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PADOVAN NUMBERS THAT ARE CONCATENATIONS OF TWO

REPDIGITS

MAHADI DDAMULIRA

Abstract. Let (Pn)n≥0 be the sequence of Padovan numbers defined by P0 = 0, P1 = 1 = P2,
and Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we find all Padovan numbers that are

concatenations of two repdigits.

1. Introduction

We consider the sequence (Pn)n≥0 of Padovan numbers defined by

P0 = 0, P1 = 1, P2 = 1, and Pn+3 = Pn+1 + Pn for all n ≥ 0.

This is sequence A000931 on the On-Line Encyclopedia of Integer Sequences (OEIS) [8]. The first
few terms of this sequence are

(Pn)n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, . . . .

A repdigit is a positive integer N that has only one distinct digit when written in its decimal
expansion. That is, N is of the form

N = d · · · d
︸ ︷︷ ︸

ℓ times

= d

(
10ℓ − 1

9

)

, (1.1)

for some positive integers d, ℓ with 0 ≤ d ≤ 9 and ℓ ≥ 1. The sequence of repdigits is sequence
A010785 on the OEIS. Diophantine equations involving repdigits and Padovan numbers have been
considered in various papers in the recent years. For example: in [5], Garćıa Lomeĺı and Hernández
Hernández found all repdigits that can be written as a sum of two Padovan numbers; in [3], the
author found all repdigits that can be written as a sum of three Padovan numbers.

2. Main Result

In this paper, we study the problem of finding all Padovan numbers that are concatenations of
two repdigits. More precisely, we completely solve the Diophantine equation

Pn = d1 · · · d1
︸ ︷︷ ︸

ℓ1 times

d2 · · · d2
︸ ︷︷ ︸

ℓ2 times

= d1

(
10ℓ1 − 1

9

)

× 10ℓ2 + d2

(
10ℓ2 − 1

9

)

, (2.1)

in non-negative integers (n, d1, d2, ℓ1, ℓ2) with n ≥ 0, ℓ1 ≥ ℓ2 ≥ 1, and 0 ≤ d2 < d1 ≤ 9.
Our main result is the following.

Theorem 2.1. The only Padovan numbers that are concatenations of two repdigits are

Pn ∈ {12, 16, 21, 28, 37, 49, 65, 86, 114, 200}.
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This paper is inspired by the result of Alahmadi, Altassan, Luca, and Shoaib [1], in which
they find all Fibonacci numbers that are concatenations of two repdigits. Our method of proof
involves the application of Baker’s theory for linear forms in logarithms of algebraic numbers, and
the Baker-Davenport reduction procedure. Computations are done with the help of a computer
program in Mathematica.

3. Preliminary results

3.1. The Padovan sequence. Here, we recall some important properties of the Padovan sequence
{Pn}n≥0. The characteristic equation

Ψ(x) := x3 − x− 1 = 0,

has roots α, β, γ = β̄, where

α =
r1 + r2

6
, β =

−(r1 + r2) +
√
−3(r1 − r2)

12
(3.1)

and

r1 =
3

√

108 + 12
√
69 and r2 =

3

√

108− 12
√
69. (3.2)

Furthermore, the Binet formula is given by

Pn = aαn + bβn + cγn for all n ≥ 0, (3.3)

where

a =
α+ 1

(α− β)(α − γ)
, b =

β + 1

(β − α)(β − γ)
, c =

γ + 1

(γ − α)(γ − β)
= b̄. (3.4)

The minimal polynomial of a over the integers is given by

23x3 − 23x2 + 6x− 1,

has zeros a, b, c with |a|, |b|, |c| < 1. Numerically, the following estimates hold:

1.32 < α < 1.33;

0.86 < |β| = |γ| = α− 1

2 < 0.87;

0.72 < a < 0.73;

0.24 <|b| = |c| < 0.25.

(3.5)

From (3.1), (3.2) and (3.5), it is easy to see that the contribution the complex conjugate roots β
and γ, to the right-hand side of (3.3), is very small. In particular, setting

e(n) := Pn − aαn = bβn + cγn then |e(n)| < 1

αn/2
, (3.6)

holds for all n ≥ 1. Furthermore, by induction, one can prove that

αn−3 ≤ Pn ≤ αn−1 holds for all n ≥ 1. (3.7)

Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K,Q] = 6. Furthermore,
[Q(α) : Q] = 3. The Galois group of K over Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Thus, we identify the automorphisms of G with the permutations of the zeros of the polynomial Ψ.
For example, the permutation (αβ) corresponds to the automorphism σ : α → β, β → α, γ → γ.
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3.2. Linear forms in logarithms. Let η be an algebraic number of degree d with minimal
primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then the loga-

rithmic height of η is given by

h(η) :=
1

d

(

log a0 +

d∑

i=1

log
(

max{|η(i)|, 1}
)
)

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =
logmax{|p|, q}. The following are some of the properties of the logarithmic height function h(·),
which will be used in the next section of this paper without reference:

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2;

h(η1η
±1
2 ) ≤ h(η1) + h(η2);

h(ηs) = |s|h(η) (s ∈ Z).

We recall the result of Bugeaud, Mignotte, and Siksek ([2], Theorem 9.4, pp. 989), which is a
modified version of the result of Matveev [7], which is one of our main tools in this paper.

Theorem 3.1. Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number field

K ⊂ R of degree D, b1, . . . , bt be nonzero integers, and assume that

Λ := ηb11 · · · ηbtt − 1 6= 0.

Then,

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

3.3. Reduction procedure. During the calculations, we get upper bounds on our variables which
are too large, thus we need to reduce them. To do so, we use some result from the theory of
continued fractions. For a nonhomogeneous linear form in two integer variables, we use a slight
variation of a result due to Dujella and Pethő ([4], Lemma 5a). For a real number X , we write
‖X‖ := min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.1. Let M be a positive integer, p
q be a convergent of the continued fraction expansion

of the irrational number τ such that q > 6M , and A,B, µ be some real numbers with A > 0 and

B > 1. Furthermore, let ε := ‖µq‖ −M‖τq‖. If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

The following Lemma is also useful. It is due to Gúzman Sánchez and Luca ([6], Lemma 7).

Lemma 3.2. If r ≥ 1, H > (4r2)r, and H > L/(logL)r, then

L < 2rH(logH)r.
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4. The proof of Theorem 2.1

4.1. The small ranges. With the help of Mathematica, we checked all the solutions to the
Diophantine equation (2.1) in the ranges 0 ≤ d2 < d1 ≤ 9 and 1 ≤ ℓ2 ≤ ℓ1 ≤ n ≤ 500 and found
only the solutions stated in Theorem 2.1. From now on we assume that n > 500.

4.2. The initial bound on n. We rewrite (2.1) as

Pn = d1 · · · d1
︸ ︷︷ ︸

ℓ1 times

d2 · · · d2
︸ ︷︷ ︸

ℓ2 times

= d1 · · · d1
︸ ︷︷ ︸

ℓ1 times

× 10ℓ2 + d2 · · · d2
︸ ︷︷ ︸

ℓ2 times

= d1

(
10ℓ1 − 1

9

)

× 10ℓ2 + d2

(
10ℓ2 − 1

9

)

(by (1.1))

=
1

9

(
d1 × 10ℓ1+ℓ2 − (d1 − d2)× 10ℓ2 − d2

)
.

Thus,

Pn =
1

9

(
d1 × 10ℓ1+ℓ2 − (d1 − d2)× 10ℓ2 − d2

)
. (4.1)

We prove the following lemma, which gives a relation on the size of n versus ℓ1 + ℓ2.

Lemma 4.1. All solutions of the Diophantine equation (4.1) satisfy

(ℓ1 + ℓ2) log 10− 3 < n logα < (ℓ1 + ℓ2) log 10 + 1.

Proof. The proof follows easily from (3.7). One can see that

αn−3 < Pn < 10ℓ1+ℓ2 .

Taking the logarithm on both sides, we get that

(n− 3) logα < (ℓ1 + ℓ2) log 10,

which leads to

n logα < (ℓ1 + ℓ2) log 10 + 3 logα < (ℓ1 + ℓ2) log 10 + 1. (4.2)

For the lower bound, we have that

10ℓ1+ℓ2−1 < Pn < αn−1.

Taking the logarithm on both sides, we get that

(ℓ1 + ℓ2 − 1) log 10 < (n− 1) logα,

which leads to

(ℓ1 + ℓ2) log 10− 3 < (ℓ1 + ℓ2 − 1) log 10 + logα < n logα. (4.3)

Comparing (4.2) and (4.3) gives the result in the lemma. �

Next, we examine (4.1) in two different steps.
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Step 1. Substituting (3.3) in (4.1), we get that

aαn + bβn + cγn =
1

9

(
d1 × 10ℓ1+ℓ2 − (d1 − d2)× 10ℓ2 − d2

)
.

By (3.6), this is equivalent to

9aαn − d1 × 10ℓ1+ℓ2 = −9e(n)− (d1 − d2)× 10ℓ2 − d2,

from which we deduce that
∣
∣9aαn − d1 × 10ℓ1+ℓ2

∣
∣ =

∣
∣9e(n) + (d1 − d2)× 10ℓ2 + d2

∣
∣

≤ 9α−n/2 + 9× 10ℓ2 + 9

< 30× 10ℓ2.

Thus, dividing both sides by d1 × 10ℓ1+ℓ2 we get that
∣
∣
∣
∣

(
9a

d1

)

· αn · 10−ℓ1−ℓ2 − 1

∣
∣
∣
∣
<

30× 10ℓ2

d1 · 10ℓ1+ℓ2
<

30

10ℓ1
. (4.4)

Put

Λ1 :=

(
9a

d1

)

· αn · 10−ℓ1−ℓ2 − 1. (4.5)

Next, we apply Theorem 3.1 on (4.5). First, we need to chech that Λ1 6= 0. If it were, then we
would get that

aαn =
d1
9

· 10ℓ1+ℓ2 .

Now, we apply the automorphism σ of the Galois group G on both sides and take absolute values
as follows.

∣
∣
∣
∣

d1
9

· 10ℓ1+ℓ2

∣
∣
∣
∣
= |σ(aαn)| = |bβn| < 1,

which is false. Thus, Λ1 6= 0. So, we apply Theorem 3.1 on (4.5) with the data:

t := 3, η1 :=
9a

d1
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −ℓ1 − ℓ2.

By Lemma 4.1, we have that ℓ1 + ℓ2 < n. Therefore, we can take B := n. Observe that K :=
Q(η1, η2, η3) = Q(α), since a = α(α + 1)/(3α2 − 1), so D := 3. We have

h(η1) = h(9a/d1) ≤ h(9) + h(a) + h(d1) ≤ log 9 +
1

3
log 23 + log 9 ≤ 5.44.

Furthermore, h(η2) = h(α) = (1/3) logα and h(η3) = h(10) = log 10. Thus, we can take

A1 := 16.32, A2 := logα, and A3 := 3 log 10.

Theorem 3.1 tells us that

log |Λ1| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + logn)(16.32)(logα)(3 log 10)

> −1.45× 1030(1 + logn).

Comparing the above inequality with (4.4) gives

ℓ1 log 10− log 30 < 1.45× 1030(1 + log n),

leading to

ℓ1 log 10 < 1.46× 1030(1 + logn). (4.6)
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Step 2. By (3.6), we rewrite (4.1) as

9aαn −
(
d1 × 10ℓ1 − (d1 − d2)

)
× 10ℓ2 = −9e(n)− d2,

from which we deduce that
∣
∣9aαn −

(
d1 × 10ℓ1 − (d1 − d2)

)
× 10ℓ2

∣
∣ = |9e(n) + d2| ≤ 9α−n/2 + 9 < 18.

Thus, dividing both sides by 9aαn we get that
∣
∣
∣
∣

(
d1 × 10ℓ1 − (d1 − d2)

9a

)

· α−n · 10ℓ2 − 1

∣
∣
∣
∣
<

18

9aαn
<

2

αn
. (4.7)

Put

Λ2 :=

(
d1 × 10ℓ1 − (d1 − d2)

9a

)

· α−n · 10ℓ2 − 1. (4.8)

Next, we apply Theorem 3.1 on (4.8). First, we need to chech that Λ2 6= 0. If not, then we would
get that

aαn =

(
d1 × 10ℓ1 − (d1 − d2)

9

)

· 10ℓ2.

Then, we apply the automorphism σ of the Galois group G on both sides and take absolute values
as follows.

∣
∣
∣
∣

(
d1 × 10ℓ1 − (d1 − d2)

9

)

· 10ℓ2
∣
∣
∣
∣
= |σ(aαn)| = |bβn| < 1,

which is false. Thus, Λ2 6= 0. So, we apply Theorem 3.1 on (4.8) with the data:

t := 3, η1 :=
d1 × 10ℓ1 − (d1 − d2)

9a
, η2 := α, η3 := 10, b1 := 1, b2 := −n, b3 := ℓ2.

As before, we have that ℓ2 < n. Thus, we can take B := n. Similary, Q(η1, η2, η3) = Q(α), so we
take D := 3. Furthermore, we have

h(η1) = h

(
d1 × 10ℓ1 − (d1 − d2)

9a

)

≤ h(d1 × 10ℓ1 − (d1 − d2)) + h(9a)

≤ h(d1 × 10ℓ1) + h(d1 − d2) + h(9) + h(a) + log 2

≤ h(d1) + ℓ1h(10) + h(d1) + h(d2) + h(9) + h(a) + 2 log 2

≤ ℓ1 log 10 + 4 log 9 +
1

3
log 23 + 2 log 2

≤ 1.46× 1030(1 + logn) + 4 log 9 +
1

3
log 23 + 2 log 2 (by (4.6))

< 1.48× 1030(1 + logn).

Thus, we can take

A1 := 4.44× 1030(1 + logn), A2 := logα, and A3 = 3 log 10.

Theorem 3.1 tells us that

log |Λ2| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + logn)(4.44× 1030(1 + logn))(logα)(3 log 10)

> −2.38× 1043(1 + logn)2.
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Comparing the above inequality with (4.7) gives,

n logα− log 2 < 2.38× 1043(1 + logn)2,

which is equivalent to

n < 1.70× 1044(log n)2. (4.9)

Applying Lemma 3.2 on (4.9) with the data r = 2, H := 1.70× 1044, and L := n, gives

n < 7.38× 1048.

Lemma 4.1 implies that

ℓ1 + ℓ2 < 9.14× 1047.

We have just proved the following lemma.

Lemma 4.2. All solutions to the Diophantine equation (4.1) satisfy

ℓ1 + ℓ2 < 9.14× 1047 and n < 7.38× 1048.

4.3. Reducing the bounds. The bounds given in Lemma 4.2 are to large to carry out meaningful
compution. Thus, we need to reduce them. To do so, we apply Lemma 3.1 as follows.

First, we return to (4.4) and put

Γ1 := (ℓ1 + ℓ2) log 10− n logα− log

(
9a

d1

)

.

The inequality (4.4) can be rewritten as

∣
∣e−Γ1 − 1

∣
∣ <

30

10ℓ1
.

Assume that ℓ1 ≥ 2, then the right–hand side in the above inequality is at most 3/10 < 1/2. The
inequality |ex − 1| < y for real values of x and y implies that x < 2y. Thus,

|Γ1| <
60

10ℓ1
,

which implies that
∣
∣
∣
∣
(ℓ1 + ℓ2) log 10− n logα− log

(
9a

d1

)∣
∣
∣
∣
<

60

10ℓ1
.

Dividing through by logα gives
∣
∣
∣
∣
(ℓ1 + ℓ2)

log 10

logα
− n+

(
log(d1/9a)

logα

)∣
∣
∣
∣
<

60

10ℓ1 logα
.

So, we apply Lemma 3.1 with the data:

τ :=
log 10

logα
, µ(d1) :=

log(d1/9a)

logα
, A :=

60

logα
, B := 10, 1 ≤ d1 ≤ 9.

Let τ = [a0; a1, a2, . . .] = [8; 5, 3, 3, 1, 5, 1, 8, 4, 6, 1, 4, 1, 1, 1, 9, 1, 4, 4, 9, 1, 5, 1, 1, 1, 5, 1, 1, 1, 2, 1, . . .]
be the continued fraction expansion of τ . We choose M := 8 × 1048 which is the upper bound on
ℓ1 + ℓ2. With the help of Mathematica, we find out that the convergent

p

q
=

p106
q106

=
177652856036642165557187989663314255133456297895465

21695574963444524513646677911090250505443859600601
,

is such that q = q106 > 6M . Furthermore, it yields ε > 0.0375413, and therefore either

ℓ1 ≤ log ((60/ logα)q/ε)

log 10
< 53,
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Thus, we have that ℓ1 ≤ 53.
For fixed 0 ≤ d2 < d1 ≤ 9 and 1 ≤ ℓ1 ≤ 53, we return to (4.7) and put

Γ2 := ℓ2 log 10− n logα+ log

(
d1 × 10ℓ1 − (d1 − d2)

9a

)

.

From the inequality (4.7), we have that

∣
∣eΓ2 − 1

∣
∣ <

2

αn
.

Since n > 500, the right–hand side of the above inequality is less than 1/2. Thus, the above
inequality implies that

|Λ1| <
4

αn
,

which leads to
∣
∣
∣
∣
ℓ2 log 10− n logα+ log

(
d1 × 10ℓ1 − (d1 − d2)

9a

)∣
∣
∣
∣
<

4

αn
.

Dividing through by logα gives,
∣
∣
∣
∣
∣
ℓ2

(
log 10

logα

)

− n+
log
(
(d1 × 10ℓ1 − (d1 − d2))/9a

)

logα

∣
∣
∣
∣
∣
<

4

αn logα
.

Again, we apply Lemma 3.1 with the data:

τ :=
log 10

logα
, µ(d1, d2) :=

log
(
(d1 × 10ℓ1 − (d1 − d2))/9a

)

logα
, A :=

4

logα
, B := α.

We take the same τ and its convergent p/q = p106/q106 as before. We choose ℓ2 < 8× 1048 := M .
With the help of Mathematica, we get that ε > 0.0000903006, and therefore

n ≤ log ((4/ logα)q/ε)

logα
< 446.

Thus, we have that n ≤ 446, contradicting the working assumption that n > 500. Hence, Theorem
2.1 is proved. �
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