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ON k-LAYERED NUMBERS AND SOME LABELING RELATED

TO k-LAYERED NUMBERS

F. JOKAR

Abstract. In this paper, first, we define and investigate k-layered numbers,

which are a generalization of Zumkeller numbers. After that, we generalize

the concept of Zumkeller labeling and Zumkeller cordial labeling to k-layered

labeling and k-layered cordial labeling, respectively. Moreover, we prove that

every simple graph admits Zumkeller labeling, Zumkeller cordial labeling, 3-

layered labeling, 3-layered cordial labeling, 4-layered labeling and 4-layered

cordial labeling.

0. Introduction

A perfect number is a positive integer that is equal to the sum of its proper
positive divisors. In 2013, the idea of a Zumkeller numbers, which are generalization
of perfect numbers, were first introduced by Zumkeller in Encyclopedia of Integer
Sequences [11] A083207 .

Definition 0.1. A positive integer n is said to be Zumkeller if the set of positive
divisors of n can be partitioned into two disjoint subsets of equal sum. A Zumkeller
partition for a Zumkeller number n is a partition {A1, A2} of the set of positive
divisors of n such that A1 and A2 sums to the same value.

Clark et al. [12] announced several results and conjectures related to Zumkeller
numbers. In [10], Yujian and K.P.S fund some other results about Zumkeller num-
bers. They study the relations between practical numbers and Zumkeller numbers.
Also, They settle a conjecture from [12]. Moreover, They make substantial contri-
butions regarding the second conjecture from [12].

On the other hand, Balamurgugan et al. [5] introduced k-Zumkeller labeling of
graphs.

Definition 0.2. Let G = (V,E) be a graph. An injective function f : V → N is
called a k-Zumkeller labeling of the graph G if the induced function f∗ : E → N

defined by f∗(xy) = f(x)f(y), x ∈ V, y ∈ V, xy ∈ E satisfies the following two
conditions:
(i) f(xy) is a Zumkeller number for all xy ∈ E.
(ii) the number of different Zumkeller numbers used to label the edges of G is k.

They prove that a wide range of graphs admits Zumkeller labeling. After that,
In [6] and [7], the concept of Zumkeller cordial was introduced by Murali et al.
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Definition 0.3. Let G(V,E) be a graph. An injection function f : E → N is
call a Zumkeller cordial labeling of graph G if there exists an induction function
f∗ : E → {0, 1} defined by f∗(xy) = f∗(x)f∗(y) satisfies the following conditions:

(i) For every xy ∈ E

f∗(xy) =

{

1, if f(x)f(y) is a Zumkeller number;
0, otherwise.

(ii) |ef∗(1) − ef∗(0)| ≤ 1, where ef∗(1) is the number of edges of graph G having
label 0 under f∗ and ef∗(1) is the number of edges of graph G having label 1 under
f∗

They prove that there exist Zumkeller cordial labeling for path, cycles, stars,
helm, wheel, flower, crown graphs and etc. Also, in [6] they raised the following
open question:

Open Question 0.4. Does every even flower graph admit Zumkeller cordial label-
ing?

In this paper, In section 1, we recall and generalize some results of [10] for k-
layered numbers, which are generalization of Zumkeller numbers. Also, in section
2, we find relations between k-multiperfect numbers and k-layered numbers. In
addition, in section 3, we investigate the lower density of k-layered number.

At last, in section 4, not only we prove that every simple graph admits Zumkeller
and Zumkeller cordial labeling, but also we prove that every simple graph admits
some another labeling.

1. k-layered numbers

The definition of Zumkeller numbers motivates us to define k-layered numbers.

Definition 1.1. A positive integer n is said to be k-layered if the set of positive
divisors of n can be partitioned into k disjoint subsets of equal sum. A k-layered
partition for a k-layered number n is a partition {A1, A2, . . . , Ak} of the set of
positive divisors of n such that for every 1 ≤ i, j ≤ k, each of Ai and Aj sums to
the same value.

Remark 1.2. If n is a 2-layered number, then n is called Zumkeller.

Let n be a positive integer and σ(n) denotes the sum of positive divisors of n.

We recall the index of n to be I(n) = σ(n)
n

. Also, n is said to be abundant, perfect
and deficient if I(n) > 2, I(n) = 2 and I(n) < 2, respectively.

The proposition 2 from [10] give some necessary condition for a Zumkeller num-
ber. We generalize this proposition for k-layered number.

Proposition 1.3. If n is a k-layered number, then the followings are true:
(a) k|σ(n)
(b) kn ≤ σ(n); this concludes I(n) > k.

Proof. The proof is identical to proof of the proposition 2 of [10]. �
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The following fact gives a necessary and sufficient condition for integer n to be
k-layered.

Fact 1.4. The number n is k-layered if and only if we can find k−1 disjoint subsets
A1, A2, . . . , Ak−1 of positive divisors of ℓ so that for every 1 ≤ i ≤ k, Ai sums to

the σ(n)
k

.

Furthermore, we have:

Fact 1.5. If n is a k-layered number and ℓ|k, then n is k
l
-layered number.

By 1.5, we can generalize the proposition 13 of [10].

Proposition 1.6. Let k1, k2 and ℓ are positive integers such that k1|k2. Let n
be a non-k1-layered number and p a prime number with gcd(n, p) = 1. If npℓ is
k2-layered, then p ≤ σ(n).

Proof. By 1.5, the proof is identical to proof of proposition 13 in [10]. �

Moreover, the three following propositions are generalizations of some proposi-
tions in [10].

Proposition 1.7. Let n and ℓ are positive integers. Suppose that n be a non-k-
layered integer and p be a prime number with gcd(n, p) = 1. If npℓ is k-layered
number, then p < σ(n).

Proof. The proof is identical to proof of proposition 13 in [10]. �

Proposition 1.8. If the integer n is k-layered and w is relatively prime to n, then
nw is a k-layered number.

Proof. The proof is identical to proof of corollary 5 of [10]. �

In addition, we have:

Proposition 1.9. Let n be a k-layered number and pk1

1 pk2

2 . . . pkm
m be a prime fac-

torization of n. Then for any non-negative integers l1, l2 . . . lm, the integer

p
k1+l1(k1+1)
1 p

k2+l2(k2+1)
2 . . . pkm+lm(km+1)

m

is k-layered.

Proof. The proof is identical to proof of proposition 6 of [10] �

Now, we recall the definition of practical numbers.

Definition 1.10. A positive integer n is said to be a practical number if every
positive integer less than n can be represented as a sum of distinct positive divisors
of n.

The following proposition gives very worthwhile information about the structure
of practical numbers.

Proposition 1.11. A positive integer n with the prime factorization pk1

1 pk2

2 . . . pkm
m

and p1 < p2 < · · · < pm is a practical number if and only if p1 = 2 and pi+1 ≤

σ(pk1

1 . . . pki

i ) + 1 for 1 ≤ i ≤ m− 1.

Proof. See [8] �

Also, we have:
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Proposition 1.12. A positive integer n is a practical number if and only if every
integer less than or equal to σ(n) can be written as a sum of distinct divisors of n.

Proof. See [8] �

Now, we define almost practical numbers.

Definition 1.13. A positive integer n is called an almost practical number if all
of the numbers j which 2 < j < σ(n)− 2 or j = σ(n)− 1, can be written as a sum
of distinct divisors of n.

Remark 1.14. It is clear that every practical number is an almost practical number.

We recall some results from [8].

Proposition 1.15. Let n 6= 3 be an odd positive integer and 1 = d1 < d2 < · · · <
dk = n are the divisors of n. We also define σi = d1 + d2 + · · ·+ di. Then, n is an
almost practical number if and only if d2 = 3, d3 = 5 and for i ≥ 3, at least one of
the followings are true:
(a)di+1 ≤ σi − 2 and di+1 6= σi − 4.
(b)di+1 = σi − 4 and di+2 = σi − 2.

Proof. See [8] �

Remark 1.16. If n = pα1

1 pα2

2 . . . pαm
m be an odd almost practical number in which

p1 < p2 < · · · < pm are all prime factors of n, then by 1.15, it is clear that p3 = 7.

Now, we state a theorem which has a crucial role in constructing almost practical
numbers.

Theorem 1.17. Let n 6= 3 be an almost practical number and p be a prime, then
pn is an almost practical number if and only if 2p ≤ σ(n)− 2 and 2p 6= σ(n) − 4

Proof. See [8] �

Proposition 1.18. Let n 6= 3 be an almost practical number and p be a prime
dividing n, then pn is an almost practical number.

Proof. See [8] �

Now, we are going to investigate the relation between almost practical numbers
and Zumkeller numbers. The following proposition is a generalization of proposition
10 of [10].

Proposition 1.19. Let n 6= 3 be an almost practical number. Then, n is Zumkeller
if and only if σ(n) is even.

Proof. The proof is similar to proof of Proposition 10 of [10]. �

Example 1.20. If s is a positive integer, Then n = 2s × 3 is a practical number
and σ(n) is even. Hence, n is Zumkeller.

Example 1.21. It is easy to check that n = 33 × 5 × 7 is an almost practical
number. Thus, if m = 3α1 × 5α2 × 7α3 such that α1 > 2 and at least one of positive
integers α1, α2 and α3 be odd, then n is a Zumkeller number.

Also, we can generalize theorem 11 of [10].
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Theorem 1.22. Let n 6= 3 be an almost practical number and p a prime number
with gcd(n, p) = 1. If σ(n) is odd, then pn is a Zumkeller number if and only if
p ≤ σ(n).

Proof. By 1.19, the proof is identical to proof of theorem 11 of [10] �

In addition, we recall a proposition of [10]:

Proposition 1.23. Let n be a practical number and p a prime number with gcd(n, p) =
1. If σ(n) is odd, then pn is a Zumkeller number if and only if p ≤ σ(n).

Proof. see [10] �

In the following, we state two crucial theorem about k-layered numbers. For
better understanding , first, we state a special case of the theorem.

Proposition 1.24. Let n be an odd number such that 3|σ(n). Now, Let A′

1 be a the

subset of positive divisors of n so that A′

1 sums to 2σ(n)
3 . If α is a positive integer

and A′ = {2αd|d ∈ A′

1} such that 2αn is a 3-layered number with 3-layered partition
{A1, A2, A3} so that A′ ⊂ A2∪A3, then for every integer α ≤ t, the number ℓ = 2tn
is a 3-layered number.

Proof. Let 2αn be a 3-layered number. Now, we want to prove k = 2α+1n is a
3-layered number. Let D be the set of positive divisors of n. We define:

M1 = A′ ∩ A2,M2 = A′ ∩ A3.

Now, we define:

M ′

1 = {2d|d ∈ M1},M
′

2 = {2d|d ∈ M2},M3 = {2α+1d|d ∈ (D \A′

1)}.

It is easy to check that {A1 ∪M3, (A2 \M1) ∪M ′

1 ∪M2, (A3 \M2) ∪M ′

1 ∪M1}
is a 3-layered partition for k. Thus, by this method, inductively, we can prove that
ℓ = 2tn is a 3-layered number for every integer t ≥ α, �

Thus, we have:

Proposition 1.25. If n > 3 is an odd almost practical number such that 6|σ(n),
then for every positive integer α, the number ℓ = 2αn is a 3-layered.

Proof. First, we prove that 2n is a 3-layered number. Let A1 = {a1, a2, . . . , ak} is
the set of positive divisors of n. By 1.25, n is a Zumkeller number; this concludes
that A1 can be partitioned into two subsets B1 and B2 such that each of them

sums to σ(n)
2 . Now, we define A2 = {2d|d ∈ B2} and A3 = {2d|d ∈ B3}. We

know that n is an odd number. Therefore, for every integer a ∈ A2 ∪ A3, 2a /∈ A1.
Thus, {A1, A2, A3} is a 3-layered partition for n. Also, we know that n is an

almost practical number such that 2|σ(n) 3|σ(n) and 2σ(n)
3 6= 2, n; this concludes

that there exists A′ ⊂ A1 so that A′ sums to 2σ(n)
3 . On the other hand , let

A′′ = {2d|d ∈ A′}, we know that for every integer d ∈ A1, 2d ∈ A2 ∪ A3; this
concludes that A′′ ⊂ A2 ∪ A3. Then, by 1.24, for every positive integer α, the
number 2αn is 3-layered. �
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Example 1.26. It is easy to check that n = 120 is a 3-layered number with 3-
layered partition {A1, A2, A3} such that A1 = {20, 40, 60}, A2 = 120 and A3 =
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 24, 30, 120}. Let 120 = 23n. It is easy to check that
2σ(n)

3 = 16. Now , if we define A′

1 = {1, 15}, then it is obvious that A′ = {23, 23 ×

15} ⊂ A2∩A3. Thus, by 1.24, for every positive integer k ≥ 3, the number 2k×3×5
is a 3-layered number.

Now, we present a proposition like 1.24 for 4-layered numbers.

Proposition 1.27. Let n be an odd number such that 2|σ(n). Now, let D be the
set of positive divisors of n such that D can be partitioned into two subsets A′

1 and

A′

2 so that A′

1 and A′

2 sums to σ(n)
2 . If α is a positive integer, A′′

1 = {2αd|d ∈ A′

1}
and A′′

2 = {2αd|d ∈ A′

2} so that 2αn is a 4-layered number with 4-layered partition
{A1, A2, A3, A4} such that A′′

1 ⊂ (A1 ∪ A2) and A′′

2 ⊂ (A3 ∪ A4), then for every
integer α ≤ t, the number ℓ = 2tn is a 4-layered number.

Proof. Let 2αn be a 4-layered number. We want to prove k = 2α+1n is a 4-layered
number. Let D be the set of positive divisors of n. We define:

M1 = A′′

1 ∩ A1,M2 = A′′

1 ∩A2

M3 = A′′

2 ∩ A3,M4 = A′′

2 ∩A4

Now, we define:

M ′

1 = {2d|d ∈ M1},M
′

2 = {2d|d ∈ M2}

M ′

3 = {2d|d ∈ M3}, M
′

4 = {2d|d ∈ M4}.

It is easy to check that {(A1 \M1)∪M ′

1 ∪M2, (A2 \M2)∪M ′

2 ∪M1, (A3 \M3)∪
M ′

3∪M4, (A4\M4)∪M
′

4∪M3)} is a 4-layered partition for k. Thus, by this method,
inductively, we can prove that ℓ = 2tn is a 4-layered number for every integer t ≥ α.

�

The two following theorems are a generalization of 1.24 and 1.27, respectively.

Theorem 1.28. Let n and k be odd positive integers such that n is a k-layered
number and A′

1, A
′

2, . . . , A
′

k−1

2

are disjoint subsets of positive divisors of n so that

for every integer 1 ≤ i ≤ k−1
2 , A′

i sums to 2σ(n)
k

. Now, let α be a positive integer

and for every integer 1 ≤ i ≤ k−1
2 , A′′

i = {2αd|d ∈ A′

i} such that 2αn is a k-
layered number with k-layered partition {A1, A2, . . . , Ak} so that for every integer
1 ≤ i ≤ k−1

2 , A′′

i ⊂ A2i−1 ∪A2i. Then, for every integer α ≤ t, the number ℓ = 2tn
is a k-layered number.

Proof. For every positive integers 1 ≤ i ≤ k − 1, we define Mi=A′′

⌊ i+1

2 ⌋
∩ Ai,

M ′

i = {2d|d ∈ Mi} and M = {2α+1d|d ∈ (D \ A′

1 ∪ A′

2 ∪ . . . , A′

K−1

2

)}. Now, we

define :

Bi =

{

(Ai \Mi) ∪M ′

i ∪Mi+1 if i is odd;
(Aj \Mi) ∪M ′

i ∪Mi−1 if i is even.
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�

It is easy to check that {B1, B2, . . . , Bk−1, Ak ∪M} is a k-layered partition for
2α+1n. Also, by this method, , inductively, we can prove that ℓ = 2tn is k-layered
for every integer t ≥ α.

Theorem 1.29. Let n be an odd positive integer so that k|σ(n), where k is an
even positive integer such that n is a k-layered number. Also, let A′

1, A
′

2, . . . , A
′

k
2

be disjoint subsets of positive divisors of n so that for every integer 1 ≤ i ≤ k
2 , A

′

i

sums to 2σ(n)
k

. Now, let α be a positive integer and for every integer 1 ≤ i ≤ k
2 ,

A′′

i = {2αd|d ∈ A′

i} such that 2αn be a k-layered number with k-layered partition
{A1, A2, . . . , Ak} so that for every integer 1 ≤ i ≤ k

2 , A
′′

i ⊂ A2i−1 ∪ A2i. Then, for
every integer t, where α ≤ t, the number ℓ = 2tn is a k-layered number.

Proof. For every positive integer 1 ≤ i ≤ k, we define:

Mi = A′′

⌊ i+1

2 ⌋ ∩ Ai,M
′

i = {2d|d ∈ Mi}

.
Now, for every 1 ≤ i ≤ k, we define:

Bi =

{

(Ai \Mi) ∪M ′

i ∪Mi+1 if i is odd;
(Aj \Mi) ∪M ′

i ∪Mi−1 if i is even.

�

It is easy to check that the set {B1, B2, . . . , Bk} is k-layered partition for 2α+1n.
Also, by this method, inductively, we can prove the number 2tn is k-layered for
every t ≥ α.

Example 1.30. Let ℓ = 3 × 5 × 7 and α be positive integers such that 3 ≤ α.

Suppose that p < σ(ℓα)−4
2 and p ≡ 2( mod 3). By 1.21 and 1.17, ℓαp is an almost

practical number such that 6|σ(ℓ). Therefore,by 1.25, for every positive integer t,
2tℓαp is a 3-layered number.

Now, we state a proposition that we can find a huge set of 4-layered numbers by
that.

Proposition 1.31. Let k,k′ be positive numbers, m be a k-layered number, and n
be a k′-layered number such that gcd(m,n) = 1. Then, mn is a kk′-layered number.

Proof. Let A1, A2, . . . , Ak be a k-layered partition for m, and B1, B2, . . . , B
′

k be a
k′-layered partition for n. It is obvious that {AiBj |1 ≤ i ≤ k, 1 ≤ j ≤ k} is a
kk′-layered partition for mn. �

It is clear that the proposition 1.31 can be generalized.

Corollary 1.32. Let k1, k2, . . . , kr be positive integers such that for every integer
1 ≤ i ≤ r, mi is a ki-layered number. Also let for every inetger 1 ≤ i 6= j ≤ r,
gcd(mi,mj) = 1. Then, m1m2 . . .mr is a k1k2 . . . kr-layered number.

The following examples show the power of proposition 1.31 for finding 4-layered
numbers.
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Example 1.33. By 1.21, n1 = 3α1 ×5α2 ×7α3 , in which α1 > 2, α2, α3 are positive
integers, and at least one of the exponents of its factors is odd, is a Zumkeller
number. Let k be a positive integer and p be a prime number such that p ≤ 2k+1−1
and gcd(p, n1) = 1. By 1.11, 1.14, and 1.19, for every odd number α4, the number
n2 = 2k × pα5 is Zumkeller. Therefore, by 1.31, n = n1n2 is a 4-layered number.

Example 1.34. Let t ≤ 3 be a positive integer. Now, suppose p1, p2 ≤ σ(2t) are
distinct primes expect for 3, 5 and 7. By 1.22 and 1.19, the number n1 = 2tp1 is
a Zumkeller number. Also, by definition of p2, we know 2p2 < σ(3t × 5t × 7t)− 4.
Thus, according to 1.21 and 1.17, the number n2 = 3t × 5t × 7tp2 is a Zumkeller
number. At last, by 1.31, the number n1n2 = 2t × 3t × 5t × 7tp1p2 is a 4-layered
number.

In the following, we want to prove that for every integer n ≥ 11, the number n!
is 3-layered and 4-layered. Before that, we recall a theorem which was proved by
Breusch; this theorem is a generalization of Bertrand’s postulate theorem.

Theorem 1.35. For every integer n ≥ 7, there are primes of the form 3k+ 1 and
3k + 2 between n and 2n.

Now, we state a theorem.

Theorem 1.36. If n ≥ 11 is an integer, then the number n! possesses prime
factorization pα1

1 pα2

2 . . . pαk

k such that 2 = p1 < p2 < · · · < pk and αk−1 = αk = 1.

Also, pk ≤ 2α1 and 2pk−1 < σ(pα1

1 pα2

2 . . . pαk−2
k−2 ) − 4. In addition, there exists a

prime number q such that q||n! and q ≡ 2( mod 3).

Proof. If 11 ≤ n ≤ 16, then it is easy to check that n! satisfies in the theorem.
Now, Let n ≥ 17 and p be the largest prime factor of n! such that p2|n!; this con-
cludes 2p|n. By definition of n, it is clear that p ≥ 7. Then, by 1.35, there exist at
least two distinct prime numbers q1 and q2 such that p < q1, q2 < 2p and q1 ≡ 2(
mod 3). Thus, by definition of p, q1 and q2 are prime factors of n! with power of
one. Furthermore, if ord2(n) denotes the exponent of the largest power of 2 that
divides n, then by Legendre’s formula, we have:

pk ≤ n < 2⌊
n
2 ⌋ < 2ord2(n)

.
Also, by definition of n, pk−3 ≥ 7. Thus, by Bertrand’s postulate theorem, we

have:

2pk−1 < 4pk−2 < pk−3pk−2 < σ(pα2

2 . . . p
αk−2

k−2 )− 4

�

Thus, as a consequence of the above theorem, we have the following corollary

Corollary 1.37. For every integer n ≥ 11, the number n! is 3-layered.

Proof. Let n = 11 it is easy to check that we can find positive integer α and ℓ such
that 2αℓ and ℓ is an almost practical number. Thus, by 1.36 and 1.17, for every
integer n ≥ 11, we can find positive integers α and ℓ such that n = 2αℓ, where ℓ is
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an odd almost practical number. Therefore, by 1.25, the number n! is a 3-layered
number.

�

At last, we close this section by the following corollary.

Corollary 1.38. For every integer n ≥ 11, the number n! is 4-layered.

Proof. Let pα1

1 pα2

2 . . . pαk

k be the prime factorization of n! such that 2 = p1 < p2 <
· · · < pk. By 1.36, 1.11,1.19, and 1.17 the numbers 2αkpk and pα2

2 pα3

3 . . . pαk−1k− 1
are Zumkeller. Thus, by 1.31, n! is 4-layered. �

2. k-multiperfect numbers and k-layered numbers

First, we state a proposition that we can find a wide rang of k-layered numbers
by that.

Proposition 2.1. Let k > 1, l, t, s be positive integers such that s|t. Now, suppose
n is a k-layered number such that σ(n) = kl. If σ(nt) = (k + 1)sl, then m = nt is
a (k + 1)-layered number.

Proof. Let D be the set of positive divisors of m and let {A1, A2, . . . , Ak} be k-
layered partition for n. Now, for every positive integer 1 ≤ i ≤ k, we define
A′

i = {sd|d ∈ Ai} and also A′

k+1 = D \ (A′

1 ∪ A′

2 ∪ . . . A′

k). It is easy to check that
{A′

1, A
′

2, . . . , A
′

k+1} is a (k + 1)-layered partition for m. �

Therefore, we have:

Corollary 2.2. Let p be a prime number. If n is a p-layered number such that
gcd(n, p) = 1, then np is a (p+ 1)-layered number

Example 2.3. If n is an odd Zumkeller number, then by 2.2, 2n is a 3-layered
number.

Now, we recall the definition of k-multiperfect numbers.

Definition 2.4. Let n and k 6= 1 be positive integers. The number n is said to
k-multiperfect if σ(n) = kn.(Note that if n is 2-multiperfect number, then n is said
to be perfect.)

We are now ready to state an example, showing a crucial role of proposition 2.1
in finding a huge set of k-layered numbers.

Example 2.5. Let a1 = 2×3, a2 = 23×3×5, a3 = 25×33×5×7, a4 = 211×33×52×
72×13×19×31, a5 = 219×35×52×72×11×132×192×312×37×41×61×127, a6 =
239 × 311 × 57 × 73 × 11× 132 × 17× 192 × 29× 312 × 37× 41× 61× 73× 79× 83×
127× 157× 313× 331× 2203× 30841× 61681. It was proved that for every integer
1 ≤ i ≤ 5, the number ai is a (i + 1)-perfect number(See [1].). Also, it is easy to
see that for every integer 1 ≤ i < 5 ai|ai+1 and 6 is a Zumkeller number. Thus, by
proposition 2.1, for every integer 1 ≤ i ≤ 5, ai is a (i+ 1)-layered number.

Now, we recall a concept of number theory

Definition 2.6. An arithmetical function f is said to be multiplicative if f is not
identically zero and also f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

Remark 2.7. We know that the sum divisor function is a multiplicative function
(see [14]); this concludes that the function I is multiplicative too.
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Proposition 2.8. Every perfect number is Zumkeller.

Proof. Let D be the set of positive divisors of n. We define A1 = {n} A2 = D\{n}.
It is clear that A1, A2 is Zumkeller partition of n. �

The proposition 2.8 lead us to raise the following open question

Open Question 2.9. For which one of positive integers k 6= 1, every k-multiperfect
number is k-layered

Remark 2.10. It is believed that all k-multiperfect number of index 3,4,5, 6 and 7
are known. Among six 3-multiperfect numbers that are fund, the number 51001180160
is the largest see [1].

In the following, we prove that every known 3-multiperfect numbers is 3-layered.
Before that, we recall some concept and results in number number theory.

Definition 2.11. The abundant number n is said to be semiperfect if n is equal
to all or some of proper divisor of n. Also, the abundant number n which is not
semiperfect called weird.

The existence of odd weird numbers is still an open question . The following
theorem was proved by W. Fang (see [11]).

Theorem 2.12. There are no odd weird numbers less than 1.8 × 1019. In other
words, every odd abundant number a ≤ 1.8× 1019 is semiperfect

Also, the following theorem was proved by Guy:

Theorem 2.13. Let m be a positive integer, and let p be a prime number such that
2m ≤ p ≤ 2m+1. Then, the number 2mp is a semiperfect number.

Remark 2.14. By definition of semiperfec numbers, it is easy to check that every
multiple of a semiperfect number is semiperfect.

Then we have:

Proposition 2.15. Every known 3-multiperfect number is 3-layered.

Proof. Let ℓ ≥ 1 be a positive integer. We know that every known ℓ-multiperfect
number is even. Let n be a known 3-multiperfect number and let k and m be
positive integers such that n = 2km and gcd(2k,m) = 1. Now, suppose that p be
the smallest odd prime factor of n. It is easy to check that there exists a positive
integer α such that 2α ≤ p ≤ 2α+1 and 2α|n. Then, by 2.13 and 2.14, there exists
a subset D of the set of proper positive divisor of n such that D sums to n. Now,

we define A1 = D, A2 = n. It is obvious that A1 and A2 sums σ(n)
3 . Thus, by 1.4,

n is 3-layered. �

Remark 2.16. Let n be a positive integer such that I(n) ≥ 4. Now, let t be a
deficient number such that n = tαm and gcd(t,m) = 1. We know the function I is
multiplicative. Therefore, I(m) > 2; this concludes that m is an abundant number.

The theorem 2.12 lead us to the following conjecture.

Conjecture 2.17. Every odd abundant number is semiperfect.
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Up to now , 36 4-multiperfect numbers are fund [1]. Let n be a 4-multiperfect.
According to the reference [1], we know that there exist a positive integer α and
an odd positive integer m such that n = 2αm. By 2.16, m is an abundant number.
One can see that m is a semiperfect number. Then there exists a subset D of
the set of proper positive divisors of m such that D sums to m. Now, we define
A1 = 2αd : d ∈ D. Also, it is obvious that I(n2 ) ≥ 2; it concludes that σ(n2 ) ≥ n,
and also by 1.11 and the reference [1], it is easy to check that n

2 is a practical
number. Thus, by 1.12, there exists a subest A2 of the set of positive divisors of n

2

such that A2 sums to n = σ(n)
4 . Now, if we define A3 = n, then for every positive

integer i, Ai sums to σ(n)
4 . Then by 1.4, we have the following corollary.

Corollary 2.18. Every known 4-multiperfect number is 4-layered.

Remark 2.19. Exactly half of known 4-multiperfect are divisible by at least a 3-
multiperfect numbers [1]. Then, once again, by 2.15 and 2.1, at least half of known
4-multiperfect are 4-layered

Remark 2.20. Let a1 = 6, a2 = 120, a3 = 30240, a4 = 14182439040 it was proved
that for every integer 1 ≤ i ≤ 4, the number ai is the smallest (i+1)-perfect number
[1]. Also, for every integer 1 ≤ i ≤ 3, ai|a(i+1). Then, by 2.1, ai is (i+1)-layered
number for every integer 1 ≤ i ≤ 4

3. Lower density of k-layered

In [10], Yuejian and K.P.S raised the following open question.

Open Question 3.1. Does the set of Zumkeller numbers possess density?

In 2010, T.D checked that the 229026 Zumkeller numbers less than 106 have a
maximum difference of 12; he conjectured that any 12 consecutive numbers include
at least one Zumkeller number. At last, in 2019, Charlie presented an easy proof
for this conjecture [11]. We here present the proof of this conjecture for completion.

Proposition 3.2. If a < b are two consecutive Zumkeller numbers, then |b− a| ≤
12; this concludes that the lower density of the set of Zumkeller numbers is at least
1
12 .

Proof. By 1.20 and 1.8, for every positive integer k, the numbers 18k+6 and 18k+12
are Zumkeller. Then difference between two consecutive Zumkeller numbers is at
most 12. �

Remark 3.3. There exist consecutive Zumkeller numbers a and b such that b−a =
12. For instance, a = 222 and b = 224 are consecutive Zumkellers such that
b− a = 12.

Before finding a lower density for the set of 3-layered numbers and 4-layered
numbers, we recall that the number n is said to be superabundant if I(n) > I(k)
for all positive integers k < n. Also, we have:

Lemma 3.4. Let m1 < m2 be two consecutive superabundant numbers. For every
positive integer t < m2, I(t) < I(m1).

Proof. Let t be a positive integer such that I(t1) > I(m1) and t > m2. By definition
ofm1,m2, it is obvious that t fails to be superabundant number; this concludes there
exists a positive integer m1 < ℓ1 < t < m2 such that I(m1) > I(ℓ1) > I(t). We
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once again know that ℓ1 cannot be superabundant so there exists a positive integer
ℓ2 such that m1 < ℓ2 < ℓ1 < t < m2. Therefore, for every positive integer r, by
this algorithm, inductively, we can find distinct positive integers ℓ1, ℓ2, . . . , ℓr such
that m1 < ℓr < ℓr−1 < · · · < ℓ1 < m2 and I(m2) > I(ℓr) > I(ℓr−1) > · · · > I(ℓ1);
this contradicts the finiteness of the set A = {a|a ∈ N,m1 < a < m2}. �

Now, we find a lower density for the set of 3-layered numbers.

Proposition 3.5. If a < b are two consecutive 3-layered numbers, then b−a ≤ 360;
this concludes the lower density of the set of 3-layered numbers is at least 1

360 .

Proof. By 1.26, n = 120 is a 3-layered number. Also, it is first superabundant
number such that I(n) ≤ 3 (See [13]). Thus, by 3.4 and 1.3, n is the smallest
3-layered number. Moreover, it is easy to check that at least one of the numbers
t, t + 1 , and t + 2 is not divisible by 3 and 5. Thus by 1.26 and 1.8, one of the
numbers tn, (t+1)n, or (t+2)n is 3-layered; this concludes that the lower density
of 3-layered numbers is at least 1

3n = 1
360 �

If A is a set of positive integer, then we define S(A) as a sum of the integers in
A. Now, we find a lower density for the set of 4-layered numbers.

Proposition 3.6. If a < b are two consecutive 4-layered numbers, then b − a ≤
249480; this concludes the lower density of the set of 4-layered numbers is at least

1
249480 .

Proof. The number n = 27720 = 23 × 32 × 5 × 7 × 11 is 4-layered because let we
define:

A1 = { 23 × 32 × 5, 23 × 32 × 5 × 7 × 11}

A2 = { 2 × 3 × 5, 2 × 3 × 5 × 11, 22 × 3 × 5 × 7 × 11, 23 × 3 × 5 × 7 × 11,
22 × 32 × 5 × 7 × 11}

A3 = { 1, 2 × 32, 2 × 3 × 5 × 7 × 11, 22 × 32 × 7 × 11, 23 × 5 × 7 × 11,
32 × 5× 7 × 11, 23 × 32 × 5 × 11, 23 × 32 × 7 × 11, 2× 32 × 5 × 7× 11}

It is easy to check that S(Ai) = σ(n)
4 for every integer 1 ≤ i ≤ 3. Then, by

1.4, n is a 4-layered number. Also, n is the smallest positive integer such that
I(n) ≥ 4 ( See [13]). Therefore, by 3.4 and 1.3, 27720 is the smallest 4-layered
number. In addition, it is easy to check that for every positive integer k, there exist
at least an integer 1 ≤ i ≤ 9 such that gcd(k+ i, n) = 1; by 1.8; this concludes that
(k+ i)n is a 4-layered numbers so the lower density of 4-layered numbers is at least
1
9n = 1

249480 �

Now, we find the smallest 5-layered number.

Proposition 3.7. The number n = 147026880 = 26 × 33 × 5× 7× 11× 13× 17 is
the smallest 5-layered number.

Proof. We know t = 122522400 is the smallest superabundant such that I(t) ≥ 5
(see [13]). But 5 6 |σ(t). Therefore, by 1.3 and 3.4, t fails to be 5-layered and every
5-layered number is larger than t. By a Computational Software like python, it
is easy to check that the number n = 147026880 is the smallest integer such that
I(n) ≥ 5 and 5|σ(n). Now, we want to prove this number is 5-layered. First of all,
we know the number ℓ1 = 120 = 23 × 3 × 5 is a 3-multiperfect number and the
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number ℓ2 = 32760 = 23 × 32 × 5× 7× 13 is the a 4-perfect number such that ℓ1|ℓ2
( See [1]). Therefore, by 2.15 and 2.1, the number ℓ2 is a 4-layered number; this
concludes that there exists a 4-layered partition {A1, A2, A3, A4} for ℓ2 such that
Ai sums to ℓ2 for every integer 1 ≤ i ≤ 4. Also, for every integer 1 ≤ i ≤ 4 we
define:

A′

i = {23 × 3× 11× 17d|d ∈ Ai}

On the other hand, letm = 447552. We know the number n1 = 26×5×11×13×17
is a practical number. Also, m < σ(n1). Thus, by definition of practical number,
there exist subsets B1 and B2 of the set of positive divisors of n1 such that B1 and
B2 sum to m and m

7 , respectively. Now, we define B′

2 = {7d|d ∈ B1}. In addition,

we know the number n2 = 26 × 32× 5× 7× 13× 17 is a practical number such that
m
3 < σ(n2). Therefore, there exists a subset B3 of the set of positive divisors for n2

such that B3 sums to m
3 . Now, we define B′

3 = {3d|d ∈ B3}. At last, we know the

number n3 = 22× 32× 5× 11× 13× 17 is a practical number such that m
21 < σ(n3);

this concludes that there exists a subset B4 of the set of positive divisors for n such
that B4 sums to m

21 . Now, we define B
′

4 = {21d|d ∈ B4}. It is easy to check that the
sets B1, B

′

2, B
′

3, B
′

4, A1, A2, A3, A4, A
′

1, A
′

2, A
′

3 and A′

4 are disjoint subsets of the set
of positive divisors for n. Now, we define C1 = A1 ∪ B1 and also for every integer

2 ≤ i ≤ 4, we define Ci = A′

i ∪ B′

i; it is easy to check that every S(Ci) = σ(n)
5 .

Then, by 1.4, n is a 5-layered number. �

Theorem 3.8. The number 130429015516800 = 27 × 33 × 52 × 72 × 11× 13× 17×
19× 23× is the smallest 6-layered number.

Proof. We can see that the number n = 130429015516800 is smallest number such
that I(n) ≥ 6 (see [13]) . Therefore, by 1.3, if m be a 6-layered number, then
m ≥ n. Now, we prove that the number n is a 6-layered number; this concludes
that n is the smallest 6-layered number. we define:

A1 = { 23, 22 × 5 × 13 × 29, 24 × 3 × 11 × 13 × 17 × 29,
22 × 3 × 52 × 7 × 11 × 13 × 17 × 19 × 29,
25 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29}

A2 = { 24 × 33 × 7 × 17 × 19, 24 × 33 × 52 × 72 × 17 × 19 × 29,
26 × 33 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29}

A3 = { 24 × 3 × 7 × 17, 27 × 3 × 72 × 17 × 29, 27 × 33 × 5 × 72 × 11 × 17 × 29,
26 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23,
26 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 3 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29}
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A4 = { 23, 2 × 33 × 5 × 11 × 13, 52 × 7 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 17 × 23 × 29,
26 × 3 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 32 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23,
25 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
27 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29,
26 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
25 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29,
26 × 3 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
23 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
25 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29}

A5 = { 13, 2 × 11 × 13 × 23, 25 × 33 × 72 × 17 × 23,
2 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 29,
24 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
27 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 7 × 11 × 13 × 17 × 23 × 29,
25 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 5 × 72 × 11 × 17 × 19 × 23 × 29,
33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 32 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 7 × 11 × 13 × 19 × 23 × 29,
27 × 3 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 29,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 23 × 29,
23 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 5 × 72 × 13 × 17 × 19 × 23 × 29,
25 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
26 × 32 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
25 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 3 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 11 × 13 × 17 × 19 × 23 × 29,
22 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
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27 × 33 × 5 × 72 × 11 × 13 × 17 × 23 × 29,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29,
27 × 33 × 52 × 7 × 11 × 17 × 19 × 23 × 29,
26 × 3 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23,
27 × 33 × 5 × 72 × 11 × 13 × 19 × 23 × 29,
25 × 32 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
23 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 32 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 7 × 13 × 17 × 19 × 23 × 29,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29,
27 × 32 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 3 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 29,
25 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
26 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 5 × 72 × 11 × 17 × 19 × 23 × 29,
2 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 3 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
25 × 32 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 23 × 29,
24 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 5 × 72 × 13 × 17 × 19 × 23 × 29,
26 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
25 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
26 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 52 × 11 × 13 × 17 × 19 × 23 × 29,
23 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29,
27 × 3 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
25 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
26 × 32 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
24 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 11 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29,
25 × 3 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29,
27 × 33 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29,
26 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29,
27 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29,
22 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29}

It is easy to check that for every integer 1 ≤ i ≤ 5, S(Ci) =
σ(n)
6 . Thus, by 1.3,

n is a 6-layered number. �
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Theorem 3.9. The number 1970992304700453905270400 = 27 × 34 × 52 × 72 ×
11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53 is the smallest 7-layered
number.

Proof. We can see that the number 1970992304700453905270400 is smallest number
such that I(n) ≥ 7 (see [13]). Now, we prove that the number n = 130429015516800
is a 7-layered number; this concludes that n is the smallest 7-layered number. We
define:

A1 = { 2 × 3, 32 × 52 × 72, 26 × 33 × 19 × 23 × 29 × 37 × 43,
32 × 52 × 7 × 17 × 19 × 23 × 29 × 37 × 41 × 47 × 53,
25 × 3 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27×34×52×72×11×13×17×19×23×29×31×37×41×43×47×53}

A2 = { 2 × 32, 2 × 3 × 52 × 11 × 41, 23 × 32 × 5 × 19 × 23 × 29 × 43 × 53,
22 × 3 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 41 × 47 × 53,
26 × 33 × 52 × 72 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
24 × 34 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26×34×52×72×11×13×17×19×23×29×31×37×41×43×47×53}

A3 = { 22 × 32 × 31, 25 × 3 × 7 × 11 × 19 × 31 × 43,
26 × 3 × 5 × 11 × 13 × 23 × 29 × 31 × 37 × 53,
22 × 32 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 53,
23 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
24× 34× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
25×34×52×72×11×13×17×19×23×29×31×37×41×43×47×53}

A4 = { 2 × 7, 2 × 3 × 7 × 11 × 13 × 53, 22 × 33 × 7 × 11 × 19 × 29 × 31 × 47,
23 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 43 × 47 × 53,
27 × 3 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
26 × 34 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
25× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 3× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27× 33× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
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25× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 34× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53}

A5 = { 23 × 11 × 23, 22 × 3 × 11 × 13 × 19 × 31 × 47 × 53,
2 × 34 × 52 × 11 × 13 × 17 × 29 × 31 × 41 × 47 × 53,
27 × 32 × 72 × 11 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 32× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
24 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25× 33× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
27 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
24× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
2× 34× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27× 32× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
25× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 3× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
25 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
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27 × 34 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27× 32× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
25 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
26× 33× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
24× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
25× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22× 34× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53}

A6 = { 22 × 7 × 23, 2 × 17 × 23 × 29 × 31 × 47,
27 × 34 × 11 × 13 × 17 × 29 × 31 × 41 × 53,
25 × 34 × 5 × 11 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 3 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24× 32× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
23 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
26 × 34 × 5 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 7 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
22× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
25 × 34 × 52 × 7 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
25 × 32 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
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23 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 3 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
26 × 32 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
2× 34 × 52 × 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
23× 3× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 33 × 52 × 72 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
25 × 33 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
24 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
23 × 34 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 7 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 34 × 5 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 5 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 3× 52 × 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
26 × 34 × 52 × 72 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
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23 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24× 32× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 33 × 52 × 7 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 3 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
26 × 32 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 33× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 33 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
27 × 34 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 13 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
2× 34 × 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
27 × 32 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
24 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 32 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23 × 34 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
25 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 3 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
22× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
24 × 34 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
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23 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 3× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 7 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
24 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25× 32× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
27 × 34 × 5 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 7 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
26 × 32 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 72 × 11 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
24× 3× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
26 × 33 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 5 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
2× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 5 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 3× 52 × 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
27 × 34 × 52 × 72 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
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26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25× 32× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
23 × 34 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24× 33× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 33 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
26 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22× 34× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
25 × 33 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 7 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
23× 32× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 72 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
25 × 34 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
24 × 34 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 3× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 7 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 33 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 47 × 53,
34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26× 32× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 43 × 47 × 53,
24× 33× 5× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 52 × 7 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 19 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
23× 34× 52× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,



ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS23

27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 41 × 43 × 47 × 53,
26 × 34 × 5 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25× 3× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47,
27 × 33 × 5× 7× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
24 × 34 × 52 × 72 × 11 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 33 × 52 × 72 × 11 × 13 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
25 × 34 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
27 × 32 × 52 × 72 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
22× 33× 52× 72× 11× 13× 17× 19× 23× 29× 31× 37× 41× 43× 47× 53,
27 × 34 × 5 × 72 × 11 × 13 × 17 × 23 × 29 × 31 × 37 × 41 × 43 × 47 × 53,
26 × 34 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37 × 41 × 43 × 53,
27 × 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29 × 37 × 41 × 43 × 47 × 53}

It is easy to check that for every integer 1 ≤ i ≤ 6, S(Ai) =
σ(n)
7 �

At last, we close this section by a theorem, which proves that if for positive integer
k, there exist a k-layered number, then the set of k-layered numbers possesses a
lower density.

Theorem 3.10. Let n be the smallest k-layered numbers with prime factorization
n = pα1

1 pα2

2 . . . pαk

k . If a < b are two consecutive k-layered numbers, then b − a ≤
(p1p2 . . . pk − (p1 − 1)(p2 − 1) . . . (pk − 1))n.

Proof. Let s be a non negative integer and d be a positive integer between sp1 . . . pk
and (s + 1)p1 . . . pk. By proposition 1.8, if gcd(d, n) = 1, then dn is a k-layered
number. Now, let r be a positive integer which is smaller than p1 . . . pk. It is clear
that gcd(sp1 . . . pk + r, n) = 1 if and only if gcd(n, r) = 1. Thus, there exist at
least ϕ(p1 . . . pk) numbers d between sp1 . . . pk and (s + 1)p1 . . . pk such that dn is
a k-layered number. Therefore, if we ignore ϕ(p1 . . . pk) − 1 numbers of p1 . . . pk
numbers between sp1 . . . pk and (s + 1)p1 . . . pk, then again we can find a number
like d between sp1 . . . pk and (s+1)p1 . . . pk such that dn is a k-layered number(Note
that ϕ is the euler totient function.). �

4. some graph labeling related to k-layered numbers

First, we generalize the concept of Zumkeller labeling to k-layered labeling.

Definition 4.1. Let G = (V,E) be a graph. An injective function f : V → N is
called a l-k-layered labeling of the graph G if the induced function f∗ : E → N

defined by f∗(xy) = f(x)f(y), x ∈ V, y ∈ V, xy ∈ E satisfies the following two
conditions:
(i) f(xy) is a k-layered number for all xy ∈ E.
(ii) the number of different k-layered numbers used to label the edges of G is l.

In addition, we generalize the concept of Zumkeller cordial labeling to k-layered
labeling.

Definition 4.2. Let G(V,E) be a graph. An injection function f : E → N is
call a k-layered cordial labeling of graph G if there exists an induced function
f∗ : E → {0, 1} defined by f∗(xy) = f∗(x)f∗(y) satisfies the following conditions:
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(i) For every xy ∈ E

f∗(xy) =

{

1, if f(x)f(y) is a Zumkeller number;
0, otherwise.

(ii) |ef∗(1) − ef∗(0)| ≤ 1, where ef∗(1) is the number of edges of graph G having
label 0 under f∗ and ef∗(1) is the number of edges of graph G having label 1 under
f∗

Remark 4.3. B.J. Balamurugan and et al[4] called the graph G Zumkeller, if G
admits a Zumkeller labeling. Also, B.J. Murali and et al[6] called the graph G
Zumkeller cordial if G admits a Zumkeller cordial labeling. From now on, we call
the graph G k-layered if G admits a k-layered labeling and also we called the graph
G k-layered cordial if G admits a k-layered cordial labeling.

Let n be k-layered number. The following proposition states a condition for the
integer k, which satisfying that concludes that every graph is k-layered.

Proposition 4.4. If there exists a k-layered number n with prime factorization
pα1

1 pα2

2 . . . pαt

t such that for every positive integer 1 ≤ i ≤ t, αi is even, then every
graph is k-layered.

Proof. If for every 1 ≤ i ≤, we label the vertex vi of graphGwith p
α1
2

+i(α1+1)
1 p

α2
2

+i(α2+1)
2 . . . p

αt
2
+i(αt+1)

t ,
then, by 1.9 this labeling is a k-layered labeling for G. �

4.1. Some labeling related to Zumkeller numbers. .

The following theorem is one the most important theorem of this section:

Theorem 4.5. Let Kn denotes a complete graph on n vertices with vertex set V

and edge set E. For every positive integer k ≤ n(n−1)
2 , We can find an f-labeling

for V such that e∗f (1) = k. (e∗f(1) computes Zumkeller edges relative to our labeling

)

Proof. It is easy to check that the statement holds for K1, K2 and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the
complete graph Km. We choose the even number t0 large enough that there exists
a chain of even numbers tm < · · · < t2 < t1 < t0 which for every positive integer
1 ≤ r ≤ m, we can find distinct primes pr,1, pr,2, . . . , pr,m−1 such that for every
positive integers, 1 ≤ i ≤ m and 2 ≤ j ≤ m− 1 we have:

(i) σ(22ti) < pi,1 < σ(2ti−1).

(ii) σ(22tipi,j−1) < pi,j < σ(2ti−1).

(iii) If i 6= m, then σ(22tipi,m−1) < pi+1,1.

Suppose that V = {v1, v2, . . . , vm} be the vertex set of Km. We label v1 with
n1 = 2t1 . If we want the edge v2v1 to be non-Zumkeller relative to our labeling,
then we label v2 with n2,0 = 2t2p1,1 because by (i), for number n2,0n1 = 2t1+t2p1,1,
we have:

σ(2t1+t2) < σ(22t1) < p1,1
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Therefore, according to 1.11 and 1.23, the number n2,0n1, which is labeling of the
edge v2v1, is non-Zumkeller. Also, if we want the edge v2v1 to be Zumkeller, we
label v2 with n2,1 = 2t2p2,1 because by (ii), for number 2t1+t2p2,1 we have:

p2,1 < σ(2t1) < σ(2t1+t2)

Thus, according to 1.11 and 1.23, the number n2,1n1, which is labeling of edge v2v1
relative to our labeling, is Zumkeller.
After labeling the vertex v2, we know that the vertex v2 was labeled with number
n2 = 2t2q such that q ∈ {p1,1, p2,1}. Now, for labeling the vertex v3, if we want
both edges of {v3v1, v3v2} be non-Zumkeller, then we label v3 with n3,0 = 2t3p1,2
because by 1.3, 2t1+t3 is a non-Zumkeller number and by (ii) we have:

σ(2t1+t3) < p2,1

Thus, by 1.6, the number n3,0n1, which is labeling of the edge v3v1 relative to our
labeling, is non-Zumkeller. Moreover, by (i), we have:

σ(2t2+t3) < σ(22t2) < q, σ(2t2+t3) < σ(22t2p1,1) < p1,2

Thus, by 1.6, the numbers 2t2+t3p1,2, 2
t2+t3q are non-Zumkeller. In addition ,

by (ii) and (iii), we have:

σ(2t2+t3p1,2) < q, or σ(2t2+t3q) < p1,2

Therefore, by 1.6, the number n3,0n2 = 2t2+t3p1,2q, which is labeling of the edge
v3v2, is a non-Zumkeller number. Also, for labeling v3, if we want one edge of
{v3v1, v3v2} be Zumkeller relative to our labeling, then we label v3 with n3,1 =
2t3p2,2 because by (i), for number n3,1n1 = 2t1+t3p2,2 we have:

p2,2 < σ(2t1) < σ(2t1+t3)

Therefore, by 1.11 and 1.23, the number n3,1n1, which is labeling of v3v1 relative to
our labeling, is a Zumkeller number. Also, once again, it is easy to check that the
edge v3v2 is non-Zumkeller relative to our labeling. At last, for labeling v3, if we
want the both edges of {v3v1, v3v2} to be Zumkeller relative to our labeling, then
we label v3 with n3,2 = 2t3p3,2 (By (ii), 1.23, and 1.8 it is clear.). Let j > 3 be an
integer. By this method, we labeled j− 1 vertices of complete graph Km. Now, we
want to label the vertex vj . Suppose that ℓ be an integer such that 0 ≤ ℓ < j ≤ m.
If we want to have exactly ℓ Zumkeller edges of edges {vjv1, vjv2, . . . , vjvj−1} rela-
tive to our labeling, we label vj with 2tjpℓ+1,j because first of all, by (ii), 1.11, 1.19,
and 1.8, for every positive integer i which 1 < i < ℓ, vjvi is Zumkeller edge relative
to our labeling. Moreover, for every positive integer s such that ℓ < s < j, the edge
vjvs is non-Zumkeller because we know that the vertex vs was labeled with 2tsq′

in which q′ ∈ {pi,s−1 : 1 ≤ i ≤ s}. Then,by (i) and(ii), for the number 2ts+tjq′, we
have:

σ(2ts+tj ) < σ(22ts) < q′, σ(2ts+tj ) < σ(22ts) < p

Thus, by 1.3 and 1.6, the integers 2ts+tjq′ and 2ts+tjpℓ+1,j are non-Zumkeller.
Also, according to (ii) and (iii), we have:
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σ(2ts+tjq′) < σ(22tsq′) < p, or σ(2ts+tj )p < σ(22tsp) < q′

Therefore, by 1.6, the edge vjvs is non-Zumkeller relative to our labeling. �

It is clear that every simple graph is a subgraph of a complete graph. Then, we
have:

Corollary 4.6. Let G be a simple graph with k edges. For every positive integer
t ≤ k, we can find an f -labeling for G that e∗f (1) = t.(e∗f (1) computes Zumkeller

edges relative to our labeling )

By 1.3, we know that every square number fails to be Zumkeller. Therefore, as
a consequence of theorem 4.9, we have:

Corollary 4.7. Let m be a non-negative integer and G be a graph with m loops.
Also. let If m− 1 ≤ |G| −m, then G is a Zumkeller cordial graph.

4.2. some labeling related to 3-layered numbers. .

Now, state a theorem like theorem 4.5 for 3-layered numbers.

Theorem 4.8. Let Kn be a complete graph on n vertices with vertex set V and

edge set E. For every positive integer k ≤ n(n−1)
2 , we can find an f-labeling for V

such that e∗f (1) = k. (e∗f (1) computes 3-layered edges relative to our labeling. ) .

Proof. It is easy to check that the statement holds for K1, K2 and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the
complete graph Km. Let ℓ = 3×5×7. We choose the even number t0 large enough
that there exists a chain of even numbers 3 < tm < · · · < t2 < t1 < t0 such that
first, for every positive integer 1 ≤ r ≤ m, ti ≡ 1( mod 3). In addition, we can find
distinct primes pr,1, pr,2, . . . , pr,m−1 such that for every positive integers, 1 ≤ i ≤ m
and 2 ≤ j ≤ m− 1 we have:

(i) pi,j ≡ 2( mod 3)

(ii) σ(22ℓ2ti) < pi,1 < σ(ℓti−1 )−4
2

(iii) σ(22ℓ2tipi,j−1) < pi,j <
σ(ℓti−1 )−4

2

(iv) If i 6= m, then σ(22ℓ2tipi,m−1) < pi+1,1.

Suppose that V = {v1, v2, . . . , vm} be the vertex set of Km. We label v1 with
n1 = 2ℓt1 . If we want the edge v2v1 to be non-3-layered relative to our labeling, then
we label v2 with n2,0 = 2ℓt2p1,1 because by (ii), for number n2,0n1 = 22ℓt1 + t2p1,1,
we have:

σ(22ℓt1+t2) < σ(22ℓ2t1) < p1,1

.
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Therefore, by 1.7, the number n2,0n1, which is labeling of edge v2v1 relative to
our labeling, is non-3-layered. Also, if we want the edge v2v1 to be 3-layered relative
to our labeling, then we label v2 with n2,1 = 2ℓt2p2,1 because by (iii), for number
n2,1n1 = 22ℓt1+t2p2,1, we have:

p2,1 <
σ(ℓt1)− 4

2
<

σ(ℓt1+t2)− 4

2
.

Thus, by (i) and 1.30, the number n2,1n1, which is labeling of the edge v2v1 rel-
ative to our labeling, is 3-layered. After labeling the vertices v1 and v2, for labeling
the vertex v3, if we want both edges of {v3v2, v3v1} to be non-3-layered, then we
label v3 with n3,0 = 2ℓt3p1,2 because by 1.3, the number 22ℓt1+t3 is a non-3-layered
number and by (iii), for number n3,0n1 = 22ℓt1+t3p1,2, we have:

σ(22ℓt1+t3) < p2,1

Thus, by 1.7, the number n3,0n1, which is labeling of the edge v3v1 relative to
our labeling, is non-3-layered. In addition, we know the vertex v2 was labeled with
number 2t2q such that q ∈ {p1,1, p2,1} and by (ii), we have :

σ(22ℓt2+t3) < σ(22ℓ2t2) < q, σ(22ℓt2+t3) < σ(22ℓ2t2p1,1) < p1,2

Thus, by 1.7, the number 22ℓt2+t3p1,2 and 22ℓt2+t3q are non-3-layered. Moreover,
by (iii) and (iv), we have:

σ(22ℓt2+t3p1,2) < q, or σ(22ℓt2+t3q) < p1,2.

Therefore, by 1.3 n3,0n1, which is labeling of the edge v3v2 relative to our label-
ing, is non-3-layered. Also, for labeling v3, if we want one edge of {v3v1, v3v2} to
be 3-layered relative to our labeling, then we label v3 with number n3,1 = 2t3p2,2
because by (iii), for number n3,1n1 = 22ℓt2+t3p2,2, we have:

p2,2 <
σ(ℓt1)− 4

2
<

σ(ℓt1+t3)− 4

2
.

Therefore, by (i) and 1.30, the number n3,1n1, which is labeling of v3v1 relative
to our labeling, is 3-layered. In addition, once again by (iii), (iv), and 1.7 the
edge v3v2 is non-3-layered relative to our labeling. At last, if we want both edges
{v3v1, v3v2} to be 3-layered relative to our labeling, then we label v3 with 2ℓt3 .( By
(i), (iii) and 1.30, it is clear.). Now, Let j > 3 be an integer, and by this method, we
labeled the j− 1 vertices of a complete graph. Now, we want to label the vertex vj .
Suppose that l be an integer such that 0 ≤ l < j ≤ m. If we want to have exactly
l 3-layered edges of {vjv1, vjv2, . . . vjvj−1} relative to our labeling we label vj with



28 F. JOKAR

2ℓtjpl+1,j because first of all, by (i), (iii), and 1.30, for every positive integer i such
that 1 < i < l, vjvi is a 3-layered edge relative to our labeling. Moreover, for every
positive integer s such that l < s < j, the edge vjvi is non-3-layered because we
know the vertex vs was labeled with 2ℓtsq′ in which q′ ∈ {pi,s−1 : 1 ≤ i ≤ s}. By
(i) and (ii), for number 22ℓts+tj , we have:

σ(22ℓts+tj ) < σ(22ℓ2ts) < q′, p

.

Thus, by 1.7, 22ℓts+tjq′ and 22ℓts+tjpℓ+1,j are non-3-layered. Also, according to
(iii) and (iv), we have:

σ(22ℓts+tj q′) < σ(22ℓ2tq′) < p , or σ(22ℓts+tjp) < σ(22ℓ2tsp) < q′.

Thus, by 1.7 the edge vjvs is non-3-layered relative to our labeling. �

4.3. some labeling related to 4-layered numbers. .

Now, we once again state a theorem like 4.5, for 4-layered numbers.

Theorem 4.9. Let Kn denotes a complete graph on n vertices with vertex set V

and edge set E. For every positive integer k ≤ n(n−1)
2 , We can find an f-labeling for

V such that e∗f (1) = k . (e∗f (1) computes 4 -layered edges relative to our labeling.

).

Proof. It is easy to check that the statement holds for K1, K2 and K3. Let m > 3
be a positive integer. Now, we want to prove that the statement holds for the com-
plete graph Km. Let ℓ = 2× 3× 5× 7. We choose the even number t0 large enough
that there exists a chain of even numbers, 3 < tm < · · · < t2 < t1 < t0 which for
every positive integer 1 ≤ r ≤ m, we can find distinct primes pr,1, pr,2, . . . , pr,2m−2

such that for every positive integers, 1 ≤ i ≤ m and 2 ≤ j ≤ 2m− 2 we have:

(i) σ(ℓ2ti) < pi,1 < σ(2ti−1)

(ii) σ(ℓ2tip3i,j−1) < pi,j < σ(2ti−1)

(iii) If i 6= m, then σ(ℓ2tip3i,2m−2) < pi+1,1.

Suppose that V = {v1, v2, . . . , vm} be the vertex set of Km. We label v1 with
positive integer n1 = ℓt1. Now, If we want the edge v2v1 to be non-4-layered relative
to our labeling, then we label v2 with n2,0 = ℓt2p1,1 because by 1.3, the number
ℓt1+t2 is non-Zumekeller and by (i), for number n2,0n1, we have:

σ(ℓt1+t2) < σ(ℓ2t1) < p1,1

Thus, according to 1.6, the number n1n2,0, which is the label of the edge v2v1
relative to our labeling, is non-4-layered. Also, if we want the edge v2v1 to be
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4-layered we label v2 with n2,1 = ℓt2p2,1p2,2 because by (i), for number ℓt1+t2p2,1,
we have:

p2,1, p2,2 < σ(2t1) < σ(ℓt1+t2)

Thus, by 1.34, the number n2,1n1, which is label of v2v1 relative to our label-
ing, is 4-layered. After labeling the vertices v1 and v2, for labeling the vertex v3,
if we want both edges of {v3v1, v3v2} to be non-4-layered, then we label v3 with
n3,0ℓ

t3p1,2 because first of all, by 1.3, we know the number ℓt1+t3 is a non-4-layered
number. In addition, by (i) and (ii), we have:

σ(ℓt1+t3) < σ(ℓ2t1) < p1,1 < p1,2

Thus, by 1.6, the number n3,0n1, which is label of the edge v3v1 relative to our
labeling, is non-4-layered. Moreover, we know the vertex v2 is labeled with number
ℓt2q such that either q ∈ {p1,1, p2,1p2,2} and f = ℓt2+t3q is non-4-layered number
because first of all, we know the number ℓt2+t3 is non-Zumkeller. In addition, if
q = p1,1, then by (i), we have:

σ(ℓt2+t3) < σ(ℓ2t2) < p1,1

Thus, by 1.6, f is non-4-layered. Also, if q = p2,1p2,2, then by (ii) , we have:

σ(ℓt2+t3) < p2,1, σ(ℓ
t2+t3p2,1) < p2,2

Thus, once again, by 1.6, we conclude that f is non-4-layered. At last, by (i) and
(ii), we have:

σ(ℓt2+t3q) < σ(ℓt2+t3p31,1) < p1,2

Thus, once again, by 1.6, the number n3,0n1, which is label of the edge v3v1 relative
to our labeling is non-4-layered. Now, if we want one edge of {v3v2, v3v1} to be
4-layered, then we label v3 with n3,1 = ℓt3p2,3p2,4 because in this situation, by (ii)
, for number n1n3,1 = ℓt1+t3p2,3p2,4 we have :

p2,3, p2,4 < σ(2t1) < σ(2t1+t3)

Therefore, by 1.34, n3,1n1, which is label of edge v3v1 relative to our labeling, is
4-layered number. Also, as we said the vertex v2 is labeled with number ℓt2q such
that the number ℓt2+t3q is a non-4-layered and according to (i) and (ii), once again
by 1.6 the number n3,1n1, which is label of edge v3v2 relative to our labeling, is
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non-4-layered. At last, if we want both edges of {v3v2, v3v1} to be 4-layered, then
by 1.6, it is sufficient that we label v3 with number n3,2 = ℓt3p3,1p3,2 (Note that it
is easy to check that p3,1, p3,2 < σ(2t1+t3), σ(2t1+t2).).
Let j > 3 be an integer and by this method, we labeled j− 1 vertices of a complete
graph Km. Now, we want to label the vertex vj . Suppose that h be an integer such
that 0 ≤ h < j ≤ m. Now, let we want to have exactly h 4-layered edges of edges
{vjv1, vjv2, . . . , vjvj−1} relative to our labeling. If h = 0, then by (i) and 1.6, it is
sufficient that we label vj with number ℓtjpj−1. Also, if h 6= 0, then we label vj
with ℓtjp2h+1p2h+2 because first of all, by (ii) and 1.34, for every integer i which
1 < i < h, vjvi is 4-layered edge relative to our labeling. In addition, once again,
it is easy to check that for every positive integer s such that h < s < j, the edge
vjvs is non-4-layered. �

Remark 4.10. It is easy to check that we can state something like 4.6 and 4.7 for
4-layered graphs.
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