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ON k-LAYERED NUMBERS AND SOME LABELING RELATED
TO k-LAYERED NUMBERS

F. JOKAR

ABSTRACT. In this paper, first, we define and investigate k-layered numbers,
which are a generalization of Zumkeller numbers. After that, we generalize
the concept of Zumkeller labeling and Zumkeller cordial labeling to k-layered
labeling and k-layered cordial labeling, respectively. Moreover, we prove that
every simple graph admits Zumkeller labeling, Zumkeller cordial labeling, 3-
layered labeling, 3-layered cordial labeling, 4-layered labeling and 4-layered
cordial labeling.

0. INTRODUCTION

A perfect number is a positive integer that is equal to the sum of its proper
positive divisors. In 2013, the idea of a Zumkeller numbers, which are generalization
of perfect numbers, were first introduced by Zumkeller in Encyclopedia of Integer
Sequences [11] A083207 .

Definition 0.1. A positive integer n is said to be Zumkeller if the set of positive
divisors of n can be partitioned into two disjoint subsets of equal sum. A Zumkeller
partition for a Zumkeller number n is a partition {A;, A2} of the set of positive
divisors of n such that A; and A, sums to the same value.

Clark et almﬂﬂ] announced several results and conjectures related to Zumbkeller
numbers. In |10], Yujian and K.P.S fund some other results about Zumkeller num-
bers. They study the relations between practical numbers and Zumkeller numbers.
Also, They settle a conjecture from ﬂﬂ] Moreover, They make substantial contri-
butions regarding the second conjecture from ﬂﬂ]

On the other hand, Balamurgugan et al. E] introduced k-Zumkeller labeling of
graphs.

Definition 0.2. Let G = (V, E) be a graph. An injective function f : V' — N is
called a k-Zumkeller labeling of the graph G if the induced function f*: F — N
defined by f*(zy) = f(2)f(y), z € V,y € V,zy € E satisfies the following two
conditions:

(i) f(xy) is a Zumkeller number for all zy € E.

(ii) the number of different Zumkeller numbers used to label the edges of G is k.

They prove that a wide range of graphs admits Zumkeller labeling. After that,
In [6] and [7], the concept of Zumkeller cordial was introduced by Murali et al.
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Definition 0.3. Let G(V, E) be a graph. An injection function f : E — N is
call a Zumkeller cordial labeling of graph G if there exists an induction function
f*: E—{0,1} defined by f*(xy) = f*(z)f*(y) satisfies the following conditions:

(i) For every xy € E

“ [ 1, if f(x)f(y) is a Zumkeller number;
I (zy) = { 0, otherwise.

(ii) |ef«(1) —ep+(0)] < 1, where ef+(1) is the number of edges of graph G having
label 0 under f* and ey« (1) is the number of edges of graph G having label 1 under
f*

They prove that there exist Zumkeller cordial labeling for path, cycles, stars,

helm, wheel, flower, crown graphs and etc. Also, in [6] they raised the following
open question:

Open Question 0.4. Does every even flower graph admit Zumkeller cordial label-
ing?

In this paper, In section 1, we recall and generalize some results of [10] for k-
layered numbers, which are generalization of Zumkeller numbers. Also, in section
2, we find relations between k-multiperfect numbers and k-layered numbers. In
addition, in section 3, we investigate the lower density of k-layered number.

At last, in section 4, not only we prove that every simple graph admits Zumkeller
and Zumkeller cordial labeling, but also we prove that every simple graph admits
some another labeling.

1. k-LAYERED NUMBERS
The definition of Zumkeller numbers motivates us to define k-layered numbers.

Definition 1.1. A positive integer n is said to be k-layered if the set of positive
divisors of n can be partitioned into k disjoint subsets of equal sum. A k-layered
partition for a k-layered number n is a partition {A;, As,..., Ax} of the set of
positive divisors of n such that for every 1 < 4,j < k, each of A; and A; sums to
the same value.

Remark 1.2. If n is a 2-layered number, then n is called Zumkeller.

Let n be a positive integer and o(n) denotes the sum of positive divisors of n.

We recall the index of n to be I(n) = # Also, n is said to be abundant, perfect
and deficient if I(n) > 2, I(n) = 2 and I(n) < 2, respectively.

The proposition 2 from [10] give some necessary condition for a Zumkeller num-
ber. We generalize this proposition for k-layered number.

Proposition 1.3. If n is a k-layered number, then the followings are true:
(a) klo(n)
(b) kn < o(n); this concludes I(n) > k.

Proof. The proof is identical to proof of the proposition 2 of [10)]. O
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The following fact gives a necessary and sufficient condition for integer n to be
k-layered.

Fact 1.4. The number n is k-layered if and only if we can find k£ —1 disjoint subsets
Ay, As, ..., Ax—1 of positive divisors of ¢ so that for every 1 < i < k, A; sums to
the 2

k

Furthermore, we have:
Fact 1.5. If n is a k-layered number and ¢|k, then n is %—layered number.
By [LL5 we can generalize the proposition 13 of [10].

Proposition 1.6. Let ki, ko and ¢ are positive integers such that ki|ks. Let n
be a non-ki-layered number and p a prime number with ged(n,p) = 1. If np® is
ka-layered, then p < o(n).

Proof. By [[H the proof is identical to proof of proposition 13 in |10]. O

Moreover, the three following propositions are generalizations of some proposi-
tions in [10].

Proposition 1.7. Let n and ¢ are positive integers. Suppose that n be a non-k-
layered integer and p be a prime number with ged(n,p) = 1. If np® is k-layered
number, then p < o(n).

Proof. The proof is identical to proof of proposition 13 in [10]. O

Proposition 1.8. If the integer n is k-layered and w is relatively prime to n, then
nw is a k-layered number.

Proof. The proof is identical to proof of corollary 5 of [10]. O
In addition, we have:

Proposition 1.9. Let n be a k-layered number and plflpé€2 ...pkm be a prime fac-

torization of n. Then for any non-negative integers ly,ls .. .l,, the integer
p71€1+l1(k1+1)p/2cg+l2(k2+1) . plmHm Gt 1)
is k-layered.
Proof. The proof is identical to proof of proposition 6 of [10] O
Now, we recall the definition of practical numbers.

Definition 1.10. A positive integer n is said to be a practical number if every
positive integer less than n can be represented as a sum of distinct positive divisors
of n.

The following proposition gives very worthwhile information about the structure
of practical numbers.

Proposition 1.11. A positive integer n with the prime factorization plflpgz ...phm
and p1 < pa < -+ < Py 1S a practical number if and only if p1 = 2 and p;y1 <
o .Yy +1 for1<i<m—1.

Proof. See |8] O

Also, we have:
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Proposition 1.12. A positive integer n is a practical number if and only if every
integer less than or equal to o(n) can be written as a sum of distinct divisors of n.

Proof. See |8] O
Now, we define almost practical numbers.

Definition 1.13. A positive integer n is called an almost practical number if all
of the numbers j which 2 < j < o(n) —2 or j = o(n) — 1, can be written as a sum
of distinct divisors of n.

Remark 1.14. It is clear that every practical number is an almost practical number.
We recall some results from []].

Proposition 1.15. Let n # 3 be an odd positive integer and 1 =dy < ds < -+- <
dr = n are the divisors of n. We also define o, = dy +ds+---+d;. Then, n is an
almost practical number if and only if da = 3,ds = 5 and for i > 3, at least one of
the followings are true:

(a)dHl S g; — 2 and di+1 7§ g; — 4.

(b)di—i-l = 0; — 4 and di+2 =0; — 2.

Proof. See |8] O

Remark 1.16. If n = p{"p5?...p%m be an odd almost practical number in which
p1 < p2 < - < pm are all prime factors of n, then by 13, it is clear that p3 = 7.

Now, we state a theorem which has a crucial role in constructing almost practical
numbers.

Theorem 1.17. Let n # 3 be an almost practical number and p be a prime, then
pn is an almost practical number if and only if 2p < o(n) — 2 and 2p # o(n) — 4

Proof. See |8] O

Proposition 1.18. Let n # 3 be an almost practical number and p be a prime
dividing n, then pn is an almost practical number.

Proof. See |8] O

Now, we are going to investigate the relation between almost practical numbers
and Zumkeller numbers. The following proposition is a generalization of proposition
10 of [10].

Proposition 1.19. Let n # 3 be an almost practical number. Then, n is Zumkeller
if and only if o(n) is even.

Proof. The proof is similar to proof of Proposition 10 of [10]. O

Example 1.20. If s is a positive integer, Then n = 2° x 3 is a practical number
and o(n) is even. Hence, n is Zumkeller.

Example 1.21. It is easy to check that n = 3% x 5 x 7 is an almost practical
number. Thus, if m = 3% x 5%2 x 73 such that a; > 2 and at least one of positive
integers a1, ao and ag be odd, then n is a Zumkeller number.

Also, we can generalize theorem 11 of [10].
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Theorem 1.22. Let n # 3 be an almost practical number and p a prime number
with ged(n,p) = 1. If o(n) is odd, then pn is a Zumkeller number if and only if
p < o(n).

Proof. By [[LT9 the proof is identical to proof of theorem 11 of |10] O

In addition, we recall a proposition of [10]:

Proposition 1.23. Letn be a practical number and p a prime number with ged(n, p) =
1. If o(n) is odd, then pn is a Zumkeller number if and only if p < o(n).

Proof. see [10] O

In the following, we state two crucial theorem about k-layered numbers. For
better understanding , first, we state a special case of the theorem.

Proposition 1.24. Let n be an odd number such that 3|o(n). Now, Let A} be a the
subset of positive divisors of n so that A} sums to %—?()") If a is a positive integer
and A" = {2%d|d € A} such that 2%n is a 3-layered number with 3-layered partition
{A1, Aa, A3} so that A’ C Ay U Az, then for every integer a < t, the number £ = 2'n

is a 3-layered number.

Proof. Let 29n be a 3-layered number. Now, we want to prove k = 2°T1n is a
3-layered number. Let D be the set of positive divisors of n. We define:

M, :AImAQ,M2 =A'"N As.
Now, we define:
M| = {2d|d € My}, M} = {2d|d € My}, My = {2¢+1d|d € (D \ A})}.

It is easy to check that {A; U Ms, (A \ M1) U M{ U My, (A3 \ Ma) U M{ UM}
is a 3-layered partition for k. Thus, by this method, inductively, we can prove that
¢ = 2'n is a 3-layered number for every integer t > a, ([

Thus, we have:

Proposition 1.25. If n > 3 is an odd almost practical number such that 6|o(n),
then for every positive integer «, the number £ = 2%n is a 3-layered.

Proof. First, we prove that 2n is a 3-layered number. Let A1 = {a1,az,...,ax} is
the set of positive divisors of n. By [[.25 n is a Zumkeller number; this concludes
that A; can be partitioned into two subsets B; and Bs such that each of them
sums to @ Now, we define Ay = {2d|d € By} and As = {2d|d € Bs}. We
know that n is an odd number. Therefore, for every integer a € Ay U As, 2a ¢ A;.
Thus, {A1, A, A3} is a 3-layered partition for n. Also, we know that n is an
almost practical number such that 2|o(n) 3|o(n) and %—?()") # 2,n; this concludes

that there exists A’ C A; so that A’ sums to 20n)  Op the other hand , let
A" = {2d|d € A'}, we know that for every integer d € Ay, 2d € Ay U Ag; this
concludes that A” C Ay U As. Then, by [[.24] for every positive integer «, the
number 2%n is 3-layered. (|
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Example 1.26. It is easy to check that n = 120 is a 3-layered number with 3-
layered partition {A;, Aa, As} such that A; = {20,40,60}, A2 = 120 and A3z =
{1,2,3,4,5,6,8,10,12,15,24,30,120}. Let 120 = 23n. It is easy to check that
29(n) — 16. Now , if we define A} = {1, 15}, then it is obvious that A’ = {23,2 x
15} C AaNA3. Thus, by [L24] for every positive integer k > 3, the number 2* x 3 x5
is a 3-layered number.

Now, we present a proposition like for 4-layered numbers.
Proposition 1.27. Let n be an odd number such that 2|o(n). Now, let D be the
set of positive divisors of n such that D can be partitioned into two subsets A} and
Al so that Ay and Al sums to @ If « is a positive integer, A = {2%d|d € A}}
and AY = {2%d|d € AL} so that 2%n is a 4-layered number with 4-layered partition
{A1, Az, A3, Ay} such that AY C (A1 U Az) and Ay C (As U Ay), then for every
integer a < t, the number £ = 2'n is a 4-layered number.

Proof. Let 2%n be a 4-layered number. We want to prove k = 29F1n is a 4-layered
number. Let D be the set of positive divisors of n. We define:

My = AN A, My =AY N A

Ms= AN As, My =AY N Ay

Now, we define:

M ={2d|d € M1}, M) ={2d|d € M}
M3 ={2d|d € M3}, My ={2d|d € M4}.

It is easy to check that {(A; \ M1)UM]| U Ma, (A2 \ M) UM, UMy, (As\ M3)U
MIUMy, (Ag\ M4)UM;UMs3)} is a 4-layered partition for k. Thus, by this method,
inductively, we can prove that £ = 2'n is a 4-layered number for every integer ¢ > «.

d

The two following theorems are a generalization of [L24] and [[L27] respectively.

Theorem 1.28. Let n and k be odd positive integers such that n is a k-layered
number and A, A, ...  A',_, are disjoint subsets of positive divisors of n so that

o
2

for every integer 1 < i < kgl, Al sums to %T(") Now, let o be a positive integer

and for every integer 1 < i < 5L AV = {2%d|d € Al} such that 2°n is a k-

layered number with k-layered partition {Ay, Aa, ..., Ar} so that for every integer

1<i< %, Al C Ag;_1U As;. Then, for every integer a < t, the number { = 2'n

is a k-layered number.

Proof. For every positive integers 1 < i < k — 1, we define Mi:Al[ﬂJ N A,
2
M! = {2d|d € M;} and M = {2°Fd|d € (D\ Af UALU..., A .)}. Now, we
2
define :

Ml) U Mz/ UM if 7 is odd;
M,

g = (A
' (AJ \ z) U MZI UM,;_1 1if 7 1is even.
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O

It is easy to check that {Bi, Ba,..., Br—1, Ax UM} is a k-layered partition for
20F1n. Also, by this method, , inductively, we can prove that ¢ = 2'n is k-layered
for every integer t > .

Theorem 1.29. Let n be an odd positive integer so that k|o(n), where k is an

even positive integer such that n is a k-layered number. Also, let A}, AS, ..., A,
2

. e oye . . . k
be disjoint subsets of positive divisors of n so that for every integer 1 <1i < 5, Aj
sums to Z‘T(n) Now, let o be a positive integer and for every integer 1 < i < %,

Al = {2%d|d € AL} such that 2%n be a k-layered number with k-layered partition
{A1, As, ..., Ar} so that for every integer 1 < i < %, A C Agi—1 U Ag;. Then, for
every integer t, where oo < t, the number £ = 2'n is a k-layered number.

Proof. For every positive integer 1 < i < k, we define:

Now, for every 1 < i < k, we define:

B — (Az \ Ml) U Mll UMy if 7 is odd;
v (AJ \Mz) @] Mz/ U Mi,1 if 4 is even.
(I

It is easy to check that the set { By, Ba, ..., By} is k-layered partition for 22 1n.
Also, by this method, inductively, we can prove the number 2'n is k-layered for
every t > .

Example 1.30. Let ¢ = 3 x 5 x 7 and « be positive integers such that 3 < a.
Suppose that p < % and p = 2( mod 3). By 2Tl and [[LT7 ¢*p is an almost
practical number such that 6|c(¢). Therefore,by [[20] for every positive integer ¢,
2t0%p is a 3-layered number.

Now, we state a proposition that we can find a huge set of 4-layered numbers by
that.

Proposition 1.31. Let k,k’ be positive numbers, m be a k-layered number, and n
be a k'-layered number such that ged(m,n) = 1. Then, mn is a kk'-layered number.

Proof. Let Ay, Aa,..., Ay be a k-layered partition for m, and By, Ba, ..., By, be a
k'-layered partition for n. It is obvious that {A4;B;|1 < i < k,1 < j < k}isa
kk'-layered partition for mn. d

It is clear that the proposition [[L31] can be generalized.

Corollary 1.32. Let kq, ko, ..., k. be positive integers such that for every integer
1 <i<r, m;isak;-layered number. Also let for every inetger 1 < i # j < r,
ged(m;, m;) = 1. Then, myma...m, is a kiks ... ky-layered number.

The following examples show the power of proposition [[.31] for finding 4-layered
numbers.
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Example 1.33. By[[.2T] n; = 3%t x5%2 x 7% in which a1 > 2, as, ag are positive
integers, and at least one of the exponents of its factors is odd, is a Zumkeller
number. Let k be a positive integer and p be a prime number such that p < 281 —1
and ged(p,nq) = 1. By [LTIl [LT4 and LT3 for every odd number a4, the number
ng = 2% x p® is Zumkeller. Therefore, by [L31 n = nins is a 4-layered number.

Example 1.34. Let ¢t < 3 be a positive integer. Now, suppose p1,p2 < o(2!) are
distinct primes expect for 3, 5 and 7. By and [[19] the number n; = 2!p; is
a Zumkeller number. Also, by definition of ps, we know 2ps < (3% x 5! x 7¢) — 4.
Thus, according to [.21] and [[LI7, the number ny = 3¢ x 5! x Tipy is a Zumkeller
number. At last, by [[L31] the number niny = 2 x 3t x 5t x Tip1py is a 4-layered
number.

In the following, we want to prove that for every integer n > 11, the number n!
is 3-layered and 4-layered. Before that, we recall a theorem which was proved by
Breusch; this theorem is a generalization of Bertrand’s postulate theorem.

Theorem 1.35. For every integer n > 7, there are primes of the form 3k + 1 and
3k + 2 between n and 2n.

Now, we state a theorem.

Theorem 1.36. If n > 11 is an integer, then the number n! possesses prime
1, 2

factorization pi*p5? ... pe* such that 2 =p; <ps < --- < pp and ag—1 = ap = 1.
Otk72

Also, pr < 2% and 2pp—1 < o(pT'ps*...pRk,") — 4. In addition, there exists a
prime number q such that ¢||n! and ¢ = 2( mod 3).

Proof. If 11 < m < 16, then it is easy to check that n! satisfies in the theorem.
Now, Let n > 17 and p be the largest prime factor of n! such that p?|n!; this con-
cludes 2p|n. By definition of n, it is clear that p > 7. Then, by [[.38] there exist at
least two distinct prime numbers ¢; and g2 such that p < ¢1,¢2 < 2p and ¢1 = 2(
mod 3). Thus, by definition of p, ¢1 and ¢ are prime factors of n! with power of
one. Furthermore, if ords(n) denotes the exponent of the largest power of 2 that
divides n, then by Legendre’s formula, we have:

pr<n< ZL%J < 9orda(n)

Also, by definition of n, px_3 > 7. Thus, by Bertrand’s postulate theorem, we
have:

Qg —2

2pk—1 < Apx—2 < Pr—3Pr—2 < U(pg2 c DRy ) —4
O

Thus, as a consequence of the above theorem, we have the following corollary
Corollary 1.37. For every integer n > 11, the number n! is 3-layered.

Proof. Let n = 11 it is easy to check that we can find positive integer o and ¢ such
that 2%¢ and /¢ is an almost practical number. Thus, by [[.36] and [[.17] for every
integer n > 11, we can find positive integers a and ¢ such that n = 2%¢, where ¢ is
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an odd almost practical number. Therefore, by [[.25] the number n! is a 3-layered
number.

O
At last, we close this section by the following corollary.
Corollary 1.38. For every integer n > 11, the number n! is 4-layered.

Proof. Let pi" p5® ...pp* be the prime factorization of n! such that 2 = p; < py <

-+ < pg. By [[30 [LIITT9 and [[I7 the numbers 2% p;, and pg2ps® ... p* -1k —1
are Zumkeller. Thus, by [L3T] n! is 4-layered. O

2. k-MULTIPERFECT NUMBERS AND k-LAYERED NUMBERS

First, we state a proposition that we can find a wide rang of k-layered numbers
by that.

Proposition 2.1. Let k > 1, [, t, s be positive integers such that s|t. Now, suppose
n is a k-layered number such that o(n) = kl. If o(nt) = (k + 1)sl, then m = nt is
a (k + 1)-layered number.

Proof. Let D be the set of positive divisors of m and let {41, Aa, ..., Ar} be k-
layered partition for n. Now, for every positive integer 1 < ¢ < k, we define
A} = {sd|d € A;} and also A}, = D\ (AJUA5U... A}). It is easy to check that
{A], Ay, ... A} is a (k + 1)-layered partition for m. O

Therefore, we have:

Corollary 2.2. Let p be a prime number. If n is a p-layered number such that
ged(n,p) =1, then np is a (p + 1)-layered number

Example 2.3. If n is an odd Zumkeller number, then by 2.2 2n is a 3-layered
number.

Now, we recall the definition of k-multiperfect numbers.

Definition 2.4. Let n and k # 1 be positive integers. The number n is said to
k-multiperfect if o(n) = kn.(Note that if n is 2-multiperfect number, then n is said
to be perfect.)

We are now ready to state an example, showing a crucial role of proposition 2.1]
in finding a huge set of k-layered numbers.

Example 2.5. Let a; = 2x3,a9 = 2°x3x5,a3 = 2°x33x5x7, a4 = 2' x 33 x 52 x
T?2x13x19%x31,a5 =29 %x3°x52x T2 x 11 x132x 192 x 312 x 37 x 41 x 61 x 127, ag =
239 5 31 x 57T x 73 x 11 x 132 x 17 x 192 x 29 x 312 x 37 x 41 x 61 x 73 x 79 x 83 x
127 x 157 x 313 x 331 x 2203 x 30841 x 61681. It was proved that for every integer
1 < i < 5, the number q; is a (i + 1)-perfect number(See [1].). Also, it is easy to
see that for every integer 1 < i < 5 a;|a;+1 and 6 is a Zumkeller number. Thus, by
proposition 2] for every integer 1 <i <5, a; is a (i + 1)-layered number.

Now, we recall a concept of number theory

Definition 2.6. An arithmetical function f is said to be multiplicative if f is not
identically zero and also f(mn) = f(m)f(n) whenever ged(m,n) = 1.

Remark 2.7. We know that the sum divisor function is a multiplicative function
(see [14]); this concludes that the function I is multiplicative too.
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Proposition 2.8. Every perfect number is Zumkeller.

Proof. Let D be the set of positive divisors of n. We define Ay = {n} Ay = D\{n}.
It is clear that Aj, Ay is Zumkeller partition of n. O

The proposition 2.8 lead us to raise the following open question

Open Question 2.9. For which one of positive integers k # 1, every k-multiperfect
number is k-layered

Remark 2.10. [t is believed that all k-multiperfect number of index 3,4,5, 6 and 7
are known. Among six 3-multiperfect numbers that are fund, the number 51001180160
is the largest see [1].

In the following, we prove that every known 3-multiperfect numbers is 3-layered.
Before that, we recall some concept and results in number number theory.

Definition 2.11. The abundant number n is said to be semiperfect if n is equal
to all or some of proper divisor of n. Also, the abundant number n which is not
semiperfect called weird.

The existence of odd weird numbers is still an open question . The following
theorem was proved by W. Fang (see [L1]).

Theorem 2.12. There are no odd weird numbers less than 1.8 x 10'9. In other
words, every odd abundant number a < 1.8 x 10'° is semiperfect

Also, the following theorem was proved by Guy:

Theorem 2.13. Let m be a positive integer, and let p be a prime number such that
2m < p < 2™ Then, the number 2™p is a semiperfect number.

Remark 2.14. By definition of semiperfec numbers, it is easy to check that every
multiple of a semiperfect number is semiperfect.

Then we have:
Proposition 2.15. FEvery known 3-multiperfect number is 3-layered.

Proof. Let £ > 1 be a positive integer. We know that every known ¢-multiperfect
number is even. Let n be a known 3-multiperfect number and let £ and m be
positive integers such that n = 2¥m and ged(2¥,m) = 1. Now, suppose that p be
the smallest odd prime factor of n. It is easy to check that there exists a positive
integer o such that 2% < p < 29t and 2%|n. Then, by .13l and 214 there exists
a subset D of the set of proper positive divisor of n such that D sums to n. Now,
we define A; = D, Ay = n. It is obvious that A; and Ay sums UT") Thus, by [4]
n is 3-layered. O
Remark 2.16. Let n be a positive integer such that I(n) > 4. Now, let t be a
deficient number such that n = t*m and ged(t,m) = 1. We know the function I is
multiplicative. Therefore, I(m) > 2; this concludes that m is an abundant number.

The theorem 2.12] lead us to the following conjecture.

Conjecture 2.17. Every odd abundant number is semiperfect.
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Up to now , 36 4-multiperfect numbers are fund [1]. Let n be a 4-multiperfect.
According to the reference [1], we know that there exist a positive integer o and
an odd positive integer m such that n = 2%m. By 216l m is an abundant number.
One can see that m is a semiperfect number. Then there exists a subset D of
the set of proper positive divisors of m such that D sums to m. Now, we define
Ap =2%:d e D. Also, it is obvious that I(%) > 2; it concludes that o(%) > n,
and also by [LII] and the reference [1], it is easy to check that % is a practical
number. Thus, by [LT2 there exists a subest Ay of the set of positive divisors of

such that As sums to n = @. Now, if we define A3 = n, then for every positive

integer ¢, A; sums to #. Then by [[L4] we have the following corollary.

Corollary 2.18. FEvery known 4-multiperfect number is 4-layered.

Remark 2.19. Ezactly half of known 4-multiperfect are divisible by at least a 3-
multiperfect numbers [1]. Then, once again, by[2.13 and[21), at least half of known
4-multiperfect are 4-layered

Remark 2.20. Let ay = 6,a2 = 120, a3 = 30240, ay = 14182439040 it was proved
that for every integer 1 < i < 4, the number a; is the smallest (i+1)-perfect number
[1]. Also, for every integer 1 <i <3, a;laii+1). Then, by[Z1), a; is (i +1)-layered
number for every integer 1 < i < 4

3. LOWER DENSITY OF k-LAYERED
In [10], Yuejian and K.P.S raised the following open question.
Open Question 3.1. Does the set of Zumkeller numbers possess density?

In 2010, T.D checked that the 229026 Zumkeller numbers less than 10° have a
maximum difference of 12; he conjectured that any 12 consecutive numbers include
at least one Zumkeller number. At last, in 2019, Charlie presented an easy proof
for this conjecture |11]. We here present the proof of this conjecture for completion.

Proposition 3.2. If a < b are two consecutive Zumkeller numbers, then |b — a| <

12; this concludes that the lower density of the set of Zumkeller numbers is at least
1

ﬁ .

Proof. By[l.20and[L.8 for every positive integer k, the numbers 18%+6 and 18k+12
are Zumkeller. Then difference between two consecutive Zumkeller numbers is at

most 12. O
Remark 3.3. There exist consecutive Zumkeller numbers a and b such that b—a =
12.  For instance, a = 222 and b = 224 are consecutive Zumkellers such that
b—a=12.

Before finding a lower density for the set of 3-layered numbers and 4-layered
numbers, we recall that the number n is said to be superabundant if I(n) > I(k)
for all positive integers k < n. Also, we have:

Lemma 3.4. Let mi < mg be two consecutive superabundant numbers. For every
positive integer t < mo, I(t) < I(m1).

Proof. Let ¢ be a positive integer such that I(¢1) > I(my) and ¢ > mgy. By definition
of my, mg, it is obvious that ¢ fails to be superabundant number; this concludes there
exists a positive integer m; < {1 < t < mg such that I(m1) > I(¢1) > I(t). We
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once again know that ¢; cannot be superabundant so there exists a positive integer
{5 such that m; <l < 1 < t < mgo. Therefore, for every positive integer r, by

this algorithm, inductively, we can find distinct positive integers ¢1, o, ..., ¢, such
that my < €, < €1 < --- <Ly <mgand I(ma) > I(£;) > I(lr—1) > -+ > I({1);
this contradicts the finiteness of the set A = {ala € N,m; < a < ma}. O

Now, we find a lower density for the set of 3-layered numbers.

Proposition 3.5. Ifa < b are two consecutive 3-layered numbers, then b—a < 360;

this concludes the lower density of the set of 3-layered numbers is at least ﬁ.

Proof. By [[.2680 n = 120 is a 3-layered number. Also, it is first superabundant
number such that I(n) < 3 (See [13]). Thus, by B4 and 3] n is the smallest
3-layered number. Moreover, it is easy to check that at least one of the numbers
t,t+ 1, and t 4+ 2 is not divisible by 3 and 5. Thus by and [L.]] one of the
numbers tn, (t + 1)n, or (¢t + 2)n is 3-layered; this concludes that the lower density

of 3-layered numbers is at least Bln = ﬁ O

If A is a set of positive integer, then we define S(A) as a sum of the integers in
A. Now, we find a lower density for the set of 4-layered numbers.

Proposition 3.6. If a < b are two consecutive 4-layered numbers, then b —a <
249480; this concludes the lower density of the set of 4-layered numbers is at least
1

249480 °

Proof. The number n = 27720 = 23 x 32 x 5 x 7 x 11 is 4-layered because let we
define:

A ={23x3%2x5, 22x32x5x7x11}

A ={2x3 x5, 2x3x5x11, 22x3x5x7x11, 29x3x5x7x11,
22x32x5x7x11}

Az ={1, 2x3% 2x3x5x7x11, 22x32x7x11, 2>x5x7x11,
x5 xTx11l, 22x32x5x11, 23x32x7x11, 2x32x5x7x11}

It is easy to check that S(4;) = # for every integer 1 < ¢ < 3. Then, by
[[4 n is a 4-layered number. Also, n is the smallest positive integer such that
I(n) > 4 ( See |13]). Therefore, by B4 and [[3] 27720 is the smallest 4-layered
number. In addition, it is easy to check that for every positive integer k, there exist
at least an integer 1 < ¢ < 9 such that ged(k +4,n) = 1; by [L8} this concludes that

(k+14)n is a 4-layered numbers so the lower density of 4-layered numbers is at least
11
9n — 249480 O

Now, we find the smallest 5-layered number.

Proposition 3.7. The number n = 147026880 = 26 x 33 x 5 x 7 x 11 x 13 x 17 is
the smallest 5-layered number.

Proof. We know t = 122522400 is the smallest superabundant such that I(t) > 5
(see [13]). But 5 fo(t). Therefore, by [3land B4, ¢ fails to be 5-layered and every
5-layered number is larger than ¢t. By a Computational Software like python, it
is easy to check that the number n = 147026880 is the smallest integer such that
I(n) > 5 and 5|o(n). Now, we want to prove this number is 5-layered. First of all,
we know the number ¢; = 120 = 22 x 3 x 5 is a 3-multiperfect number and the
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number fo = 32760 = 23 x 32 x 5 x 7 x 13 is the a 4-perfect number such that £1|(>
( See [1]). Therefore, by and 2.1l the number ¢5 is a 4-layered number; this
concludes that there exists a 4-layered partition {A;, A, A3, A4} for ¢5 such that
A; sums to {o for every integer 1 < ¢ < 4. Also, for every integer 1 < ¢ < 4 we
define:

Al ={28 x 3 x 11 x 17d|d € A;}

On the other hand, let m = 447552. We know the number n; = 26x5x11x13x17
is a practical number. Also, m < o(ni). Thus, by definition of practical number,
there exist subsets By and Bs of the set of positive divisors of n; such that B; and
By sum to m and %, respectively. Now, we define By = {7d|d € B:}. In addition,
we know the number ny = 2% x 32 x 5 x 7 x 13 x 17 is a practical number such that
% < a(nz). Therefore, there exists a subset B3 of the set of positive divisors for ny
such that Bz sums to . Now, we define B3 = {3d|d € Bs}. At last, we know the
number ng = 2% x 3% x 5 x 11 x 13 x 17 is a practical number such that & < o(ns);
this concludes that there exists a subset By of the set of positive divisors for n such
that By sums to #;. Now, we define B) = {21d|d € By}. It is easy to check that the
sets By, BY, B, By, A1, Ao, Az, Ay, A}, AL, AL and A are disjoint subsets of the set
of positive divisors for n. Now, we define C; = A; U B; and also for every integer
2 < i < 4, we define C; = A, U BY; it is easy to check that every S(C;) = @
Then, by [L4l n is a 5-layered number. ([l

Theorem 3.8. The number 130429015516800 = 27 x 3% x 52 x 72 x 11 x 13 x 17 x
19 x 23x 1is the smallest 6-layered number.

Proof. We can see that the number n = 130429015516800 is smallest number such
that I(n) > 6 (see [13]) . Therefore, by L3 if m be a 6-layered number, then
m > n. Now, we prove that the number n is a 6-layered number; this concludes
that n is the smallest 6-layered number. we define:

A ={23 22x5x13x29, 24x3x11 x 13 x 17 x 29,
22x3x52x7Tx11x13x17 x19 x 29,
25 %32 x52x7?x11 x13 x 17 x 19 x 23,
2T x 33 x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29}

Ay = {22 x 3 x Tx17x19, 24 x3%x5%2x 7% x 17 x 19 x 29,
26 %33 x7x11x13x17x19 x 23 x 29,
26 %32 x5%2x 72 x11 x13x17 x 19 x 23 x 29,
27 %32 x5 x7?x11 x 13 x 17 x 19 x 23 x 29,
20 x 33 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29}

Az ={2*x3xTx17, 2"x3 x7?x17x29, 27" x33x5x7%x11 x 17 x 29,

26 %33 x 52 x7x11x13x17 x19 x 23,

26 %33 x52x7x11x13x17 x19 x 23 x 29,
26 %33 x5 xT7?x11 x13x17 x 19 x 23 x 29,
27 %3 x52x7?x11 x13 x17 x 19 x 23 x 29,
24 %33 x 52 xT?x 11 x 13 x 17 x 19 x 23 x 29,
27 %x 33 x 52 x 7T x11 x13 x17 x 19 x 23 x 29,
2" %33 x5 xT?x11 x13 x 17 x 19 x 23 x 29,
25 x 33 x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29}
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26

27
25
27

As = {13,
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2x33x5x11x13, 52 x7x17x19 x 23 x 29,

x 33 x 52 x 72 x 17 x 23 x 29,

X3 x52x7x11x13x17 x19 x 23 x 29,
Xx32xB5xT?x11 x13x17 x19 x 23 x 29,
x 33 x B2 x 7% x11 x13 x 17 x 19 x 23,
X33 x B2 x7x11x13x17x19 x 23 x 29,
X 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29,

x 33 x 52 x 7% x11 x17 x 19 x 23 x 29,

x 33 x 72 x 11 x 13 x 17 x 19 x 23 x 29,
x32x52x7?x11x13 x17 x19 x 23 x 29,
x 33 x B2 x7?x11 x13 x17 x 19 x 29,

x 33 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29,
x32x52x7x11x13x17 x 19 x 23 x 29,
X33 x5 xT?x11 x13x17 x 19 x 23 x 29,
x 33 x 52 x 7% x11 x13 x 17 x 23 x 29,

X3 xB2xT?x11 x13x17x19 x 23 x 29,
x 33 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29,
X33 x B2 x 7?2 x11 x13 x17 x 19 x 23 x 29,
Xx32xB5xT?x11 x13x17 x19 x 23 x 29,
x 33 x 52 x 7% x11 x17 x 19 x 23 x 29,
x32x52x7?x11 x13 x17 x19 x 23 x 29,
x 33 x 52 x 72 x 13 x 17 x 19 x 23 x 29}

2x11 x 13 x23, 2°x3%x7%x17 x 23,

2x52x7x11x13x17x19 x 23 x 29,

27
26
24
27

x 32 x 52 x 11 x13 x17 x 19 x 23 x 29,
X 32 x 52 x7?x11 x13 x17x19 x 29,
x 33 x 52 x 7% x11 x13 x 19 x 23 x 29,
X5 xT72x11 x13 x 17 x 19 x 23 x 29,
x 33 x 52 x7x11x13x17 %23 x 29,
x 32 x 52 x7?x13 x17 x 19 x 23 x 29,
X33 x5 xT7?x11 x17 x 19 x 23 x 29,
X 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29,
Xx32xB5xT?>x11 x13x17 x19 x 23 x 29,
x 33 x 52 x7x11x13x19 x23 x 29,
X3 x52xT7?x11 x17 x 19 x 23 x 29,
x 33 x B2 x 7% x 11 x13 x 17 x 19 x 23,
X33 x5 xT7?x11 x13x17 x 19 x 29,
x32x52x7?x11 x13 x 17 x 23 x 29,
x33x 52 x7x11x13x17x19 x 23 x 29,
x 33 x5 xT7?x13 x17 x 19 x 23 x 29,
X 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29,
X32xHxT7x11x13x17x19 x 23 x 29,
x 33 x 52 x 7% x11 x17 x 19 x 23 x 29,
x 32 x52x7%x11x13 x19 x 23 x 29,
x 33 x 72 x 11 x13 x 17 x 19 x 23 x 29,
X3 x52xT7?x13 x17 x 19 x 23 x 29,
x 33 x 52 x 11 x 13 x 17 x 19 x 23 x 29,
x32x52x7?x11 x13 x17 x 19 x 23 x 29,
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27" % 33 x5 x 72 x 11 x13 x 17 x 23 x 29,

25 %33 x52xT7?x11 x13 x17 x 19 x 29,

27 %3 x 52 xT7x11 x17 x 19 x 23 x 29,
26x3x5x7?x11 x13x17 x19 x 23 x 29,
24 %33 x 52 x 72 x 13 x 17 x 19 x 23 x 29,
27" % 32 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23,

27 % 33 x5 x 72 x 11 x 13 x 19 x 23 x 29,

25 %32 x52x7x11x13x17 x19 x 23 x 29,
%3 x5 xT?x11 x13 x17 x 19 x 23 x 29,
2632 x52x7?x11 x17 x19 x 23 x 29,

27 % 33 x 52 x 7T x13 x17 x 19 x 23 x 29,

25 %33 x52x 7% x11 x13 x 17 x 23 x 29,

2" %x 32 x 7% x 11 x 13 x 17 x 19 x 23 x 29,

29 %3 x52x7?x11 x13 x17 x 19 x 23 x 29,
26 %33 x5 x7x11x13x17 x19 x 23 x 29,
2" %32 x52x 7?2 x 11 x13 x 17 x 19 x 29,

25 %33 x52x7?x11 x13 x19 x 23 x 29,

26 %32 x52xT7?x13x17x19 x 23 x 29,
27x 3 x5 xT?x11 x 17 x 19 x 23 x 29,
2x3x52x7?x11x13x17 x19 x 23 x 29,
27x3x52x7x11x13 x17 x 19 x 23 x 29,
25 %32 x5 xT?x11 x13x17 x 19 x 23 x 29,
26 %33 x52x 7% x11 x13 x17 x 19 x 23,

27 % 32 x 52 x T2 x 11 x 13 x 17 x 23 x 29,

29 %3 x 52 x7x11 x13 x17 x 19 x 23 x 29,
2" x 3 x5 xT?x13 x17 x 19 x 23 x 29,

26 %52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29,

25 %33 x52x7?x11 x17 x19 x 23 x 29,

27 % 32 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29,
2633 x 72 x 11 x 13 x 17 x 19 x 23 x 29,

27 %33 x 52 x 11 x 13 x 17 x 19 x 23 x 29,

23 %32 x5 x7?x11 x13 x 17 x 19 x 23 x 29,
26 %33 x52x7?x11 x13 x17 x 19 x 29,

2" x 3 x5 xT?x11 x13 x 17 x 19 x 23 x 29,
25 %3 x52xT?x13x17 x19 x 23 x 29,
2632 x52x7x11x13x17 x19 x 23 x 29,
29 %3 x5 xT?x11 x13 x 17 x 19 x 23 x 29,
27 % 32 x 52 x 72 x 11 x 17 x 19 x 23 x 29,

26 %33 x 52 x 7% x11 x13 x 17 x 23 x 29,
2% 3x52x T x11x13 x17 x 19 x 23 x 29,
27x 3 x5 xTx11x13x17 x19 x 23 x 29,
26 %33 x 52 x 72 x11 x13 x 19 x 23 x 29,

27 %x 32 x 52 x 72 x 13 x 17 x 19 x 23 x 29,

22 x 33 x52x 7?2 x 11 x 13 x 17 x 19 x 23 x 29}

It is easy to check that for every integer 1 < i <5, S(C;) = #. Thus, by .3

n is a 6-layered number. (I
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Theorem 3.9. The number 1970992304700453905270400 = 27 x 3% x 52 x 72 x
11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 s the smallest 7-layered
number.

Proof. We can see that the number 1970992304700453905270400 is smallest number
such that I(n) > 7 (see [13]). Now, we prove that the number n = 130429015516800
is a 7-layered number; this concludes that n is the smallest 7-layered number. We
define:

A ={2x3, 32x52x72 2°0x33x19x 23 x29 x 37 x43,
32 x 52 x 7 x17x19 x 23 x29 x 37 x 41 x 47 x 53,
25 x3x5xT?x11 x13x19 x23 x29 x31 x41 x 43 x 47 x 53,
27 %3t x5 xT?x 11 x 13 x 17 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 34 x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53}

A ={2x3% 2x3x52x11x41, 23x3%2x5x19 x 23 x29 x43 x 53,
22x3x7?x11 x13 x19x23 %29 x 31 x41 x 47 x 53,
26 %33 x 52 x 7?2 x 13 x 17 x23 x29 x 31 x 37 x 41 x 47 x 53,
24 x 3T x5 X T2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %33 x52x 72 x 11 x13x17x19x23x29 x31 x37 x41 x 43 x 47 x 53,
27x33x52x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
203t x52x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53}

A3 ={22x3%x31, 25x3x7x11x19 x 31 x 43,
26 x3 x5 x11x13x23x29 x 31 x 37 x 53,
22x 32 x5 xT?x11 x13x17 x19 x 23 x 31 x 37 x 41 x 43 x 53,
23 %33 x 52 x 72 x 13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 %34 x52xTx11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
20% 3t x5 xT?x11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27%32x52xT?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %3t x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x 52 x 7Tx 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3t x5 xT?Px11x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 x 3T x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53}

Ay ={2x7, 2x3xT7Tx11x13x53, 22x33x7x11x19 x29 x 31 x 47,
23 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29 x 43 x 47 x 53,
2" x3xB2XxTx11 x17x19 x23 x29 x 31 x 37 x 41 x 43 x 53,
2634 x5 xT?x11 x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26x33 x5 xT?x11 x13x17x19 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
25 %3t x 52 xTx11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2"x3x52xT?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 34 x 52 x 72 x 11 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x T x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %33 %52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %34 x 52 x 72 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x33x 52 xTx11x13x 17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
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22 %3t x 5 xT?x11x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3 x 52 x 7?2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26%32x52x 72 x 11 x13x17x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x3* x 52 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %3t x52x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2"x 33 x5 xT?x11 x13x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3 x 52 x 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25%33x52x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2T x 34 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53}

As = {23 x 11 x 23, 22 x 3 x 11 x 13 x 19 x 31 x 47 x 53,

2x3*%x5%2x11 x13 x17x29 x 31 x 41 x 47 x 53,

27 %32 x7?x 11 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,

27 %32 x52x 7?2 x 11 x13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %34 x52x 72 x 11 x13 x17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52 x 7T x11 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260%32x5xT?x11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %34 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %33 x52x T2 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x52x 72 x 11 x13 x17x19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
27" x 3T x5 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 x33x52xTx11 x13x17x19x23 x29 x 31 x37 x41 x 43 x 47 x 53,
2634 x52x 72 x 11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
27 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2% 3t x5 XxT?Px11x13x17x19x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %33 x 52 x 72 x 11 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52X 7T x 13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %34 x52x 7?2 x 11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 33 xT?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x52x 72 x 11 x13 x17 x19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
24 x32x52x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %34 x5 xTx11 x13x17x19x23x29 x31 x37 x41 x43 x 47 x 53,
2" x 33 x 52 x 7?2 x 11 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 % 3% x52x 72 x 11 x13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %33 x 52 x 72 x13x17 x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x5 X T2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2x 3P x52xT?x11x 13 x 17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2"%32x52xTx11x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x52x 72 x 11 x13 x17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
25 %33 x5 xT?x11 x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x52x 72 x11 x13 x17 x19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 33 x 52 x 7?2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 %3t x 52X Tx11x13x 17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 XxT?x 13 x 17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26x3x52xT?x11 x13x17x19 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
25 %34 x 52 x 72 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" %x 33 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 % 3% x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
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27" x 3 x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %33 x52x T2 x 11 x13x17x19x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3 x 52 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
2634 x52x 72 x 11 x13 x17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2"x 32 x5 XxT?x11x13x17x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %34 x 52 x 72 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
26 %33 x52x7x11 x13x17x19x23 %29 x 31 x37 x41 x43 x 47 x 53,
27 x3* x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
29 %34 x5 XxT?x 11 x 13 x17x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 33 x 52 x 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %38 x 52 x 72 x 11 x13 x17 %23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
25%32x52xT?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 xTx11 x13x17 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %34 x 52 x 72 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 33 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
22x 34 x52x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2T x 34 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53}

A6:{22><7><23, 2 X 17 x 23 x 29 x 31 x 47,
27 x 3% x 11 x 13 x 17 x 29 x 31 x 41 x 53,
25 % 3% x5 x 11 x23 x29 x31 x37 x41 x 43 x 47 x 53,
25 %3 xB52xT7Tx11 x17x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2632 x52x 72 x11x13x17x19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
24 % 3T x5 X 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20 % 3T x 52 x7x11x13 x17x19 %23 x29 x 31 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
25 %33 x52x T2 x11 x13 x17 x19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
27 x3x52xT?x11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x5 xT?x11 x13x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
26 % 31 x 52 x 72 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 % 32x52xTx11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %3t x52x 72 x11 x13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
27"x 32 x5 xT?x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
206 % 3% x 52 x 72 x 11 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 31 x 52 x 7?2 x 11 x 13 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
25 %33 x52x 72 x11 x13 x17x19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
2634 x5 x11x13x17x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3 x 52 xTx11 x13x17 x19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 34 x 52 x T2 x 11 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
22x33 x5 X T?x 11 x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %32 x 52 x7?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
25 %34 x 52 xT7Tx11 x13x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 72 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x5 xT?x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
260 %3t x5 x 72 x11 x13 x17x19 x23 x29 x 31 x 37 x 41 x 43 x 53,
25 %32 x52x 72 x11 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 33 x5 x T2 x11 x13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
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23 %34 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x 52 xT7Tx13x17x19 x 23 x29 x31 x37 x 41 x 43 x 47 x 53,
25 %3t x5 xT?x11 x13x17 x19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x3x52xT?x11 x13x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 %33 x 52 x 7?2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3t x5 XTx11 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3t x 52 x T2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,

2632 x 72 x11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2x3*x52xTx11 x13x17x19x23 %29 x31 x37 x41 x43 x 47 x 53,
25 %33 x52x 72 x11 x13 x17 x19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
206 % 3% x 52 x 72 x 11 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

27" % 32 x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %33 x5 x 7?2 x11 x13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x 52 x7x11 x13x17 x19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
23 x3x52xT?x11 x13x17x19 %23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 %3t x5 x 72 x11 x13 x17 x19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
27 x 33 x 52 x T2 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

27 x 31 x 7% x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

29 %3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
27 %32 x52x 7?2 x 11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
2% 33 x5 xTx11 x13x17x19x23 x29 x31 x37 x41 x 43 x 47 x 53,
26 % 3% x 52 x 72 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

22 %34 x 52 x 72 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 %32 x52x7?2x11 x13 x17 x19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x5 xT?x11 x13x17 x19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
29 %33 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3t x 52 x T2 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,

20 % 3T x 52 x7x11 x13 x17x19 %23 x 31 x 37 x 41 x 43 x 47 x 53,
2" x5 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT?x 11 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,

23 %3t x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %33 x 52 x 7T x11 x13 x17 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %32 x52x 72 x13x17 x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 x 3 x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT?x 11 x 13 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

2633 x5 xT?x11 x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %32 x52x 7?2 x11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
2" x 3t x5 XTx13 x17x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
33X BZx T2 x11 x 13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
22 %3t x5 x 72 x11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26x3x52xTx11x13x17x19x23 %29 x31 x37 x41 x43 x 47 x 53,
27 %3t x 52 xT?x 11 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,

24 x 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
206 % 3% x 52 x 72 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

25 %33 x52x 72 x11 x13 x17 x19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
27 x 3t x 52 xT7Tx11 x13x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
2634 x5 xT?x11 x13x17 x19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
2" %32 x52x 7P x 11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
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23 %3 x 52 x 72 x 11 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 % 3T x 52X 7 x11 x17 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %32 x5 xT?x11 x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3 x 52 xT7Tx11 x13x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
22 %34 x 52 x 72 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3 x 52X 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20 % 3% x 7 x11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %33 x52x 72 x11 x13 x17 x19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3 x5 xT?x11 x13x17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %34 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
26 %32 x52x 72 x11 x13x17x23 x29 x31 x37 x 41 x43 x 47 x 53,
27" x 3t x 52 x T2 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,

22 %31 x 5 x 7?2 x11 x13 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %33 x52xTx11 x13x17x19 %23 x29 x 31 x37 x41 x43 x 47 x 53,
27 %32 x52x 7?2 x 11 x13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
2633 x5 X T?x13x17x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52 x 7T x11 x13 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
24 x 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
27 %3t x 72 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

25 x 52 x 7?2 x11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT?x 11 x 13 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

20 % 3T x 52 x7x11x13 x17x19 %29 x 31 x 37 x 41 x 43 x 47 x 53,
2x3 x5 xT?x11x13x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 31 x 52 x T2 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,

2633 x52x 72 x 11 x13 x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47,
2" x32x5xTx11 x13x17x19 x23 x29 x 31 x37 x 41 x 43 x 47 x 53,
24 x 33 x 52 x 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 %31 x5 x 72 x11 x13 x17 x19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
25 % 3T x 52X 7T x13x17 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %32 x52x72x11x13x19x23x29 x31 x37 x41 x43 x 47 x 53,
23 %34 x52x 72 x 11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 34 x 52 x T x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
25 %33 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3t x 52 x T2 x 11 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

27 x3x52xT?x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
26 33 x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 % 3T x5 x 72 x11 x13 x17 x19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
22x32x52x7?x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3T x 52 x 7T x11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
26 34 x 52 x T2 x 17 x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,

27 x 3 x5 xT?x11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x52x 72 x11 x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 53,
24 %3t x5 x7Tx11x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %32 x 52 x7?x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
25 %33 x52x T2 x11 x13 x17 x19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

2" x 33 x 52 x 7T x11 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
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23 %34 x 52 x 72 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20 %3 x5 xT?x11 x13x17 x19x23 x29 x 31 x37 x 41 x 43 x 47 x 53,
2634 x 52 x7x11 x13x17 %23 x29 x31 x37 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
24 %33 x 52 x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %32 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
25 % 3T x5 X 72 x11 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT7Tx11 x13x17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
2633 x52x 72 x 11 x13 x17x19 x 23 x29 x 31 x 37 x 41 x 47 x 53,
27"x 3 x5 xT?x11 x13x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3t x 52 x T2 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

25 %32 x52xTx11 x13x17x19x23x29 x 31 x37 x41 x43 x 47 x 53,
24 % 3t x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT?x 11 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

2633 x52x 72 x 11 x13 x17x19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
27" %x 3T x5 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
23 x 33 x5 X T?x11 x13x17x19 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
20 % 3T x 52 x 7 x11 x13 x19 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x11 x 13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
2632 x52x 72 x11x17 x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
29 %34 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 33 x 52X 7T x13 x17 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
260 %3t x5 x 72 x11 x13 x17 %19 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2° %33 x 52 x 7?2 x 11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x32ZxT?x11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
22x 34 x52xT7Tx11 x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x52x 72 x11 x13 x17x19 x 23 x29 x 31 x 41 x 43 x 47 x 53,
27 x 31 x 52 x 7?2 x 11 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

25 % 3T x5 X T2 x13 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x 52 xT7Tx11 x13 x17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
29 x3x52xT?x11 x 13 x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
25 %3 x 52 x 72 x 11 x13 x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
26x33 x5 xTx11 x13x17x19x23x29 x31 x37 x41 x43 x 47 x 53,
27 %3t x 52 xT?x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

23 %34 x52x 72 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
25 %33 x52x 72 x 11 x13 x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52 x 7T x11 x13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
24 x 3t x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2632 x52x 72 x13x17 x19 x23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 x 3% x 52 x11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %x 33 x5 x7T?x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2x33x52x T2 x 11 x13x17x19 %23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20 %31 x5 x 72 x11 x13 x17 %23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x3x52xTx11 x13x17x19x23 x29 x 31 x37 x 41 x 43 x 47 x 53,
25 %3t x52x 72 x11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
27 x 3% x 52 x 7% x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
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2633 x52x 72 x11 x13 x17x19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
2" x 3T x5 X T2 x11 x13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
29 %34 x 52 x 72 x 11 x 13 x 17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x 52 x7x11 x17x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
%32 x5 xT?x11 x13x17x19 %23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %34 x 52 x 72 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x 7T x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x52x 72 x 11 x13 x17x19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
25 %3t x52x 72 x 11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
27 %32 x52x 7?2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20 %31 x5 x 72 x11 x13 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
24 %33 x 52 xTx11x13x 17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 33 x5 X T2 x 13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %3t x52x 72 x11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
26 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52 x 7T x11 x13 x17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
22x 3t x5 xT?x11x13x17x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 33 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
25 %33 x52x 72 x 11 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
2634 x 52 xT7Tx13x17x19 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %32 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 x 3t x 52 x 7?2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %33 x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %3t x52x 72 x11 x13 x17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
27 x 33 x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3T x5 x T2 x 11 x13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
23%32x52x T2 x 11 x13x17x19x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 31 x 52 x T2 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,

27x 33 x52x T2 x 11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
2% 3t x5 xTx11 x13x17x19 %23 x29 x31 x37 x41 x 43 x 47 x 53,
2633 x52x 72 x 11 x13 x17 x19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 x 3 x 52 x 7?2 x 11 x 13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x3 x5 xT?x11x13x17 x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %3t x5 x T x11 x13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %33 x52x 72 x13x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %33 x52x T2 x 11 x13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 47 x 53,
3t x 52 x T2 x11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
20x32x52x7Tx11x13x17x19x23x29x31 x37 x41 x43 x 47 x 53,
22 x 3 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53,
27 %33 x52x T2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 43 x 47 x 53,
29 %33 x5 XxT?x11 x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27" x 3T x 52 x 7 x 11 x13 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" %32 x 52 x 7?2 x 11 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
25 %34 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 31 x 37 x 41 x 43 x 47 x 53,
27 x 3t x5 xT?x11 x 13 x17 x 19 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2633 x 52 x 72 x 11 x13 x17 x23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
23 %3t x52xTx11x13x17x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
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2" x 33 x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 41 x 43 x 47 x 53,
260 % 3T x5 X 72 x 13 x17 x19 x 23 x29 x 31 x 37 x 41 x 43 x 47 x 53,
25 x3x52xT?x11 x13x17x19 %23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2634 x52x 72 x 11 x13 x17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47,
2" %33 x5 xTx11x13x17x19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
24 x 3t x 52 x 7?2 x 11 X 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 %33 x52x 72 x 11 x13x19x23 x29 x31 x37 x 41 x43 x 47 x 53,
25 %34 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
27 %32 x52x 7?2 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
26 x 3% x 52 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
22x33x52x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
2" x 3T x5 X T2 x 11 x 13 x 17 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53,
260 % 3% x 52 x 7?2 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 53,
2T x 33 x 52 x 72 x 11 x 13 x 17 x 19 x 23 x 29 x 37 x 41 x 43 x 47 x 53}

It is easy to check that for every integer 1 < i < 6, S(4;) = @ O

At last, we close this section by a theorem, which proves that if for positive integer
k, there exist a k-layered number, then the set of k-layered numbers possesses a
lower density.

Theorem 3.10. Let n be the smallest k-layered numbers with prime factorization
n =pi'py® ... pp¥. If a < b are two consecutive k-layered numbers, then b —a <

(pip2.- .ok — (1 —1)(p2 = 1)...(px — 1))n.

Proof. Let s be a non negative integer and d be a positive integer between sp; . .. pg
and (s + 1)p1...pg. By proposition [[L8 if ged(d,n) = 1, then dn is a k-layered
number. Now, let r be a positive integer which is smaller than p; ...pg. It is clear
that ged(spy...px + r,n) = 1 if and only if ged(n,r) = 1. Thus, there exist at
least ¢(p; ...pxr) numbers d between sp; ...pr and (s 4+ 1)py ... px such that dn is
a k-layered number. Therefore, if we ignore ¢(py ...pg) — 1 numbers of py...pg
numbers between sp1 ...pr and (s 4+ 1)p; ... pg, then again we can find a number
like d between spy ... px and (s+1)p1 ... pr such that dn is a k-layered number(Note
that ¢ is the euler totient function.). (]

4. SOME GRAPH LABELING RELATED TO k-LAYERED NUMBERS
First, we generalize the concept of Zumkeller labeling to k-layered labeling.

Definition 4.1. Let G = (V, E) be a graph. An injective function f : V' — N is
called a [-k-layered labeling of the graph G if the induced function f* : F — N
defined by f*(zy) = f(2)f(y), x € V,y € V,zy € E satisfies the following two
conditions:

(i) f(xy) is a k-layered number for all zy € E.

(ii) the number of different k-layered numbers used to label the edges of G is I.

In addition, we generalize the concept of Zumkeller cordial labeling to k-layered
labeling.

Definition 4.2. Let G(V, E) be a graph. An injection function f : E — N is
call a k-layered cordial labeling of graph G if there exists an induced function
f*: E— {0,1} defined by f*(xy) = f*(x)f*(y) satisfies the following conditions:
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(i) For every zy € E

N [ 1, if f(x)f(y) is a Zumkeller number;
I (zy) = { 0, otherwise.
(ii) |es«(1) — ey+(0)] < 1, where es+(1) is the number of edges of graph G having
label 0 under f* and eg+(1) is the number of edges of graph G having label 1 under
f*
Remark 4.3. B.J. Balamurugan and et al[4] called the graph G Zumkeller, if G
admits a Zumkeller labeling. Also, B.J. Murali and et alf6] called the graph G
Zumkeller cordial if G admits a Zumkeller cordial labeling. From now on, we call
the graph G k-layered if G admits a k-layered labeling and also we called the graph
G k-layered cordial if G admits a k-layered cordial labeling.

Let n be k-layered number. The following proposition states a condition for the
integer k, which satisfying that concludes that every graph is k-layered.

Proposition 4.4. If there exists a k-layered number n with prime factorization
PIipe? ... pyt such that for every positive integer 1 < i <'t, a; is even, then every
graph is k-layered.

Proof. If for every 1 < i <, we label the vertex v; of graph G with prlH(mH)p;%H(MH) .. .p:TtH(atJrl),
then, by this labeling is a k-layered labeling for G. O

4.1. Some labeling related to Zumkeller numbers. .

The following theorem is one the most important theorem of this section:

Theorem 4.5. Let K, denotes a complete graph on n vertices with verter set V
and edge set E. For every positive integer k < @, We can find an f-labeling
for V such that e(1) = k. (e3(1) computes Zumkeller edges relative to our labeling

)

Proof. Tt is easy to check that the statement holds for K1, Ko and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the
complete graph K,,. We choose the even number ¢y large enough that there exists
a chain of even numbers t,, < --- < to < t; < ty which for every positive integer
1 < r < m, we can find distinct primes p;1,pr2,...,Pr.m—1 such that for every
positive integers, 1 <i <m and 2 < j < m — 1 we have:

(1) U(22ti) <pi1 < 0(2“’1).
(ii) 0’(22tip1'7j71) <pij < 0(2“*1).
(lll) If ¢ # m, then 0'(22tipi7m_1) < Pit+1,1-

Suppose that V' = {v1,v9,...,v,} be the vertex set of K,,. We label v; with
ny = 2. If we want the edge vov1 to be non-Zumkeller relative to our labeling,
then we label vy with ng o = 22p; 1 because by (i), for number ng gny = 212 %2p; 5,
we have:

0’(2t1+t2) < 0’(22tl) <pi1,1
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Therefore, according to [[LT1] and [[23] the number ng gn1, which is labeling of the
edge vovy, is non-Zumkeller. Also, if we want the edge vav; to be Zumkeller, we
label vy with na 1 = 22ps 1 because by (ii), for number 21 7*2p, | we have:

pa1 < o(21) < o(2017t2)

Thus, according to[[ITland [[.23] the number ng 111, which is labeling of edge vav1
relative to our labeling, is Zumkeller.
After labeling the vertex v, we know that the vertex vy was labeled with number
ne = 2'2q such that ¢ € {p11,p2.1}. Now, for labeling the vertex vs, if we want
both edges of {vsv1,v3v2} be non-Zumkeller, then we label v with ng o = 2%p; o
because by [[L3] 287 is a non-Zumkeller number and by (ii) we have:

U(2t1+t3) < P21
Thus, by [[L6] the number ng on1, which is labeling of the edge vsv; relative to our
labeling, is non-Zumkeller. Moreover, by (i), we have:

o(227) < 0(22%2) < ¢, o (28273) < 0(22%2p1 1) < P12

Thus, by [L6, the numbers 22t p; 5, 2t27t3¢ are non-Zumkeller. In addition ,
by (ii) and (iii), we have:

o(2t2tap 4) < g, or o(22H2g) < pyo

Therefore, by [LB, the number ng gny = 227 p; oq, which is labeling of the edge
v3V2, 18 a non-Zumkeller number. Also, for labeling vz, if we want one edge of
{vsv1,v3v2} be Zumkeller relative to our labeling, then we label vs with ng; =
2!3ps o because by (i), for number n3 1n; = 2213 psy 5 we have:

P22 < o(21) < o(2017ts)

Therefore, by [T and [L23] the number n3 111, which is labeling of vsv; relative to
our labeling, is a Zumkeller number. Also, once again, it is easy to check that the
edge v3vy is non-Zumkeller relative to our labeling. At last, for labeling vs, if we
want the both edges of {vsv1,v3v2} to be Zumkeller relative to our labeling, then
we label v3 with n3 o = 2%ps 5 (By (ii), [[23] and [[8it is clear.). Let j > 3 be an
integer. By this method, we labeled j — 1 vertices of complete graph K,,. Now, we
want to label the vertex v;. Suppose that £ be an integer such that 0 < /£ < 57 < m.
If we want to have exactly ¢ Zumkeller edges of edges {v;v1,v;va,...,vjvj_1} rela-
tive to our labeling, we label v; with 2%p, 1 ; because first of all, by (ii), .11} [LT9,
and [[.] for every positive integer ¢ which 1 < i < ¢, v;v; is Zumkeller edge relative
to our labeling. Moreover, for every positive integer s such that ¢ < s < j, the edge
vV, is non-Zumkeller because we know that the vertex v, was labeled with 2tsq’
in which ¢ € {p;s—1:1 <i < s}. Then,by (i) and(ii), for the number 2 *tig'  we
have:

o2ttty < o(2%) < ¢, o(28F) < o(2%) < p

Thus, by [[3] and [ the integers 2%*tig¢" and 2+ py ; ; are non-Zumkeller.
Also, according to (ii) and (iii), we have:
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o2ttt < o (2%:¢') < p, or (28T )p < (2% p) < ¢

Therefore, by [LO, the edge v;v, is non-Zumkeller relative to our labeling. ([l

It is clear that every simple graph is a subgraph of a complete graph. Then, we
have:

Corollary 4.6. Let G be a simple graph with k edges. For every positive integer
t <k, we can find an f-labeling for G that e}(1) = t.(e}(1) computes Zumkeller
edges relative to our labeling )

By L3l we know that every square number fails to be Zumkeller. Therefore, as
a consequence of theorem .9, we have:

Corollary 4.7. Let m be a non-negative integer and G be a graph with m loops.
Also. let If m — 1 < |G| —m, then G is a Zumkeller cordial graph.

4.2. some labeling related to 3-layered numbers. .

Now, state a theorem like theorem for 3-layered numbers.

Theorem 4.8. Let K, be a complete graph on n wvertices with vertex set V and
n(n—1)

edge set E. For every positive integer k < ——=—, we can find an f-labeling for V'
such that e}(1) = k. (e}(1) computes 3-layered edges relative to our labeling. ) .

Proof. Tt is easy to check that the statement holds for K1, Ko and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the
complete graph K,,. Let £ = 3 x5 x 7. We choose the even number ¢ large enough
that there exists a chain of even numbers 3 < t,,, < -+ < t3 < t1 < tg such that
first, for every positive integer 1 < r < m, t; = 1( mod 3). In addition, we can find
distinct primes pr 1,Dr2, ..., Pr.m—1 such that for every positive integers, 1 <i <m
and 2 < 57 <m — 1 we have:

(i) o(2202) <y < T
(iii) o(220*ip; 1) < pij < %

(iv) If i # m, then o(220?%p; ;1) < pit1.1-

Suppose that V' = {v1,v2,...,0m,} be the vertex set of K,,. We label v; with
ny = 20", If we want the edge vov; to be non-3-layered relative to our labeling, then
we label vy with ng o = 2¢%2p; 1 because by (ii), for number ng gny = 2264 + tap; 1,
we have:

0(22ft1+t2) < 0(22£2t1) <p11
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Therefore, by [T the number ng gni, which is labeling of edge vovy relative to
our labeling, is non-3-layered. Also, if we want the edge vov; to be 3-layered relative
to our labeling, then we label vy with ns 1 = 2€t2p271 because by (iii), for number
nong = 22012 p, 1 we have:

o(lt) —4 < o(ltrtt2) —4
2 2

P21 <

Thus, by (i) and [[330, the number ny 1n1, which is labeling of the edge vav; rel-
ative to our labeling, is 3-layered. After labeling the vertices v1 and vs, for labeling
the vertex vs, if we want both edges of {v3va, v3v1} to be non-3-layered, then we
label vg with ngo = 2¢%p; o because by [3] the number 2217 is a non-3-layered
number and by (iii), for number ngzony = 22011+ p; 5 we have:

0(22ft1+t3) <p21

Thus, by [7 the number ng ony, which is labeling of the edge vsv; relative to
our labeling, is non-3-layered. In addition, we know the vertex vy was labeled with
number 2'2¢ such that ¢ € {p11,p2.1} and by (ii), we have :

o (220027 < g(220%%2) < q, (22012 713) < 0(220%%2p1 1) < P12

Thus, by [7, the number 22¢%2Ftp; 5 and 22427 ¢ are non-3-layered. Moreover,
by (iii) and (iv), we have:

o (2202 T, o) < g, or o(22012 113 q) < p 5.

Therefore, by ns,oni, which is labeling of the edge vsvy relative to our label-
ing, is non-3-layered. Also, for labeling vs, if we want one edge of {vsvy,v3ve} to
be 3-layered relative to our labeling, then we label v3 with number n3; = 2t 2,2
because by (iii), for number nz1n; = 2202+ py 5 we have:

o(lt) —4 < o(ltrtts) —4
2 2

P22 <

Therefore, by (i) and [[30] the number ns 111, which is labeling of vsv; relative
to our labeling, is 3-layered. In addition, once again by (iii), (iv), and [[7 the
edge v3vs is non-3-layered relative to our labeling. At last, if we want both edges
{v3v1,v3v2} to be 3-layered relative to our labeling, then we label v3 with 2¢%.( By
(1), (iii) and [[30) it is clear.). Now, Let j > 3 be an integer, and by this method, we
labeled the j —1 vertices of a complete graph. Now, we want to label the vertex v;.
Suppose that [ be an integer such that 0 <1 < j < m. If we want to have exactly
[ 3-layered edges of {v;v1,v;v2,...vjvj_1} relative to our labeling we label v; with
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20% pi41 ; because first of all, by (i), (iii), and [[30} for every positive integer i such
that 1 <17 <, v;v; is a 3-layered edge relative to our labeling. Moreover, for every
positive integer s such that [ < s < j, the edge v;v; is non-3-layered because we
know the vertex v, was labeled with 2¢:¢’ in which ¢’ € {p; s—1:1 <i < s}. By
(i) and (ii), for number 22¢*=*%  we have:

o (2200 < g (220%) < ¢/, p

Thus, by [T} 22¢' %t ¢’ and 22¢'=*tip,,, ; are non-3-layered. Also, according to
(iii) and (iv), we have:

o(220%Ttig') < o(220%¢") < p , or o(220tFtip) < o(220%%:p) < ¢ .

Thus, by [[.7 the edge v;v, is non-3-layered relative to our labeling. O

4.3. some labeling related to 4-layered numbers. .

Now, we once again state a theorem like [.5] for 4-layered numbers.

Theorem 4.9. Let K,, denotes a complete graph on n vertices with verter set V.
and edge set E. For every positive integer k < @, We can find an f-labeling for
V' such that €}(1) = k . (e}(1) computes 4 -layered edges relative to our labeling.
).

Proof. Tt is easy to check that the statement holds for K1, Ko and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the com-
plete graph K,,. Let £ =2 x 3 x 5 x 7. We choose the even number ¢, large enough
that there exists a chain of even numbers, 3 < t,,, < --- < t3 < t; < tp which for
every positive integer 1 < r < m, we can find distinct primes p, 1,Dr2,...,Pr2m—2
such that for every positive integers, 1 <i < m and 2 < j < 2m — 2 we have:

(i) o(?4) < pig < o(2-1)

(i) 0(€2tipi?’,j—1) <pij <o(24)

(iii) If 4 # m, then o(€*"p},, o) < Piv11-

Suppose that V' = {v1,v9,...,v,} be the vertex set of K,,. We label v; with
positive integer n; = £¢. Now, If we want the edge vov; to be non-4-layered relative

to our labeling, then we label vo with noo = €t2p1)1 because by [[3] the number
¢h1+t2 is non-Zumekeller and by (i), for number ng gni, we have:

o 2) <o (") <pia

Thus, according to [[L6] the number ning o, which is the label of the edge vavy
relative to our labeling, is non-4-layered. Also, if we want the edge vav; to be
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4-layered we label vy with ng 1 = £%2ps 1ps 2 because by (i), for number 12 t2pg 5,
we have:

P2,1,P2,2 < 0'(2t1) < O—(Etl"rtg)

Thus, by [[34] the number ng 111, which is label of vev; relative to our label-
ing, is 4-layered. After labeling the vertices v; and vs, for labeling the vertex vs,
if we want both edges of {vzv1,v3v2} to be non-4-layered, then we label vz with
n3,00%p1 2 because first of all, by 3] we know the number ¢ is a non-4-layered
number. In addition, by (i) and (ii), we have:

U(€t1+t3) < 0(52“) <p11<p12

Thus, by [LO, the number ns oni, which is label of the edge vzvy relative to our
labeling, is non-4-layered. Moreover, we know the vertex vy is labeled with number
¢'2q such that either ¢ € {p1,1,p2,1p22} and f = ¢21!3¢ is non-4-layered number
because first of all, we know the number ¢2*% is non-Zumkeller. In addition, if
q = p1,1, then by (), we have:

U(ft2+t3) < 0(f2t2) <Pp11

Thus, by [L6] f is non-4-layered. Also, if ¢ = p2,1p2,2, then by (ii) , we have:
o(02T7) <poy,o (0?8 pyy) < pag

Thus, once again, by [[LGl we conclude that f is non-4-layered. At last, by (i) and
(ii), we have:

o(f1q) < U(étﬁtsp?@) < P12

Thus, once again, by [[L6 the number n3 gn1, which is label of the edge vv; relative
to our labeling is non-4-layered. Now, if we want one edge of {vsva,vsv1} to be
4-layered, then we label vs with ng 1 = £*3ps 3p2 4 because in this situation, by (ii)
, for number ning 1 = (1113 py 3ps 4 we have :

P23,Pa4 < 0(2) < o(21713)

Therefore, by 34 ng 1n1, which is label of edge vsv; relative to our labeling, is
4-layered number. Also, as we said the vertex vo is labeled with number £2¢ such
that the number ¢*2 ¢ is a non-4-layered and according to (i) and (ii), once again
by the number ng 1m1, which is label of edge vsvy relative to our labeling, is
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non-4-layered. At last, if we want both edges of {vsva, v3v1} to be 4-layered, then
by [L.G] it is sufficient that we label v3 with number n3 o = ¢*3p3 1p3 2 (Note that it
is easy to check that p31,p32 < o(20118) g(20112)),

Let 7 > 3 be an integer and by this method, we labeled j — 1 vertices of a complete
graph K,,,. Now, we want to label the vertex v;. Suppose that h be an integer such
that 0 < h < 7 < m. Now, let we want to have exactly h 4-layered edges of edges
{vjv1,vv2,...,v;v;_1} relative to our labeling. If h = 0, then by (i) and [L.6], it is
sufficient that we label v; with number ¢%p,;_;. Also, if h # 0, then we label v,
with €% pop1panto because first of all, by (i) and [L34] for every integer ¢ which
1 < i < h, vjv; is 4-layered edge relative to our labeling. In addition, once again,
it is easy to check that for every positive integer s such that h < s < j, the edge
v;V, is non-4-layered. ([

Remark 4.10. It is easy to check that we can state something like[£.0 and[{.7 for
4-layered graphs.
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