).

If $A = \{\ell\} \in \Sigma_n$, then taking $\widehat{\mathbf{b}}_{\ell} = (n, \dots, 0, \dots, n)$ (i.e., 0 at ℓ^{th} place and elsewhere n), we get the minimal generator $x_{\ell}^n \in I_U^{[\mathbf{n}]}$. For $A = \{j_1, \dots, j_t\} \in \Sigma_n$ with $t \ge 2$ and $j_1 < \dots < j_t$, let $\widehat{\mathbf{b}}_A = (b_1, \dots, b_n)$, where $b_{j_1} = j_t - j_1$, $b_{j_i} = n - (j_i - j_{i-1})$ (for $i \ge 2$) and $b_r = n$ (for $r \notin A$). Claim : $\mathbf{x}^{\widehat{\mathbf{b}}_A} \notin I_U$.

Otherwise, there exists a $\sigma \in U$ such that \mathbf{x}^{σ} divides $\mathbf{x}^{\hat{\mathbf{b}}_A}$. Thus $\sigma(j_1) \leq j_t - j_1$ and $\sigma(j_i) \leq n - (j_i - j_{i-1})$ for $2 \leq i \leq t$. We see that

$$\sigma(j_1) > \sigma(j_2) > \ldots > \sigma(j_t).$$

If $\sigma(j_{i-1}) < \sigma(j_i)$ for $1 < i \leq t$, then $\sigma(j_{i-1}), \sigma(j_i) \in [n - (j_i - j_{i-1})]$. But $|[n - (j_i - j_{i-1})]| = n - (j_i - j_{i-1}) + 1$, where $[a, b] = \{m \in \mathbb{Z} : a \leq m \leq b\}$ denotes an integer interval for $a, b \in \mathbb{Z}$. Thus there exists $\ell \in [n] \setminus [j_{i-1}, j_i]$ such that $\sigma(\ell) \notin [n - (j_i - j_{i-1})]$. This shows that $\sigma(j_{i-1}) < \sigma(j_i) < \sigma(\ell)$. Hence, σ has a 123 or a 312-pattern, a contradiction to $\sigma \in U$. Now $\sigma(j_t) < \sigma(j_1) \leq j_t - j_1$ implies that $j_t - j_1 \geq 2$. Again, $\sigma(j_1), \sigma(j_t) \in [j_t - j_1]$, but $|[j_t - j_1]| = j_t - j_1 < |[j_1, j_t]| = j_t - j_1 + 1$. Thus there exists $\ell \in [j_1 + 1, j_t - 1]$ such that $\sigma(\ell) > j_t - j_1$. This shows that, $\sigma(j_t) < \sigma(j_1) < \sigma(\ell)$ with $j_1 < \ell < j_t$ demonstrating that σ has a 231-pattern, a contradiction. This proves our claim. It can be shown that $\widehat{\mathbf{b}}_A$ has the desired maximality property and hence $\mathbf{x}^{\mathbf{n} - \widehat{\mathbf{b}}_A}$ is a minimal generator of $I_U^{[\mathbf{n}]}$.

We shall show that all monomial ideals in Lemma 3.1 are order monomial ideals. Let (P, \preceq) be a finite poset and let $\{\omega_u : u \in P\}$ be a set of monomials in R. The monomial ideal $I = \langle \omega_u : u \in P \rangle$

is said to be an order monomial ideal if for any pair $u, v \in P$, there is an upper bound $w \in P$ of u and v such that ω_w divides the least common multiple $\operatorname{LCM}(\omega_u, \omega_v)$ of ω_u and ω_v . The order complex $\Delta(P)$ of a finite poset P is a simplicial complex, whose r-dimensional faces are chains $u_1 \prec u_2 \prec \ldots \prec u_{r+1}$ of length r in P. If F is a face of $\Delta(P)$, then monomial label $\mathbf{x}^{\alpha(F)}$ (say) on F is the $\operatorname{LCM}(\omega_u : u \in F)$. Let

$$\mathbb{F}_*(\Delta(P)):\cdots\to\mathbb{F}_i\to\mathbb{F}_{i-1}\to\cdots\to\mathbb{F}_1\to\mathbb{F}_0\to0$$

be the free *R*-complex associated to the (labelled) simplicial complex $\Delta(P)$. If $\mathbb{F}_*(\Delta(P))$ is exact at \mathbb{F}_i for $i \geq 1$, then we say that $\mathbb{F}_*(\Delta(P))$ is a *cellular resolution* of *I* supported on $\Delta(P)$ (see [2, 3, 9]).

It is convenient to study the monomial ideal I_S in Lemma 3.1 according to the three cases already described.

CASE-1. To each monomial ideal $I_{S_a}^{[\mathbf{n}]}$, we associate a poset $\Sigma_n(S_a)$ (for $1 \le a \le 3$) as follows.

- (i) Let $\Sigma_n(S_1) = \{\{\ell\} : 1 \le \ell \le n-1\} \cup \{[i,n] : 1 \le i \le n\}$, where $[i,n] = \{a \in \mathbb{N} : i \le a \le n\}$ and $[n,n] = \{n\}$. We define a poset structure on $\Sigma_n(S_1)$ by describing cover relations. For $\ell, \ell' \in [n-1]$ and $i, i' \in [n], \{\ell\}$ covers $\{\ell'\}$ (or [i',n]), if $\ell' = \ell + 1$ (respectively, $i' = \ell + 2$). Also, [i,n] covers $\{\ell'\}$ (or [i',n]) if $i = \ell'$ (respectively, i' = i + 1). The monomial labels $\omega_{\{\ell\}} = x_{\ell}^{\ell+1}$ and $\omega_{[i,n]} = x_i^i x_{i+1} \dots x_n$. Set $\mu_{j,C}^1$ for $C \in \Sigma_n(S_1)$ so that $\omega_C = \prod_{j \in C} x_j^{\mu_{j,C}^1}$. The finite poset $\Sigma_n(S_1)$ appeared in [8].
- (ii) Let $\Sigma_n(S_2) = \{\{\ell\} : 1 \leq \ell \leq n\} \cup \{\{i, j\} : 1 \leq i < j \leq n\}$. A poset structure on $\Sigma_n(S_2)$ is given by the following cover relations. For $i, j, i', j' \in [n]$ with i < j and $i' < j', \{i, j\}$ covers $\{i', j'\}$, if either (i = i' and j' = j + 1) or (j = i' and j' = j + 1). Also, $\{i, j\}$ covers $\{i'\}$ if either (i = i' and j = n) or (i' = j = n). In this case, the monomial labels $\omega_{\{\ell\}} = x_{\ell}^n$ and $\omega_{\{i,j\}} = x_i^i x_j^{j-1}$. Set $\mu_{j,C}^2$ for $C \in \Sigma_n(S_2)$ so that $\omega_C = \prod_{j \in C} x_j^{\mu_{j,C}^2}$.
- (iii) Let $\Sigma_n(S_3) = \{\{\ell\} : 1 \leq \ell \leq n\} \cup \{\{i, j\} : 1 \leq i < j \leq n\}$. Again, a poset structure on $\Sigma_n(S_3)$ is given by the following cover relations. For $i, j, i', j' \in [n]$ with i < j and i' < j', $\{i, j\}$ covers $\{i', j'\}$, if either (i = i' and j = j' + 1) or (i = i' 1 and j' = j). Also, $\{i, j\}$ covers $\{i'\}$ if either (i = i' and j = i + 1) or (j = i' and j = i + 1). Again, the monomial labels $\omega_{\{\ell\}} = x_{\ell}^n$ and $\omega_{\{i,j\}} = x_i^i x_j^{n-(j-i)}$. Set $\mu_{j,C}^3$ for $C \in \Sigma_n(S_3)$ so that $\omega_C = \prod_{j \in C} x_j^{\mu_{j,C}^3}$.

The Hasse diagrams of $\Sigma_4(S_1)$, $\Sigma_4(S_2)$, $\Sigma_4(S_3)$ are given in FIGURE-2.

Proposition 3.2. (i). The ideal $I_{S_a}^{[\mathbf{n}]}$ is an order monomial ideal for $1 \le a \le 3$. (ii). The free complex $\mathbb{F}_*(\Delta(\Sigma_n(S_a)))$ is the cellular resolution of $I_{S_a}^{[\mathbf{n}]}$ supported on the order complex $\Delta(\Sigma_n(S_a))$ for $1 \le a \le 3$. INTEGER SEQUENCES AND MONOMIAL IDEALS

FIGURE 2

Proof. Given the poset structure on $\Sigma_n(S_a)$, it is a straight forward verification that $I_{S_a}^{[\mathbf{n}]}$ is an order monomial ideal. Postnikov and Shapiro [12] showed that the free complex $\mathbb{F}_*(\Delta(P))$ is a cellular resolution of the order monomial ideal $I = \langle \omega_u : u \in P \rangle$ (see Theorem 2.4 of [8]).

Remark 3.3. The cellular resolution $\mathbb{F}_*(\Delta(\Sigma_n(S_a)))$ is minimal for a = 1, but nonminimal for a = 2, 3. Also, the r^{th} Betti number $\beta_r(I_{S_1}^{[\mathbf{n}]})$ is given by (see Theorem 2.7 of [8])

$$\beta_r(I_{S_1}^{[\mathbf{n}]}) = \sum_{s=0}^{r+1} \binom{n-1}{s} \binom{n-s}{r+1-s}; \quad (0 \le r \le n-1)$$

We now identify standard monomials of $\frac{R}{I_c^{[n]}}$. Consider the following subsets of the set PF_n of parking functions $\mathbf{p} = (p_1, \ldots, p_n)$ of length n.

- (i) $\operatorname{PF}_n^1 = \{ \mathbf{p} \in \operatorname{PF}_n : p_t \leq t, \forall t \text{ and if } p_i = i, \text{ then } p_j = 0 \text{ for some } j \in [i, n] \}.$ (ii) $\operatorname{PF}_n^2 = \{ \mathbf{p} \in \operatorname{PF}_n : \text{if } p_i \geq i, \text{ then } p_j < j 1 \text{ for all } j \in [i+1,n] \}.$ (iii) $\operatorname{PF}_n^3 = \{ \mathbf{p} \in \operatorname{PF}_n : \text{if } p_i \geq i, \text{ then } p_j < n (j-i) \text{ for all } j \in [i+1,n] \}.$

In view of Lemma 3.1, $\mathbf{x}^{\mathbf{p}} \notin I_{S_a}^{[\mathbf{n}]}$ if and only if $\mathbf{p} \in \mathrm{PF}_n^a$ for $1 \leq a \leq 3$. Thus (fine) Hilbert series $H\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{x}\right)$ of $\frac{R}{I_{S_a}^{[\mathbf{n}]}}$ is given by $H\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{x}\right) = \sum_{\mathbf{p} \in \mathrm{PF}_n^a} \mathbf{x}^{\mathbf{p}}$. In particular, $|\mathrm{PF}_n^a| = \dim_k\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}\right) = \sum_{\mathbf{p} \in \mathrm{PF}_n^a} |\mathbf{x}^{\mathbf{p}}|$. $H\left(\frac{R}{I_{S_a}^{[n]}},\mathbf{1}\right)$, where $\mathbf{1} = (1,\ldots,1)$. Using the cellular resolution $\mathbb{F}_*(\Delta(\Sigma_n(S_a)))$ supported on the

order complex $\Delta(\Sigma_n(S_a))$, the (fine) Hilber series $H\left(\frac{R}{I_{S_n}^{[n]}},\mathbf{x}\right)$ is given by

(3.1)
$$H\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{x}\right) = \frac{\sum_{i=0}^{n} (-1)^{i} \sum_{(C_1, \dots, C_i) \in \mathcal{F}_{i-1}^{a}} \prod_{q=1}^{i} \left(\prod_{j \in C_q \setminus C_{q-1}} x_j^{\mu_{j,C_q}^{a}}\right)}{(1-x_1) \cdots (1-x_n)},$$

where \mathcal{F}_{i-1}^a is the set of i-1-dimensional faces of $\Delta(\Sigma_n(S_a)), (C_1, \ldots, C_i) \in \mathcal{F}_{i-1}^a$ is a (strict) chain $C_1 \prec \ldots \prec C_i$ of length $i-1, C_0 = \emptyset$ and $\mu_{j,C}^a$ is as in the definition of poset $\Sigma_n(S_a)$.

Proposition 3.4. The number of standard monomials of $\frac{R}{I_{\alpha}^{[n]}}$ is given by

$$\dim_k \left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}\right) = \sum_{i=1}^n (-1)^{n-i} \sum_{\substack{(C_1,\dots,C_i) \in \mathcal{F}_{i-1}^a \\ C_1 \cup \dots \cup C_i = [n]}} \prod_{q=1}^i \left(\prod_{j \in C_q \setminus C_{q-1}} \mu_{j,C_q}^a\right),$$

where summation is carried over all i - 1-dimensional faces $(C_1, \ldots, C_i) \in \mathcal{F}_{i-1}^a$ of $\Delta(\Sigma_n(S_a))$ with $C_1 \cup \ldots \cup C_i = [n]$ and $C_0 = \emptyset$. Also,

$$\dim_k \left(\frac{R}{I_{S_a}^{[\mathbf{n}]}} \right) = \sum_{\substack{0 \le i \le n; \\ (C_1, \dots, C_i) \in \mathcal{F}_{i-1}^a}} (-1)^i \left(\prod_{q=1}^i (\prod_{j \in C_q \setminus C_{q-1}} (\mu_{j,\{j\}}^a - \mu_{j,C_q}^a)) \right) \left(\prod_{l \notin C_i} \mu_{l,\{l\}}^a \right),$$

where summation is carried over all faces $(C_1, \ldots, C_i) \in \mathcal{F}_{i-1}^a$ including the empty face $C_0 = \emptyset$.

Proof. As $|\mathrm{PF}_n^a| = \dim_k \left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}\right) = H\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{1}\right)$, letting $\mathbf{x} \to \mathbf{1}$ in the rational function expression 3.1 of $H\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{x}\right)$, and applying L'Hospital's rule, we get the first formula. For more detail, see the proof of Proposition 4.5 of [6]. In order to get the second formula, put $y_j = \frac{1}{x_j}$ in (3.1) to get a rational function, say $\tilde{H}\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{y}\right)$. Now letting $\mathbf{y} \to \mathbf{1}$ in the product $\left(\prod_{j=1}^n y_j^{\mu_{j,\{j\}}^n-1}\right) \tilde{H}\left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}, \mathbf{y}\right)$, we get the second formula, which is due to Postnikov and Shapiro [12].

Theorem 3.5. The number of standard monomials of $\frac{R}{I_c^{[n]}}$ is given by

$$\dim_k \left(\frac{R}{I_{S_a}^{[\mathbf{n}]}}\right) = |\mathrm{PF}_n^a| = \frac{(n+1)!}{2}, \quad (1 \le a \le 3)$$

Proof. As $\dim_k \left(\frac{R}{I_{S_a}^{[n]}}\right) = 1$ for n = 1, we assume that n > 1. (i) Let a = 1. Using the second formula

$$\dim_k \left(\frac{R}{I_{S_1}^{[\mathbf{n}]}} \right) = \sum_{\substack{0 \le i \le n; \\ (C_1, \dots, C_i) \in \mathcal{F}_{i-1}^1}} (-1)^i \left(\prod_{q=1}^i (\prod_{j \in C_q \setminus C_{q-1}} (\mu_{j, \{j\}}^1 - \mu_{j, C_q}^1)) \right) \left(\prod_{l \notin C_i} \mu_{l, \{l\}}^1 \right)$$

in Proposition 3.4, we shall show that

(3.2)
$$\dim_k \left(\frac{R}{I_{S_1}^{[\mathbf{n}]}}\right) = n(n!) + (n-1)((n-1)!) \sum_{\substack{1 \le i \le n;\\ 0 = j_0 < j_1 < \dots < j_i < n}} (-1)^i \frac{1}{\prod_{q=2}^i j_q}$$

The term corresponding to the empty chain is n(n!). Also, for a (strict) chain $C_1 \prec \ldots \prec C_i$ in \mathcal{F}_{i-1}^1 , the corresponding term in the second formula is zero if the chain has a singleton member. Thus surviving terms are of the form $C_l = [j_{i-l+1}, n]$ for some sequence $0 = j_0 < j_1 < \ldots < j_i < n$. Note that the term corresponding to such a chain is precisely, $(-1)^i \frac{(n-1)((n-1)!)}{j_{2j_3 \dots j_i}}$. This proves (3.2). Let $\alpha_n = \sum_{i \ge 1} (-1)^{i+1} \sum_{0=j_0 < j_1 < \dots < j_i < n} \frac{1}{\prod_{q=2}^i j_q}$. Clearly, $\alpha_1 = 0$. For n > 1, we claim that $\alpha_n = \frac{n}{2}$. We have,

$$\begin{aligned} \alpha_n &= \sum_{i \ge 1} (-1)^{i+1} \sum_{\substack{0 = j_0 < j_1 < \dots < j_i < n-1}} \frac{1}{\prod_{q=2}^i j_q} + \sum_{i \ge 1} (-1)^{i+1} \sum_{\substack{0 = j_0 < j_1 < \dots < j_i = n-1}} \frac{1}{\prod_{q=2}^i j_q} \\ &= \alpha_{n-1} + \frac{1}{n-1} \sum_{i \ge 2} (-1)^{i+1} \sum_{\substack{0 = j_0 < j_1 < \dots < j_{i-1} < n-1}} \frac{1}{\prod_{q=2}^{i-1} j_q} + 1 \\ &= \alpha_{n-1} - \frac{1}{n-1} \alpha_{n-1} + 1 = \frac{n-2}{n-1} \alpha_{n-1} + 1. \end{aligned}$$

On solving this recurrence relation, we get $\alpha_n = \frac{n}{2}$ for n > 1. Now in view of (3.2),

$$\dim_k \left(\frac{R}{I_{S_1}^{[\mathbf{n}]}}\right) = n(n!) + (n-1)((n-1)!)\left(\frac{-n}{2}\right) = \frac{(n+1)!}{2}$$

(ii) Let a = 2. As $\dim_k \left(\frac{R}{I_{S_a}^{[n]}}\right) = 1$ or 3 for n = 1 or 2, respectively, we assume that n > 2. Suppose $\mathcal{F}^2[n] = \bigcup_{i=1}^n \{(C_1, \dots, C_i) \in \mathcal{F}_{i-1}^2 : \bigcup_{j=1}^i C_j = [n]\}$. For $\mathcal{C} = (C_1, \dots, C_i) \in \mathcal{F}^2[n]$, we write $\mu^2(\mathcal{C}) = \prod_{q=1}^i \left(\prod_{j \in C_q \setminus C_{q-1}} \mu_{j,C_q}^2\right)$. In view of the first formula in Proposition 3.4, we have

$$\tilde{\alpha}_n = \dim_k \left(\frac{R}{I_{S_2}^{[\mathbf{n}]}} \right) = \sum_{\mathcal{C} \in \mathcal{F}^2[n]} (-1)^{n-\ell(\mathcal{C})-1} \mu^2(\mathcal{C}).$$

Now decompose $\mathcal{F}^2[n] = \mathcal{F}^2[n]' \coprod \mathcal{F}^2[n]''$, where $\mathcal{C} = (C_1, \ldots, C_i) \in \mathcal{F}^2[n]'$ if $|C_1| = 1$ and $\mathcal{C} \in \mathcal{F}^2[n]''$ if $|C_1| = 2$. Then $\tilde{\alpha}_n = \tilde{\alpha}'_n + \tilde{\alpha}''_n$, where

$$\tilde{\alpha}'_n = \sum_{\mathcal{C}\in\mathcal{F}^2[n]'} (-1)^{n-\ell(\mathcal{C})-1} \mu^2(\mathcal{C}) \quad \text{and} \quad \tilde{\alpha}''_n = \sum_{\mathcal{C}\in\mathcal{F}^2[n]''} (-1)^{n-\ell(\mathcal{C})-1} \mu^2(\mathcal{C}).$$

A chain $C = (C_1, \ldots, C_i) \in \mathcal{F}^2[n]'$ is called a *Type-II or Type-III* chain, if $(C_1, C_2) = (\{i\}, \{i, n\})$ for i < n, $(C_1, C_2) = (\{n\}, \{i, n\})$ for i < n or $(C_1, C_2) = (\{n\}, \{i, n-1\})$ for i < n-1,

respectively. Now

$$\begin{split} \tilde{\alpha}'_n &= \left[\sum_{\substack{\mathcal{C} \in \mathcal{F}^2[n]'; \\ \text{Type-I}}} + \sum_{\substack{\mathcal{C} \in \mathcal{F}^2[n]'; \\ \text{Type-II}}} + \sum_{\substack{\mathcal{C} \in \mathcal{F}^2[n]'; \\ \text{Type-III}}} \right] \ (-1)^{n-\ell(\mathcal{C})-1} \ \mu^2(\mathcal{C}) \\ &= n \tilde{\alpha}'_{n-1} - \frac{n}{n-1} \tilde{\alpha}''_n + n \tilde{\alpha}''_{n-1} = n \tilde{\alpha}_{n-1} - \frac{n}{n-1} \tilde{\alpha}''_n. \end{split}$$

Claim : $\tilde{\alpha}''_n = -\frac{(n-1)(n!)}{2}$.

For $1 \le t \le n-1$, consider saturated chains $\mathcal{C}^{(t)}$ in $\mathcal{F}^2[n]''$ of the form

$$\mathcal{C}^{(t)}: \{t, n\} \prec \{t, n-1\} \prec \ldots \prec \{t, t+1\} \prec \{t-1, t\} \prec \ldots \prec \{1, 2\}.$$

Then $\mu^2(\mathcal{C}^{(t)}) = t((n-1)!)$. Any other chain in $\mathcal{F}^2[n]''$ is either of the form

$$\mathcal{C}: \{r, n\} \prec \ldots \prec \{r, r+1\} \prec \ldots \prec \{s-1, s\} \prec \{l, s-1\} \prec \{l, s-2\} \prec \ldots \prec \ldots$$

or

$$\mathcal{C}': \{r, n\} \prec \ldots \prec \{r, r+1\} \prec \ldots \prec \{s'-1, s'\} \prec \{l', s'-2\} \prec \ldots \prec \ldots, \quad (\text{for } 3 \le r \le n-1),$$

where s (or s') is the largest integer such that $\{l, s-1\}$ covers $\{s-1, s\}$ in \mathcal{C} (or $\{l', s'-1\}$ is not in \mathcal{C}') for some l < s-2 (or l' < s'-2). Let $\tilde{\mathcal{C}} = \mathcal{C} \setminus \{\{l, s-1\}\}$ be the chain obtained from \mathcal{C} on deleting $\{l, s-1\}$ and $\tilde{\mathcal{C}}' = \mathcal{C}' \cup \{\{l', s'-1\}\}$ be the chain obtained from \mathcal{C}' on adjoining $\{l', s'-1\}$. Clearly, $\mu^2(\mathcal{C}) = \mu^2(\tilde{\mathcal{C}})$ and $\mu^2(\mathcal{C}') = \mu^2(\tilde{\mathcal{C}}')$. As length $\ell(\mathcal{C}) = \ell(\tilde{\mathcal{C}}) + 1$ and $\ell(\mathcal{C}') = \ell(\tilde{\mathcal{C}}') - 1$, the terms in $\tilde{\alpha}''_n = \sum_{\mathcal{C} \in \mathcal{F}^2[n]''} (-1)^{n-\ell(\mathcal{C})-1} \mu^2(\mathcal{C})$ corresponding to chains $\mathcal{C} \in \mathcal{F}^2[n]''$ different from $\mathcal{C}^{(t)}$ cancel out. Thus

$$\tilde{\alpha}_n'' = \sum_{t=1}^{n-1} (-1)^{n-\ell(\mathcal{C}^{(t)})-1} \ \mu^2(\mathcal{C}^{(t)}) = \sum_{t=1}^{n-1} (-1)^{n-(n-2)-1} \ t((n-1)!) = -\frac{(n-1)(n!)}{2}$$

Now $\tilde{\alpha}_n = \tilde{\alpha}'_n + \tilde{\alpha}''_n = n\tilde{\alpha}_{n-1} - \frac{n}{n-1}\tilde{\alpha}''_n + \tilde{\alpha}''_n = n\tilde{\alpha}_{n-1} + \frac{n!}{2}$. On solving this recurrence, we get $\tilde{\alpha}_n = \frac{(n+1)!}{2}$, as desired.

(iii) Let a = 3 and assume n > 2. Proceeding as in part(ii), we write

$$\dim_k\left(\frac{R}{I_{S_3}^{[\mathbf{n}]}}\right) = \sum_{\mathcal{C}\in\mathcal{F}^3[n]} (-1)^{n-\ell(\mathcal{C})-1} \mu^3(\mathcal{C}),$$

where $\mathcal{F}^3[n]$ is the collection of all chains $\bar{\mathcal{C}} = (C_1, \dots, C_i)$ in \mathcal{F}^3_{i-1} (for some *i*) with $\cup_{j=1}^i C_j = [n]$ and $\mu^3(\bar{\mathcal{C}}) = \prod_{q=1}^i \left(\prod_{j \in C_q \setminus C_{q-1}} \mu^3_{j,C_q}\right)$. For $1 \le t \le n-1$, let $\bar{\mathcal{C}}^{(t)}$ be the chain in $\mathcal{F}^3[n]$ of the form $\bar{\mathcal{C}}^{(t)} : \{t\} \prec \{t, t+1\} \prec \ldots \prec \{t, n-1\} \prec \{t, n\} \prec \{t-1, n\} \prec \ldots \prec \{1, n\}$

16

and $\bar{\mathcal{C}}^{(t)} \setminus \{\{t\}\}\$ is the chain obtained from $\bar{\mathcal{C}}^{(t)}$ by deleting the first element $\{t\}$. Now $\mu^3(\bar{\mathcal{C}}^{(t)}) = n!$ and $\mu^3(\bar{\mathcal{C}}^{(t)} \setminus \{\{t\}\}) = t((n-1)!)$. There is one more chain $\bar{\mathcal{C}} : \{n\} \prec \{n-1,n\} \prec \ldots \prec \{1,n\}$ in $\mathcal{F}^3[n]$, with $\mu^3(\bar{\mathcal{C}}) = n!$. As in part (ii), it can be shown that the terms corresponding to remaining chains cancel out. Thus

$$\dim_k\left(\frac{R}{I_{S_3}^{[\mathbf{n}]}}\right) = n(n!) - (1+2+\ldots+(n-1))((n-1)!) = \frac{(n+1)!}{2}.$$

Theorem 3.5 shows that the integer sequence $\left\{ \dim_k \left(\frac{R}{I_{S_a}^{[\mathbf{n}]}} \right) = \frac{(n+1)!}{2} \right\}_{n=1}^{\infty}$ for $1 \le a \le 3$ is the integer sequence (A001710) in OEIS [14]. As $|\mathrm{PF}_n^a| = \frac{(n+1)!}{2}$, it is expected that the set PF_n^a could be easily enumerated. Let $\mathbf{p} \in \mathrm{PF}_n^1$. Then $p_t \le t$; $\forall t$ and $p_i = i$ implies that $p_j = 0$ for

some $j \in [i+1,n]$. We count $\mathbf{p} \in \mathrm{PF}_n^1$ according to the value s of the largest $t \in [n]$ with $p_t = t$. If $p_t < t; \forall t \in [n]$, then we take s = 0. As $p_n < n$, we have $0 \le s \le n-1$. For s = 0, any $\mathbf{p} = (p_1, \ldots, p_n) \in \mathbf{N}^n$ such that $p_t < t; \forall t$ is a parking function and number of such $\mathbf{p} \in \mathrm{PF}_n^1$ is precisely $\prod_{t=1}^n (t) = n!$. Now let $s \ge 1$. Any sequence $\mathbf{p} = (p_1, \ldots, p_n) \in \mathbb{N}^n$ satisfying conditions

(3.3)
$$p_t \le t \ \forall t < s, \ p_s = s, \ \text{and} \ p_j < j \ \forall j > s, \text{with at least one} \ p_j = 0,$$

is always a parking function. The number of \mathbf{p} satisfying conditions (3.3) is

$$\prod_{t=1}^{s-1} (t+1) \left[\prod_{j=s+1}^{n} j - \prod_{j'=s+1}^{n} (j'-1) \right] = (n-s)((n-1)!)$$

This shows that $|PF_n^1| = \sum_{s=0}^{n-1} (n-s)((n-1)!) = \frac{(n+1)!}{2}$. Similarly, PF_n^a for a = 2, 3 can also be enumerated. However, it is still an interesting problem to construct an (explicit) bijection $\phi: PF_n^a \longrightarrow F_{n+1}(21)$, where $F_{n+1}(21)$ is the set of rooted-labelled increasing forests on [n+1].

CASE-2: To monomial ideals $I_{T_1}^{[\mathbf{n}]}$ and $I_{T_2}^{[\mathbf{n}]}$, we associate finite posets $\Sigma_n(T_1)$ and $\Sigma_n(T_2)$ respectively, as below.

- (i) Let $\Sigma_n(T_1) = \{\{\ell\}, \{i, n\} : 1 \leq \ell \leq n-1; 1 \leq i \leq n\}$, where $\{n, n\} = \{n\}$. We define a poset structure on $\Sigma_n(T_1)$ by describing cover relations. For $\ell, \ell' \in [n-1]$ and $i, i' \in [n], \{\ell\}$ covers $\{\ell'\}$, if $\ell' = \ell + 1$. Also, $\{i, n\}$ covers $\{\ell'\}$ (or $\{i', n\}$) if $i = \ell'$ (respectively, i' = i + 1). The monomial labels $\omega_{\{\ell\}} = x_{\ell}^{\ell+1}, \ \omega_{\{n\}} = x_n^n$ and $\omega_{\{i,n\}} = x_i^i x_n^i$ for $1 \leq \ell, i < n$. Set $\hat{\mu}_{j,C}^1$ for $C \in \Sigma_n(T_1)$ so that $\omega_C = \prod_{j \in C} x_j^{\hat{\mu}_{j,C}^1}$.
- (ii) Let $\Sigma_n(T_2) = \Sigma_n(T_1)$. But the poset structure on $\Sigma_n(T_2)$ is obtained by interchanging $\{i\}$ with $\{n-i\}$ (and also, $\{i,n\}$ with $\{n-i,n\}$)(for $1 \le i < n$) in the poset $\Sigma_n(T_1)$. The cover relations of the poset $\Sigma_n(T_2)$ are given as follows. For $\ell, \ell', i, i' \in [n-1], \{\ell\}$ covers $\{\ell'\}$, if $\ell' = \ell 1$ and $\{i,n\}$ covers $\{\ell'\}$ (or $\{i',n\}$) if $i = \ell'$ (respectively, i' = i 1). In addition,

{1, n} covers {n}. The monomial labels $\omega_{\{\ell\}} = x_{\ell}^{n-\ell+1}$, $\omega_{\{n\}} = x_n^n$ and $\omega_{\{i,n\}} = x_i^{n-i}x_n^{n-i}$ for $1 \leq \ell, i < n$. Set $\hat{\mu}_{j,C}^2$ for $C \in \Sigma_n(T_1)$ so that $\omega_C = \prod_{j \in C} x_j^{\hat{\mu}_{j,C}^2}$. The Hasse diagram of $\Sigma_4(T_1)$ and $\Sigma_4(T_2)$ are given in FIGURE-3.

FIGURE 3

Proposition 3.6. (i). The ideals $I_{T_1}^{[\mathbf{n}]}$ and $I_{T_2}^{[\mathbf{n}]}$ are order monomial ideals. (ii). The free complex $\mathbb{F}_*(\Delta(\Sigma_n(T_b)))$ is the minimal cellular resolution of $I_{S_a}^{[\mathbf{n}]}$ supported on the order complex $\Delta(\Sigma_n(T_b))$ for $1 \leq b \leq 2$. Thus the r^{th} Betti number $\beta_r(I_{T_b}^{[\mathbf{n}]})$ is given by

$$\beta_r(I_{T_b}^{[\mathbf{n}]}) = \binom{n}{r+1} + (r+1)\binom{n-1}{r+1} + r\binom{n-1}{r}, \quad (1 \le r \le n-1).$$

Proof. From the definitions of the poset $\Sigma_n(T_b)$, it is clear that the ideal $I_{T_b}^{[\mathbf{n}]}$ is an order monomial ideal. Further, the cellular resolution $\mathbb{F}_*(\Delta(\Sigma_n(T_b)))$ is the minimal resolution of $I_{S_a}^{[\mathbf{n}]}$ supported on the order complex $\Delta(\Sigma_n(T_b))$ because monomial label on any face of $\Delta(\Sigma_n(T_b))$ is different from the monomial label on subfaces. Thus the r^{th} Betti number $\beta_r(I_{T_b}^{[\mathbf{n}]})$ equals the number (strict) chains of length r in the poset $\Sigma_n(T_b)$. Since $\Sigma_n(T_2)$ is obtained from $\Sigma_n(T_1)$ by changing i to n-i for $i \in [n]$, number of chains of length r in both the posets are same. We count chains of length r in $\Sigma_n(T_1)$ for $0 \leq r \leq n-1$. Consider a (strict) chain

$$\mathcal{C}: C_1 \prec C_2 \prec \ldots \prec C_s \prec C_{s+1} \prec \ldots \prec C_{r+1}.$$

If all C_j are of the form $\{t_j, n\}$ for $t_j \in [n]$, then the chain \mathcal{C} can be identified with a r + 1-subset $\{t_1, \ldots, t_{r+1}\}$ of [n]. Thus number of such chains is $\binom{n}{r+1}$. If $C_s = \{t_s\}$ and $C_{s+1} = \{t_{s+1}, n\}$ for

some s with $t_{s+1} < t_s$, then the chain \mathcal{C} can be identified with a r+1-subset $\{t_1, \ldots, t_{r+1}\}$ of [n-1] with a chosen element t_s . Any $j \in \{t_1, \ldots, t_{r+1}\}$ represent singleton $\{j\}$ if $j \ge t_s$, while it represent $\{j, n\}$ for $j < t_s$. The number of such chains is precisely $(r+1) \binom{n-1}{r+1}$. Now we count chains \mathcal{C} with $C_s = \{t_s\}$ and $C_{s+1} = \{t_s, n\}$ (i.e., $t_s = t_{s+1}$). In this case, chain \mathcal{C} can be identified with a r-subset $\{t_1, \ldots, t_s = t_{s+1}, \ldots, t_{r+1}\}$ of [n-1] with a chosen element t_s . Thus number of such chains is $r \binom{n-1}{r}$. Since any r-chain \mathcal{C} in $\Sigma_n(T_1)$ is a chain of one of the three types, we get the desired result.

Consider the following subsets of PF_n of parking function $\mathbf{p} = (p_1, \ldots, p_n)$.

(i) $\widehat{\operatorname{PF}}_{n}^{1} = \{ \mathbf{p} \in \operatorname{PF}_{n} : p_{t} \leq t, \forall t \text{ and if } p_{i} = i, \text{ then } p_{n} < i \}.$ (ii) $\widehat{\operatorname{PF}}_{n}^{2} = \{ \mathbf{p} \in \operatorname{PF}_{n} : p_{n-t} \leq t, \forall t \text{ and if } p_{n-i} = i, \text{ then } p_{n} < i \}.$

In view of Lemma 2.4, $\mathbf{x}^{\mathbf{p}} \notin I_{T_b}^{[\mathbf{n}]}$ if and only if $\mathbf{p} \in \widehat{\mathrm{PF}}_n^b$ for b = 1, 2. Thus, $|\widehat{\mathrm{PF}}_n^b| = \dim_k \left(\frac{R}{I_{T_b}^{[\mathbf{n}]}}\right)$. Also, the mapping $(p_1, p_2, \ldots, p_{n-1}, p_n) \mapsto (p_{n-1}, p_{n-2}, \ldots, p_1, p_n)$ induces a bijection between $\widehat{\mathrm{PF}}_n^1$ and $\widehat{\mathrm{PF}}_n^2$.

Theorem 3.7. The number of standard monomials of $\frac{R}{I_{T_{h}}^{[n]}}$ is given by

$$|\widehat{\mathrm{PF}}_{n}^{b}| = \dim_{k} \left(\frac{R}{I_{T_{b}}^{[\mathbf{n}]}}\right) = s(n+1,2); \quad (b=1,2),$$

where s(n + 1, 2) is the (signless) Stirling number of the first kind.

Proof. We take b = 1. Proceeding as in Proposition 3.4, we get

$$\dim_k\left(\frac{R}{I_{T_1}^{[\mathbf{n}]}}\right) = \sum_{\mathcal{C}\in\widehat{\mathcal{F}}^1[n]} (-1)^{n-\ell(\mathcal{C})-1} \widehat{\mu}^1(\mathcal{C}),$$

where $\widehat{\mathcal{F}}^1[n]$ is the collection of all chains $\mathcal{C} = (C_1, \ldots, C_i)$ in $\Sigma_n(T_1)$ such that $C_1 \cup \ldots \cup C_i = [n]$ and $\widehat{\mu}^1(\mathcal{C}) = \prod_{q=1}^i \left(\prod_{j \in C_q \setminus C_{q-1}} \widehat{\mu}^1_{j,C_q} \right)$. For $1 \le t \le n$, let $\widehat{\mathcal{C}}^{(n)} : \{n\} \prec \{n-1,n\} \prec \ldots \prec \{1,n\}$,

 $\widehat{\mathcal{C}}^{(t)}: \{n-1\} \prec \ldots \prec \{t\} \prec \{t,n\} \prec \{t-1,n\} \prec \ldots \prec \{1,n\}; \quad (1 \le t \le n-1)$

and $\widehat{\mathcal{C}}^{(t)}$ be the chain obtained from $\widehat{\mathcal{C}}^{(t)}$ on deleting $\{t, n\}$. For t = n, we have $\{n, n\} = \{n\}$. It is clear that $\widehat{\mathcal{F}}^1[n] = \{\widehat{\mathcal{C}}^{(t)}, \widehat{\mathcal{C}}^{(t)} : 1 \le t \le n\}$. Also, $\widehat{\mu}^1(\widehat{\mathcal{C}}^{(t)}) = n!$ and $\widehat{\mu}^1(\widehat{\mathcal{C}}^{(t)}) = \frac{t-1}{t}(n!)$ for $1 \le t \le n$.

As $\ell(\widehat{\mathcal{C}}^{(t)}) = \ell(\widehat{\mathcal{C}}^{\prime(t)}) + 1 = n - 1$, we see that

$$\dim_k \left(\frac{R}{I_{T_1}^{[\mathbf{n}]}} \right) = \sum_{t=1}^n \left(\widehat{\mu}^1(\widehat{\mathcal{C}}^{(t)}) - \widehat{\mu}^1(\widehat{\mathcal{C}}^{(t)}) \right) = \sum_{t=1}^n \left(n! - \frac{t-1}{t} n! \right)$$
$$= \sum_{t=1}^n \frac{n!}{t} = \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) n! = s(n+1,2).$$

A nice formula $|\widehat{\operatorname{PF}}_n^1| = |\widehat{\operatorname{PF}}_n^2| = s(n+1,2)$, deserves a combinatorial proof. We count parking functions $\mathbf{p} = (p_1, \ldots, p_n)$ in $\widehat{\operatorname{PF}}_n^1$ according to the value of p_n . Clearly, $0 \leq p_n \leq n-1$. For any $0 \leq t \leq n-1$, we see that $p_n = t$ implies that $p_i < i$ for all $i \leq t$ and $p_j \leq j$ for j > t. Also, any (p_1, \ldots, p_n) with $p_n = t$ and $p_i < i$ for all $i \leq t$, while $p_j \leq j$ for all $t < j \leq n-1$ is always a parking function of length n. Thus number of $\mathbf{p} = (p_1, \ldots, p_n) \in \widehat{\operatorname{PF}}_n^1$ with $p_n = t$ is $(\prod_{i=1}^t i) (\prod_{j=t+1}^{n-1} (j+1)) = \frac{n!}{t+1}$. Hence, $|\widehat{\operatorname{PF}}_n^1| = \sum_{t=0}^{n-1} \frac{n!}{t+1}$.

Theorem 3.7 shows that the integer sequence $\left\{ \dim_k \left(\frac{R}{I_{T_b}^{[\mathbf{n}]}} \right) = s(n+1,2) \right\}_{n=1}^{\infty}$ for b = 1, 2 is the integer sequence (A000254) in OEIS [14].

CASE-3: We finally consider the monomial ideal $I_U^{[\mathbf{n}]}$. The minimal generators $\prod_{j \in A} x_j^{\nu_{j,A}}$ of $I_U^{[\mathbf{n}]}$ are parametrized by the poset Σ_n . Again, it is straight forward to verify that the ideal $I_U^{[\mathbf{n}]}$ is an order monomial ideal and the cellular resolution $\mathbb{F}_*(\Delta(\Sigma_n))$ supported on the order complex $\Delta(\Sigma_n)$ is the minimal free resolution of $I_U^{[\mathbf{n}]}$. Thus r^{th} Betti number $\beta_r(I_U^{[\mathbf{n}]}) = (r!)S(n+1,r+1)$ for $0 \leq r \leq n-1$.

Now we describe standard monomials of $\frac{R}{I_{i}^{[\mathbf{n}]}}$. Let $\overline{\mathrm{PF}}_{n} = \{\mathbf{p} \in \mathrm{PF}_{n} : \mathbf{x}^{\mathbf{p}} \notin I_{U}^{[\mathbf{n}]}\}$.

Lemma 3.8. Let $\mathbf{p} = (p_1, \ldots, p_n) \in PF_n$. Then $\mathbf{p} \in \overline{PF}_n$ if and only if, there exists a permutation $\alpha \in \mathfrak{S}_n$ such that $p_{\alpha_i} < \nu_{\alpha_i,T_i}$ for all i, where $\alpha_i = \alpha(i)$, $T_1 = [n]$ and $T_j = [n] \setminus \{\alpha_1, \ldots, \alpha_{j-1}\}$ for $j \geq 2$. Also, $\nu_{j,T}$ is in the Lemma 2.4.

Proof. Proof is similar to the proof of Theorem 4.3 of [6].

Proceeding as in Proposition 3.4, we get a combinatorial formula for the number of standard monomials of $\frac{R}{I^{[n]}}$.

Proposition 3.9. The number of standard monomials of $\frac{R}{I_{i}^{[n]}}$ is given by

$$|\overline{\mathrm{PF}}_n| = \dim_k \left(\frac{R}{I_U^{[\mathbf{n}]}}\right) = \sum_{i=1}^n (-1)^{n-i} \sum_{\emptyset = C_0 \subsetneq C_1 \subsetneq \dots \subsetneq C_i = [n]} \prod_{q=1}^i \left(\prod_{j \in C_q \setminus C_{q-1}} \nu_{j,C_q}\right),$$

where summation is carried over all strict chains $\emptyset = C_0 \subsetneq C_1 \subsetneq \ldots \subsetneq C_i = [n]$.

Neither using Proposition 3.9, nor by any combinatorial tricks, we could determine $|\overline{\mathrm{PF}}_n| = \dim_k \left(\frac{R}{I_{l}^{[\mathbf{n}]}}\right)$. Thus, we ask the following question.

Question: Is it possible to identify the sequence $\left\{ \dim_k \left(\frac{R}{I_U^{[n]}} \right) \right\}_{n=1}^{\infty}$ with some well known combinatorially interesting integer sequence?

Computations for smaller values of n suggest that this integer sequence could be (A003319) in OEIS [14].

Acknowledgements : The second author is thankful to CSIR, Government of India for financial support.

References

- [1] Anders K. and Archer K., Rooted forests that avoid sets of permutations, European J. Combin. 77 (2019), 1-16.
- [2] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research Letters 5 (1998), 31-46.
- [3] Bayer D. and Sturmfels B., *Cellular resolutions of monomial modules*, Journal für die Reine und Angewandte Mathematik **502** (1998), 123-140.
- [4] Gaydarov P. and Hopkins S., Parking functions and tree inversions revisited, Adv. in Appl. Math. 80 (2016), 151-179.
- [5] Kreweras G., Une famille de polynômes ayant plusieurs propriétés énumeratives, Period. Math. Hungar. 11(4), (1980), 309-320.
- [6] Kumar A. and Kumar C., Certain variants of multipermutohedron ideals, Proc. Indian Acad. Sci.(Math Sci.) Vol.126, No.4, (2016), 479-500.
- [7] Kumar A. and Kumar C., An integer sequence and standard monomials, Journal of Algebra and Its Applications Vol.17, No.2, (2018).
- [8] Kumar A. and Kumar C., Monomial ideals induced by permutations avoiding patterns, Proc. Indian Acad. Sci.(Math Sci.) Vol.129, (2019).
- [9] Miller E. and Sturmfels B., *Combinatorial commutative algebra*, Graduate Texts in Mathematics Vol **227**, Springer-Verlag, New York, 2005.
- [10] Perkinson D., Yang Q. and Yu K., G-parking functions and tree inversions, Combinatorica 37, no. 2, (2017), 269-282.
- [11] Pitman J. and Stanley R., A polytope related to empirical distributions, plane Trees, parking functions, and the associahedron, Discrete and Computational Geometry 27 (2002), 603-634.
- [12] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformations of Monomial ideals, Trans. Amer. Math. Soc. 356, (2004), 3109-3142.
- [13] Simion R. and Schmidt F. W., Restricted permutations, European J. Combin. 6 (1985), 383-406.
- [14] Sloane N. J. A., On-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/
- [15] Stanley R., *Enumerative combinatorics*: volume 1, Cambridge University Press (2nd edition), 2012.
- [16] Yan C. H., On the enumeration of generalized parking functions, Proceedings of the 31-st Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000), Congressus Numerantium 147 (2000), 201-209.

IISER MOHALI, KNOWLEDGE CITY, SECTOR 81, SAS NAGAR, PUNJAB -140 306, INDIA. *E-mail address:* chanchal@iisermohali.ac.in

IISER MOHALI, KNOWLEDGE CITY, SECTOR 81, SAS NAGAR, PUNJAB -140 306, INDIA. *E-mail address:* amitroy@iisermohali.ac.in