
INTEGER SEQUENCES AND MONOMIAL IDEALS

CHANCHAL KUMAR AND AMIT ROY

Abstract. Let Sn be the set of all permutations of [n] = {1, . . . , n} and let W be the subset
consisting of permutations σ ∈ Sn avoiding 132 and 312-patterns. The monomial ideal IW =〈
xσ =

∏n
i=1 x

σ(i)
i : σ ∈W

〉
in the polynomial ring R = k[x1, . . . , xn] over a field k is called a hyper-

cubic ideal in [6]. The Alexander dual I
[n]
W of IW with respect to n = (n, . . . , n) has the minimal

cellular resolution supported on the first barycentric subdivision Bd(∆n−1) of an n − 1-simplex
∆n−1. We show that the number of standard monomials of the Artinian quotient R

I
[n]
W

equals the

number of rooted-labelled unimodal forests on the vertex set [n]. In other words,

dimk

(
R

I
[n]
W

)
=

n∑
r=1

r! s(n, r) = Per ([mij ]n×n) ,

where s(n, r) is the (signless) Stirling number of the first kind and Per([mij ]n×n) is the permanent
of the matrix [mij ] with mii = i and mij = 1 for i 6= j. For various subsets S of Sn consisting of

permutations avoiding patterns, the corresponding integer sequences

{
dimk

(
R

I
[n]
S

)}∞
n=1

are identi-

fied.

Key words: Permutations avoiding patterns, standard monomials, parking functions.

1. Introduction

Let G be an oriented graph on the vertex set {0, 1, . . . , n} rooted at 0. A nonoriented graph on

{0, 1, . . . , n} has the symmetric adjacency matrix and it is identified with a unique rooted oriented

graph on {0, 1, . . . , n} having the same (symmetric) adjacency matrix. Let R = k[x1, . . . , xn] be

the standard polynomial ring in n variables over a field k. Postnikov and Shapiro [12] associated

a monomial ideal MG in R such that the number of standard monomials of the Artinian quotient
R
MG

is precisely the number of oriented-spanning trees of G. A sequence p = (p1, . . . , pn) ∈ Nn is

called a G-parking function if xp =
∏n

i=1 x
pi
i is a standard monomial of R

MG
(i.e., xp /∈ MG). Let

SPT(G) be the set of (oriented) spanning trees of G rooted at 0 and PF(G) be the set of G-parking

functions of G. Then |PF(G)| = |SPT(G)| (see [12]).
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2 C. KUMAR AND A. ROY

If G is the complete graph Kn+1 on the vertex set {0, 1, . . . , n}, then

MKn+1 =

〈(∏
i∈I

xi

)n−|I|+1

: ∅ 6= I ⊆ [n]

〉
is called a tree ideal. Cayley’s formula for enumeration of labelled trees states that |SPT(Kn+1)| =
(n + 1)n−1. Also the set PF(Kn+1) of Kn+1-parking functions is the set PFn of (ordinary) parking

functions of length n. A finite sequence p = (p1, . . . , pn) ∈ Nn with 0 ≤ pi < n is called a parking

function of length n if a nondecreasing rearrangement pi1 ≤ pi2 ≤ . . . ≤ pin of p satisfies pij < j

for 1 ≤ j ≤ n. A recursively defined bijection φ : PFn −→ SPT(Kn+1) has been constructed by

Kreweras [5]. Parking functions or more generally, vector parking functions have appeared in many

areas of mathematics. For more on parking functions, we refer to [11, 16]. An algorithmic bijection

φ : PF(G) −→ SPT(G), called DFS-burning algorithm, is given by Perkinsons et. al. [10] for a

simple graph G and by Gaydarov and Hopkins [4] for multigraph G.

Let Sn be the set of all permutations of [n] = {1, 2, . . . , n}. For r ≤ n, consider a τ ∈ Sr,

called a pattern. A permutation σ ∈ Sn is said to avoid a pattern τ if there is no subsequence in

σ = σ(1)σ(2) . . . σ(n) that is in the same relative order as τ . Let Sn(τ) be the subset consisting

of permutations σ ∈ Sn that avoid pattern τ . If r > n, then Sn(τ) = Sn. Also, if τ (i) ∈ Sri for

1 ≤ i ≤ s, then Sn(τ (1), . . . , τ (s)) =
⋂s
j=1 Sn(τ (j)). Enumeration and combinatorial properties of

the set of permutations avoiding patterns are obtained in [13].

For a nonempty subset S ⊆ Sn, consider the monomial ideal IS = 〈xσ =
∏n

i=1 x
σ(i)
i : σ ∈ S〉

in R = k[x1, . . . , xn] induced by S. The monomial ideal ISn is called a permotuhedron ideal and the

Alexander dual I
[n]
Sn

is the tree ideal MKn+1 . The ith Betti number βi(I
[n]
Sn

) of I
[n]
Sn

is given by

βi(I
[n]
Sn

) = βi+1

(
R

I
[n]
Sn

)
= (i!)S(n+ 1, i+ 1); (0 ≤ i ≤ n− 1),

where S(n, r) is the Stirling number of the second kind, i.e., the number of set-partitions of [n] into

r blocks (see [12]). Further, we have already observed that the standard monomials of R

I
[n]
Sn

is given

by dimk

(
R

I
[n]
Sn

)
= |PFn| = (n+ 1)n−1.

For various subsets S ⊆ Sn, the Alexander dual I
[n]
S of IS with respect to n = (n, . . . , n)

has many interesting properties similar to the Alexander dual of permutohedron ideal. The Betti

numbers and enumeration of standard monomials of the Alexander dual I
[n]
S for subsets S =

Sn(132, 231), Sn(123, 132) and Sn(123, 132, 213) are obtained in [7, 8]

Let W = Sn(132, 312). The monomial ideal IW of R is called a hypercubic ideal in [6]. The

standard monomials of R

I
[n]
W

correspond bijectively to a subset P̃Fn of PFn. An element p ∈ P̃Fn
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is called a restricted parking function of length n. We show that the number of restricted parking

functions of length n is given by

dimk

(
R

I
[n]
W

)
= |P̃Fn| =

n∑
r=1

(r!) s(n, r),

where s(n, r) is the (signless) Stirling number of the first kind, i.e., the number of permutations

of [n] having exactly r cycles in its cyclic decomposition. Thus the nth term of integer sequence

(A007840) in OEIS [14] can be interpreted as the number of restricted parking functions of length

n, or equivalently, as the number of standard monomials of the Artinian quotient R

I
[n]
W

.

The concept of pattern avoiding permutations has been generalized to many combinatorial

objects. A notion of rooted forests that avoids a set of permutations is introduced and many classes

of such objects are enumerated in [1]. Let Fn be the set of rooted-labelled forests on [n]. Let

Fn(τ) (or more generally, Fn(τ (1), . . . , τ (r))) be the subset of Fn consisting of rooted-labelled forests

avoiding a pattern τ (or a set of patterns {τ (1), . . . , τ (r)}). We have

|Fn(213, 312)| =
n∑
r=1

(r!) s(n, r) = |P̃Fn|.

It is surprising that enumeration of standard monomials of R

I
[n]
W

and enumeration of rooted-labelled

forests Fn(213, 312) avoiding 213 and 312-patterns are related. It is an interesting problem to

construct an algorithmic bijection φ : P̃Fn −→ Fn(213, 312), analogous to DFS-burning algorithm

that could explain the relationship between these objects.

The monomial ideal IS for many other subsets S ⊆ Sn, consisting of permutations avoiding

patterns are considered in the last section.

2. Hypercubic ideals and restricted Parking functions

Consider the subset W = Sn(132, 312) of permutations of [n] that avoid 132 and 312-patterns.

For σ ∈ Sn, it can be easily checked that σ ∈ W if and only if σ(1) ∈ [n] is arbitrary, and σ(j) = `

for j > 1 if either σ(i) = `+ 1 or σ(i) = `− 1 for some i < j. Clearly, |W | = 2n−1. The monomial

ideal IW appeared in [6], where it is called a hypercubic ideal. Many properties of IW and its

Alexander dual I
[n]
W with respect to n = (n, . . . , n) ∈ Nn have been obtained in [6]. We proceed to

enumerate the standard monomials of R

I
[n]
W

. For this purpose, we consider a little generalization.

Let u = (u1, . . . , un) ∈ Nn with 1 ≤ u1 < u2 < . . . < un. For σ ∈ Sn, let σu =

(uσ(1), . . . , uσ(n)) and xσu =
∏n

i=1 x
uσ(i)
i . For any nonempty subset S ⊆ Sn, we consider the mono-

mial ideal IS(u) = 〈xσu : σ ∈ S〉 in the polynomial ringR = k[x1, . . . , xn]. Clearly, IS((1, 2, . . . , n)) =
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IS. The ideals ISn(u) and IW (u) are also called a permutohedron ideal and a hypercubic ideal, re-

spectively. For an integer c ≥ 1, we consider the Alexander dual IW (u)[un+c−1] of the hypercubic

ideal IW (u) with respect to un + c− 1 = (un + c− 1, . . . , un + c− 1) ∈ Nn.

Proposition 2.1. The minimal generators of IW (u)[un+c−1] are given by

IW (u)[un+c−1] =

〈∏
j∈T

x
µuj,T
j : ∅ 6= T = {j1, . . . , jt} ⊆ [n]; j1 < . . . < jt

〉
,

where µu
j1,T

= un − ut + c and µu
ji,T

= un − ut+ji−i + c for 2 ≤ i ≤ t.

Proof. The minimal generators of IW (u)[un] are given in Theorem 3.3 of [6]. Just replace [un] by

[un + c− 1]. �
The Alexander dual ISn(u)[un+c−1] of the permutohedron ideal ISn(u) is given by

ISn(u)[un+c−1] =

〈(∏
j∈T

xj

)un−u|T |+c

: T ∈ Σn

〉
,

where Σn is the poset of all nonempty subsets of [n] ordered by inclusion. Postnikov and Shapiro [12]

showed that the monomial ideal ISn(u)[un+c−1] is an order monomial ideal. Moreover, the minimal

resolution of ISn(u)[un+c−1] is the cellular resolution supported on the order complex ∆(Σn) of Σn.

Thus, the ith Betti number

βi(ISn(u)[un+c−1]) = (i!)S(n+ 1, i+ 1); (0 ≤ i ≤ n− 1),

where S(n + 1, i + 1) is the Stirling number of the second kind. Further, standard monomials of
R

ISn (u)[un+c−1] are given in terms of λ-parking functions. Let λ = (λ1, . . . , λn) with λi = un − ui + c.

A sequence p = (p1, . . . , pn) ∈ Nn is called a λ-parking function of length n, if non-decreasing

rearrangement pi1 ≤ pi2 ≤ . . . ≤ pin of p satisfies pij < λn−j+1 for 1 ≤ j ≤ n. Let PFn(λ) be the

set of λ-parking functions of length n. Then xp is a standard monomial of R
ISn (u)[un+c−1] if and only

if p ∈ PFn(λ). Also, λ-parking functions for λ = (n, n − 1, . . . , 1) are precisely (ordinary) parking

functions of length n, that is, PFn((n, n− 1, . . . , 1)) = PFn.

The Alexander dual I
[n]
S of IS is an order monomial ideal for S = Sn(132, 231), Sn(123, 132)

and Sn(123, 132, 213) (see [7, 8]). The minimal generators of IW (u)[un+c−1] correspond to elements

of poset Σn. The monomial ideal IW (u)[un+c−1] is also an order monomial ideal and its minimal

resolution is the cellular resolution supported on the order complex ∆(Σn) of Σn. Thus, the ith

Betti number βi(IW (u)[un+c−1]) = (i!) S(n+ 1, i+ 1) for 0 ≤ i ≤ n− 1.

We now describe standard monomials of R
IW (u)[un+c−1] . Since IW (u) ⊆ ISn(u), we have

ISn(u)[un+c−1] ⊆ IW (u)[un+c−1]. Hence, standard monomials of R
IW (u)[un+c−1] are of the form xp

for some p ∈ PFn(λ).
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Definition 2.2. A λ-parking function p = (p1, . . . , pn) ∈ PFn(λ) is said to be a restricted λ-parking

function of length n if there exists a permutation α ∈ Sn such that pαi < µu
αi,Ti

for all 1 ≤ i ≤ n,

where αi = α(i), T1 = [n], Ti = [n] \ {α1, . . . , αi−1}; (i ≥ 2) and µu
j,T is as in Proposition 2.1.

Let P̃Fn(λ) be the set of restricted λ-parking functions of length n. For u = (1, 2, . . . , n)

and c = 1, we have λ = (n, n − 1, . . . , 1). In this case, a restricted λ-parking function is called a

restricted parking function of length n and we simply write P̃Fn for P̃Fn(λ). Also, µj,T = µu
j,T is

given by µj1,T = n− t+ 1 and µji,T = (n− t+ 1)− (ji− i); i ≥ 2, where ∅ 6= T = {j1, . . . , jt} ⊆ [n]

with j1 < . . . < jt.

Proposition 2.3. A monomial xp is a standard monomial of R
IW (u)[un+c−1] if and only if p ∈ P̃Fn(λ)

is a restricted λ-parking function of length n, with λi = un − ui + c; (1 ≤ i ≤ n). In particular, a

monomial xp is a standard monomial of R

I
[n]
W

if and only if p ∈ P̃Fn is a restricted parking function

of length n.

Proof. Standard monomials of R
IW (u)[un] are characterized in Theorem 4.3 of [6]. Proceeding on

similar lines, we get the desired result. �
Using the cellular resolution of IW (u)[un+c−1] supported on the order complex ∆(Σn), we

obtain the multigraded Hilbert series H
(

R
IW (u)[un+c−1]

)
of R

IW (u)[un+c−1] . Proceeding as in the proof

of Proposition 4.5 of [6], we get a combinatorial formula

|P̃Fn(λ)| = dimk

(
R

IW (u)[un+c−1]

)
(2.1)

=
n∑
i=1

(−1)n−i
∑

∅=A0(A1(...(Ai=[n]

i∏
q=1

 ∏
j∈Aq\Aq−1

µu
j,Aq


for enumeration of standard monomials of R

IW (u)[un+c−1] , where µu
j,Aq

is as in Proposition 2.1. Let C
be a chain in Σn of the form

C : A1 ( A2 ( . . . ( Ai = [n]

of length `(C) = i− 1 and let µu(C) =
∏i

q=1

(∏
j∈Aq\Aq−1

µu
j,Aq

)
, where A0 = ∅. Suppose Ch([n]) is

the set of such chains C in Σn. Then formula (2.1) can be expressed compactly as

(2.2) |P̃Fn(λ)| = dimk

(
R

IW (u)[un+c−1]

)
=

∑
C∈Ch([n])

(−1)n−`(C)−1µu(C).

We now take ui = i in (2.2). For c ≥ 1, let dimk

(
R

I
[n+c−1]
W

)
= an(c). Then we see that an(c)

is a polynomial expression in c of degree n for n ≥ 1. In fact, a1(c) = c and a2(c) = c2 + 2c.
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Lemma 2.4. Let n ≥ 3,u = (1, 2, . . . , n) and c ≥ 1. For a chain C ∈ Ch[n] of length i − 1 of the

form A1 ( . . . Ar ( Ar+1 ( . . . ( Ai = [n] with n ∈ Ar+1 \ Ar and |Ar+1 \ Ar| ≥ 2, there exists a

unique chain, namely C̃ : A1 ( . . . Ar ( Ar ∪ {n} ( Ar+1 ( . . . ( Ai = [n] in Ch[n] of length i such

that µu(C) = µu(C̃).

Proof. Since µu(C) =
∏i

q=1

(∏
j∈Aq\Aq−1

µu
j,Aq

)
, the equality µu(C) = µu(C̃) holds if µu

n,Ar∪{n} =

µu
n,Ar+1

. Clearly, µu
n,Ar∪{n} = n− (|Ar|+ 1 + n− (|Ar|+ 1)) + c = c and µu

n,Ar+1
= n− (|Ar+1|+ n−

|Ar+1|) + c = c. �
Let Ch′[n] be the set of chains in Σn obtained from Ch[n] on deleting chains C and C̃ appearing

in Lemma 2.4. Then

an(c) =
∑

C∈Ch([n])

(−1)n−`(C)−1µu(C) =
∑

C∈Ch′([n])

(−1)n−`(C)−1µu(C).

For u = (1, 2, . . . , n) and c ≥ 1, the value µu(C) depends on the chain C and c. Thus, we write

µc(C) for µu(C). Hence, an(c) =
∑
C∈Ch([n])(−1)n−`(C)−1µc(C) =

∑
C∈Ch′([n])(−1)n−`(C)−1µc(C).

For n ≥ 3, the chains in Ch′[n] can be divided into three types.

• A chain C : A1 ( . . . ( Ai = [n] in Ch′[n] is called a Type-I chain if A1 = {n}. The

Type-I chains in Ch′[n] are in one-to-one correspondence with chains in Ch[n − 1]. This

correspondence is given by

C 7→ C \ A1 : A2 \ {n} ( . . . ( Ai \ {n} = [n− 1].

As `(C)− 1 = `(C \ A1) and µc(C) = (n− 1 + c) µc(C \ A1), we have∑
C∈Ch′[n];
Type−I

(−1)n−`(C)−1 µc(C) = (n− 1 + c) an−1(c).

• A chain C : A1 ( . . . ( Ai = [n] in Ch′[n] is called a Type-II chain if Ai−1 = [n − 1]. The

Type-II chains in Ch′[n] are in one-to-one correspondence with chains in Ch[n − 1]. This

correspondence is given by

C 7→ C|[n−1] : A1 ( . . . ( Ai−1 = [n− 1].

As `(C)− 1 = `(C|[n−1]) and µc(C) = (c) µc+1(C|[n−1]), we have∑
C∈Ch′[n];
Type−II

(−1)n−`(C)−1 µc(C) = (c) an−1(c+ 1).

• A chain C : A1 ( . . . ( Ai = [n] in Ch′[n] is called a Type-III chain if n ∈ A1 and |A1| ≥ 2.

The Type-III chains in Ch′[n] are in one-to-one correspondence with chains in Ch[n − 1].
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This correspondence is given by

C 7→ C \ {n} : A1 \ {n} ( . . . ( Ai \ {n} = [n− 1].

As `(C) = `(C \ {n}) and µc(C) = (c) µc(C \ {n}), we have∑
C∈Ch′[n];
Type−III

(−1)n−`(C)−1 µc(C) = (−c) an−1(c).

Consider the poset Σn and form a poset Λn = Σn−1

∐
(Σn−1 ∗ {n}); for n ≥ 2, where Σn−1 ∗ {n} =

{A ∪ {n} : A ∈ Σn−1} is a subposet of Σn. Two elements A,B ∈ Λn are comparable if either

A,B ∈ Σn−1 are comparable or A,B ∈ Σn−1 ∗ {n} are comparable or {A,B} = {[n− 1], [n]}. The

Hasse diagram of Λn for n = 3, 4 are given in Figure-1.

123

12 13 23

1 2

Λ3

1234

123 124 134 234

12 13 1423 24 34

1 2 3

Λ4

Figure 1

Clearly, Type-II chains in Ch′[n] are chains in Λn with an edge [n − 1] ( [n], while Type-III

chains in Ch′[n] are chains in Λn containing [n] but not [n− 1].

Proposition 2.5. For n ≥ 3 and c ≥ 1, an(c) = dimk

(
R

I
[n+c−1]
W

)
satisfies the recurrence relation

an(c) = (n− 1)an−1(c) + c an−1(c+ 1).
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Proof. As an(c) =
∑
C∈Ch([n])(−1)n−`(C)−1µc(C) =

∑
C∈Ch′([n])(−1)n−`(C)−1µc(C), we have

an(c) =

 ∑
C∈Ch′[n];
Type−I

+
∑

C∈Ch′[n];
Type−II

+
∑

C∈Ch′[n];
Type−III

 (−1)n−`(C)−1 µc(C)

= (n− 1 + c) an−1(c) + (c) an−1(c+ 1) + (−c) an−1(c)

= (n− 1) an−1(c) + (c) an−1(c+ 1).

�
Replacing c by an indeterminate x, we consider polynomial an(x). The recurrence relation in

Proposition 2.5 holds for all c ≥ 1, thus there exists a polynomial identity

(2.3) an(x) = (n− 1) an−1(x) + x an−1(x+ 1) for n ≥ 3.

Since a1(x) = x and a2(x) = x2 + 2x, on setting a0(x) = 1, the recurrence relation (2.3) is valid for

n ≥ 1. Note that an(0) = 0 for n ≥ 1.

Proposition 2.6. For n ≥ 1, an(x) =
∑n

r=1 s(n, r) x(x+ 1) · · · (x+ r − 1).

Proof. Let xr̄ = x(x + 1) · · · (x + r − 1) be the rth rising power of x. Then {xr̄ : r = 0, 1, . . .} is a

Q-basis of Q[x], where x0̄ = 1. As an(0) = 0 for n ≥ 1, we can express an(x) =
∑n

r=1 αn(r)xr̄. As

an(x) satisfy recurrence relation (2.3) for n ≥ 1, it follows that αn(r) and the (signless) Stirling

number s(n, r) of the first kind satisfy the same recurrence relation with the same initial conditions

(see [15]). Thus αn(r) = s(n, r). �

Theorem 2.7. For n ≥ 1, dimk

(
R

I
[n]
W

)
= an =

∑n
r=1(r!) s(n, r).

Proof. Since an = an(1), theorem follows from Proposition 2.6. �
Consider the integer sequence (A007840) in OEIS [14]. The nth term bn of this sequence is

the number of factorization of permutations of [n] into ordered cycles and bn =
∑n

r=1(r!) s(n, r). It

can be verified that

bn = Per([mij]n×n) = Per


1 1 1 . . . 1
1 2 1 . . . 1
1 1 3 . . . 1
...

...
...

. . .
...

1 1 1 . . . n

 ,
where mii = i and mij = 1 for i 6= j. We recall that permanent Per([mij]n×n) of the matrix

[mij]n×n is given by
∑

σ∈Sn
∏n

i=1 miσ(i). There are many combinatorial interpretation of the integer

sequence (A007840). Theorem 2.7 gives a description of the integer sequence (A007840) in terms
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of enumeration of standard monomials of R

I
[n]
W

, or equivalently, in terms of the number |P̃Fn| of

restricted parking functions of length n.

We now show that enumeration of standard monomials of R

I
[n]
W

is related to enumeration of

rooted-labelled unimodal forests on [n]. The concept of permutations avoiding patterns has been

extended to many combinatorial objects, such as, trees, graphs and posets. Let Fn be the set of

(unordered) rooted-labelled forests on the vertex set [n]. Then |Fn| = (n+ 1)n−1. A rooted-labelled

forest on [n] is said to avoid a pattern τ ∈ Sr if along each path from a root to a vertex, the

sequence of labels do not contain a subsequence with the same relative order as in the patterns

τ = τ(1)τ(2) . . . τ(r). Let Fn(τ) be the set of rooted-labelled forests on [n] that avoid pattern τ .

For example, if τ = 21 is a transposition, then Fn(21) is the set of rooted-labelled increasing forests

on [n]. In other words, labels on any path from a root to a vertex for a forest in Fn(21) form an

increasing sequence. Let Fn(τ (1), . . . , τ (s)) be the set of rooted-labelled forests on [n] that avoid a

set {τ (1), . . . , τ (s)} of patterns. The enumeration of rooted-labelled forests on [n] that avoid various

patterns are obtained in [1]. In particular, it is shown that |Fn(213, 312)| =
∑n

r=1(r!) s(n, r) for

n ≥ 1. The rooted-labelled forests on [n] avoiding 213 and 312-patterns are precisely the unimodal

forests. Since |P̃Fn| = |Fn(213, 312)|, an explicit or algorithmic bijection φ : P̃Fn −→ Fn(213, 312)

is desired.

Before we end this section, we describe an easy extension of Theorem 2.7.

Let b, c ≥ 1 and u = (u1, . . . , un) ∈ Nn with ui = u1 + (i − 1)b. We have seen that the

standard monomials of R
ISn (u)[un+c−1] are of the form xp, where p ∈ PFn(λ) is a λ-parking function

of length n and λi = un − ui + c = (n − i)b + c. Then |PFn(λ)| = c(c + nb)n−1 (see [11, 12]). Let

|P̃Fn(λ)| = dimk

(
R

IW (u)[un+c−1]

)
= ãn(c). Actually, ãn(c) depends on b also, but we are treating b

to be a fixed constant. Also, ãn(c) is a polynomial expression in c.

Proposition 2.8. For n ≥ 3, b, c ≥ 1, ãn(c) satisfies a recurrence relation

ãn(c) = ((n− 1)b) ãn−1(c) + (c) ãn−1(c+ b).

Proof. From equation (2.2), we have

ãn(c) = dimk

(
R

IW (u)[un+c−1]

)
=

∑
C∈Ch([n])

(−1)n−`(C)−1 µu(C),

where ui = u1 + (i− 1)b. For such u, Lemma 2.4 holds. Thus

ãn(c) =
∑

C∈Ch([n])

(−1)n−`(C)−1 µu(C) =
∑

C∈Ch′([n])

(−1)n−`(C)−1 µu(C).

Now proceed as in the proof of Proposition 2.5. �
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Replacing c with an indeterminate x, we consider polynomial ãn(x). Thus there is a polynomial

identity

(2.4) ãn(x) = ((n− 1)b) ãn−1(x) + x ãn−1(x+ b) for n ≥ 3.

Since ã1(x) = x and ã2(x) = x2 + 2bx, on setting ã0(x) = 1, the recurrence relation (2.4) is valid

for n ≥ 1. Again, we have ãn(0) = 0 for n ≥ 1.

Theorem 2.9. For n ≥ 1, ãn(x) =
∑n

r=1(bn−r s(n, r)) x(x+ b) · · · (x+ (r− 1)b). In particular, for

λ = (λ1, . . . , λn) with λi = (n− i)b+ c

|P̃Fn(λ)| = ãn(c) = bn
n∑
r=1

s(n, r)
Γ( c

b
+ r)

Γ( c
b
)

,

where Γ is the gamma function, i.e., Γ(x+ 1) = x Γ(x) for x > 0 and Γ(1) = 1.

Proof. As in the proof of Theorem 2.7, let

ãn(x) =
n∑
r=1

α̃n(r) x(x+ b) · · · (x+ (r − 1)b).

Then from recurrence relation (2.4), α̃n(r) satisfies the recurrence relation

α̃n(r) = (n− 1)b α̃n−1(r) + α̃n−1(r − 1); for 1 ≤ r ≤ n,

with initial conditions α̃0(1) = 0 and α̃1(1) = 1. It is straight forward to see that α̃n(r) =

bn−r s(n, r). �

3. Some other cases

The Betti numbers and enumeration of standard monomials of the Artinian quotient R

I
[n]
S

for S = Sn(132, 231),Sn(123, 132) and Sn(123, 132, 213) are give in [7, 8]. In this section, the

monomial ideal IS and its Alexander dual I
[n]
S are studied for various other subsets S ⊆ Sn consisting

of permutations avoiding patterns. For clarity of presentation, we divide these subsets into three

cases.

Case 1. S1 = Sn(123, 132, 312), S2 = Sn(123, 213, 231), S3 = Sn(132, 213, 231).

Case 2. T1 = Sn(123, 132, 231), T2 = Sn(213, 312, 321).

Case 3. U = Sn(123, 231, 312).

We have, |Sa| = |Tb| = |U | = n for 1 ≤ a ≤ 3 and 1 ≤ b ≤ 2 (see [13]).

Lemma 3.1. The minimal generators of the Alexander dual I
[n]
S for S = Sa, Tb or U are given as

follows.

(i) I
[n]
S1

=
〈
x`+1
` , xii

(∏n
j>i xj

)
: 1 ≤ ` ≤ n− 1; 1 ≤ i ≤ n

〉
.
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(ii) I
[n]
S2

=
〈
xn` , x

i
ix
j−1
j : 1 ≤ ` ≤ n; 1 ≤ i < j ≤ n

〉
.

(iii) I
[n]
S3

=
〈
xn` , x

i
ix
n−(j−i)
j : 1 ≤ ` ≤ n; 1 ≤ i < j ≤ n

〉
.

(iv) I
[n]
T1

=
〈
x`+1
` , xnn, x

i
ix
i
n : 1 ≤ ` ≤ n− 1; 1 ≤ i < n

〉
.

(v) I
[n]
T2

=
〈
xn−`+1
` , xnn, x

n−i
i xn−in : 1 ≤ ` ≤ n− 1; 1 ≤ i < n

〉
.

(vi) I
[n]
U =

〈∏
j∈A x

νj,A
j : A = {j1, . . . , jt} ∈ Σn

〉
, where νj1,A = n− (j|A|− j1) and νji,A = ji− ji−1

for i ≥ 2, provided j1 < j2 < . . . < jt.

Proof. We recall that a vector b ∈ Nn satisfying b ≤ n (i.e., bi ≤ n) is maximal with xb /∈ IS if and

only if xn−b is a minimal generator of I
[n]
S (see Proposition 5.23 of [9]). Now proceeding as in the

proof of Lemma 2.1 and 2.2 of [8], it is easy to get the minimal generators of the Alexander duals.

We sketch a proof of part (i) and (vi) as proof of other parts are on similar lines.

For ` ∈ [n− 1], let b` = (n, . . . , n− `− 1, . . . , n) (`th coordinate n− `− 1, elsewhere n). Then

xb` /∈ IS1 and this gives the minimal generator x`+1
` ∈ I [n]

S1
. For i ∈ [n], let bi,n = (n, . . . , n, n− i, n−

1, . . . , n− 1) ∈ Nn (i.e., ith coordinate n− i, first i− 1 coordinates n, and the last n− i coordinates

n − 1). Again, xbi,n /∈ IS1 and this gives the minimal generator xii(xi+1 . . . xn) ∈ I [n]
S1

. This proves

part (i).

If A = {`} ∈ Σn, then taking b̂` = (n, . . . , 0, . . . , n) (i.e., 0 at `th place and elsewhere n), we

get the minimal generator xn` ∈ I
[n]
U . For A = {j1, . . . , jt} ∈ Σn with t ≥ 2 and j1 < . . . < jt, let

b̂A = (b1, . . . , bn), where bj1 = jt − j1, bji = n− (ji − ji−1) (for i ≥ 2) and br = n (for r /∈ A).

Claim : xb̂A /∈ IU .

Otherwise, there exists a σ ∈ U such that xσ divides xb̂A . Thus σ(j1) ≤ jt − j1 and σ(ji) ≤
n− (ji − ji−1) for 2 ≤ i ≤ t. We see that

σ(j1) > σ(j2) > . . . > σ(jt).

If σ(ji−1) < σ(ji) for 1 < i ≤ t, then σ(ji−1), σ(ji) ∈ [n − (ji − ji−1)]. But |[n − (ji − ji−1)]| =

n− (ji− ji−1) and |[ji−1]
∐

[ji, n]| = n− (ji− ji−1) + 1, where [a, b] = {m ∈ Z : a ≤ m ≤ b} denotes

an integer interval for a, b ∈ Z. Thus there exists ` ∈ [n] \ [ji−1, ji] such that σ(`) /∈ [n− (ji− ji−1)].

This shows that σ(ji−1) < σ(ji) < σ(`). Hence, σ has a 123 or a 312-pattern, a contradiction to

σ ∈ U . Now σ(jt) < σ(j1) ≤ jt − j1 implies that jt − j1 ≥ 2. Again, σ(j1), σ(jt) ∈ [jt − j1], but

|[jt−j1]| = jt−j1 < |[j1, jt]| = jt−j1 +1. Thus there exists ` ∈ [j1 +1, jt−1] such that σ(`) > jt−j1.

This shows that, σ(jt) < σ(j1) < σ(`) with j1 < ` < jt demonstrating that σ has a 231-pattern, a

contradiction. This proves our claim. It can be shown that b̂A has the desired maximality property

and hence xn−b̂A is a minimal generator of I
[n]
U . �

We shall show that all monomial ideals in Lemma 3.1 are order monomial ideals. Let (P,�) be

a finite poset and let {ωu : u ∈ P} be a set of monomials in R. The monomial ideal I = 〈ωu : u ∈ P 〉
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is said to be an order monomial ideal if for any pair u, v ∈ P , there is an upper bound w ∈ P of

u and v such that ωw divides the least common multiple LCM(ωu, ωv) of ωu and ωv. The order

complex ∆(P ) of a finite poset P is a simplicial complex, whose r-dimensional faces are chains

u1 ≺ u2 ≺ . . . ≺ ur+1 of length r in P . If F is a face of ∆(P ), then monomial label xα(F ) (say) on

F is the LCM(ωu : u ∈ F ). Let

F∗(∆(P )) : · · · → Fi → Fi−1 → · · · → F1 → F0 → 0

be the free R-complex associated to the (labelled) simplicial complex ∆(P ). If F∗(∆(P )) is exact

at Fi for i ≥ 1, then we say that F∗(∆(P )) is a cellular resolution of I supported on ∆(P ) (see

[2, 3, 9]).

It is convenient to study the monomial ideal IS in Lemma 3.1 according to the three cases

already described.

Case-1. To each monomial ideal I
[n]
Sa

, we associate a poset Σn(Sa) (for 1 ≤ a ≤ 3) as follows.

(i) Let Σn(S1) = {{`} : 1 ≤ ` ≤ n− 1} ∪ {[i, n] : 1 ≤ i ≤ n}, where [i, n] = {a ∈ N : i ≤ a ≤ n}
and [n, n] = {n}. We define a poset structure on Σn(S1) by describing cover relations. For

`, `′ ∈ [n− 1] and i, i′ ∈ [n], {`} covers {`′} (or [i′, n]), if `′ = `+ 1 (respectively, i′ = `+ 2).

Also, [i, n] covers {`′} (or [i′, n]) if i = `′ (respectively, i′ = i + 1). The monomial labels

ω{`} = x`+1
` and ω[i,n] = xiixi+1 . . . xn. Set µ1

j,C for C ∈ Σn(S1) so that ωC =
∏

j∈C x
µ1j,C
j . The

finite poset Σn(S1) appeared in [8].

(ii) Let Σn(S2) = {{`} : 1 ≤ ` ≤ n} ∪ {{i, j} : 1 ≤ i < j ≤ n}. A poset structure on Σn(S2) is

given by the following cover relations. For i, j, i′, j′ ∈ [n] with i < j and i′ < j′, {i, j} covers

{i′, j′}, if either (i = i′ and j′ = j + 1) or (j = i′ and j′ = j + 1). Also, {i, j} covers {i′} if

either (i = i′ and j = n) or (i′ = j = n). In this case, the monomial labels ω{`} = xn` and

ω{i,j} = xiix
j−1
j . Set µ2

j,C for C ∈ Σn(S2) so that ωC =
∏

j∈C x
µ2j,C
j .

(iii) Let Σn(S3) = {{`} : 1 ≤ ` ≤ n} ∪ {{i, j} : 1 ≤ i < j ≤ n}. Again, a poset structure on

Σn(S3) is given by the following cover relations. For i, j, i′, j′ ∈ [n] with i < j and i′ < j′,

{i, j} covers {i′, j′}, if either (i = i′ and j = j′ + 1) or (i = i′ − 1 and j′ = j). Also, {i, j}
covers {i′} if either (i = i′ and j = i + 1) or (j = i′ and j = i + 1). Again, the monomial

labels ω{`} = xn` and ω{i,j} = xiix
n−(j−i)
j . Set µ3

j,C for C ∈ Σn(S3) so that ωC =
∏

j∈C x
µ3j,C
j .

The Hasse diagrams of Σ4(S1), Σ4(S2), Σ4(S3) are given in Figure-2.

Proposition 3.2. (i). The ideal I
[n]
Sa

is an order monomial ideal for 1 ≤ a ≤ 3.

(ii). The free complex F∗(∆(Σn(Sa))) is the cellular resolution of I
[n]
Sa

supported on the order complex

∆(Σn(Sa)) for 1 ≤ a ≤ 3.
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Figure 2

Proof. Given the poset structure on Σn(Sa), it is a straight forward verification that I
[n]
Sa

is an order

monomial ideal. Postnikov and Shapiro [12] showed that the free complex F∗(∆(P )) is a cellular

resolution of the order monomial ideal I = 〈ωu : u ∈ P 〉 (see Theorem 2.4 of [8]). �

Remark 3.3. The cellular resolution F∗(∆(Σn(Sa))) is minimal for a = 1, but nonminimal for

a = 2, 3. Also, the rth Betti number βr(I
[n]
S1

) is given by (see Theorem 2.7 of [8])

βr(I
[n]
S1

) =
r+1∑
s=0

(
n− 1

s

)(
n− s

r + 1− s

)
; (0 ≤ r ≤ n− 1).

We now identify standard monomials of R

I
[n]
Sa

. Consider the following subsets of the set PFn of

parking functions p = (p1, . . . , pn) of length n.

(i) PF1
n = {p ∈ PFn : pt ≤ t, ∀t and if pi = i, then pj = 0 for some j ∈ [i, n]}.

(ii) PF2
n = {p ∈ PFn : if pi ≥ i, then pj < j − 1 for all j ∈ [i+ 1, n]}.

(iii) PF3
n = {p ∈ PFn : if pi ≥ i, then pj < n− (j − i) for all j ∈ [i+ 1, n]}.

In view of Lemma 3.1, xp /∈ I [n]
Sa

if and only if p ∈ PFan for 1 ≤ a ≤ 3. Thus (fine) Hilbert series

H

(
R

I
[n]
Sa

,x

)
of R

I
[n]
Sa

is given by H

(
R

I
[n]
Sa

,x

)
=
∑

p∈PFan
xp. In particular, |PFan| = dimk

(
R

I
[n]
Sa

)
=

H

(
R

I
[n]
Sa

,1

)
, where 1 = (1, . . . , 1). Using the cellular resolution F∗(∆(Σn(Sa))) supported on the

order complex ∆(Σn(Sa)), the (fine) Hilber series H

(
R

I
[n]
Sa

,x

)
is given by

(3.1) H

(
R

I
[n]
Sa

,x

)
=

∑n
i=0(−1)i

∑
(C1,...,Ci)∈Fai−1

∏i
q=1

(∏
j∈Cq\Cq−1

x
µaj,Cq
j

)
(1− x1) · · · (1− xn)

,
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where Fai−1 is the set of i− 1-dimensional faces of ∆(Σn(Sa)), (C1, . . . , Ci) ∈ Fai−1 is a (strict) chain

C1 ≺ . . . ≺ Ci of length i− 1, C0 = ∅ and µaj,C is as in the definition of poset Σn(Sa).

Proposition 3.4. The number of standard monomials of R

I
[n]
Sa

is given by

dimk

(
R

I
[n]
Sa

)
=

n∑
i=1

(−1)n−i
∑

(C1,...,Ci)∈Fai−1

C1∪...∪Ci=[n]

i∏
q=1

 ∏
j∈Cq\Cq−1

µaj,Cq

 ,

where summation is carried over all i− 1-dimensional faces (C1, . . . , Ci) ∈ Fai−1 of ∆(Σn(Sa)) with

C1 ∪ . . . ∪ Ci = [n] and C0 = ∅. Also,

dimk

(
R

I
[n]
Sa

)
=

∑
0≤i≤n;

(C1,...,Ci)∈Fai−1

(−1)i

 i∏
q=1

(
∏

j∈Cq\Cq−1

(µaj,{j} − µaj,Cq))

∏
l /∈Ci

µal,{l}

 ,

where summation is carried over all faces (C1, . . . , Ci) ∈ Fai−1 including the empty face C0 = ∅.

Proof. As |PFan| = dimk

(
R

I
[n]
Sa

)
= H

(
R

I
[n]
Sa

,1

)
, letting x→ 1 in the rational function expression 3.1

of H

(
R

I
[n]
Sa

,x

)
, and applying L’Hospital’s rule, we get the first formula. For more detail, see the

proof of Proposition 4.5 of [6]. In order to get the second formula, put yj = 1
xj

in (3.1) to get a

rational function, say H̃

(
R

I
[n]
Sa

,y

)
. Now letting y→ 1 in the product

(∏n
j=1 y

µa
j,{j}−1

j

)
H̃

(
R

I
[n]
Sa

,y

)
,

we get the second formula, which is due to Postnikov and Shapiro [12].

Theorem 3.5. The number of standard monomials of R

I
[n]
Sa

is given by

dimk

(
R

I
[n]
Sa

)
= |PFan| =

(n+ 1)!

2
, (1 ≤ a ≤ 3).

Proof. As dimk

(
R

I
[n]
Sa

)
= 1 for n = 1, we assume that n > 1.

(i) Let a = 1. Using the second formula

dimk

(
R

I
[n]
S1

)
=

∑
0≤i≤n;

(C1,...,Ci)∈F1
i−1

(−1)i

 i∏
q=1

(
∏

j∈Cq\Cq−1

(µ1
j,{j} − µ1

j,Cq))

∏
l /∈Ci

µ1
l,{l}
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in Proposition 3.4, we shall show that

(3.2) dimk

(
R

I
[n]
S1

)
= n(n!) + (n− 1)((n− 1)!)

∑
1≤i≤n;

0=j0<j1<...<ji<n

(−1)i
1∏i
q=2 jq

.

The term corresponding to the empty chain is n(n!). Also, for a (strict) chain C1 ≺ . . . ≺ Ci in

F1
i−1, the corresponding term in the second formula is zero if the chain has a singleton member.

Thus surviving terms are of the form Cl = [ji−l+1, n] for some sequence 0 = j0 < j1 < . . . < ji < n.

Note that the term corresponding to such a chain is precisely, (−1)i (n−1)((n−1)!)
j2j3...ji

. This proves (3.2).

Let αn =
∑

i≥1(−1)i+1
∑

0=j0<j1<...<ji<n
1∏i

q=2 jq
. Clearly, α1 = 0. For n > 1, we claim that αn = n

2
.

We have,

αn =
∑
i≥1

(−1)i+1
∑

0=j0<j1<...<ji<n−1

1∏i
q=2 jq

+
∑
i≥1

(−1)i+1
∑

0=j0<j1<...<ji=n−1

1∏i
q=2 jq

= αn−1 +
1

n− 1

∑
i≥2

(−1)i+1
∑

0=j0<j1<...<ji−1<n−1

1∏i−1
q=2 jq

+ 1

= αn−1 −
1

n− 1
αn−1 + 1 =

n− 2

n− 1
αn−1 + 1.

On solving this recurrence relation, we get αn = n
2

for n > 1. Now in view of (3.2),

dimk

(
R

I
[n]
S1

)
= n(n!) + (n− 1)((n− 1)!)

(
−n
2

)
=

(n+ 1)!

2
.

(ii) Let a = 2. As dimk

(
R

I
[n]
Sa

)
= 1 or 3 for n = 1 or 2, respectively, we assume that n > 2.

Suppose F2[n] = ∪ni=1{(C1, . . . , Ci) ∈ F2
i−1 : ∪ij=1Cj = [n]}. For C = (C1, . . . , Ci) ∈ F2[n], we write

µ2(C) =
∏i

q=1

(∏
j∈Cq\Cq−1

µ2
j,Cq

)
. In view of the first formula in Proposition 3.4, we have

α̃n = dimk

(
R

I
[n]
S2

)
=

∑
C∈F2[n]

(−1)n−`(C)−1µ2(C).

Now decompose F2[n] = F2[n]′
∐
F2[n]′′, where C = (C1, . . . , Ci) ∈ F2[n]′ if |C1| = 1 and C ∈

F2[n]′′ if |C1| = 2. Then α̃n = α̃′n + α̃′′n, where

α̃′n =
∑
C∈F2[n]′

(−1)n−`(C)−1µ2(C) and α̃′′n =
∑

C∈F2[n]′′

(−1)n−`(C)−1µ2(C).

A chain C = (C1, . . . , Ci) ∈ F2[n]′ is called a Type-I, Type-II or Type-III chain, if (C1, C2) =

({i}, {i, n}) for i < n, (C1, C2) = ({n}, {i, n}) for i < n or (C1, C2) = ({n}, {i, n− 1}) for i < n− 1,
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respectively. Now

α̃′n =

 ∑
C∈F2[n]′;
Type−I

+
∑

C∈F2[n]′;
Type−II

+
∑

C∈F2[n]′;
Type−III

 (−1)n−`(C)−1 µ2(C)

= nα̃′n−1 −
n

n− 1
α̃′′n + nα̃′′n−1 = nα̃n−1 −

n

n− 1
α̃′′n.

Claim : α̃′′n = − (n−1)(n!)
2

.

For 1 ≤ t ≤ n− 1, consider saturated chains C(t) in F2[n]′′ of the form

C(t) : {t, n} ≺ {t, n− 1} ≺ . . . ≺ {t, t+ 1} ≺ {t− 1, t} ≺ . . . ≺ {1, 2}.

Then µ2(C(t)) = t((n− 1)!). Any other chain in F2[n]′′ is either of the form

C : {r, n} ≺ . . . ≺ {r, r + 1} ≺ . . . ≺ {s− 1, s} ≺ {l, s− 1} ≺ {l, s− 2} ≺ . . . ≺ . . .

or

C ′ : {r, n} ≺ . . . ≺ {r, r + 1} ≺ . . . ≺ {s′ − 1, s′} ≺ {l′, s′ − 2} ≺ . . . ≺ . . . , (for 3 ≤ r ≤ n− 1),

where s (or s′) is the largest integer such that {l, s− 1} covers {s− 1, s} in C (or {l′, s′ − 1} is not

in C ′) for some l < s− 2 (or l′ < s′ − 2). Let C̃ = C \ {{l, s− 1}} be the chain obtained from C on

deleting {l, s− 1} and C̃ ′ = C ′ ∪{{l′, s′− 1}} be the chain obtained from C ′ on adjoining {l′, s′− 1}.
Clearly, µ2(C) = µ2(C̃) and µ2(C ′) = µ2(C̃ ′). As length `(C) = `(C̃) + 1 and `(C ′) = `(C̃ ′) − 1, the

terms in α̃′′n =
∑
C∈F2[n]′′(−1)n−`(C)−1µ2(C) corresponding to chains C ∈ F2[n]′′ different from C(t)

cancel out. Thus

α̃′′n =
n−1∑
t=1

(−1)n−`(C
(t))−1 µ2(C(t)) =

n−1∑
t=1

(−1)n−(n−2)−1 t((n− 1)!) = −(n− 1)(n!)

2
.

Now α̃n = α̃′n + α̃′′n = nα̃n−1 − n
n−1

α̃′′n + α̃′′n = nα̃n−1 + n!
2

. On solving this recurrence, we get

α̃n = (n+1)!
2

, as desired.

(iii) Let a = 3 and assume n > 2. Proceeding as in part(ii), we write

dimk

(
R

I
[n]
S3

)
=

∑
C∈F3[n]

(−1)n−`(C)−1µ3(C),

where F3[n] is the collection of all chains C̄ = (C1, . . . , Ci) in F3
i−1 (for some i) with ∪ij=1Cj = [n]

and µ3(C̄) =
∏i

q=1

(∏
j∈Cq\Cq−1

µ3
j,Cq

)
. For 1 ≤ t ≤ n− 1, let C̄(t) be the chain in F3[n] of the form

C̄(t) : {t} ≺ {t, t+ 1} ≺ . . . ≺ {t, n− 1} ≺ {t, n} ≺ {t− 1, n} ≺ . . . ≺ {1, n}
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and C̄(t) \ {{t}} is the chain obtained from C̄(t) by deleting the first element {t}. Now µ3(C̄(t)) = n!

and µ3(C̄(t) \ {{t}}) = t((n − 1)!). There is one more chain C̄ : {n} ≺ {n − 1, n} ≺ . . . ≺ {1, n} in

F3[n], with µ3(C̄) = n!. As in part (ii), it can be shown that the terms corresponding to remaining

chains cancel out. Thus

dimk

(
R

I
[n]
S3

)
= n(n!)− (1 + 2 + . . .+ (n− 1))((n− 1)!) =

(n+ 1)!

2
.

�

Theorem 3.5 shows that the integer sequence

{
dimk

(
R

I
[n]
Sa

)
= (n+1)!

2

}∞
n=1

for 1 ≤ a ≤ 3 is

the integer sequence (A001710) in OEIS [14]. As |PFan| = (n+1)!
2

, it is expected that the set PFan
could be easily enumerated. Let p ∈ PF1

n. Then pt ≤ t; ∀t and pi = i implies that pj = 0 for

some j ∈ [i + 1, n]. We count p ∈ PF1
n according to the value s of the largest t ∈ [n] with pt = t.

If pt < t;∀t ∈ [n], then we take s = 0. As pn < n, we have 0 ≤ s ≤ n − 1. For s = 0, any

p = (p1, . . . , pn) ∈ Nn such that pt < t; ∀t is a parking function and number of such p ∈ PF1
n is

precisely
∏n

t=1(t) = n!. Now let s ≥ 1. Any sequence p = (p1, . . . , pn) ∈ Nn satisfying conditions

(3.3) pt ≤ t ∀t < s, ps = s, and pj < j ∀j > s,with at least one pj = 0,

is always a parking function. The number of p satisfying conditions (3.3) is

s−1∏
t=1

(t+ 1)

[
n∏

j=s+1

j −
n∏

j′=s+1

(j′ − 1)

]
= (n− s)((n− 1)!).

This shows that |PF1
n| =

∑n−1
s=0 (n − s)((n − 1)!) = (n+1)!

2
. Similarly, PFan for a = 2, 3 can also

be enumerated. However, it is still an interesting problem to construct an (explicit) bijection

φ : PFan −→ Fn+1(21), where Fn+1(21) is the set of rooted-labelled increasing forests on [n+ 1].

Case-2 : To monomial ideals I
[n]
T1

and I
[n]
T2

, we associate finite posets Σn(T1) and Σn(T2)

respectively, as below.

(i) Let Σn(T1) = {{`}, {i, n} : 1 ≤ ` ≤ n − 1; 1 ≤ i ≤ n}, where {n, n} = {n}. We define a

poset structure on Σn(T1) by describing cover relations. For `, `′ ∈ [n− 1] and i, i′ ∈ [n], {`}
covers {`′}, if `′ = `+ 1. Also, {i, n} covers {`′} (or {i′, n}) if i = `′ (respectively, i′ = i+ 1).

The monomial labels ω{`} = x`+1
` , ω{n} = xnn and ω{i,n} = xiix

i
n for 1 ≤ `, i < n. Set µ̂1

j,C for

C ∈ Σn(T1) so that ωC =
∏

j∈C x
µ̂1j,C
j .

(ii) Let Σn(T2) = Σn(T1). But the poset structure on Σn(T2) is obtained by interchanging {i}
with {n− i} (and also, {i, n} with {n− i, n})(for 1 ≤ i < n) in the poset Σn(T1). The cover

relations of the poset Σn(T2) are given as follows. For `, `′, i, i′ ∈ [n− 1], {`} covers {`′}, if

`′ = ` − 1 and {i, n} covers {`′} (or {i′, n}) if i = `′ (respectively, i′ = i − 1). In addition,
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{1, n} covers {n}. The monomial labels ω{`} = xn−`+1
` , ω{n} = xnn and ω{i,n} = xn−ii xn−in for

1 ≤ `, i < n. Set µ̂2
j,C for C ∈ Σn(T1) so that ωC =

∏
j∈C x

µ̂2j,C
j .

The Hasse diagram of Σ4(T1) and Σ4(T2) are given in Figure-3.

14

1 24

2

3 4

34

Σ4(T1)

34

3 24

2

1 4

14

Σ4(T2)

Figure 3

Proposition 3.6. (i). The ideals I
[n]
T1

and I
[n]
T2

are order monomial ideals.

(ii). The free complex F∗(∆(Σn(Tb))) is the minimal cellular resolution of I
[n]
Sa

supported on the order

complex ∆(Σn(Tb)) for 1 ≤ b ≤ 2. Thus the rth Betti number βr(I
[n]
Tb

) is given by

βr(I
[n]
Tb

) =

(
n

r + 1

)
+ (r + 1)

(
n− 1

r + 1

)
+ r

(
n− 1

r

)
, (1 ≤ r ≤ n− 1).

Proof. From the definitions of the poset Σn(Tb), it is clear that the ideal I
[n]
Tb

is an order monomial

ideal. Further, the cellular resolution F∗(∆(Σn(Tb))) is the minimal resolution of I
[n]
Sa

supported on

the order complex ∆(Σn(Tb)) because monomial label on any face of ∆(Σn(Tb)) is different from the

monomial label on subfaces. Thus the rth Betti number βr(I
[n]
Tb

) equals the number (strict) chains

of length r in the poset Σn(Tb). Since Σn(T2) is obtained from Σn(T1) by changing i to n − i for

i ∈ [n], number of chains of length r in both the posets are same. We count chains of length r in

Σn(T1) for 0 ≤ r ≤ n− 1. Consider a (strict) chain

C : C1 ≺ C2 ≺ . . . ≺ Cs ≺ Cs+1 ≺ . . . ≺ Cr+1.

If all Cj are of the form {tj, n} for tj ∈ [n], then the chain C can be identified with a r + 1-subset

{t1, . . . , tr+1} of [n]. Thus number of such chains is
(
n
r+1

)
. If Cs = {ts} and Cs+1 = {ts+1, n} for



INTEGER SEQUENCES AND MONOMIAL IDEALS 19

some s with ts+1 < ts, then the chain C can be identified with a r+ 1-subset {t1, . . . , tr+1} of [n− 1]

with a chosen element ts. Any j ∈ {t1, . . . , tr+1} represent singleton {j} if j ≥ ts, while it represent

{j, n} for j < ts. The number of such chains is precisely (r + 1)
(
n−1
r+1

)
. Now we count chains C

with Cs = {ts} and Cs+1 = {ts, n} (i.e., ts = ts+1). In this case, chain C can be identified with

a r-subset {t1, . . . , ts = ts+1, . . . , tr+1} of [n − 1] with a chosen element ts. Thus number of such

chains is r
(
n−1
r

)
. Since any r-chain C in Σn(T1) is a chain of one of the three types, we get the

desired result. �
Consider the following subsets of PFn of parking function p = (p1, . . . , pn).

(i) P̂F
1

n = {p ∈ PFn : pt ≤ t, ∀t and if pi = i, then pn < i}.
(ii) P̂F

2

n = {p ∈ PFn : pn−t ≤ t, ∀t and if pn−i = i, then pn < i}.

In view of Lemma 2.4, xp /∈ I [n]
Tb

if and only if p ∈ P̂F
b

n for b = 1, 2. Thus, |P̂F
b

n| = dimk

(
R

I
[n]
Tb

)
.

Also, the mapping (p1, p2, . . . , pn−1, pn) 7→ (pn−1, pn−2, . . . , p1, pn) induces a bijection between P̂F
1

n

and P̂F
2

n.

Theorem 3.7. The number of standard monomials of R

I
[n]
Tb

is given by

|P̂F
b

n| = dimk

(
R

I
[n]
Tb

)
= s(n+ 1, 2); (b = 1, 2),

where s(n+ 1, 2) is the (signless) Stirling number of the first kind.

Proof. We take b = 1. Proceeding as in Proposition 3.4, we get

dimk

(
R

I
[n]
T1

)
=

∑
C∈F̂1[n]

(−1)n−`(C)−1 µ̂1(C),

where F̂1[n] is the collection of all chains C = (C1, . . . , Ci) in Σn(T1) such that C1 ∪ . . . ∪ Ci = [n]

and µ̂1(C) =
∏i

q=1

(∏
j∈Cq\Cq−1

µ̂1
j,Cq

)
. For 1 ≤ t ≤ n, let Ĉ(n) : {n} ≺ {n− 1, n} ≺ . . . ≺ {1, n},

Ĉ(t) : {n− 1} ≺ . . . ≺ {t} ≺ {t, n} ≺ {t− 1, n} ≺ . . . ≺ {1, n}; (1 ≤ t ≤ n− 1)

and Ĉ ′(t) be the chain obtained from Ĉ(t) on deleting {t, n}. For t = n, we have {n, n} = {n}. It is

clear that F̂1[n] = {Ĉ(t), Ĉ ′(t) : 1 ≤ t ≤ n}. Also, µ̂1(Ĉ(t)) = n! and µ̂1(Ĉ ′(t)) = t−1
t

(n!) for 1 ≤ t ≤ n.
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As `(Ĉ(t)) = `(Ĉ ′(t)) + 1 = n− 1, we see that

dimk

(
R

I
[n]
T1

)
=

n∑
t=1

(
µ̂1(Ĉ(t))− µ̂1(Ĉ ′(t))

)
=

n∑
t=1

(
n!− t− 1

t
n!

)
=

n∑
t=1

n!

t
=

(
1 +

1

2
+ . . .+

1

n

)
n! = s(n+ 1, 2).

�
A nice formula |P̂F

1

n| = |P̂F
2

n| = s(n+1, 2), deserves a combinatorial proof. We count parking

functions p = (p1, . . . , pn) in P̂F
1

n according to the value of pn. Clearly, 0 ≤ pn ≤ n − 1. For

any 0 ≤ t ≤ n − 1, we see that pn = t implies that pi < i for all i ≤ t and pj ≤ j for j > t.

Also, any (p1, . . . , pn) with pn = t and pi < i for all i ≤ t, while pj ≤ j for all t < j ≤ n − 1

is always a parking function of length n. Thus number of p = (p1, . . . , pn) ∈ P̂F
1

n with pn = t is(∏t
i=1 i

) (∏n−1
j=t+1(j + 1)

)
= n!

t+1
. Hence, |P̂F

1

n| =
∑n−1

t=0
n!
t+1

.

Theorem 3.7 shows that the integer sequence

{
dimk

(
R

I
[n]
Tb

)
= s(n+ 1, 2)

}∞
n=1

for b = 1, 2 is

the integer sequence (A000254) in OEIS [14].

Case-3 : We finally consider the monomial ideal I
[n]
U . The minimal generators

∏
j∈A x

νj,A
j of

I
[n]
U are parametrized by the poset Σn. Again, it is straight forward to verify that the ideal I

[n]
U

is an order monomial ideal and the cellular resolution F∗(∆(Σn)) supported on the order complex

∆(Σn) is the minimal free resolution of I
[n]
U . Thus rth Betti number βr(I

[n]
U ) = (r!)S(n + 1, r + 1)

for 0 ≤ r ≤ n− 1.

Now we describe standard monomials of R

I
[n]
U

. Let PFn = {p ∈ PFn : xp /∈ I [n]
U }.

Lemma 3.8. Let p = (p1, . . . , pn) ∈ PFn. Then p ∈ PFn if and only if, there exists a permutation

α ∈ Sn such that pαi < ναi,Ti for all i, where αi = α(i), T1 = [n] and Tj = [n] \ {α1, . . . , αj−1} for

j ≥ 2. Also, νj,T is in the Lemma 2.4.

Proof. Proof is similar to the proof of Theorem 4.3 of [6]. �
Proceeding as in Proposition 3.4, we get a combinatorial formula for the number of standard

monomials of R

I
[n]
U

.

Proposition 3.9. The number of standard monomials of R

I
[n]
U

is given by

|PFn| = dimk

(
R

I
[n]
U

)
=

n∑
i=1

(−1)n−i
∑

∅=C0(C1(...(Ci=[n]

i∏
q=1

 ∏
j∈Cq\Cq−1

νj,Cq

 ,
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where summation is carried over all strict chains ∅ = C0 ( C1 ( . . . ( Ci = [n].

Neither using Proposition 3.9, nor by any combinatorial tricks, we could determine |PFn| =

dimk

(
R

I
[n]
U

)
. Thus, we ask the following question.

Question : Is it possible to identify the sequence

{
dimk

(
R

I
[n]
U

)}∞
n=1

with some well known

combinatorially interesting integer sequence?

Computations for smaller values of n suggest that this integer sequence could be (A003319)

in OEIS [14].

Acknowledgements : The second author is thankful to CSIR, Government of India for

financial support.

References

[1] Anders K. and Archer K., Rooted forests that avoid sets of permutations, European J. Combin. 77 (2019), 1-16.
[2] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research Letters 5 (1998), 31-46.
[3] Bayer D. and Sturmfels B., Cellular resolutions of monomial modules, Journal für die Reine und Angewandte

Mathematik 502 (1998), 123-140.
[4] Gaydarov P. and Hopkins S., Parking functions and tree inversions revisited, Adv. in Appl. Math. 80 (2016),

151-179.
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