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Abstract

Some established and also novel techniques in the field of applications
of algorithmic (Kolmogorov) complexity currently co-exist for the first
time and are here reviewed, ranging from dominant ones such as statis-
tical lossless compression to newer approaches that advance, complement
and also pose new challenges and may exhibit their own limitations. Evi-
dence suggesting that these different methods complement each other for
different regimes is presented and despite their many challenges, some of
these methods can be better motivated by and better grounded in the
principles of algorithmic information theory. It will be explained how dif-
ferent approaches to algorithmic complexity can explore the relaxation of
different necessary and sufficient conditions in their pursuit of numerical
applicability, with some of these approaches entailing greater risks than
others in exchange for greater relevance. We conclude with a discussion
of possible directions that may or should be taken into consideration to
advance the field and encourage methodological innovation, but more im-
portantly, to contribute to scientific discovery. This paper also serves as a
rebuttal of claims made in a previously published minireview by another
author, and offers an alternative account.

Keywords: Algorithmic complexity; Kolmogorov complexity; practical
feasibility; LZW; Shannon entropy; lossless compression; Coding theorem
method; causality v. correlation; Block decomposition method; rebuttal
to Paul Vitányi’s review.
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1 Introduction and preliminaries

Researchers in the field of algorithmic complexity, also known as Kolmogorov
complexity or Algorithmic Information Theory, are roughly divided between
those interested in its most theoretical aspects, falling (for the most part) under
the rubric of algorithmic randomness as applied to infinite sequences, and a
much smaller group (discounting those who adopt the same popular statistical
compression algorithms as the first group) interested in the methodological as-
pects of the theory of algorithmic complexity as applied to finite strings. For a
review of the theoretical aspects of algorithmic randomness and progress made
in the area the reader would do well to consult this good, up-to-date survey
[1], while this [2] provides an excellent historical account tracing how the field
split into the above subgroups early in its history. While Kolmogorov was more
interested in finite random objects [3], because ‘only finite objects can be rele-
vant to our experience’ [2], soon after its inception the field turned its attention
to infinite sequences [4] and the computability aspect of the question of ‘de-
grees of randomness’, leaving only a handful of people following Kolmogorov’s
original path and driven by his primary motivation. This was chiefly on ac-
count of the restrictions imposed by the uncomputability of the measures of
algorithmic complexity. Taken as its most salient feature it understandably led
the larger group of researchers to interest themselves in its most abstract—and
restrictive—aspect.

In mathematics, restrictive results have a strong initial impact on seemingly
promising research programs. For instance, it has been claimed [5] that von Neu-
mann decided to focus his research away from logic (at least for a time), as he
thought Gödel had delivered a decisive blow to research in the area. The main-
stream answer to research in areas such as Set theory and First-order logic may
have simply been ‘it is undecidable’. Nevertheless, decades of further research
in logic would follow, which have resulted not only in theoretical advances, but
in countless applications in wide-ranging domains.

In a similar (both theoretical and practical) fashion, restrictive results have
been associated with the field of algorithmic complexity since its inception,
but in contrast to previous restrictive results in other areas, theoretical ad-
vances [6, 7, 8] have considerably overtaken methodological innovation in the
area of applications [9]. Turing’s undecidability halting problem has been seen
as an insurmountable obstacle to applications of algorithmic complexity. But
again, many researchers did not give up, and looked for ways to circumvent
theoretical limitations, setting their sights on the tremendous potential of ap-
plications of algorithmic complexity.

Here, I will briefly explain some challenges and limitations of lossless statis-
tical compression algorithms in the study of the algorithmic complexity of finite
strings. I then proceed to present evidence of how current methods for approx-
imating algorithmic complexity do already produce considerably better results
than popular statistical compression algorithms under certain regimes, while
adhering more closely to the principles of algorithmic information and to the
motivations of Kolmogorov, Solomonoff and Chaitin. Some of these motivations
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were the generation of knowledge, the improvement of scientific method, and a
deeper understanding of the epistemological limits of humans and machines.

Lempel-Ziv-Welch (LZW) is one of the most, if not the most popular sta-
tistical lossless compression algorithm based on dictionary methods for data
compression [11], and it underpins many algorithms and popular file formats.
All variations of LZW (as used in popular file formats, and beyond) are based
on the same statistical principle, and claims of ‘universality’ refer to the set of
assumptions under which the algorithm can count and group repetitions in a
piece of data of arbitrary length (in principle), implementing and approaching
optimal entropy rate.

Unless otherwise specified, I will use LZW to represent the set of statistical
lossless compression algorithms based on classical information theory (as op-
posed to, e.g., methods such as algebraic compression [12, 13], or lossy compres-
sion), of which LZW is the most popular and widely used to allegedly approxi-
mate algorithmic (Kolmogorov) complexity. An overview of these compression
algorithms is given in [14]. LZW has been one of the most successful algorithms
in computer science and has fulfilled its purpose as data compressor for files
and images, as well as in offering an alternative order parameter that can le-
gitimately be taken as a measure of ‘statistical complexity’, sometimes called
LZW-complexity. The argument in this review is that LZW-complexity, and its
successes in its own right, should be clearly distinguished from algorithmic (Kol-
mogorov) complexity to allow the latter to make progress on the methodological
front, especially because LZW cannot fully instantiate algorithmic complexity,
while the part of it that it does instantiate can also be instantiated by classical
information theory.

A simple statistical compression algorithm is called Run-length encoding (or
RLE) and consists in encoding a string into consecutive segments of the form NX
where N is the number of occurrences of X, and X is a digit that occurs N times
consecutively in the original string. For example, 1112334 would be ‘compressed’
as 31122314 which would read as 3 times 1, one time 2, two times 2 and one time
4. Evidently, the greater the number of consecutive digits the more effectively
RLE compresses the original string. More sophisticated compression algorithms
such as LZW, instead of counting the number of times that repetitions occur
consecutively can have some memory (that allow building dictionaries) and also
change their sliding window length generalising the behaviour of RLE on similar
first principles.

A useful concept in this discussion (although not a central one) is also that
of Borel normality. A Borel normal number [15] has no repetitions and appears
statistically random. Every segment of digits in the expansion of a Borel nor-
mal (or simply normal) number (in a given base) occurs with the same limit
frequency. For example, if a number is normal in base 2, each of the digits ‘0’
and ‘1’ occurs half of the time at the limit; each of the blocks ‘00’, ‘01’, ‘10’ and
‘11’ occurs 1/4 of the time, and so on.
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1.1 Applications of Algorithmic (Kolmogorov) Complex-
ity

Cilibrasi, Li and Vitányi were among the first to overcome the backlash against,
as well as some of the theoretical obstacles standing in the way of applications
based on or motivated by algorithmic complexity [16, 9]. The use of lossless
compression algorithms as a proxy for applications of algorithmic complexity
opened the door to this innovation.

Nonetheless, such approaches have challenges and limitations of their own,
and can only go so far. Theoretical and practical issues impede the use of sta-
tistical compression algorithms to the point of making them counterproductive
for some general and many specific applications. Naturally, in view of this fact,
other researchers are exploring different avenues, in pursuit of novel approaches
and methodological innovations. I contend that complementary numerical ap-
proaches to algorithmic complexity offer a promising direction for the area that
will feed back and forth between theory to applications.

Central to algorithmic information is the concept of algorithmic complexity.
Briefly, the (plain) algorithmic complexity [3, 17] of a string s (also known as
Kolmogorov, or Kolmogorov-Chaitin complexity) denoted by C, is defined as the
length of the shortest computer program that computes (outputs) s and halts,
where the program runs on a given reference universal computer. The invariance
theorem (and conditions under which it holds), in-depth details of which are pro-
vided in [9], posits that there exist some reference universal machines (called
‘optimal’) for which the invariance theorem holds, establishing that the differ-
ence between estimations using different Turing-complete languages is bounded
by a constant independent of the string s. Formally, this means that under
the assumption of reference machine optimality, there is a constant c for all
strings such that |CU ′(s)− CU ′′(s)| ≤ c. A non-optimal Turing machine U can
be illustrated by constructing a Turing machine such as the one given in [10]
that applies an operation resulting in estimated complexity values as a partial
function of the string. For example, a machine that multiplies a short descrip-
tion of s by n, where n is the number of non-zero digits found in the input
string. Clearly, this machine approximates algorithmic complexity as a function
of a property of the string rather than independently of it, and the difference
cannot be bounded by a constant c for all strings, so the invariance theorem
does not hold. When this is the case, not even (relative) complexity ranking
invariance is achieved. If, however, the invariance theorem holds, nothing guar-
antees quick convergence. Non-optimal machines, however, are constructed in
a rather artificial fashion, and to the author’s knowledge the conditions under
which non-optimality results from natural choices of computing model remain
an open question.

When statistical lossless compression algorithms—such as those based upon
LZW and cognates—were adopted as a tool to estimate algorithmic complexity,
the apparently successful results gave applications credibility among some prac-
titioners (though not so much among theoreticians). The lossless compression
approach to algorithmic complexity worked for reasons not directly related to
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the theory of algorithmic complexity (or as a result of it), but because of the al-
ready established connection with Shannon entropy. The Shannon entropy H of
a given discrete random variable s with possible values s1, . . . sn and probability
distribution P (s) is defined as H(s) = −

∑n
i=1 P (si) log2 P (si) (if P (si) = 0 for

a given i, the value of the corresponding term is 0). Roughly, the relationship
between H(s) and C(s) for a string modelled as a random process [18] is that the
expected values of H(s) and C(s) converge up to a constant for computable dis-
tributions [19]. This is true if we have full access to the ground-truth probability
distribution for H(s), and for C(s) we assumed the decidability of the halting
problem. However, when the nature of the source of an object is unknown and
is modelled [18] as a random variable, if H(s) indicates non-randomness by as-
signing a small value, then C(s) is not algorithmically random, but when H(s)
suggests randomness C(s) does not necessarily follow. In contrast, if C(s) is
algorithmically random, H cannot be statistically non-random. It follows that
C is then a generalisation of H and requires fewer assumptions. In other words,
C offers a means of inferring the underlying probability distribution. Like H,
algorithms such as LZW cannot characterise algorithmic randomness because
they implement a version or function of Shannon entropy (entropy rate), not
only because they are not universal in the Turing sense, but also because they
are designed only to characterise statistical redundancy (repetitions). However,
accounting for non-statistical regularities ought to be crucial in the theory of
algorithmic information, since these regularities represent the chief advantage
of using algorithmic complexity.

1.2 Applications of Algorithmic Probability

Algorithmic probability [20, 21, 22] (AP) and the Universal Distribution [23]
approach the challenge of algorithmic inference from the standpoint of the the-
ory of computation. Vitányi and colleagues have given a wonderful account of
the properties of this mathematical concept [24]. Formally, algorithmic prob-
ability [20, 23] is defined as AP (s) =

∑
p:U(p)=s 1/2|p|, where p is a random

computer program in binary (whose bits are chosen at random) running on a
so-called prefix-free (with no program being a proper prefix of any other pro-
gram) universal Turing machine U that outputs s and halts.

Both algorithmic complexity and algorithmic probability are not computable;
they are semi-computable (upper and lower), meaning that approximations
from above and below are possible and are deeply related to each other. A
formal connection is established by the so-called (algorithmic) coding theo-
rem [9] that establishes that a short computer program is also algorithmically
highly probable and vice-versa. Formally, the coding theorem [23] states that
C(s) = − logAP (s) + O(1). AP and the coding theorem hold for prefix-free
complexity, but given that the difference with respect to C(s) is a slightly
larger O(log2|s|) term [25], we will not make further distinctions between plain
and prefix-free algorithmic complexity but it is worth to be aware of the sub-
tleties [26].

The incomputability of C and AP has meant that for decades after the dis-
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covery of these measures very few attempts were made to apply them to other
areas of science, with most researchers’ reaction to the field, especially as regards
applications, being sceptical, their reservations based on claims of incomputabil-
ity. Nonetheless, in a very fundamental way, algorithmic probability (and hence
algorithmic complexity) can be regarded as the ultimate theory for scientific
inference [24, 27], and we took this to heart when attempting, regardless of the
attendant challenges, to find measures related to AP [28, 29, 30].

The original formulation of algorithmic probability is of fundamental interest
to science because it can address some of its most pressing challenges, such as
inference, inverse problems, model generation, and causation, which happen to
be the topics of interest in our research programme (beyond simple estimations
of algorithmic complexity represented by a single real-value number). This
relevance to science has been touted by Vitányi himself, and colleagues, in a
very engaging article [24], and has more recently been pointed out in areas such
as AI and machine learning by people such as Marvin Minsky, who claimed that
Algorithmic Probability was one of the most, if not the most important theory
for applications [27]. Approaches to algorithmic complexity and algorithmic
probability that take into consideration finite resources have been proposed
before, such as resource-bounded Kolmogorov complexity [23, 31, 32, 33] and
Universal Search for applications [23, 34, 35] based on, for example, dovetailing
all possible programs and cutting short runtimes. A good introduction may be
found in [9].

For example, motivated by AP and often said to be based on the concept
of Occam’s razor, but designed to circumvent the incomputability of AP, some
methods such as Minimum message length (MML) [36] and Minimum descrip-
tion length (MDL) [37] were introduced as methods for statistical inference that
avoid universality and therefore incomputability by assuming that Occam’s ra-
zor or some part of AP could be instantiated by Bayesian or traditional statis-
tical learning from data. In the case of MML, it is a Bayesian approach that
attempts to represent beliefs about the data-generating process as a prior dis-
tribution and separate data from model in a similar statistical fashion to MDL,
on which it is largely based.

The notion behind AP is very intuitive. If one wished to produce a segment
of the digits of π randomly, one would have to try time after time until one
managed to hit upon the first numbers corresponding to the segment of an
expansion of π, which is strongly believed to be absolutely Borel normal [15].
The probability of success is extremely small: 1/10 digits multiplied by the
desired quantity of digits. For example, 1/102400 for a segment of 2400 digits
of π. But if instead of shooting out random numbers one were to shoot out
computer programs to be run on a digital computer, the result would be very
different.

A program that produces the digits of the mathematical constant π would
have a higher probability of being produced by a computer. Concise and known
formulas for π could be implemented as short computer programs that would
generate any arbitrary number of digits of π, but to find these generating for-
mulas one would need something other than a purely statistical method; one
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would need a mechanism able to produce Turing-complete computer programs
in the first place.

Despite the simplicity of algorithmic probability and its remarkable theoret-
ical properties, a potentially large constant slowdown factor has kept it from
being much used in practice. Some of the approaches to speeding things up
have included the introduction of bias and making the search domain specific.
It was not until we proposed numerical estimations based upon AP [29, 30, 46]
that applications of AP to diverse areas of science began to be conceived and
explored, including our own most recent applications [49, 50, 49]. We see our
work as having offered an opportunity to open up a discussion and to explore al-
ternatives to the otherwise dominant use of statistical lossless compression (see
Table 2). In our approach we have explored the effect of relaxing, in a higher,
finer-grained, recursive fashion, some of the conditions of weakening Turing-
universality [38] (as opposed to embracing a weak computational power needed
to instantiate statistical compression). What we have demonstrated is that AP
may account for up to 60% of the simplicity bias in the output distribution of
strings at each level of the Chomsky hierarchy [39] when running on random
programs. There are practical applications of AP that make it very relevant. If
one could translate some of the power of algorithmic probability to decidable
models (below Type-0 in the Chomsky hierarchy [39]) without having to deal
with the incomputability of algorithmic complexity and algorithmic probability,
it would be effectively possible to trade computing power for predictive power.
Other interesting approaches can be identified with the field of computational
mechanics [40], where a combination of statistical approaches to constructing
finite state models has been proposed.

A more comprehensive review than the one offered in the short review in [10]
would have covered statistical lossless compression as the dominant technique
in the area of applications based upon or motivated by algorithmic complexity.
While authors like Li, Cilibrasi, Vitányi and others helped advance the potential
practical side of a previously heavily theoretical field, the heuristics used have
also contributed to some methodological stagnation, and to the predominance
of a broad and wild programme that uses (and often abuses) heuristics based on
statistical lossless compression algorithms such as LZW, (largely) unrelated to
algorithmic complexity in any meaningful way (beyond, e.g., Shannon entropy
rate).

In the past, researchers have however explored properties that conform with
the theory of algorithmic information but are relaxed for applications. The
one that is most commonly relaxed is Turing universality, as in approaches like
MDL, MML, LZW and cognates, which thus never face any other challenge
relative to the hierarchy of features that pertain to the theoretical specification
(see Table 2.6).

In many such approaches the basic idea is to find the hypothesis that sta-
tistically compresses the data best. But methods of very different sorts can
be applied, some of them more relevant to algorithmic complexity than others.
Traditionally, the model associated with the data compressor is not entailed in
the method itself but is proposed or found by the researcher, and often pre-
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selected based on a feature of interest (e.g. repetitions for LZW). The inference
model is missing and cannot be fully explored because these approaches give up
on Turing-completeness, denying themselves the key computational element of
algorithmic probability, which may provide such a model generation framework.

Other approaches, less often used, may adopt Turing-universality, but are
then forced to assume or constrain their exploration by, e.g., limiting resources,
such as in resource-bounded complexity and resource-bounded algorithmic prob-
ability [26]; and still others have exchanged computability for model stochas-
ticity, as in some approaches from computational mechanics. Some approaches
remain pure, like certain approaches to program synthesis and automatic theo-
rem proving, making them methodologically more difficult to apply because of
the resources they need, though they are also more relevant in the context of
algorithmic probability.

1.3 Beyond incomputability

Ultimately, what Shannon entropy is meant to quantify is statistical typicality,
that is, how common or rare a distribution of elements of an object appears
to be relative to the rest of the objects. The greater the Shannon entropy, say
in bits, the more random looking. In contrast, what algorithmic complexity
is meant to quantify is algorithmic randomness. When an object cannot be
compressed beyond its uncompressed length, the object is algorithmically ran-
dom. Algorithmic complexity was conceived to answer the question of whether
statistical randomness was the only kind of randomness and whether statisti-
cal randomness could characterise all types of randomness, understood in the
broadest sense. Indeed, algorithmic complexity is one of those concepts for
which, at least at a basic level, different formulations based on uncompressibil-
ity, unpredictability, and atypicality, converge [23, 41, 42, 4], making it formally
the agreed-upon quintessential definition of randomness in mathematics (and
thus in science). Algorithmic complexity answers in the negative, with very
simple examples, the question about whether statistical randomness can or can-
not capture the intuitive notion of randomness in this broader sense. It does not
even come close, because it misses a whole set of non-random objects that can
be recursively compressed, that can be predicted, and that are atypical in the
sense that they do not have the features that most other objects have. These
features, when present, allow compression, but when absent do not (or predic-
tion, for that matter [41]). It is therefore key for algorithmic complexity to be
able to distinguish, or have the capacity to potentially distinguish, aspects of
algorithmic randomness from statistical randomness.

For this reason, the field of algorithmic information has the potential to
transform science and scientific methodology, to raise the bar for scientific evi-
dence and scientific proof, through control experiments that rule out stronger,
less fragile kinds of randomness as well as the kinds of spurious correlations per-
vasive in science [43, 44] inherited from purely statistical approaches (as opposed
to causal and state-space descriptions).

We believe this can be achieved by moving from the currently dominant
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data-reliant scientific methods to model-centred ones. Unfortunately, the area
of algorithmic information has had little impact to date, and has often taken
the wrong direction when applied to science, continuing to use what ought to
be superseded, yet all the while giving the contrary impression. Indeed, we
have focused for far too long on a single approach based on statistical lossless
compression algorithms, and methodological innovation has come at the cost of
scepticism from established researchers, even those who once promoted innova-
tion.

2 Alternatives to lossless compression

In [29, 30], a measure motivated by algorithmic probability was introduced that
entails exploring an enumeration of Turing machines running on a reference
Universal machine that is assumed to be optimal and whose variant specifi-
cations across several papers are widely used in other areas of the theory of
computation, a machine based on Rado’s so-called Busy Beaver problem [45].

Let (n,m) be the space of all n-state m-symbol Turing machines, n,m > 1
and s a sequence. Then we define CTM (standing for Coding Theorem Method)

as: CTM(n,m)(s) = |{T∈(n,m):T produces s}|
|{T∈(n,m)}| .

What CTM does is to precompute these programs for a large set of short
strings and combine them with classical information theory using what we call
BDM (standing for Block Decomposition method) in order to build a short pro-
gram based on small pieces than can explain a larger piece of data for which
CTM has not (yet) been calculated. CTM can also be seen as exploring all
possible computable compression algorithms, each represented by a decidable
(time-bounded) Turing machine from a proper universal enumeration, whose
machine number is stored and allows for a decompression process, thus honour-
ing the true spirit of Kolmogorov complexity as the ultimate data compression
method, rather than privileging its much more shallow connection to statistical
compression only.

CTM is motivated by the relation [30] between the algorithmic probability
of an object such as a string (the frequency of production of a string from a
random program) and the algorithmic complexity of the said string (the length
of the shortest description under the reference machine).

Just as resource-bounded complexity compromises on resources like runtime,
and MDL, MML and LZW give up on Turing completeness (and therefore on
algorithmic complexity for the most part) in order to model data, and LZW is
intended to capture no other feature of an algorithmic nature beyond repetitions
in data, the assumptions that CTM makes are that the invariance theorem is
valid and that the additive (or other) constant is small enough not to impact the
ranking or the top ranking of the smallest computable models explaining data,
which is precisely what CTM investigates empirically with a view to making
changes to the underlying computing models and testing against the data.

CTM is intended not just as a theoretical construct, but as a technique to
be deployed in practice. CTM outperforms or complements lossless compression
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algorithms and other techniques such as MDL in various respects. For example,
CTM can provide a finer-grained classification of short strings and is able to
provide computable descriptions in the form of specific computer programs in
the language of Turing machines, rather than black boxes (compressed files) with
little state-to-state correspondence, and most likely unrelated to the generating
process other than in terms of trivial statistical redundancy. MDL, MML and
other such approaches present their ‘flaws’ as features (or even advantages),
such as the claim that MML does not require Turing completeness or that
MDL is computable (without ever mentioning what’s sacrificed). MDL avoids
assumptions about the data-generating process.

One way to see CTM is as effectively exploring the space of all the possible
computer programs able to compress a piece of data. This is in contrast to
settling on a single program that one can ascertain in advance to be incapable
of dealing with any algorithmic feature in data (as opposed to just statistical
features, i.e. substring repetitions).

The Block decomposition method (BDM) is an extension of CTM defined as
BDM(s) =

∑
i CTM(si) + log(ni), where each si corresponds to a substring of

s for which its CTM value is known and ni is the number of times the string si
appears in s. A thorough discussion of BDM may be found in [46]. BDM extends
the power of CTM to deal with larger strings by sticking together, using classical
information theory, the estimations of complexity values of shorter substrings
based on CTM under the universal model of computation. BDM is explored
in [46], and among its properties is the fact that it cannot perform worse than
Shannon entropy but can indeed improve upon it when combining values of
algorithmic complexity for its substrings.

BDM glues together the programs producing each of the data pieces using
classical information. The result is a hybrid measure that provides a candidate
upper bound of algorithmic complexity.

In contrast to statistical compression algorithms, CTM can, in principle,
deal with simple objects such as 123456 . . . in a natural way (or 1, 2, 3, 4, 5, 6, . . .
seen as a data stream from a generating process) by identifying the underlying
successor function in any base from observing the piece of data and extending
the Turing machine rule space, as shown with 2 examples in [49]. And even for
π [46], both in principle and in practice, as suggested in [46], when normalising
by highest values Shannon entropy (and therefore LZW and cognates) will by
definition retrieve maximal randomness, but for CTM and BDM, it does not
have maximal randomness and actually shows a trend of decreasing values.
What CTM does is find the set of computer programs that can explain segments
of π, something that statistical compression cannot do.

CTM (and BDM) offers an alternative to statistical compression algorithms
(see Table 2) but extends beyond an exclusive interest in algorithmic complexity
into the area of causal discovery (see Fig. 1 and Fig. 6); it is an alternative that
not only in its application but also in its approach is radically different from
popular statistical lossless compression algorithms like LZW. The difference is
that we already know that statistical compressors are at variance with the theory
and unable to produce a state-space hypothesis. In contrast, CTM is able to
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find computer programs that offer a state space analysis capable of producing
generative mechanisms of the observed data that may better fit the state space
of the actual phenomenon producing the data (see 1 for an example).

Figure 1: (A) An observer trying to characterise an observed stream of data
(s) of unknown source (in this case the sequence of natural numbers in decimal
or binary that the observer may not recognise) has currently two options: (B)
the statistical compression approach (green arrow) represented by Run-length
encoding (RLE) producing a rather cryptic and even longer description than
the original observation with no clear correspondence between possible ground
and represented states; or, alternatively, (C) an approach that takes on the
challenge as in an inverse problem represented by CTM (green arrow) that
allows to find the set of small computer programs according to some reference
machine up to certain size that match their output to the original observation
thereby potentially reverse engineering the generating mechanism that may have
recursively produced the sequence in the first place. Such an approach allows a
state-space description represented by a generative rule or transition table and
a state diagram whose elements may correspond (or not) to a physical unfolding
phenomenon against which it can be tested (notice that the binary to decimal
TM is also of finite small size and is only an intermediate step to arrive to s but
can be one of the engines behind, here for illustration purposes only the TM
binary counter is shown as an example).

This is a list of some of the suggestions that CTM and BDM do not make or
prove: that algorithmic complexity is computable; that the reference universal
machine is optimal (or that it is not); that the assumed additive constant is
under control, or even that the invariance theorem applies (c.f. optimality,
previous point); or that the complexity ranking and estimations are robust or
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invariant (despite statistical evidence indicating otherwise). On the other hand,
this is what CTM and BDM do offer: a better-grounded alternative to the
current but—for most purposes—mostly incorrect approaches to algorithmic
complexity (when claimed to be related to algorithmic complexity) consisting
of using only statistical lossless compression algorithms such as LZW when no
full disclosure of its divergence from algorithmic complexity is made; it opens
up an empirical approach to testing questions related to necessary conditions
in real applications, including the questions of machine optimality and additive
constants, robustness and convergence (or divergence) of output distribution
(related to the invariance theorem and the Universal Distribution itself).

Approaches that aim to apply algorithmic probability have been advanced
in the past, and are interesting. One of these consists of a so-called Universal
Search [23] based on dovetailing all possible programs and their runtimes, such
that the fraction of time allocated to a program is proportional to program
size (in number of bits). Despite the algorithm’s simplicity and remarkable
theoretical properties, a potentially huge constant slowdown factor has kept it
from being much used in practice, or at any rate used more frequently than
compression algorithms.

Some of the approaches to speeding it up have included the introduction of
bias and making the search domain specific, which has at the same time limited
the power of algorithmic probability (AP). We settled on a measure that seemed
deeply in harmony with the spirit and definition of algorithmic probability and
Levin’s Universal distribution, but which has never been presented as being
exactly one or the other.

There are also deeper and practical applications of measures directly related
to AP, whether based on or motivated by it, that make them relevant. If one
could translate some of the power of algorithmic probability to, for example, de-
cidable models, and study them without having to deal with the incomputability
of algorithmic complexity and algorithmic probability, and without resorting to
weak methods such as statistical compression algorithms, but retaining some of
the computational power to characterise recursive randomness, it would be ef-
fectively possible to trade computing power for predictive power. This is some-
thing we have investigated by relaxing the assumptions even further, beyond
Turing universality, by constraining the computational power of computational
models [38]. The relationship and a smooth trade-off found before reaching the
undecidability frontier mean that algorithmic complexity (and algorithmic prob-
ability) are also relevant, and that some theory can be retained and partially
recouped from simpler models of computation in exchange for computational
power.

2.1 Time to stop fooling ourselves

Researchers interested in applying algorithmic complexity to their data for pur-
poses of, e.g., model or feature selection, classification, clustering or data dimen-
sion reduction, had traditionally been forced, indeed had no other option but
to use statistical lossless compression algorithms. During the past few years,
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however, CTM has offered a refreshing alternative that is methodologically very
different from compression. It is complementary in that it is better in a regime
where compression is well known to fail (small objects) and, in the long run,
when combined with BDM, it has proven to behave just like a statistical lossless
compression algorithm in the worst case [46], with the advantage that CTM,
which is at the core of BDM, can potentially offer local approximations to algo-
rithmic complexity by finding short computer programs able to explain/generate
a small piece of data. CTM and BDM can thus constitute a true proxy for and
generalisation of statistical compression algorithms.

In speaking of the obfuscation of the differences in approaches and of how
statistical compression has been used on weak grounds before, let us cite the
same mini review [10] when it claims that ‘[We] can approximate the Kolmogorov
complexities involved by a real-world compressor. Since the Kolmogorov com-
plexity is incomputable, in the approximation we never know how close we are
to it.’ This is a known fact in the application of data compressors but unfortu-
nately is not disclosed as often as it should be in papers using compressors to
allegedly estimate algorithmic complexity.

The short review in [10] closes one of its sections with a defence of past
heuristic approaches based on Shannon entropy, a defence based on an argument
about ‘natural data’ and on the concept of a ‘construct’ as something artificial
or unnatural and unlikely to be found in the real world: ‘In fact, we assume
that the natural data we are dealing with contains primarily effective regularities
that a good compressor finds.’ In transiting to the next sentence a huge leap
is made: ‘Under those assumptions the Kolmogorov complexity of the object is
not much smaller than the length of the compressed version of the object.’

It is time to stop believing that we are doing something more interesting
than measuring basically Shannon entropy and counting repetitions in data
when using lossless compression algorithms such as LZW.

The statistical compression approach to algorithmic complexity appears to
give up on algorithmic complexity itself by relaxing what makes it possible, at
the very first level of challenges in the hierarchical table of requirements and
conditions in Table 2.6, relaxing the most basic of the requirements, that of
Turing-completeness (level 0) and embracing only statistical redundancy, which
Shannon entropy alone can deal with (as it does with LZW), thus ignoring
the problems posed by deeper theoretical challenges, including those of incom-
putability and optimality.

2.2 The regime of short strings

The short review in [10] also claims that one or more of the papers about
CTM mistakenly referred to ‘the shortest computer program when referring to
cases in which, according to a well-specified enumeration, CTM was able to
find the shortest Turing machine starting from smallest to largest. According
to the review, the phrasing in [30] should have been ‘a [sic] shortest computer
program’. This is a very weak and unfounded criticism, as statements to ‘the
shortest computer program were only made after introducing in full detail the
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specification of the reference universal machine, making the charge irrelevant.
Another criticism of CTM in [10] was that it is only able to estimate values

for strings shorter than 20 or 32 bits. Not only do other researchers see this as
its most important feature [76], but CTM was first and foremost designed to
cover the regime of short strings, as no other method was available, not even
data compressors, to deal short strings. Thus in being able to complement
lossless compression approaches to algorithmic complexity it immediately made
a contribution, providing objective estimates, even though based on assumptions
of optimality and fast convergence. CTM offered the first ever classification and
ranking of short strings (see Fig. 4). This regime of short strings is of no small
interest; they are among the most relevant for real-world applications such as
perturbation analysis [50], molecular biology and genetics [51].

The brief review in [10] fell short when disclosing the challenges and limita-
tions that the only other currently available option purportedly able to estimate
algorithmic complexity faces. Indeed, statistical lossless compression algorithms
such as LZW, which are unable to deal effectively with strings with fewer than
1000 bits, collapse string values (see Fig. 7), offering little understanding of a
large set of strings, as compression algorithms introduce variable length instruc-
tions that effectively contribute to the additive constant, resulting in a constant
equivalent to that which CTM must also deal with, and where check-sum codes
contribute to a steep step-like behaviour that makes values irrelevant for most
purposes related to algorithmic complexity, though legitimate when presented
as a different order parameter such as LZW-complexity as long as the distinc-
tion is made and no further unjustified connection to algorithmic complexity is
claimed.

Even assuming that empirical distributions built from CTM are significantly
affected by factors such as the (non-)additive constant (wilder if optimality
does not hold), they do produce testable outcomes in the form not only of
real-value numbers as approximations to algorithmic complexity, but also as a
set of finite state computer programs able to explain the data under analysis.
Indeed, outcomes can be tested even against compression algorithms, because
what is highly compressed should have low algorithmic complexity according
to CTM (and BDM), and what is not compressible should also tend to have
higher CTM (and BDM), which is in fact what happens [46]. CTM has passed
dozens of tests (e.g. [64, 46, 63, 62]), conforming both with theory and intuition,
some of which included, e.g. tests of method internal self-consistency, such as
comparing the estimations of algorithmic complexity after the application of the
coding theorem, on the one hand, and the assumed approximation to algorithmic
probability on the other, with the actual number of rules in the transition table
of the smallest Turing machine found to produce the string of interest the first
time around in a well-specified enumeration of Turing machines from smaller to
larger (see Fig. 2).

CTM is able to suggest that some strings have lower algorithmic complexity
than assigned them by lossless compression or LZW, relative to the highest
complexity values for the set of strings in question, and to pinpoint the specific
strings, indicating that it has the potential to spot objects likely to actually
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Figure 2: Test for model internal consistency and optimality. The number
of rules used in the transition table for the first and shortest Turing machine
producing a string following the enumeration is in agreement with the estimation
arrived at by CTM after application of the coding theorem under assumptions
of optimality. Adapted from [64]

have lower algorithmic complexity that could not have been found with LZW
or Shannon entropy. See Fig. 1 and Fig. 6).

2.3 Agreement of distributions for high frequency elements

The result of CTM as a method is the execution of trillions of small Turing
machines each producing an output, or being discarded if found not to halt by
analytical means (e.g. the Busy Beaver [45]), or to have taken longer than a
runtime threshold arrived at by an educated guess. This execution produces a
distribution based upon how many times each string produced has already been
produced by other Turing machines, in increasingly larger rule spaces (defined
either by number of states multiplied by symbols, usually binary, or simply
by the number of transition rules used after execution). The result is what
theoretically is known as the Universal Distribution, with each machine count
producing, for each string, a number potentially representing an estimation of
its algorithmic probability (i.e. the likelihood of finding a Turing machine that
produces a string whose digits are each chosen with equal probability).

The fact that descriptions (computational models) turn out to be less rel-
evant than expected after CTM when producing these empirical distributions
that explore increasingly larger sets of Turing machines, or using models other
than Turing machines, or simply different language specifications (see Fig. 4 and
Fig. 2), was not known and came as a surprise, as Chaitin pointed out in [56]:

The theory of algorithmic complexity is of course now widely ac-
cepted, but was initially rejected by many because of the fact that
algorithmic complexity depends on the choice of universal Turing
machine and short binary sequences cannot be usefully discussed
from the perspective of algorithmic complexity. [However, of CTM]

15



. . . discovered, employing [t]his empirical, experimental approach,
the fact that most reasonable choices of formalisms for describing
short sequences of bits give consistent measures of algorithmic com-
plexity! So the dreaded theoretical hole in the foundations of algo-
rithmic complexity turns out, in practice, not to be as serious as was
previously assumed.

Indeed, results from CTM could not have been predicted without actually
performing the massive experiments (some using the largest world super com-
puters), to some extent because top frequency convergence in output distribu-
tions turned out to happen more often than theoretically expected, in the face
of changes to the underlying universal reference (even if perhaps not optimal)
computational model (see Fig. 4).

The apparent stability of a distribution that could be affected by what is
perhaps a multiplicative factor but instead looks like a logarithmic factor even
smaller than the additive one, at least for the most frequent and purportedly
least algorithmically complex strings as they keep emerging from longer rule
spaces, is an open theoretical question, related to optimality and the invariance
theorem. Indeed, what this seems to suggest is that the density of computa-
tional models (reference machines) that quickly converge in distributions dom-
inates the density of those that are purposely designed to fail, and thus that
the choice of model may not play such an important role in practice as the
theory would have it when a ‘natural’ choice is made (as opposed to a ‘con-
structed’ reference machine). Such a conclusion could not have been reached
otherwise, which shows how experimental science feeds back into theory and
reflects the work around CTM and BDM. This epistemological point was orig-
inally suggested in [57]. Pushing boundaries at the edge of what is possible by
mechanical means serves as a moving target both for experimentalists to ex-
plore the ‘incomputability frontier’ and for theoreticians to relate their work to
frontline challenges in the application of the theory to other areas of science.

The empirical distributions from CTM are not only relatively stable, but
behave both in unexpected and expected ways. Many tests have been designed,
conceived and successfully passed [62, 63, 64, 46]. So when dealing with short
strings, statistical lossless compression is unsuitable, and when dealing with long
strings it is irrelevant when linked to algorithmic complexity (beyond Shannon
entropy), which is to say it under-performs in both (all) cases.

What research around CTM demonstrated is that apparently disparate com-
putational models produce similar output distributions for high frequency ele-
ments (hence with large algorithmic probability) despite the possible theoretical
counter-indications (see e.g. Fig. 4). This is one of the advantages of approach-
ing algorithmic complexity from a quasi-empirical standpoint, as attested to by
Chaitin himself when evaluating CTM [56].

For the first time, CTM offered access to empirical output distributions
calculated from large sets of computer programs that could be tested against
theoretical predictions [66]. In diverse areas, CTM has found applications to
network characterisation and causation where state-space description methods
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such as CTM are most relevant as they are able to provide computable mod-
els [59, 60, 61].

Figure 3: Each ‘drop-like’ distribution represents the set of strings that are min-
imally produced with the same number of instructions (Y axis) for all machines
with up to 4 states for which there can be up to 2(n+ 1) = 10 transition rules.
The more instructions needed to produce the strings, the more complex they are
shown to be according to CTM (Y axis), after applying a coding-theorem like
equation to the empirical probability values for each string. The results conform
with the theoretical expectation– the greater CTM, the greater the number of
instructions used by the shortest Turing machine according to the enumeration,
and vice-versa. Adapted from [64].

The agreement in complexity values between estimations by CTM and loss-
less compression (LZW) over a set of strings of growing length is very high. The
interesting cases are, of course, those discrepant ones where entropy (and LZW)
may diverge from CTM, that is, strings that display high entropy and low com-
pressibility but are flagged by CTM as having shorter programs (shorter relative
to the size of the rest of the programs in the same string set), as reported in [46]
and in [49].

As shown in Fig. 5, the output distribution from small Turing machines
tends to classify strings by length (not even this relatively simple phenomenon
could have been anticipated without actually running the experiment), with
exponentially decreasing estimated algorithmic probability values. The distri-
bution comes sorted by length blocks from which one cannot easily tell whether
those at the bottom are more random than those in the middle, but one can
definitely say that the ones at the top, both for the entire distribution and by
length block, are intuitively the simplest. Both 0k and its reversed 1k for n ≤ 8
are always at the top of each block, with 0 and 1 surmounting them all. There is
a single exception in which strings were not sorted by length. This is the string
group 0101010 and 1010101 found four places ahead of their length block, which
we take as an indication of a complexity classification becoming more visible,
since these two strings are what one would intuitively consider less random,
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Figure 4: Agreement in shape and ranking of empirical distributions produced
by 3 completely different models of computation: Turing machines (TM), Cellu-
lar Automata (CA) and Post Tag Systems (TS), all 3 Turing universal models of
computation for the same set of strings of length k = 5 and k = 6 for purposes
of illustration only (comparison was made across all string lengths up to around
20, which already includes a large set of 220 strings).

because they are easily described as the repetition of two bits, as captured by
Shannon entropy or compression.

Fig. 6 shows how compression behaves like Shannon entropy and how CTM
approximates algorithmic complexity, with results conforming with the theoret-
ical expectation, and Fig. 7 shows how lossless compression algorithms collapse
most values.

One may also ask how robust the complexity values and classifications may
be in the face of greater changes in the computational model formalism or ref-
erence Universal Turing machine (e.g. Turing machines with several tapes,
and all possible variations, or other universal means of computation). We
have shown [28, 62] that radical changes to the computing model produce very
similar distributions and ranks (see Fig. 4), and we have even explored what
happens with subuniversal systems at different levels of the Chomsky hierar-
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Figure 5: This is the first ever empirical probability distribution produced by all
the 15 059 072 Turing machines with 3 states and 2 symbols as reported in [29].
CTM has produced several comprehensive large tables for all binary (and also
non-binary [65]) Turing machines with up to 4 and 5 states (and currently for
6 states), and is currently also computing for 6 states on one of the largest
super computers available. The distributions (this and the much larger ones
that followed) have shed light on many matters

, from long standing challenges (the short string regime left uncovered by
statistical compression), to the impact of change of choice of computational

power on empirical output distributions, to applications tested in the field that
require high sensitivity (such as perturbation analysis [50, 49]).

chy [38] ranking distributions of complexity values (using completely different
computing models). The models of computation in Fig. 4 include one with no
natural halting state (CA). The agreement is greater among higher frequency
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Figure 6: A: Unlike compression, which behaves just like Shannon entropy,
CTM approximates the long-tail shape of the Universal Distribution, better
conforming with the theory under strong assumptions of optimality. We call
these causal gaps (A and B) because they are precisely the cases in which
strings can be explained by a computer program of length far removed from the
greatest program length of the most algorithmically random strings according
to our (universal) computational model. C: Divergence of CTM from entropy
(and therefore LZW). Adapted from [46].

strings, something that may be intuitive but is theoretically unexpected, given
machine universality questions and the additive or multiplicative constants in-
volved. Adapted from [28].

Furthermore, we have proved that one of our methods that combines some
of the proposals that we have advanced to approximate algorithmic complexity
by way of algorithmic probability, called BDM, behaves like Shannon entropy
in the worst case, while in the best case it does incorporate local estimations of
algorithmic complexity (provided by CTM) and binds them together using clas-
sical information theory. In other words, we cannot do much worse than LZW
because a version of LZW (block entropy) is considered our worst performing
approach, given that, as we have demonstrated, we cannot under-perform (by
much) Shannon entropy at the task of finding only repetitions [46].

2.4 Problematic use of statistical arguments

Papers on CTM (see e.g. [30] and the sketch in Fig. 1 in [46] for purposes of
illustration) always open by explaining that the invariance theorem too has little
relevance for applications (beyond its positive contribution of having given birth
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to algorithmic complexity by virtue of guaranteeing convergence at the limit).
This is because it does not tell us anything about convergence rates, therefore
making it impossible to guarantee whether we are approximating algorithmic
complexity quickly or rather diverging before converging. Furthermore, the
same short review [10] goes on to justify decades of the use of statistical lossless
compression: ‘However, we assume [. . . ] that the natural data we are dealing
with contain no complicated mathematical constructs like π = 3.1415 . . . or
Universal Turing machines’.

By ‘natural data’ the author presumably means ‘data from the natural or
real world’. What’s referred to as ‘constructs’ in [10] are mathematical objects
that the author seems to disdain or dismiss as impossible to encounter in the
real world. However, many of these objects are widely regarded as ubiquitous
in science and engineering, often associated with natural properties or physical
processes. Furthermore, these are exactly the objects whose possible character-
isation using algorithmic complexity distinguishes algorithmic information from
classical (Shannon) information. The use and defence of statistical compression
is convenient because it avoids having to deal with all the main challenges in
the application of algorithmic complexity, namely incomputability, optimality,
and the additive constant. Approaches that assume either that algorithmically
compressed objects and /or Turing machines are constructs gives up on Turing-
universality altogether, and in turn on algorithmic complexity itself, given that
it is the very element in the theory of algorithmic information that distinguishes
it from Shannon entropy (and from classical statistical compression).

This minireview [10] seems to defend a position that assumes that there are
only statistical regularities in natural data [10] to justify the use of statistical
compression algorithms in the last 2 decades, and that recursive functions such
as f(x) := x+ 1 which can produce s = 123456 . . . (when initial value is x = 1)
with no statistical regularities if not transformed by another algoritm (it has
been proven to be Borel normal [55]) are artificial or unrealistic examples im-
possible to be found in nature or with no interest for humans to be properly
characterised (e.g. as not being random). In the theory of algorithmic informa-
tion, however, objects like s or π or the so-called Thue-Morse sequence that are
recursively generated but do not produce trivial statistical patterns (like most
computable numbers/processes with short descriptions but no trivial statistical
redundancy), are quintessential instances of what algorithmic complexity was
designed to tell apart: statistical (apparent) from algorithmic (non-apparent)
randommness. If it were to be argued in favour of this stance that nature is
full of noise, that does not seem to work either. If anything, it makes matters
worse, because noise will tend to destroy any possible statistical pattern that
some researchers would like to identify with a statistical compression algorithm,
whereas the bulk of the algorithmic content can still be captured by a short
function separating noise from compressed data. The minireview in [10] seems
to suggest that any function f that produces a string s with the length of the
description of f much shorter than s is a ‘construct’ (as used in [10] to negatively
denote an ‘artificial’ or ‘unreal’ nature) if it does not give away its nature by
exhibiting some statistical redundancy. If applied to the 332 thousand integer
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sequences found (as of March 7, 2020) in the Online Encyclopedia of Integer
Sequences (OEIS), Shannon entropy, LZW and other popular statistical lossless
compression algorithms would fail at characterising the non-random nature of
these highly recursive sequences because most of them do not display any repet-
itive segments. According to the viewpoint adopted in [10], all these sequences
would be labelled ‘constructs’ and not objects that may be associated with nat-
ural or physical phenomena (from which, by the way, many of them derive,
e.g. simple progressions of population growth or epidemic spread). In contrast,
CTM and measures based on and motivated by the principles of algorithmic
complexity can characterise properties of these sequences [48].

In fact, what the results from CTM suggest [29, 30], as has been fruitfully
investigated, is that what appear to be constructs are ad hoc non-optimal uni-
versal machines, and that the choice of reference machine appears to be much
less important than potentially expected from the theory, if it is not made non-
optimal on purpose, as in designing a Turing machine conceived to assign strings
specific complexity values with artificial additive or multiplicative terms like
the one proposed recently in the review [10]. The chosen models produce sim-
ilar output distributions despite the possible theoretical expectation (see, e.g.,
Fig. 4). And this is one of the values of approaching algorithmic complexity
from a quasi-empirical standpoint, as attested to by Gregory Chaitin himself
when officially evaluating CTM [56]. Calude found empirical evidence from
CTM that could provide pointers to new results on halting probabilities [58] as
well as confirm and reexamine previous theoretical results. For the first time,
access to an empirical output distribution (and ranking!) of small strings from a
large set of computer programs was possible (see 5), despite the challenges and
the assumptions made (See Table 2.6). Today, dozens of papers resonate with
this approach, in full awareness of the assumptions, but finding applications to
network characterisation and causation and even inspiring new methodological
algorithms [59, 60, 61]. In cognition, CTM has been found to be an appropriate
framework for approaching questions relevant to neuroscience. For example,
it is known that humans can recall long sequences by virtue of reconstructing
them from short, recursively generated descriptions such as 123456 . . ., despite
the latter not having any statistical regularities that Shannon entropy, LZW or
any other statistical measure can characterise. An use of CTM in this domain
can be found in [60], singled out simply for purposes of illustration, as CTM
has now been used in dozens of papers in the area of cognition. In all these
papers it has always been openly disclosed (e.g. [30] and Fig. 1 in [46]) that the
invariance theorem (which encompasses the problem of optimality) is of no con-
sequence for applications. This is because the invariance theorem does not tell
us anything about convergence rates, even under the assumption of optimality.

The review in [10] enters unexpected territory in the following passage:
‘However, we assume [. . . ] that the natural data we are dealing with contain
no complicated mathematical constructs like π = 3.1415 . . . or Universal Tur-
ing machines (presumably ‘natural data’ means data from the natural world).
The author refers to as a ‘construct’ [10] an object widely regarded to be ubiq-
uitous in science and engineering, associated with natural properties and phys-
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ical processes. So instead of dealing with incomputability, optimality, and the
additive constant, the approach that assumes that algorithmically compressed
objects are constructs drops computational universality altogether, the most
important ingredient in the theory of information and the feature that dis-
tinguishes that theory from say, Shannon entropy (and ultimately, statistical
compression). The very theory underlying the field of algorithmic complexity,
computability theory, also establishes that most objects are of the type that
Vitányi calls ‘constructs’ [10], and are the only objects in respect to which al-
gorithmic complexity performs differently than, say, the most trivial statistical
counting function such as Shannon entropy. These arguments, again, end up un-
coupling statistical compression-based approaches from algorithmic complexity,
associating them only with Shannon entropy. The review [10] closes the pas-
sage cited above by defending heuristic approaches based on Shannon entropy
instead of the principles of algorithmic complexity: ‘In fact, we assume that the
natural data we are dealing with contains primarily effective regularities that
a good compressor finds.’ In transiting to the next sentence it takes a huge
leap: ‘Under those assumptions the Kolmogorov complexity of the object is not
much smaller than the length of the compressed version of the object.’ One
of the approaches to algorithmic complexity apparently defended in [10] under
the ‘natural data’ argument is to give up on algorithmic complexity itself by
relaxing the Turing universality requirement and not worrying about anything
beyond statistical properties. Small wonder then that there is never any need
to be concerned with any of the other dependency levels (from 0 to 4 as shown
in Table 2.6), in particular, machine optimality.

In cognition and psychometrics, for example, CTM has been found to be the
appropriate framework for asking questions relative to features other than trivial
statistical ones [65]. Indeed, it is known that humans can recall long sequences
by virtue of reconstructing them from short, recursively generated descriptions
such as 123456 . . ., despite it not having any statistical regularities that Shannon
entropy, LZW, or any other statistical measure is able to characterise. An
example of the use of CTM in this domain can be found in [60], singled out
simply for purposes of illustration, as CTM has now been used in dozens of
papers in the area of cognition.

2.5 Reality check: from theory to practice

In [9], whose purpose is to find applications of algorithmic (Kolmogorov) com-
plexity, a purported application to behavioural sequences is introduced to quan-
tify a controversial experiment in the area of ant communication introduced by
Reznikova in the 60s [67]. However, the application of lossless compression al-
gorithms fails because the strings are too short, making it necessary to resort
to the reader’s intuition, just as Reznikova herself did. The purpose was to
demonstrate that communication time and path complexity in a maze were cor-
related: the more complicated the path the longer ant foragers would take to
transmit instructions to other ants. In a paper using CTM [68], however, it
was demonstrated that it can be informative and practical to take on such a
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task involving short sequences and to say something meaningful and objective
about them that conforms to intuitive and theoretical expectations, rather than
having to appeal directly to the reader’s intuition.

Some criticism [10] seems to stem from the fact that we adapted Levin’s
Universal Distribution (UD) and Solomonoff’s algorithmic probability (AP) to
yield a measure based on or motivated by UD and AP, while not using UD or AP
themselves. This comes as a surprise, given that the author of the review [10]
has himself been using LZW and other lossless compression algorithms based
on Shannon entropy for about 3 decades. While the review [10] seems to take
definitions very seriously when it comes to the coding theorem, it is only too
flexible when it comes to the use of heuristics based on statistical compression
algorithms. The review [10] constructs an argument that asks us to be more rig-
orous in the choice of algorithms to approximate algorithmic complexity while
allowing much greater liberties to be taken and broader assumptions to be made
when adopting statistical lossless compression, assuming all patterns are statis-
tical (repetitions) or that Turing universality is irrelevant for applications of
algorithmic complexity altogether.

When moving from theory to practice, one has to compromise on aspects
of a theory that are not feasible. This is the case even with general purpose
computers, which differ from Turing machines with unbounded tape. Which
doesn’t mean that these aspects of the theory have been overlooked or are
never meant to be improved upon as we make progress, leaving behind weaker
approaches.

In all papers related to CTM and BDM, it has always been maintained
that how robust our methods are is an important question—that is, how sen-
sitive they are to changes in the reference universal Turing machine or choice
of incomputable enumeration—if we are to understand and possibly estimate
the overhead added by the additive constant from the invariance theorem. We
know that the invariance theorem guarantees that the values converge in the
long term, but we have always acknowledged that the invariance theorem tells
us nothing about rates of convergence.

Pending a closer inspection of the details of their proposal, the potential
challenge of Bauwens, Mahklin, Vereshchagin and Zimand’s approach [52] is its
top-down nature. They propose to start from a target string and run a process to
find a short list of short computer programs (in the given language) by cleverly
filtering out programs that do not follow the specific defined graph path towards
constructing the target string during runtime, thereby reducing the computa-
tional time required for the exploration to a small polynomial. Judging by the
fact that a later publication by one of the leading authors recommended in the
review [10] as one of the methods to look after settled on using LZW in a recent
work [69], it potentially means that the use and application of the recommended
approach may be more difficult than expected. Before actual applications, not
even these authors may be able to anticipate the ways in which their approach
will have to compromise when it comes to real-world applications, nor should
an untested technique be endorsed over CTM that has already confronted the
challenge of making itself numerically relevant an offers the only alternative, for
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good and bad, to statistical compression. Indeed, it would seem that the appli-
cation of this (and other) novel approaches are more difficult than expected, and
they still need to find implementations. What appears exciting in the approach
of Bauwens et al., the polynomial complexity of the process of finding short lists
of short programs, will most likely turn out to be less tractable in practice than
predicted in theory when dealing with real-world applications. This is because
this bottom-up approach requires a search for each target string, for every case
and for every application before computing the said short list of short com-
puter programs–unless one adopts an approach similar to CTM, which involves
turning the tables and precomputing a large set of short computer programs
producing a large set of short strings combined by an approach that may need
to be similar to BDM, a divide-and-conquer approach consisting of breaking
down an original larger string into smaller substrings for which the algorithm is
more tractable in practice. How this will pan out in reality remains to be seen.
Whatever the case, it would appear that some ideas of CTM and BDM may, in
the end, help implement others. The original method may still be infeasible for
most purposes and practical applications but the final result may end up not
being that different from the choices we had to make when we came up with
CTM [29] and BDM [46], an approach that may be an upper bound less tight
than the estimation directly on the longer string, but one that can be computed
in a timewise practicable fashion and incrementally improved upon (by even-
tually increasing the computing time). The final value of the combination of
CTM and BDM will be a sum arrived at by an educated guess (as opposed to a
random value or one arrived at using only statistical compression algorithms).

There are also other relevant and promising approaches to measures mo-
tivated by algorithmic complexity that should be explored and supported by
the community as alternatives to statistical compression. Some of these include
Solovay functions [70, 71], minimal computer languages [72] and, approaches
similar to ours, [38]–model proposals involving restricted levels of computa-
tional power (but beyond statistical compression algorithms) such as Finite-
state and transducer complexity [73, 74, 75]. We ourselves have produced a
variant of a transducer complexity model in a CTM fashion [38], while also in-
troducing other CTM approaches based on different models and computational
power [38].

In practice, to assign temporary algorithmic probabilities has no impact
for the purposes for which CTM was designed, is used and can be empirically
tested, as the measure will either fail or not in the domain of application (just
as happens when statistical compression algorithms are used). Just as with any
measure that is semi-computable, both the principles of the implemented mea-
sure and the methodology can incrementally be improved upon, and represent
an upgrade from the particular limitations of statistical compression algorithms.
The only other concern in [10] about CTM is the widely known additive con-
stant that has dogged all methods and applications, and is a general concern,
not one exclusive to CTM. Indeed it should be more of a concern in approaches
like LZW, the operative question being: how will other lossless compression
algorithms impact the values? let alone how they will miss all the algorithmic
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non-statistical properties of data for which indeed a shorter description would
be sufficient test for non-randomness and by itself a short computer program but
most likely that shorter program will not be found whatsoever if the data did
not display statistical features (redundancy) in the first place (which is some-
thing Shannon entropy alone would have been able to do in the first place). For
CTM, it has been shown that radical changes to the underlying model of the
reference Universal Turing machine produce very similar distributions or have
little effect on the strings ranked highest by algorithmic probability [28, 30].
Yet, it is dishonest to operate using statistical lossless compression algorithms
with total impunity without proper disclaimers and, more important, false pre-
tences on the basis of alleged connections to algorithmic complexity which are
only circumstantial. Statistical lossless compression algorithms not only face
the same challenges, they are not even computationally universal are thus not
up to the task or properly fit for purpose. The additive constant is simply
maximised by the many arbitrary decisions that must be made when designing
a statistical compression algorithm whose original purpose was unrelated with
implementing a method for approximating algorithmic complexity, being related
to algorithmic complexity only to the degree that Shannon entropy is. Indeed,
LZW has been proven to be ‘universal’ [11] in the sense that for an arbitrary
window length such an algorithm would reach the Shannon entropy rate of any
object, but it is not ‘universal’ in the computability sense as basic requirement
to instantiate algorithmic complexity.

One can also see how LZW has been adjusted in practice, as it is practi-
cally impossible to implement an arbitrary sliding window length to traverse a
string looking for repetitions, forcing one to settle on a maximum fixed length,
since computers, at the end of the day, have finite memory. So the remarks
in [10] regarding these two concerns would be equivalent to alleging that LZW
is wrong (even for the purpose it was designed for) simply because it is unable
to implement an arbitrary sliding window length which is a compromise of its
own instantiation.

2.6 Limitations and challenges of all approaches

Users seeking applications of algorithmic complexity are faced with a dearth of
choices: either they continue the (mis)use and abuse of statistical compression
algorithms in the context of algorithmic complexity in their application domain,
or undertake methodological exploration of other measures such as CTM and
BDM and use them when appropriate, since it has been proved that at their
worst these can only behave as badly as a version of Shannon entropy (block
Shannon entropy, similar to LZW) [46]. CTM is no stranger to compromise or
to questions about optimality and the constant from the invariance theorem.
These are indeed challenges that we have openly acknowledged (e.g. [30] when
disclosing the assumption that the invariance theorem holds).

However, the use of black-box approaches such as statistical compression
algorithms does not circumvent any of these challenges, but rather obfuscates
them. These are approaches that cannot be defended except on weak grounds,
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such as that they avoid Turing universality. They amount to settling for an
option not (much) better than (or a trivial variation of) Shannon entropy. In
contrast, CTM and BDM have the advantage of embracing Turing universality
and the problems that come with it, of being based on or motivated by algorith-
mic principles beyond statistics, and the ability to find short computer programs
(shortest under the chosen model), thus being closer in all respects and for all
purposes to the principles of algorithmic complexity.

Without the use of black boxes such as lengths of compressed binary files
that have no state space correspondence, the agreement of ranking distributions
of estimations of complexity values of strings produced by CTM and compressed
with algorithms such as LZW to strings of increasing length is almost perfect,
with statistical rank correlation values close to 1 (thereby conforming with the
theory, as we know that low entropy also means low algorithmic complexity).
The interesting cases are, however, those in which compression fails (the short
string regime) and those where strings are found to have high entropy but low
algorithmic complexity (also conforming with the theory, as we know that high
entropy does not imply low algorithmic complexity). So CTM and BDM behave
as theoretically and intuitively expected [30, 46].

The review [10] points out what its author believes are drawbacks of CTM,
but these are in fact the very features that have made them applicable and
which have been widely tested, thus making for a real alternative or complement
to statistical compression algorithms (see Table 2). Among the claims made
in [10] is that the sum of the empirical probability values produced by CTM
is not smaller than 1, as the theoretical version of the Universal Distribution
definition would require. This was part of the original design, in order to be
able to assign fully determined probability values for practical purposes as a
computable version [48] of the incomputable measure on which it is based (
while making no pretense to being identical to it). It was decided to construct
a dynamic lookup table that can be incrementally updated every time a new
short computer program is found under the specific reference Universal Turing
machine model (in our case, a non-computable enumeration sorted by TM state
× symbol size). But the computable process itself generates probability values
whose sum is 1, and thus when running a subsequent round by expanding the
rule-space of Turing machines these probabilities are updated (each probability
value remaining equal or becoming smaller than its equivalent in the previous
round). Taken separately, however, every empirical distribution would add to
the overall probability, making it larger than 1. The remarks only confirm the
fact that CTM, motivated by AP, does what it was designed to do, without
pretending to be AP itself. However, every time that the pre-computation for
CTM takes place, those probability values are constantly updated and in the
limit they would all sum not more than 1.

On the one hand, while lossless compression explores the most radical of
the approaches by relaxing the most basic of the necessary conditions for algo-
rithmic complexity to be different from classical information theory, that of the
Turing-universality requirement thereby collapsing all features in data to statis-
tical features and equating both algorithmic and classical information theories
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(both in theory and practice), what CTM does is to embrace Turing universal-
ity and take on relaxing properties lower in the necessary conditions-hierarchy
(e.g. those marked with numbers 1 and 2 on Table 2.6). On the other hand,
we do know what the consequences of embracing statistical compression like
LZW are, and that only assuming that simple recursive processes producing
successions like 1, 2, 3, 4, 5, 6, . . . (or the Thue-Morse sequence and most com-
putable sequences) are ‘constructs’ of too artificial nature impossible to appear
in human or natural data. In this scenario, statistical compression algorithms
do not provide a greater power on previously used and less onerous methods
such as simple cognates of Shannon entropy. Statistical lossless compression
does not have to concern itself with properties and challenges of the algorithmic
dependency-hierarchy (Table 2.6), instead remaining outside its realm not even
dealing with the first level of complications.

Dependency Relaxed Challenge/ Positive
level property limitation implication

0 Universality some form of characterisation
incomputability beyond statistical

1 Optimality ad hoc models ranking invariant
in the limit

2 Invariance no rate of invariant in the
convergence limit w/overhead

3 Prefix-freeness ad hoc language slightly tighter
bounds

4 Coding theorem 0 to 3 have (AP for C and C
to hold for AP) ± O(1)

Table 1: List of nested theoretical properties in increasing rank of necessary con-
dition to instantiate algorithmic complexity (lower rows depend on the proper-
ties of higher rows) and their potential negative and positive implications when
holding. Different measures explore the implications of the relaxation of each of
these properties. Proofs of optimality are nontrivial [47] if the model is not ad
hoc, designed for the purpose of separating data from model (as MML does),
because the model is simple (statistical) and avoids Turing universality). Rates
of convergence of additive constants are never guaranteed, and any approach
will suffer from it. Statistical lossless compression algorithms give up on univer-
sality at the very first level and therefore can claim to avoid all others. CTM
embraces 0 (thus the first is the most important), assumes 1 and thus 2; 3 is of
minor concern [10] and thus 4 can be applied. Statistical lossless compression
such as LZW, however, can be seen as embracing triviality as it simply does
not deal with even level 0 and can only capture data redundancy in the form of
repetitions.
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2.7 Relaxing necessary conditions and studying the impli-
cations

While the problem of the incomputability of algorithmic complexity, the additive
constant and the non-conformance between practice and theory are not avoided
by using statistical lossless compression algorithms, as their use may suggest,
the limitations of computable approaches to semi-computable functions have
never been concealed in the context of CTM and BDM. In [30], for example,
the most standard specification of a reference universal Turing machine was
used and properly defined. The heading of the Online Algorithmic Complexity
Calculator (OACC) reads, in part, as follows:

. . . also, very important, the Numerical Limitations subsection in
the How It Works subpage.

And in the above mentioned subsection on Limitations it is stated that:

Numerical limitations of CTM are the ultimate incomputability of
the universal distribution, and the constant involved in the invari-
ance theorem which, nevertheless, we have quantified and estimated
to apparently be under control, with values converging even in the
face of computational model variations. Our papers cover these lim-
itations and their consequences should be taken into account.

The online calculator also includes comparisons to other measures, including
Shannon entropy and compression using gzip (LZW), for purposes of illustration.

When we establish the limitations of CTM and BDM, we also make the
following disclosure:

For BDM, the limitations are explored in [46], and they are related to
boundary conditions and to the limitations of CTM itself. The paper
also shows that when CTM is not updated, BDM starts approximat-
ing Shannon entropy over the long range, yet the local estimations
of CTM shed light on the algorithmic causal nature of even large
objects.

To address these valid concerns that are common in science when making
assumptions, and indeed never go away, all sorts of sanity checks to verify at
least model consistency were performed [64, 63, 62, 30, 46] (also see Fig. 2).
In Fig. 3, CTM is shown to be in agreement with the minimum number of
instructions used by the first Turing machine in the enumeration to produce the
string for the first time, as investigated and reported in [64]. Thus two methods
to produce algorithmic complexity-based values are in high agreement.

The authors of the aforementioned review have explored the consequences
of relaxing certain theoretical requirements, as we ourselves have done, not
only in [29, 30] but also in [38]. And ours are weaker assumptions than those
made when using statistical compression algorithms, such as that (1) the type
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of data in nature is of a statistical nature only, excluding ‘constructs’ like π
(so called in [10]), or (2) assumptions about the kind of machinery nature can
or cannot instantiate (such as Turing universality). These kinds of relaxing
condition approaches are common in science and mathematics and studying
their consequences yields useful insights and, in the case of CTM, yield measures
grounded or at least motivated by the principles of algorithmic information that
do not assume that, e.g., only statistical features are to be found in natural data.

Figure 7: Density histograms showing how poorly lossless compression performs
on short strings (just 12 bits in length), collapsing all values into 2 to 4 clus-
ters, while CTM produces a finer-grained classification of 36 groups of strings.
CTM (and BDM) can be calculated using the Online Algorithmic Complexity
Calculator (https://complexitycalculator.com/).

Regarding CTM, it was inquired whether expanding the rule space or explor-
ing further along incomputable enumeration would affect the empirical probabil-
ity distribution [30]. Because of the lack of convergence rate from the invariance
theorem The theoretical expectation could have indicated that changes would
have a major effect, for example, even inverting the ranking of highly frequent
elements (especially under conditions of non-optimality of the reference models),
but this was not the case. We found that increasing the size of the rule space re-
spects the original ranking, except for some value discrepancies and mostly only
for least frequent strings (therefore the ones with highest randomness and most
unstable ones, given the small number of machines generating these strings).
This was not obvious and a completely different result could have been expected
and produced despite the fact that all Turing machines with a lower number of
states are included in all larger rule spaces (larger machines also includes those
that do not use one of the states). Different rankings could have been produced
because the number of machines in larger rule spaces exponentially exceeds the
number of machines in the smaller rule space. However, the agreement between
rule spaces is more stable than theoretically expected [30, 62], suggesting that
the overhead is actually smaller and perhaps even reducible (one cannot ever
know for sure because of the invariance theorem).
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2.8 Algorithmic complexity in scientific discovery

In advancing CTM and BDM what was sought was to introduce a measure able
to capture algorithmic features from data, beyond statistical features. It sought
to contribute to model-driven data analysis. At the core of the research that
CTM made possible was not only the goal of estimating algorithmic complex-
ity for its own sake, which is no doubt interesting, but in the interests of the
kind of inspection and analysis that one can perform by simulating computable
processes to search for sets of computable models able to explain a piece of
data assembled for causal analysis [50] see Fig. 1 and Fig. 6). The analysis
could then include an examination of the correspondence of program and do-
main states (computational v. physical) to help understand possible computable
underlying mechanisms of causation explaining an object or the evolution of a
dynamical system [50, 49]. Such an approach also has implications for areas
such as Machine Learning, which is currently heavily reliant on and motivated
by statistical approaches very similar in spirit and just as problematic as the
heuristics of compression algorithms. In contrast, what we did in a recent pa-
per [49] was to explain how algorithmic complexity could help to deconvolve
data beyond statistics by searching for computable models. In our programme,
values of algorithmic complexity are only used as a guiding tool, not as a goal,
but our greatest interest is in generating the set of testable computable models
from a universal non-computable process to understand first principles under-
lying observed data, something that LZW, as a black-box approach, would be
incapable of doing in any meaningful way, as it would not provide any computer
program able to match any state variable of the domain under review (e.g.
compressing planetary movements with LZW would never give you anything
even close to a physical law), beyond the trivial quantification of the number of
repetitions in the data.

We took on these challenges in order to advance beyond LZW, which does not
embrace universality and assumes objects like π to be constructs; and because
we are less interested in the actual estimations of a single value for algorithmic
complexity and more in the process of producing generative computable models
to explain data whose study can shed light on the underlying state variable
mechanisms, which in combination with perturbation analysis we call Algorith-
mic Information Dynamics [50]. In this context, CTM is very similar to [52], in
that we explore and produce a list of short programs for each target string.

In this sense, CTM and what it has led to, such as Algorithmic Informa-
tion Dynamics [49, 50, 53], is similar to, the algorithmic response to, or the
generalisation of areas that study state-space modelling like Dynamic Causal
Modelling [54] or Computational Mechanics [40], where the interest is in find-
ing and analysing generative mechanisms as explanations of observed data. As
such, possible estimations of algorithmic complexity are almost a byproduct of
the exploration of the state space of computable hypotheses with CTM.
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3 Conclusions

Access to complementary methods is key to covering the spectrum of different
short and long string regimes necessary for wider applications (see Table 2).
Indeed, when applied to short strings, LZW and other statistical compression
algorithms would fail, so they are found to be of very limited use in the short
string regime. For example, in an approach that tested and compared compres-
sion in a problem of molecular biology, it was shown that CTM and BDM can
be informative of nucleosome occupancy [51] when applied to short strings (a
nucleosome of DNA is only around 146 base pairs long), a key feature in genetic
regulation. The problem of nucleosome occupancy is one of the greatest chal-
lenges in molecular biology, believed to be second only to protein folding. Many
applications can now be found for methods aimed at this short string regime.

Method Regime Outcome Capability/
of application reach

LZW, MDL, MML long length of an often statistical only
and similar strings obfuscated file

CTM or similar large set of small algorithmic
short strings computer programs

generating the data
CTM short and none compared to algorithmic

+ BDM long strings alternatives and statistical

Table 2: Different methods for different length regimes and for different pur-
poses. Here LZW represents the set of statistical lossless compression algo-
rithms.

As even Cilibrasi has pointed out [76], CTM provides an approach to a long-
standing problem in an area that lacked a methodology to cover the regime
of short strings. Statistical methods capture redundancy in the form of string
repetitions, with no connection to state variables, unlike the generation of a
set of algorithmic/mechanistic generative mechanisms from CTM, that can be
regarded as computable models of the data. CTM+BDM combines the best of
the statistical and algorithmic approaches. Notice that algorithmic also implies
statistical because any statistical feature is also (trivially) algorithmic, though
the reverse is not true. However, CTM+BDM has the advantage of being able
to find long statistical patterns that CTM alone would miss, while CTM has the
potential to characterise the algorithmic content of short sequences that BDM
alone (and the rest of the statistical models) would, left to their own devices,
miss.

An open question is why output probability distributions generated by com-
pletely different reference universal Turing machines turn out very similar, de-
spite concerns related to optimality and additive—or other (if not optimal)—
constants which resonates with Chaitin’s optimism when learning about CTM [56].
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I call this the “Unreasonable Effectiveness of Digital Computation in the Nat-
ural World” [77]. As is the case in other areas of mathematics, it could be
that we are too careful (as no doubt we should be), whereas in practice, things
do not correspond to theoretical expectations. This should have been the case
of, for example, Gödel’s undecidability theorems across all areas of mathemat-
ics; yet undecidability is rarely found or an impediment for doing mathematics.
Most of the time, solutions are found to open problems within some axiomatic
framework, thereby circumventing undecidability.

The question of optimality may therefore most likely be the real construct,
judging by the robustness of the distributions generated by different models of
computation, as quantified by us. Indeed, one hypothesis is that most ‘natural’
universal machines will be optimal or semi-optimal and produce a ‘natural’ order
in output distribution. It remains to be seen whether these possible ‘natural’
models chosen are inadvertently biased in some consequential way, making them
produce similar output probability distributions, and whether this possible bias
affects—and by how much—the output distributions that appear to converge,
in particular, for the highest frequency strings, when in theory they simply
should not. This may not only be interesting in its own right, but as a different,
guided and quasi-empirical approach to asking and answering highly theoretical
questions.

Paradoxically, the weakest approaches and the ones most unrelated to ap-
plications of algorithmic complexity are those based on statistical lossless com-
pression algorithms that dominate the field, for the wrong reasons, inhibiting
methodological innovations in a field that requires them. Recent theoretical re-
sults published in [52] and [78] are examples of the kind of innovation needed
in the field, and certainly do not disqualify others. On the contrary, they can
both build upon other innovations. The manifest advantage of the approach
of Bauwens et al. [52] that is covered almost exclusively in [10] (apart from
CTM and a brief but bold defence of statistical compression) is that it may bet-
ter control the associated additive constant and may possibly circumvent the
optimality requirement.

One of the several points that the minireview in [10] missed to mention is
that we are still currently faced with a mostly binary choice—judging by the
limited coverage of any other alternatives in [10]—for picking a method to deal
with algorithmic complexity: (1) those based on statistical lossless compression
algorithms such as LZW that have been used (and abused) for decades and
which the author of the minireview in [10] has himself exploited for at least two
decades; or (2) CTM (augmented with BDM), which offers an alternative and
has started to be used in more areas, appears closer to the principles of algorith-
mic information theory and has addressed a problem uncovered by statistical
lossless compression, the regime of short strings.

In [10], a lot of trust is placed in a potential alternative, yet it will be tested
once it is made available for numerical application, and when it is, it may face
its own challenges. As for the statistical lossless compression approach, we have
argued that it is too weak to instantiate the basic principles of algorithmic
complexity.
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Future efforts to measure algorithmic complexity should focus less on ob-
taining single real-value numbers at any cost, as when using statistical lossless
compression, and instead work to imbue with a deeper purpose applications
meant to help with fundamental questions in science. Such an approach does
not preclude addressing theoretical challenges, but not at the expense of inno-
vation, especially where available options are weaker and of less relevance to
questions of great interest to science, such as causation.
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