ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS

F. JOKAR

Abstract

In this paper, first, we define and investigate k-layered numbers, which are a generalization of Zumkeller numbers. After that, we generalize the concept of Zumkeller labeling and Zumkeller cordial labeling to k-layered labeling and k-layered cordial labeling, respectively. Moreover, we prove that every simple graph admits Zumkeller labeling, Zumkeller cordial labeling, 3layered labeling, 3-layered cordial labeling, 4-layered labeling and 4-layered cordial labeling.

0 . Introduction

A perfect number is a positive integer that is equal to the sum of its proper positive divisors. In 2013, the idea of a Zumkeller numbers, which are generalization of perfect numbers, were first introduced by Zumkeller in Encyclopedia of Integer Sequences [11] A083207.

Definition 0.1. A positive integer n is said to be Zumkeller if the set of positive divisors of n can be partitioned into two disjoint subsets of equal sum. A Zumkeller partition for a Zumkeller number n is a partition $\left\{A_{1}, A_{2}\right\}$ of the set of positive divisors of n such that A_{1} and A_{2} sums to the same value.

Clark et al. [12] announced several results and conjectures related to Zumkeller numbers. In 10], Yujian and K.P.S fund some other results about Zumkeller numbers. They study the relations between practical numbers and Zumkeller numbers. Also, They settle a conjecture from [12]. Moreover, They make substantial contributions regarding the second conjecture from [12].

On the other hand, Balamurgugan et al. [5] introduced k-Zumkeller labeling of graphs.

Definition 0.2. Let $G=(V, E)$ be a graph. An injective function $f: V \rightarrow \mathbb{N}$ is called a k-Zumkeller labeling of the graph G if the induced function $f^{*}: E \rightarrow \mathbb{N}$ defined by $f^{*}(x y)=f(x) f(y), x \in V, y \in V, x y \in E$ satisfies the following two conditions:
(i) $f(x y)$ is a Zumkeller number for all $x y \in E$.
(ii) the number of different Zumkeller numbers used to label the edges of G is k.

They prove that a wide range of graphs admits Zumkeller labeling. After that, In [6] and [7], the concept of Zumkeller cordial was introduced by Murali et al.

[^0]Definition 0.3. Let $G(V, E)$ be a graph. An injection function $f: E \rightarrow \mathbb{N}$ is call a Zumkeller cordial labeling of graph G if there exists an induction function $f^{*}: E \rightarrow\{0,1\}$ defined by $f^{*}(x y)=f^{*}(x) f^{*}(y)$ satisfies the following conditions:
(i) For every $x y \in E$

$$
f^{*}(x y)=\left\{\begin{array}{lr}
1, & \text { if } f(x) f(y) \text { is a Zumkeller number } \\
0, & \text { otherwise }
\end{array}\right.
$$

(ii) $\left|e_{f^{*}}(1)-e_{f^{*}}(0)\right| \leq 1$, where $e_{f^{*}}(1)$ is the number of edges of graph G having label 0 under f^{*} and $e_{f^{*}}(1)$ is the number of edges of graph G having label 1 under f^{*}

They prove that there exist Zumkeller cordial labeling for path, cycles, stars, helm, wheel, flower, crown graphs and etc. Also, in [6] they raised the following open question:

Open Question 0.4. Does every even flower graph admit Zumkeller cordial labeling?

In this paper, In section 1, we recall and generalize some results of 10] for k layered numbers, which are generalization of Zumkeller numbers. Also, in section 2 , we find relations between k-multiperfect numbers and k-layered numbers. In addition, in section 3 , we investigate the lower density of k-layered number.

At last, in section 4, not only we prove that every simple graph admits Zumkeller and Zumkeller cordial labeling, but also we prove that every simple graph admits some another labeling.

1. k-LAYERED NUMBERS

The definition of Zumkeller numbers motivates us to define k-layered numbers.
Definition 1.1. A positive integer n is said to be k-layered if the set of positive divisors of n can be partitioned into k disjoint subsets of equal sum. A k-layered partition for a k-layered number n is a partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of the set of positive divisors of n such that for every $1 \leq i, j \leq k$, each of A_{i} and A_{j} sums to the same value.

Remark 1.2. If n is a 2-layered number, then n is called Zumkeller.
Let n be a positive integer and $\sigma(n)$ denotes the sum of positive divisors of n. We recall the index of n to be $I(n)=\frac{\sigma(n)}{n}$. Also, n is said to be abundant, perfect and deficient if $I(n)>2, I(n)=2$ and $I(n)<2$, respectively.

The proposition 2 from [10] give some necessary condition for a Zumkeller number. We generalize this proposition for k-layered number.

Proposition 1.3. If n is a k-layered number, then the followings are true:
(a) $k \mid \sigma(n)$
(b) $k n \leq \sigma(n)$; this concludes $I(n)>k$.

Proof. The proof is identical to proof of the proposition 2 of 10 .

The following fact gives a necessary and sufficient condition for integer n to be k-layered.
Fact 1.4. The number n is k-layered if and only if we can find $k-1$ disjoint subsets $A_{1}, A_{2}, \ldots, A_{k-1}$ of positive divisors of ℓ so that for every $1 \leq i \leq k, A_{i}$ sums to the $\frac{\sigma(n)}{k}$.

Furthermore, we have:
Fact 1.5. If n is a k-layered number and $\ell \mid k$, then n is $\frac{k}{l}$-layered number.
By [1.5, we can generalize the proposition 13 of 10].
Proposition 1.6. Let k_{1}, k_{2} and ℓ are positive integers such that $k_{1} \mid k_{2}$. Let n be a non- k_{1}-layered number and p a prime number with $\operatorname{gcd}(n, p)=1$. If $n p^{\ell}$ is k_{2}-layered, then $p \leq \sigma(n)$.

Proof. By [1.5, the proof is identical to proof of proposition 13 in [10].
Moreover, the three following propositions are generalizations of some propositions in [10].
Proposition 1.7. Let n and ℓ are positive integers. Suppose that n be a non- k layered integer and p be a prime number with $\operatorname{gcd}(n, p)=1$. If $n p^{\ell}$ is k-layered number, then $p<\sigma(n)$.
Proof. The proof is identical to proof of proposition 13 in [10].
Proposition 1.8. If the integer n is k-layered and w is relatively prime to n, then $n w$ is a k-layered number.
Proof. The proof is identical to proof of corollary 5 of [10].
In addition, we have:
Proposition 1.9. Let n be a k-layered number and $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ be a prime factorization of n. Then for any non-negative integers $l_{1}, l_{2} \ldots l_{m}$, the integer

$$
p_{1}^{k_{1}+l_{1}\left(k_{1}+1\right)} p_{2}^{k_{2}+l_{2}\left(k_{2}+1\right)} \ldots p_{m}^{k_{m}+l_{m}\left(k_{m}+1\right)}
$$

is k-layered.
Proof. The proof is identical to proof of proposition 6 of 10
Now, we recall the definition of practical numbers.
Definition 1.10. A positive integer n is said to be a practical number if every positive integer less than n can be represented as a sum of distinct positive divisors of n.

The following proposition gives very worthwhile information about the structure of practical numbers.
Proposition 1.11. A positive integer n with the prime factorization $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ and $p_{1}<p_{2}<\cdots<p_{m}$ is a practical number if and only if $p_{1}=2$ and $p_{i+1} \leq$ $\sigma\left(p_{1}^{k_{1}} \ldots p_{i}^{k_{i}}\right)+1$ for $1 \leq i \leq m-1$.
Proof. See [8]
Also, we have:

Proposition 1.12. A positive integer n is a practical number if and only if every integer less than or equal to $\sigma(n)$ can be written as a sum of distinct divisors of n.

Proof. See [8]
Now, we define almost practical numbers.
Definition 1.13. A positive integer n is called an almost practical number if all of the numbers j which $2<j<\sigma(n)-2$ or $j=\sigma(n)-1$, can be written as a sum of distinct divisors of n.

Remark 1.14. It is clear that every practical number is an almost practical number.
We recall some results from [8].
Proposition 1.15. Let $n \neq 3$ be an odd positive integer and $1=d_{1}<d_{2}<\cdots<$ $d_{k}=n$ are the divisors of n. We also define $\sigma_{i}=d_{1}+d_{2}+\cdots+d_{i}$. Then, n is an almost practical number if and only if $d_{2}=3, d_{3}=5$ and for $i \geq 3$, at least one of the followings are true:
(a) $d_{i+1} \leq \sigma_{i}-2$ and $d_{i+1} \neq \sigma_{i}-4$.
(b) $d_{i+1}=\sigma_{i}-4$ and $d_{i+2}=\sigma_{i}-2$.

Proof. See [8]
Remark 1.16. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}$ be an odd almost practical number in which $p_{1}<p_{2}<\cdots<p_{m}$ are all prime factors of n, then by 1.15, it is clear that $p_{3}=7$.

Now, we state a theorem which has a crucial role in constructing almost practical numbers.

Theorem 1.17. Let $n \neq 3$ be an almost practical number and p be a prime, then $p n$ is an almost practical number if and only if $2 p \leq \sigma(n)-2$ and $2 p \neq \sigma(n)-4$

Proof. See [8]
Proposition 1.18. Let $n \neq 3$ be an almost practical number and p be a prime dividing n, then $p n$ is an almost practical number.

Proof. See [8]
Now, we are going to investigate the relation between almost practical numbers and Zumkeller numbers. The following proposition is a generalization of proposition 10 of [10].

Proposition 1.19. Let $n \neq 3$ be an almost practical number. Then, n is Zumkeller if and only if $\sigma(n)$ is even.

Proof. The proof is similar to proof of Proposition 10 of 10].
Example 1.20. If s is a positive integer, Then $n=2^{s} \times 3$ is a practical number and $\sigma(n)$ is even. Hence, n is Zumkeller.
Example 1.21. It is easy to check that $n=3^{3} \times 5 \times 7$ is an almost practical number. Thus, if $m=3^{\alpha_{1}} \times 5^{\alpha_{2}} \times 7^{\alpha_{3}}$ such that $\alpha_{1}>2$ and at least one of positive integers α_{1}, α_{2} and α_{3} be odd, then n is a Zumkeller number.

Also, we can generalize theorem 11 of [10].

Theorem 1.22. Let $n \neq 3$ be an almost practical number and p a prime number with $\operatorname{gcd}(n, p)=1$. If $\sigma(n)$ is odd, then $p n$ is a Zumkeller number if and only if $p \leq \sigma(n)$.

Proof. By 1.19, the proof is identical to proof of theorem 11 of 10
In addition, we recall a proposition of [10]:
Proposition 1.23. Let n be a practical number and p a prime number with $\operatorname{gcd}(n, p)=$ 1. If $\sigma(n)$ is odd, then $p n$ is a Zumkeller number if and only if $p \leq \sigma(n)$.

Proof. see 10]
In the following, we state two crucial theorem about k-layered numbers. For better understanding, first, we state a special case of the theorem.

Proposition 1.24. Let n be an odd number such that $3 \mid \sigma(n)$. Now, Let A_{1}^{\prime} be a the subset of positive divisors of n so that A_{1}^{\prime} sums to $\frac{2 \sigma(n)}{3}$. If α is a positive integer and $A^{\prime}=\left\{2^{\alpha} d \mid d \in A_{1}^{\prime}\right\}$ such that $2^{\alpha} n$ is a 3 -layered number with 3-layered partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ so that $A^{\prime} \subset A_{2} \cup A_{3}$, then for every integer $\alpha \leq t$, the number $\ell=2^{t} n$ is a 3-layered number.

Proof. Let $2^{\alpha} n$ be a 3 -layered number. Now, we want to prove $k=2^{\alpha+1} n$ is a 3 -layered number. Let D be the set of positive divisors of n. We define:

$$
M_{1}=A^{\prime} \cap A_{2}, M_{2}=A^{\prime} \cap A_{3} .
$$

Now, we define:

$$
M_{1}^{\prime}=\left\{2 d \mid d \in M_{1}\right\}, M_{2}^{\prime}=\left\{2 d \mid d \in M_{2}\right\}, M_{3}=\left\{2^{\alpha+1} d \mid d \in\left(D \backslash A_{1}^{\prime}\right)\right\}
$$

It is easy to check that $\left\{A_{1} \cup M_{3},\left(A_{2} \backslash M_{1}\right) \cup M_{1}^{\prime} \cup M_{2},\left(A_{3} \backslash M_{2}\right) \cup M_{1}^{\prime} \cup M_{1}\right\}$ is a 3-layered partition for k. Thus, by this method, inductively, we can prove that $\ell=2^{t} n$ is a 3 -layered number for every integer $t \geq \alpha$,

Thus, we have:
Proposition 1.25. If $n>3$ is an odd almost practical number such that $6 \mid \sigma(n)$, then for every positive integer α, the number $\ell=2^{\alpha} n$ is a 3 -layered.

Proof. First, we prove that $2 n$ is a 3-layered number. Let $A_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is the set of positive divisors of n. By 1.25, n is a Zumkeller number; this concludes that A_{1} can be partitioned into two subsets B_{1} and B_{2} such that each of them sums to $\frac{\sigma(n)}{2}$. Now, we define $A_{2}=\left\{2 d \mid d \in B_{2}\right\}$ and $A_{3}=\left\{2 d \mid d \in B_{3}\right\}$. We know that n is an odd number. Therefore, for every integer $a \in A_{2} \cup A_{3}, 2 a \notin A_{1}$. Thus, $\left\{A_{1}, A_{2}, A_{3}\right\}$ is a 3-layered partition for n. Also, we know that n is an almost practical number such that $2|\sigma(n) 3| \sigma(n)$ and $\frac{2 \sigma(n)}{3} \neq 2, n$; this concludes that there exists $A^{\prime} \subset A_{1}$ so that A^{\prime} sums to $\frac{2 \sigma(n)}{3}$. On the other hand, let $A^{\prime \prime}=\left\{2 d \mid d \in A^{\prime}\right\}$, we know that for every integer $d \in A_{1}, 2 d \in A_{2} \cup A_{3}$; this concludes that $A^{\prime \prime} \subset A_{2} \cup A_{3}$. Then, by 1.24 , for every positive integer α, the number $2^{\alpha} n$ is 3-layered.

Example 1.26. It is easy to check that $n=120$ is a 3 -layered number with 3 layered partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ such that $A_{1}=\{20,40,60\}, A_{2}=120$ and $A_{3}=$ $\{1,2,3,4,5,6,8,10,12,15,24,30,120\}$. Let $120=2^{3} n$. It is easy to check that $\frac{2 \sigma(n)}{3}=16$. Now, if we define $A_{1}^{\prime}=\{1,15\}$, then it is obvious that $A^{\prime}=\left\{2^{3}, 2^{3} \times\right.$ $15\} \subset A_{2} \cap A_{3}$. Thus, by 1.24 for every positive integer $k \geq 3$, the number $2^{k} \times 3 \times 5$ is a 3 -layered number.

Now, we present a proposition like 1.24 for 4-layered numbers.
Proposition 1.27. Let n be an odd number such that $2 \mid \sigma(n)$. Now, let D be the set of positive divisors of n such that D can be partitioned into two subsets A_{1}^{\prime} and A_{2}^{\prime} so that A_{1}^{\prime} and A_{2}^{\prime} sums to $\frac{\sigma(n)}{2}$. If α is a positive integer, $A_{1}^{\prime \prime}=\left\{2^{\alpha} d \mid d \in A_{1}^{\prime}\right\}$ and $A_{2}^{\prime \prime}=\left\{2^{\alpha} d \mid d \in A_{2}^{\prime}\right\}$ so that $2^{\alpha} n$ is a 4-layered number with 4-layered partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ such that $A_{1}^{\prime \prime} \subset\left(A_{1} \cup A_{2}\right)$ and $A_{2}^{\prime \prime} \subset\left(A_{3} \cup A_{4}\right)$, then for every integer $\alpha \leq t$, the number $\ell=2^{t} n$ is a 4-layered number.
Proof. Let $2^{\alpha} n$ be a 4-layered number. We want to prove $k=2^{\alpha+1} n$ is a 4-layered number. Let D be the set of positive divisors of n. We define:

$$
\begin{aligned}
& M_{1}=A_{1}^{\prime \prime} \cap A_{1}, M_{2}=A_{1}^{\prime \prime} \cap A_{2} \\
& M_{3}=A_{2}^{\prime \prime} \cap A_{3}, M_{4}=A_{2}^{\prime \prime} \cap A_{4}
\end{aligned}
$$

Now, we define:

$$
\begin{aligned}
& M_{1}^{\prime}=\left\{2 d \mid d \in M_{1}\right\}, M_{2}^{\prime}=\left\{2 d \mid d \in M_{2}\right\} \\
& M_{3}^{\prime}=\left\{2 d \mid d \in M_{3}\right\}, M_{4}^{\prime}=\left\{2 d \mid d \in M_{4}\right\} .
\end{aligned}
$$

It is easy to check that $\left\{\left(A_{1} \backslash M_{1}\right) \cup M_{1}^{\prime} \cup M_{2},\left(A_{2} \backslash M_{2}\right) \cup M_{2}^{\prime} \cup M_{1},\left(A_{3} \backslash M_{3}\right) \cup\right.$ $\left.\left.M_{3}^{\prime} \cup M_{4},\left(A_{4} \backslash M_{4}\right) \cup M_{4}^{\prime} \cup M_{3}\right)\right\}$ is a 4-layered partition for k. Thus, by this method, inductively, we can prove that $\ell=2^{t} n$ is a 4-layered number for every integer $t \geq \alpha$.

The two following theorems are a generalization of 1.24 and 1.27, respectively.
Theorem 1.28. Let n and k be odd positive integers such that n is a k-layered number and $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{\frac{k-1}{2}}^{\prime}$ are disjoint subsets of positive divisors of n so that for every integer $1 \leq i \leq \frac{k-1}{2}$, A_{i}^{\prime} sums to $\frac{2 \sigma(n)}{k}$. Now, let α be a positive integer and for every integer $1 \leq i \leq \frac{k-1}{2}, A_{i}^{\prime \prime}=\left\{2^{\alpha} d \mid d \in A_{i}^{\prime}\right\}$ such that $2^{\alpha} n$ is a k layered number with k-layered partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ so that for every integer $1 \leq i \leq \frac{k-1}{2}, A_{i}^{\prime \prime} \subset A_{2 i-1} \cup A_{2 i}$. Then, for every integer $\alpha \leq t$, the number $\ell=2^{t} n$ is a k-layered number.
Proof. For every positive integers $1 \leq i \leq k-1$, we define $M_{i}=A_{\left\lfloor\frac{i+1}{2}\right\rfloor}^{\prime \prime} \cap A_{i}$, $M_{i}^{\prime}=\left\{2 d \mid d \in M_{i}\right\}$ and $M=\left\{2^{\alpha+1} d \left\lvert\, d \in\left(D \backslash A_{1}^{\prime} \cup A_{2}^{\prime} \cup \ldots, A_{\frac{K-1}{2}}^{\prime}\right)\right.\right\}$. Now, we define :

$$
B_{i}= \begin{cases}\left(A_{i} \backslash M_{i}\right) \cup M_{i}^{\prime} \cup M_{i+1} & \text { if } i \text { is odd } \\ \left(A_{j} \backslash M_{i}\right) \cup M_{i}^{\prime} \cup M_{i-1} & \text { if } i \text { is even }\end{cases}
$$

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS 7

It is easy to check that $\left\{B_{1}, B_{2}, \ldots, B_{k-1}, A_{k} \cup M\right\}$ is a k-layered partition for $2^{\alpha+1} n$. Also, by this method,, inductively, we can prove that $\ell=2^{t} n$ is k-layered for every integer $t \geq \alpha$.

Theorem 1.29. Let n be an odd positive integer so that $k \mid \sigma(n)$, where k is an even positive integer such that n is a k-layered number. Also, let $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{\frac{k}{2}}^{\prime}$ be disjoint subsets of positive divisors of n so that for every integer $1 \leq i \leq \frac{k}{2}, A_{i}^{\prime}$ sums to $\frac{2 \sigma(n)}{k}$. Now, let α be a positive integer and for every integer $1 \leq i \leq \frac{k}{2}$, $A_{i}^{\prime \prime}=\left\{2^{\alpha} d \mid d \in A_{i}^{\prime}\right\}$ such that $2^{\alpha} n$ be a k-layered number with k-layered partition $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ so that for every integer $1 \leq i \leq \frac{k}{2}, A_{i}^{\prime \prime} \subset A_{2 i-1} \cup A_{2 i}$. Then, for every integer t, where $\alpha \leq t$, the number $\ell=2^{t} n$ is a k-layered number.

Proof. For every positive integer $1 \leq i \leq k$, we define:

$$
M_{i}=A_{\left\lfloor\frac{i+1}{2}\right\rfloor}^{\prime \prime} \cap A_{i}, M_{i}^{\prime}=\left\{2 d \mid d \in M_{i}\right\}
$$

Now, for every $1 \leq i \leq k$, we define:

$$
B_{i}= \begin{cases}\left(A_{i} \backslash M_{i}\right) \cup M_{i}^{\prime} \cup M_{i+1} & \text { if } i \text { is odd } \\ \left(A_{j} \backslash M_{i}\right) \cup M_{i}^{\prime} \cup M_{i-1} & \text { if } i \text { is even }\end{cases}
$$

It is easy to check that the set $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is k-layered partition for $2^{\alpha+1} n$. Also, by this method, inductively, we can prove the number $2^{t} n$ is k-layered for every $t \geq \alpha$.

Example 1.30. Let $\ell=3 \times 5 \times 7$ and α be positive integers such that $3 \leq \alpha$. Suppose that $p<\frac{\sigma\left(\ell^{\alpha}\right)-4}{2}$ and $p \equiv 2(\bmod 3)$. By 1.21 and $1.17 \ell^{\alpha} p$ is an almost practical number such that $6 \mid \sigma(\ell)$. Therefore,by 1.25 , for every positive integer t, $2^{t} \ell^{\alpha} p$ is a 3-layered number.

Now, we state a proposition that we can find a huge set of 4-layered numbers by that.

Proposition 1.31. Let k, k^{\prime} be positive numbers, m be a k-layered number, and n be a k^{\prime}-layered number such that $\operatorname{gcd}(m, n)=1$. Then, mn is a $k k^{\prime}$-layered number.

Proof. Let $A_{1}, A_{2}, \ldots, A_{k}$ be a k-layered partition for m, and $B_{1}, B_{2}, \ldots, B_{k}^{\prime}$ be a k^{\prime}-layered partition for n . It is obvious that $\left\{A_{i} B_{j} \mid 1 \leq i \leq k, 1 \leq j \leq k\right\}$ is a $k k^{\prime}$-layered partition for $m n$.

It is clear that the proposition 1.31 can be generalized.
Corollary 1.32. Let $k_{1}, k_{2}, \ldots, k_{r}$ be positive integers such that for every integer $1 \leq i \leq r, m_{i}$ is a k_{i}-layered number. Also let for every inetger $1 \leq i \neq j \leq r$, $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$. Then, $m_{1} m_{2} \ldots m_{r}$ is a $k_{1} k_{2} \ldots k_{r}$-layered number.

The following examples show the power of proposition 1.31 for finding 4-layered numbers.

Example 1.33. By $1.21 n_{1}=3^{\alpha_{1}} \times 5^{\alpha_{2}} \times 7^{\alpha_{3}}$, in which $\alpha_{1}>2, \alpha_{2}, \alpha_{3}$ are positive integers, and at least one of the exponents of its factors is odd, is a Zumkeller number. Let k be a positive integer and p be a prime number such that $p \leq 2^{k+1}-1$ and $\operatorname{gcd}\left(p, n_{1}\right)=1$. By 1.11, 1.14, and 1.19, for every odd number α_{4}, the number $n_{2}=2^{k} \times p^{\alpha_{5}}$ is Zumkeller. Therefore, by 1.31 $n=n_{1} n_{2}$ is a 4-layered number.

Example 1.34. Let $t \leq 3$ be a positive integer. Now, suppose $p_{1}, p_{2} \leq \sigma\left(2^{t}\right)$ are distinct primes expect for 3,5 and 7 . By 1.22 and 1.19, the number $n_{1}=2^{t} p_{1}$ is a Zumkeller number. Also, by definition of p_{2}, we know $2 p_{2}<\sigma\left(3^{t} \times 5^{t} \times 7^{t}\right)-4$. Thus, according to 1.21 and 1.17 the number $n_{2}=3^{t} \times 5^{t} \times 7^{t} p_{2}$ is a Zumkeller number. At last, by 1.31, the number $n_{1} n_{2}=2^{t} \times 3^{t} \times 5^{t} \times 7^{t} p_{1} p_{2}$ is a 4-layered number.

In the following, we want to prove that for every integer $n \geq 11$, the number n ! is 3-layered and 4-layered. Before that, we recall a theorem which was proved by Breusch; this theorem is a generalization of Bertrand's postulate theorem.

Theorem 1.35. For every integer $n \geq 7$, there are primes of the form $3 k+1$ and $3 k+2$ between n and $2 n$.

Now, we state a theorem.
Theorem 1.36. If $n \geq 11$ is an integer, then the number n ! possesses prime factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ such that $2=p_{1}<p_{2}<\cdots<p_{k}$ and $\alpha_{k-1}=\alpha_{k}=1$. Also, $p_{k} \leq 2^{\alpha_{1}}$ and $2 p_{k-1}<\sigma\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k-2}^{\alpha_{k}-2}\right)-4$. In addition, there exists a prime number q such that $q \| n!$ and $q \equiv 2(\bmod 3)$.
Proof. If $11 \leq n \leq 16$, then it is easy to check that n ! satisfies in the theorem. Now, Let $n \geq 17$ and p be the largest prime factor of $n!$ such that $p^{2} \mid n!$; this concludes $2 p \mid n$. By definition of n, it is clear that $p \geq 7$. Then, by 1.35 there exist at least two distinct prime numbers q_{1} and q_{2} such that $p<q_{1}, q_{2}<2 p$ and $q_{1} \equiv 2$ ($\bmod 3)$. Thus, by definition of p, q_{1} and q_{2} are prime factors of $n!$ with power of one. Furthermore, if $\operatorname{ord}_{2}(n)$ denotes the exponent of the largest power of 2 that divides n , then by Legendre's formula, we have:

$$
p_{k} \leq n<2^{\left\lfloor\frac{n}{2}\right\rfloor}<2^{\operatorname{ord}_{2}(n)}
$$

Also, by definition of $n, p_{k-3} \geq 7$. Thus, by Bertrand's postulate theorem, we have:

$$
2 p_{k-1}<4 p_{k-2}<p_{k-3} p_{k-2}<\sigma\left(p_{2}^{\alpha_{2}} \ldots p_{k-2}^{\alpha_{k-2}}\right)-4
$$

Thus, as a consequence of the above theorem, we have the following corollary
Corollary 1.37. For every integer $n \geq 11$, the number n ! is 3 -layered.
Proof. Let $n=11$ it is easy to check that we can find positive integer α and ℓ such that $2^{\alpha} \ell$ and ℓ is an almost practical number. Thus, by 1.36 and 1.17 for every integer $n \geq 11$, we can find positive integers α and ℓ such that $n=2^{\alpha} \ell$, where ℓ is
an odd almost practical number. Therefore, by 1.25 the number n ! is a 3 -layered number.

At last, we close this section by the following corollary.
Corollary 1.38. For every integer $n \geq 11$, the number n ! is 4 -layered.
Proof. Let $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be the prime factorization of n ! such that $2=p_{1}<p_{2}<$ $\cdots<p_{k}$. By 1.361 .111 .19 and 1.17 the numbers $2^{\alpha_{k}} p_{k}$ and $p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p^{\alpha_{k-1}} k-1$ are Zumkeller. Thus, by 1.31, n ! is 4-layered.

2. k-MULTIPERFECT NUMBERS AND k-LAYERED NUMBERS

First, we state a proposition that we can find a wide rang of k-layered numbers by that.

Proposition 2.1. Let $k>1, l, t$, s be positive integers such that $s \mid t$. Now, suppose n is a k-layered number such that $\sigma(n)=k l$. If $\sigma(n t)=(k+1) s l$, then $m=n t$ is a $(k+1)$-layered number.
Proof. Let D be the set of positive divisors of m and let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be k layered partition for n. Now, for every positive integer $1 \leq i \leq k$, we define $A_{i}^{\prime}=\left\{s d \mid d \in A_{i}\right\}$ and also $A_{k+1}^{\prime}=D \backslash\left(A_{1}^{\prime} \cup A_{2}^{\prime} \cup \ldots A_{k}^{\prime}\right)$. It is easy to check that $\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{k+1}^{\prime}\right\}$ is a $(k+1)$-layered partition for m.

Therefore, we have:
Corollary 2.2. Let p be a prime number. If n is a p-layered number such that $\operatorname{gcd}(n, p)=1$, then $n p$ is a $(p+1)$-layered number
Example 2.3. If n is an odd Zumkeller number, then by 2.2, $2 n$ is a 3-layered number.

Now, we recall the definition of k-multiperfect numbers.
Definition 2.4. Let n and $k \neq 1$ be positive integers. The number n is said to k-multiperfect if $\sigma(n)=k n$. (Note that if n is 2-multiperfect number, then n is said to be perfect.)

We are now ready to state an example, showing a crucial role of proposition 2.1 in finding a huge set of k-layered numbers.

Example 2.5. Let $a_{1}=2 \times 3, a_{2}=2^{3} \times 3 \times 5, a_{3}=2^{5} \times 3^{3} \times 5 \times 7, a_{4}=2^{11} \times 3^{3} \times 5^{2} \times$ $7^{2} \times 13 \times 19 \times 31, a_{5}=2^{19} \times 3^{5} \times 5^{2} \times 7^{2} \times 11 \times 13^{2} \times 19^{2} \times 31^{2} \times 37 \times 41 \times 61 \times 127, a_{6}=$ $2^{39} \times 3^{11} \times 5^{7} \times 7^{3} \times 11 \times 13^{2} \times 17 \times 19^{2} \times 29 \times 31^{2} \times 37 \times 41 \times 61 \times 73 \times 79 \times 83 \times$ $127 \times 157 \times 313 \times 331 \times 2203 \times 30841 \times 61681$. It was proved that for every integer $1 \leq i \leq 5$, the number a_{i} is a $(i+1)$-perfect number(See [1].). Also, it is easy to see that for every integer $1 \leq i<5 a_{i} \mid a_{i+1}$ and 6 is a Zumkeller number. Thus, by proposition 2.1, for every integer $1 \leq i \leq 5, a_{i}$ is a $(i+1)$-layered number.

Now, we recall a concept of number theory
Definition 2.6. An arithmetical function f is said to be multiplicative if f is not identically zero and also $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$.
Remark 2.7. We know that the sum divisor function is a multiplicative function (see [14]); this concludes that the function I is multiplicative too.

Proposition 2.8. Every perfect number is Zumkeller.
Proof. Let D be the set of positive divisors of n. We define $A_{1}=\{n\} A_{2}=D \backslash\{n\}$. It is clear that A_{1}, A_{2} is Zumkeller partition of n.

The proposition 2.8 lead us to raise the following open question
Open Question 2.9. For which one of positive integers $k \neq 1$, every k-multiperfect number is k-layered

Remark 2.10. It is believed that all k-multiperfect number of index 3,4,5, 6 and 7 are known. Among six 3-multiperfect numbers that are fund, the number 51001180160 is the largest see [1].

In the following, we prove that every known 3-multiperfect numbers is 3-layered. Before that, we recall some concept and results in number number theory.

Definition 2.11. The abundant number n is said to be semiperfect if n is equal to all or some of proper divisor of n. Also, the abundant number n which is not semiperfect called weird.

The existence of odd weird numbers is still an open question. The following theorem was proved by W. Fang (see [11]).

Theorem 2.12. There are no odd weird numbers less than 1.8×10^{19}. In other words, every odd abundant number $a \leq 1.8 \times 10^{19}$ is semiperfect

Also, the following theorem was proved by Guy:
Theorem 2.13. Let m be a positive integer, and let p be a prime number such that $2^{m} \leq p \leq 2^{m+1}$. Then, the number $2^{m} p$ is a semiperfect number.

Remark 2.14. By definition of semiperfec numbers, it is easy to check that every multiple of a semiperfect number is semiperfect.

Then we have:
Proposition 2.15. Every known 3-multiperfect number is 3-layered.
Proof. Let $\ell \geq 1$ be a positive integer. We know that every known ℓ-multiperfect number is even. Let n be a known 3-multiperfect number and let k and m be positive integers such that $n=2^{k} m$ and $\operatorname{gcd}\left(2^{k}, m\right)=1$. Now, suppose that p be the smallest odd prime factor of n. It is easy to check that there exists a positive integer α such that $2^{\alpha} \leq p \leq 2^{\alpha+1}$ and $2^{\alpha} \mid n$. Then, by 2.13 and 2.14 there exists a subset D of the set of proper positive divisor of n such that D sums to n. Now, we define $A_{1}=D, A_{2}=n$. It is obvious that A_{1} and A_{2} sums $\frac{\sigma(n)}{3}$. Thus, by 1.4 n is 3-layered.

Remark 2.16. Let n be a positive integer such that $I(n) \geq 4$. Now, let t be a deficient number such that $n=t^{\alpha} m$ and $g c d(t, m)=1$. We know the function I is multiplicative. Therefore, $I(m)>2$; this concludes that m is an abundant number.

The theorem 2.12 lead us to the following conjecture.
Conjecture 2.17. Every odd abundant number is semiperfect.

Up to now, 364 -multiperfect numbers are fund [1]. Let n be a 4 -multiperfect. According to the reference [1], we know that there exist a positive integer α and an odd positive integer m such that $n=2^{\alpha} m$. By 2.16, m is an abundant number. One can see that m is a semiperfect number. Then there exists a subset D of the set of proper positive divisors of m such that D sums to m. Now, we define $A_{1}=2^{\alpha} d: d \in D$. Also, it is obvious that $I\left(\frac{n}{2}\right) \geq 2$; it concludes that $\sigma\left(\frac{n}{2}\right) \geq n$, and also by 1.11 and the reference [1], it is easy to check that $\frac{n}{2}$ is a practical number. Thus, by 1.12, there exists a subest A_{2} of the set of positive divisors of $\frac{n}{2}$ such that A_{2} sums to $n=\frac{\sigma(n)}{4}$. Now, if we define $A_{3}=n$, then for every positive integer i, A_{i} sums to $\frac{\sigma(n)}{4}$. Then by 1.4, we have the following corollary.

Corollary 2.18. Every known 4-multiperfect number is 4-layered.
Remark 2.19. Exactly half of known 4-multiperfect are divisible by at least a 3multiperfect numbers [1]. Then, once again, by 2.15 and 2.1, at least half of known 4-multiperfect are 4-layered

Remark 2.20. Let $a_{1}=6, a_{2}=120, a_{3}=30240, a_{4}=14182439040$ it was proved that for every integer $1 \leq i \leq 4$, the number a_{i} is the smallest $(i+1)$-perfect number [1]. Also, for every integer $\left.1 \leq i \leq 3, a_{i} \mid a_{(} i+1\right)$. Then, by [2.1, a_{i} is $(i+1)$-layered number for every integer $1 \leq i \leq 4$

3. LOWER DENSITY OF k-LAYERED

In [10], Yuejian and K.P.S raised the following open question.
Open Question 3.1. Does the set of Zumkeller numbers possess density?
In 2010, T.D checked that the 229026 Zumkeller numbers less than 10^{6} have a maximum difference of 12 ; he conjectured that any 12 consecutive numbers include at least one Zumkeller number. At last, in 2019, Charlie presented an easy proof for this conjecture 11]. We here present the proof of this conjecture for completion.

Proposition 3.2. If $a<b$ are two consecutive Zumkeller numbers, then $|b-a| \leq$ 12 ; this concludes that the lower density of the set of Zumkeller numbers is at least $\frac{1}{12}$.
Proof. By 1.20 and 1.8 , for every positive integer k, the numbers $18 k+6$ and $18 k+12$ are Zumkeller. Then difference between two consecutive Zumkeller numbers is at most 12 .

Remark 3.3. There exist consecutive Zumkeller numbers a and b such that $b-a=$ 12. For instance, $a=222$ and $b=224$ are consecutive Zumkellers such that $b-a=12$.

Before finding a lower density for the set of 3-layered numbers and 4-layered numbers, we recall that the number n is said to be superabundant if $I(n)>I(k)$ for all positive integers $k<n$. Also, we have:

Lemma 3.4. Let $m_{1}<m_{2}$ be two consecutive superabundant numbers. For every positive integer $t<m_{2}, I(t)<I\left(m_{1}\right)$.
Proof. Let t be a positive integer such that $I\left(t_{1}\right)>I\left(m_{1}\right)$ and $t>m_{2}$. By definition of m_{1}, m_{2}, it is obvious that t fails to be superabundant number; this concludes there exists a positive integer $m_{1}<\ell_{1}<t<m_{2}$ such that $I\left(m_{1}\right)>I\left(\ell_{1}\right)>I(t)$. We
once again know that ℓ_{1} cannot be superabundant so there exists a positive integer ℓ_{2} such that $m_{1}<\ell_{2}<\ell_{1}<t<m_{2}$. Therefore, for every positive integer r, by this algorithm, inductively, we can find distinct positive integers $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$ such that $m_{1}<\ell_{r}<\ell_{r-1}<\cdots<\ell_{1}<m_{2}$ and $I\left(m_{2}\right)>I\left(\ell_{r}\right)>I\left(\ell_{r-1}\right)>\cdots>I\left(\ell_{1}\right)$; this contradicts the finiteness of the set $A=\left\{a \mid a \in \mathbb{N}, m_{1}<a<m_{2}\right\}$.

Now, we find a lower density for the set of 3-layered numbers.
Proposition 3.5. If $a<b$ are two consecutive 3 -layered numbers, then $b-a \leq 360$; this concludes the lower density of the set of 3 -layered numbers is at least $\frac{1}{360}$.

Proof. By 1.26, $n=120$ is a 3-layered number. Also, it is first superabundant number such that $I(n) \leq 3$ (See [13]). Thus, by 3.4 and $1.3, n$ is the smallest 3 -layered number. Moreover, it is easy to check that at least one of the numbers $t, t+1$, and $t+2$ is not divisible by 3 and 5 . Thus by 1.26 and 1.8 , one of the numbers $t n,(t+1) n$, or $(t+2) n$ is 3 -layered; this concludes that the lower density of 3-layered numbers is at least $\frac{1}{3 n}=\frac{1}{360}$

If A is a set of positive integer, then we define $S(A)$ as a sum of the integers in A. Now, we find a lower density for the set of 4-layered numbers.

Proposition 3.6. If $a<b$ are two consecutive 4-layered numbers, then $b-a \leq$ 249480; this concludes the lower density of the set of 4-layered numbers is at least $\frac{1}{249480}$.
Proof. The number $n=27720=2^{3} \times 3^{2} \times 5 \times 7 \times 11$ is 4-layered because let we define:
$A_{1}=\left\{2^{3} \times 3^{2} \times 5, \quad 2^{3} \times 3^{2} \times 5 \times 7 \times 11\right\}$
$A_{2}=\left\{2 \times 3 \times 5, \quad 2 \times 3 \times 5 \times 11, \quad 2^{2} \times 3 \times 5 \times 7 \times 11, \quad 2^{3} \times 3 \times 5 \times 7 \times 11\right.$, $\left.2^{2} \times 3^{2} \times 5 \times 7 \times 11\right\}$
$A_{3}=\left\{1, \quad 2 \times 3^{2}, \quad 2 \times 3 \times 5 \times 7 \times 11, \quad 2^{2} \times 3^{2} \times 7 \times 11, \quad 2^{3} \times 5 \times 7 \times 11\right.$, $\left.3^{2} \times 5 \times 7 \times 11, \quad 2^{3} \times 3^{2} \times 5 \times 11, \quad 2^{3} \times 3^{2} \times 7 \times 11, \quad 2 \times 3^{2} \times 5 \times 7 \times 11\right\}$
It is easy to check that $S\left(A_{i}\right)=\frac{\sigma(n)}{4}$ for every integer $1 \leq i \leq 3$. Then, by 1.4. n is a 4-layered number. Also, n is the smallest positive integer such that $I(n) \geq 4$ (See [13]). Therefore, by 3.4 and [1.3, 27720 is the smallest 4 -layered number. In addition, it is easy to check that for every positive integer k, there exist at least an integer $1 \leq i \leq 9$ such that $\operatorname{gcd}(k+i, n)=1$; by 1.8 this concludes that $(k+i) n$ is a 4 -layered numbers so the lower density of 4-layered numbers is at least $\frac{1}{9 n}=\frac{1}{249480}$

Now, we find the smallest 5 -layered number.
Proposition 3.7. The number $n=147026880=2^{6} \times 3^{3} \times 5 \times 7 \times 11 \times 13 \times 17$ is the smallest 5-layered number.

Proof. We know $t=122522400$ is the smallest superabundant such that $I(t) \geq 5$ (see [13]). But $5 \not X \sigma(t)$. Therefore, by 1.3 and 3.4 t fails to be 5 -layered and every 5 -layered number is larger than t. By a Computational Software like python, it is easy to check that the number $n=147026880$ is the smallest integer such that $I(n) \geq 5$ and $5 \mid \sigma(n)$. Now, we want to prove this number is 5 -layered. First of all, we know the number $\ell_{1}=120=2^{3} \times 3 \times 5$ is a 3 -multiperfect number and the
number $\ell_{2}=32760=2^{3} \times 3^{2} \times 5 \times 7 \times 13$ is the a 4 -perfect number such that $\ell_{1} \mid \ell_{2}$ (See [1]). Therefore, by 2.15 and [2.1, the number ℓ_{2} is a 4 -layered number; this concludes that there exists a 4-layered partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ for ℓ_{2} such that A_{i} sums to ℓ_{2} for every integer $1 \leq i \leq 4$. Also, for every integer $1 \leq i \leq 4$ we define:

$$
A_{i}^{\prime}=\left\{2^{3} \times 3 \times 11 \times 17 d \mid d \in A_{i}\right\}
$$

On the other hand, let $m=447552$. We know the number $n_{1}=2^{6} \times 5 \times 11 \times 13 \times 17$ is a practical number. Also, $m<\sigma\left(n_{1}\right)$. Thus, by definition of practical number, there exist subsets B_{1} and B_{2} of the set of positive divisors of n_{1} such that B_{1} and B_{2} sum to m and $\frac{m}{7}$, respectively. Now, we define $B_{2}^{\prime}=\left\{7 d \mid d \in B_{1}\right\}$. In addition, we know the number $n_{2}=2^{6} \times 3^{2} \times 5 \times 7 \times 13 \times 17$ is a practical number such that $\frac{m}{3}<\sigma\left(n_{2}\right)$. Therefore, there exists a subset B_{3} of the set of positive divisors for n_{2} such that B_{3} sums to $\frac{m}{3}$. Now, we define $B_{3}^{\prime}=\left\{3 d \mid d \in B_{3}\right\}$. At last, we know the number $n_{3}=2^{2} \times 3^{2} \times 5 \times 11 \times 13 \times 17$ is a practical number such that $\frac{m}{21}<\sigma\left(n_{3}\right)$; this concludes that there exists a subset B_{4} of the set of positive divisors for n such that B_{4} sums to $\frac{m}{21}$. Now, we define $B_{4}^{\prime}=\left\{21 d \mid d \in B_{4}\right\}$. It is easy to check that the sets $B_{1}, B_{2}^{\prime}, B_{3}^{\prime}, B_{4}^{\prime}, A_{1}, A_{2}, A_{3}, A_{4}, A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$ and A_{4}^{\prime} are disjoint subsets of the set of positive divisors for n. Now, we define $C_{1}=A_{1} \cup B_{1}$ and also for every integer $2 \leq i \leq 4$, we define $C_{i}=A_{i}^{\prime} \cup B_{i}^{\prime}$; it is easy to check that every $S\left(C_{i}\right)=\frac{\sigma(n)}{5}$. Then, by 1.4, n is a 5 -layered number.

Theorem 3.8. The number $130429015516800=2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times$ $19 \times 23 \times$ is the smallest 6 -layered number.

Proof. We can see that the number $n=130429015516800$ is smallest number such that $I(n) \geq 6$ (see [13]) . Therefore, by [1.3, if m be a 6 -layered number, then $m \geq n$. Now, we prove that the number n is a 6 -layered number; this concludes that n is the smallest 6 -layered number. we define:

$$
\begin{aligned}
A_{1}=\{ & 2^{3}, \quad 2^{2} \times 5 \times 13 \times 29, \quad 2^{4} \times 3 \times 11 \times 13 \times 17 \times 29 \\
& 2^{2} \times 3 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 29, \\
& 2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23, \\
& \left.2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29\right\} \\
A_{2}=\{ & 2^{4} \times 3^{3} \times 7 \times 17 \times 19, \quad 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 17 \times 19 \times 29, \\
& 2^{6} \times 3^{3} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& \left.2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29\right\} \\
A_{3}=\{ & 2^{4} \times 3 \times 7 \times 17, \quad 2^{7} \times 3 \times 7^{2} \times 17 \times 29, \quad 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 17 \times 29, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{6} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& \left.2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{4}=\left\{23, \quad 2 \times 3^{3} \times 5 \times 11 \times 13, \quad 5^{2} \times 7 \times 17 \times 19 \times 23 \times 29\right. \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 17 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{6} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \text {, } \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{4} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \text {, } \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{5} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \text {, } \\
& 2^{3} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& \left.2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29\right\} \\
& A_{5}=\left\{13, \quad 2 \times 11 \times 13 \times 23, \quad 2^{5} \times 3^{3} \times 7^{2} \times 17 \times 23\right. \text {, } \\
& 2 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29, \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29, \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 23 \times 29 \text {, } \\
& 2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{4} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29, \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \text {, } \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \text {, } \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29, \\
& 2^{3} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3^{3} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{5} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3^{2} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \text {, } \\
& 2^{5} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{7} \times 3 \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{6} \times 3^{3} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \text {, } \\
& 2^{2} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29,
\end{aligned}
$$

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERSI 5

$$
\begin{aligned}
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3 \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \\
& 2^{5} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{3} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{4} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \\
& 2 \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{5} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{3} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{3} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \\
& 2^{7} \times 3 \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{4} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \\
& 2^{5} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{3} \times 5 \times 7 \times 13 \times 13 \times 17 \times 19 \times 23 \times 29 \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \\
& 2^{2} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 1
\end{aligned}
$$

It is easy to check that for every integer $1 \leq i \leq 5, S\left(C_{i}\right)=\frac{\sigma(n)}{6}$. Thus, by 1.3 n is a 6 -layered number.

Theorem 3.9. The number $1970992304700453905270400=2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times$ $11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$ is the smallest 7 -layered number.

Proof. We can see that the number 1970992304700453905270400 is smallest number such that $I(n) \geq 7$ (see [13]). Now, we prove that the number $n=130429015516800$ is a 7 -layered number; this concludes that n is the smallest 7 -layered number. We define:

$$
\begin{aligned}
A_{1}=\{ & 2 \times 3, \quad 3^{2} \times 5^{2} \times 7^{2}, \quad 2^{6} \times 3^{3} \times 19 \times 23 \times 29 \times 37 \times 43, \\
& 3^{2} \times 5^{2} \times 7 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 47 \times 53, \\
& 2^{5} \times 3 \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& \left.2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53\right\} \\
A_{2}=\{ & 2 \times 3^{2}, \quad 2 \times 3 \times 5^{2} \times 11 \times 41, \quad 2^{3} \times 3^{2} \times 5 \times 19 \times 23 \times 29 \times 43 \times 53, \\
& 2^{2} \times 3 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 41 \times 47 \times 53, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53, \\
& 2^{4} \times 3^{4} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& \left.2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53\right\} \\
& \\
A_{3}=\{ & 2^{2} \times 3^{2} \times 31, \quad 2^{5} \times 3 \times 7 \times 11 \times 19 \times 31 \times 43, \\
& 2^{6} \times 3 \times 5 \times 11 \times 13 \times 23 \times 29 \times 31 \times 37 \times 53, \\
& 2^{2} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 53, \\
& 2^{3} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& \left.2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53\right\}
\end{aligned}
$$

$A_{4}=\left\{2 \times 7, \quad 2 \times 3 \times 7 \times 11 \times 13 \times 53, \quad 2^{2} \times 3^{3} \times 7 \times 11 \times 19 \times 29 \times 31 \times 47\right.$, $2^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERSI 7
$2^{5} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $\left.2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53\right\}$
$A_{5}=\left\{2^{3} \times 11 \times 23, \quad 2^{2} \times 3 \times 11 \times 13 \times 19 \times 31 \times 47 \times 53\right.$, $2 \times 3^{4} \times 5^{2} \times 11 \times 13 \times 17 \times 29 \times 31 \times 41 \times 47 \times 53$, $2^{7} \times 3^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{7} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2 \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,
$2^{7} \times 3^{4} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $\left.2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53\right\}$
$A_{6}=\left\{2^{2} \times 7 \times 23, \quad 2 \times 17 \times 23 \times 29 \times 31 \times 47\right.$,
$2^{7} \times 3^{4} \times 11 \times 13 \times 17 \times 29 \times 31 \times 41 \times 53$,
$2^{5} \times 3^{4} \times 5 \times 11 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,
$2^{5} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{5} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$,

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS 9

$$
\begin{aligned}
& 2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{5} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5 \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2 \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{3} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53 \text {, } \\
& 2^{5} \times 3^{3} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{2} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53 \text {, } \\
& 2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{3} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{5} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{4} \times 3^{4} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{6} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5 \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{5} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53 \text {, } \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \text {, } \\
& 2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53 \text {, } \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53,
\end{aligned}
$$

$2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2 \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{7} \times 3^{2} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{5} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{4} \times 3^{4} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS21
$2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3 \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{4} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{6} \times 3^{3} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2 \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,
$2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{2} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{3} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{6} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{2} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{4} \times 5^{2} \times 7 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7^{2} \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53$, $2^{5} \times 3^{4} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3 \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 47 \times 53$, $3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{2} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 43 \times 47 \times 53$, $2^{4} \times 3^{3} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{5} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$, $2^{3} \times 3^{4} \times 5^{2} \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53$,

ON k-LAYERED NUMBERS AND SOME LABELING RELATED TO k-LAYERED NUMBERS23

$$
\begin{aligned}
& 2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5 \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{5} \times 3 \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47, \\
& 2^{7} \times 3^{3} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{5} \times 3^{4} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{2} \times 5^{2} \times 7^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{2} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{7} \times 3^{4} \times 5 \times 7^{2} \times 11 \times 13 \times 17 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47 \times 53, \\
& 2^{6} \times 3^{4} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41 \times 43 \times 53, \\
& \left.2^{7} \times 3^{3} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 37 \times 41 \times 43 \times 47 \times 53\right\}
\end{aligned}
$$

It is easy to check that for every integer $1 \leq i \leq 6, S\left(A_{i}\right)=\frac{\sigma(n)}{7}$
At last, we close this section by a theorem, which proves that if for positive integer k, there exist a k-layered number, then the set of k-layered numbers possesses a lower density.

Theorem 3.10. Let n be the smallest k-layered numbers with prime factorization $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$. If $a<b$ are two consecutive k-layered numbers, then $b-a \leq$ $\left(p_{1} p_{2} \ldots p_{k}-\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)\right) n$.

Proof. Let s be a non negative integer and d be a positive integer between $s p_{1} \ldots p_{k}$ and $(s+1) p_{1} \ldots p_{k}$. By proposition [1.8, if $\operatorname{gcd}(d, n)=1$, then $d n$ is a k-layered number. Now, let r be a positive integer which is smaller than $p_{1} \ldots p_{k}$. It is clear that $\operatorname{gcd}\left(s p_{1} \ldots p_{k}+r, n\right)=1$ if and only if $\operatorname{gcd}(n, r)=1$. Thus, there exist at least $\varphi\left(p_{1} \ldots p_{k}\right)$ numbers d between $s p_{1} \ldots p_{k}$ and $(s+1) p_{1} \ldots p_{k}$ such that $d n$ is a k-layered number. Therefore, if we ignore $\varphi\left(p_{1} \ldots p_{k}\right)-1$ numbers of $p_{1} \ldots p_{k}$ numbers between $s p_{1} \ldots p_{k}$ and $(s+1) p_{1} \ldots p_{k}$, then again we can find a number like d between $s p_{1} \ldots p_{k}$ and $(s+1) p_{1} \ldots p_{k}$ such that $d n$ is a k-layered number(Note that φ is the euler totient function.).

4. SOME GRAPH LABELING RELATED TO k-LAYERED NUMBERS

First, we generalize the concept of Zumkeller labeling to k-layered labeling.
Definition 4.1. Let $G=(V, E)$ be a graph. An injective function $f: V \rightarrow \mathbb{N}$ is called a l - k-layered labeling of the graph G if the induced function $f^{*}: E \rightarrow \mathbb{N}$ defined by $f^{*}(x y)=f(x) f(y), x \in V, y \in V, x y \in E$ satisfies the following two conditions:
(i) $f(x y)$ is a k-layered number for all $x y \in E$.
(ii) the number of different k-layered numbers used to label the edges of G is l.

In addition, we generalize the concept of Zumkeller cordial labeling to k-layered labeling.
Definition 4.2. Let $G(V, E)$ be a graph. An injection function $f: E \rightarrow \mathbb{N}$ is call a k-layered cordial labeling of graph G if there exists an induced function $f^{*}: E \rightarrow\{0,1\}$ defined by $f^{*}(x y)=f^{*}(x) f^{*}(y)$ satisfies the following conditions:
(i) For every $x y \in E$

$$
f^{*}(x y)=\left\{\begin{array}{lr}
1, & \text { if } f(x) f(y) \text { is a Zumkeller number } \\
0, & \text { otherwise }
\end{array}\right.
$$

(ii) $\left|e_{f^{*}}(1)-e_{f^{*}}(0)\right| \leq 1$, where $e_{f^{*}}(1)$ is the number of edges of graph G having label 0 under f^{*} and $e_{f^{*}}(1)$ is the number of edges of graph G having label 1 under f^{*}
Remark 4.3. B.J. Balamurugan and et al[4] called the graph G Zumkeller, if G admits a Zumkeller labeling. Also, B.J. Murali and et al[[6] called the graph G Zumkeller cordial if G admits a Zumkeller cordial labeling. From now on, we call the graph $G k$-layered if G admits a k-layered labeling and also we called the graph $G k$-layered cordial if G admits a k-layered cordial labeling.

Let n be k-layered number. The following proposition states a condition for the integer k, which satisfying that concludes that every graph is k-layered.

Proposition 4.4. If there exists a k-layered number n with prime factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}$ such that for every positive integer $1 \leq i \leq t, \alpha_{i}$ is even, then every graph is k-layered.

Proof. If for every $1 \leq i \leq$, we label the vertex v_{i} of graph G with $p_{1}^{\frac{\alpha_{1}}{2}+i\left(\alpha_{1}+1\right)} p_{2}^{\frac{\alpha_{2}}{2}+i\left(\alpha_{2}+1\right)} \ldots p_{t}^{\frac{\alpha_{t}}{2}+i\left(\alpha_{t}+1\right)}$, then, by 1.9 this labeling is a k-layered labeling for G.

4.1. Some labeling related to Zumkeller numbers. .

The following theorem is one the most important theorem of this section:
Theorem 4.5. Let K_{n} denotes a complete graph on n vertices with vertex set V and edge set E. For every positive integer $k \leq \frac{n(n-1)}{2}$, We can find an f-labeling for V such that $e_{f}^{*}(1)=k$. $\left(e_{f}^{*}(1)\right.$ computes Zumkeller edges relative to our labeling)

Proof. It is easy to check that the statement holds for K_{1}, K_{2} and K_{3}. Let $m>3$ be a positive integer. Now, we want to prove that the statement holds for the complete graph K_{m}. We choose the even number t_{0} large enough that there exists a chain of even numbers $t_{m}<\cdots<t_{2}<t_{1}<t_{0}$ which for every positive integer $1 \leq r \leq m$, we can find distinct primes $p_{r, 1}, p_{r, 2}, \ldots, p_{r, m-1}$ such that for every positive integers, $1 \leq i \leq m$ and $2 \leq j \leq m-1$ we have:
(i) $\sigma\left(2^{2 t_{i}}\right)<p_{i, 1}<\sigma\left(2^{t_{i-1}}\right)$.
(ii) $\sigma\left(2^{2 t_{i}} p_{i, j-1}\right)<p_{i, j}<\sigma\left(2^{t_{i-1}}\right)$.
(iii) If $i \neq m$, then $\sigma\left(2^{2 t_{i}} p_{i, m-1}\right)<p_{i+1,1}$.

Suppose that $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be the vertex set of K_{m}. We label v_{1} with $n_{1}=2^{t_{1}}$. If we want the edge $v_{2} v_{1}$ to be non-Zumkeller relative to our labeling, then we label v_{2} with $n_{2,0}=2^{t_{2}} p_{1,1}$ because by (i), for number $n_{2,0} n_{1}=2^{t_{1}+t_{2}} p_{1,1}$, we have:

$$
\sigma\left(2^{t_{1}+t_{2}}\right)<\sigma\left(2^{2 t_{1}}\right)<p_{1,1}
$$

Therefore, according to 1.11 and 1.23 the number $n_{2,0} n_{1}$, which is labeling of the edge $v_{2} v_{1}$, is non-Zumkeller. Also, if we want the edge $v_{2} v_{1}$ to be Zumkeller, we label v_{2} with $n_{2,1}=2^{t_{2}} p_{2,1}$ because by (ii), for number $2^{t_{1}+t_{2}} p_{2,1}$ we have:

$$
p_{2,1}<\sigma\left(2^{t_{1}}\right)<\sigma\left(2^{t_{1}+t_{2}}\right)
$$

Thus, according to 1.11 and 1.23 the number $n_{2,1} n_{1}$, which is labeling of edge $v_{2} v_{1}$ relative to our labeling, is Zumkeller.
After labeling the vertex v_{2}, we know that the vertex v_{2} was labeled with number $n_{2}=2^{t_{2}} q$ such that $q \in\left\{p_{1,1}, p_{2,1}\right\}$. Now, for labeling the vertex v_{3}, if we want both edges of $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ be non-Zumkeller, then we label v_{3} with $n_{3,0}=2^{t_{3}} p_{1,2}$ because by 1.3, $2^{t_{1}+t_{3}}$ is a non-Zumkeller number and by (ii) we have:

$$
\sigma\left(2^{t_{1}+t_{3}}\right)<p_{2,1}
$$

Thus, by 1.6 , the number $n_{3,0} n_{1}$, which is labeling of the edge $v_{3} v_{1}$ relative to our labeling, is non-Zumkeller. Moreover, by (i), we have:

$$
\sigma\left(2^{t_{2}+t_{3}}\right)<\sigma\left(2^{2 t_{2}}\right)<q, \sigma\left(2^{t_{2}+t_{3}}\right)<\sigma\left(2^{2 t_{2}} p_{1,1}\right)<p_{1,2}
$$

Thus, by 1.6, the numbers $2^{t_{2}+t_{3}} p_{1,2}, 2^{t_{2}+t_{3}} q$ are non-Zumkeller. In addition, by (ii) and (iii), we have:

$$
\sigma\left(2^{t_{2}+t_{3}} p_{1,2}\right)<q, \text { or } \sigma\left(2^{t_{2}+t_{3}} q\right)<p_{1,2}
$$

Therefore, by 1.6, the number $n_{3,0} n_{2}=2^{t_{2}+t_{3}} p_{1,2} q$, which is labeling of the edge $v_{3} v_{2}$, is a non-Zumkeller number. Also, for labeling v_{3}, if we want one edge of $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ be Zumkeller relative to our labeling, then we label v_{3} with $n_{3,1}=$ $2^{t_{3}} p_{2,2}$ because by (i), for number $n_{3,1} n_{1}=2^{t_{1}+t_{3}} p_{2,2}$ we have:

$$
p_{2,2}<\sigma\left(2^{t_{1}}\right)<\sigma\left(2^{t_{1}+t_{3}}\right)
$$

Therefore, by 1.11 and 1.23 the number $n_{3,1} n_{1}$, which is labeling of $v_{3} v_{1}$ relative to our labeling, is a Zumkeller number. Also, once again, it is easy to check that the edge $v_{3} v_{2}$ is non-Zumkeller relative to our labeling. At last, for labeling v_{3}, if we want the both edges of $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ to be Zumkeller relative to our labeling, then we label v_{3} with $n_{3,2}=2^{t_{3}} p_{3,2}$ (By (ii), 1.23 , and 1.8 it is clear.). Let $j>3$ be an integer. By this method, we labeled $j-1$ vertices of complete graph K_{m}. Now, we want to label the vertex v_{j}. Suppose that ℓ be an integer such that $0 \leq \ell<j \leq m$. If we want to have exactly ℓ Zumkeller edges of edges $\left\{v_{j} v_{1}, v_{j} v_{2}, \ldots, v_{j} v_{j-1}\right\}$ relative to our labeling, we label v_{j} with $2^{t_{j}} p_{\ell+1, j}$ because first of all, by (ii), 1.11, 1.19, and 1.8 for every positive integer i which $1<i<\ell, v_{j} v_{i}$ is Zumkeller edge relative to our labeling. Moreover, for every positive integer s such that $\ell<s<j$, the edge $v_{j} v_{s}$ is non-Zumkeller because we know that the vertex v_{s} was labeled with $2^{t_{s}} q^{\prime}$ in which $q^{\prime} \in\left\{p_{i, s-1}: 1 \leq i \leq s\right\}$. Then, by (i) and(ii), for the number $2^{t_{s}+t_{j}} q^{\prime}$, we have:

$$
\sigma\left(2^{t_{s}+t_{j}}\right)<\sigma\left(2^{2 t_{s}}\right)<q^{\prime}, \sigma\left(2^{t_{s}+t_{j}}\right)<\sigma\left(2^{2 t_{s}}\right)<p
$$

Thus, by 1.3 and 1.6, the integers $2^{t_{s}+t_{j}} q^{\prime}$ and $2^{t_{s}+t_{j}} p_{\ell+1, j}$ are non-Zumkeller. Also, according to (ii) and (iii), we have:
$\sigma\left(2^{t_{s}+t_{j}} q^{\prime}\right)<\sigma\left(2^{2 t_{s}} q^{\prime}\right)<p$, or $\sigma\left(2^{t_{s}+t_{j}}\right) p<\sigma\left(2^{2 t_{s}} p\right)<q^{\prime}$
Therefore, by 1.6 the edge $v_{j} v_{s}$ is non-Zumkeller relative to our labeling.
It is clear that every simple graph is a subgraph of a complete graph. Then, we have:

Corollary 4.6. Let G be a simple graph with k edges. For every positive integer $t \leq k$, we can find an f-labeling for G that $e_{f}^{*}(1)=t .\left(e_{f}^{*}(1)\right.$ computes Zumkeller edges relative to our labeling)

By 1.3 we know that every square number fails to be Zumkeller. Therefore, as a consequence of theorem 4.9, we have:

Corollary 4.7. Let m be a non-negative integer and G be a graph with m loops. Also. let If $m-1 \leq|G|-m$, then G is a Zumkeller cordial graph.

4.2. some labeling related to 3-layered numbers. .

Now, state a theorem like theorem 4.5 for 3-layered numbers.
Theorem 4.8. Let K_{n} be a complete graph on n vertices with vertex set V and edge set E. For every positive integer $k \leq \frac{n(n-1)}{2}$, we can find an f-labeling for V such that $e_{f}^{*}(1)=k$. ($e_{f}^{*}(1)$ computes 3-layered edges relative to our labeling.).
Proof. It is easy to check that the statement holds for K_{1}, K_{2} and K_{3}. Let $m>3$ be a positive integer. Now, we want to prove that the statement holds for the complete graph K_{m}. Let $\ell=3 \times 5 \times 7$. We choose the even number t_{0} large enough that there exists a chain of even numbers $3<t_{m}<\cdots<t_{2}<t_{1}<t_{0}$ such that first, for every positive integer $1 \leq r \leq m, t_{i} \equiv 1(\bmod 3)$. In addition, we can find distinct primes $p_{r, 1}, p_{r, 2}, \ldots, p_{r, m-1}$ such that for every positive integers, $1 \leq i \leq m$ and $2 \leq j \leq m-1$ we have:
(i) $p_{i, j} \equiv 2(\bmod 3)$
(ii) $\sigma\left(2^{2} \ell^{2 t_{i}}\right)<p_{i, 1}<\frac{\sigma\left(\ell^{t_{i-1}}\right)-4}{2}$
(iii) $\sigma\left(2^{2} \ell^{2 t_{i}} p_{i, j-1}\right)<p_{i, j}<\frac{\sigma\left(\ell^{t_{i-1}}\right)-4}{2}$
(iv) If $i \neq m$, then $\sigma\left(2^{2} \ell^{2 t_{i}} p_{i, m-1}\right)<p_{i+1,1}$.

Suppose that $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be the vertex set of K_{m}. We label v_{1} with $n_{1}=2 \ell^{t_{1}}$. If we want the edge $v_{2} v_{1}$ to be non-3-layered relative to our labeling, then we label v_{2} with $n_{2,0}=2 \ell^{t_{2}} p_{1,1}$ because by (ii), for number $n_{2,0} n_{1}=2^{2} \ell_{1}^{t}+t_{2} p_{1,1}$, we have:

$$
\sigma\left(2^{2} \ell^{t_{1}+t_{2}}\right)<\sigma\left(2^{2} \ell^{2 t_{1}}\right)<p_{1,1}
$$

Therefore, by 1.7 the number $n_{2,0} n_{1}$, which is labeling of edge $v_{2} v_{1}$ relative to our labeling, is non-3-layered. Also, if we want the edge $v_{2} v_{1}$ to be 3-layered relative to our labeling, then we label v_{2} with $n_{2,1}=2 \ell^{t_{2}} p_{2,1}$ because by (iii), for number $n_{2,1} n_{1}=2^{2} \ell^{t_{1}+t_{2}} p_{2,1}$, we have:

$$
p_{2,1}<\frac{\sigma\left(\ell^{t_{1}}\right)-4}{2}<\frac{\sigma\left(\ell^{t_{1}+t_{2}}\right)-4}{2}
$$

Thus, by (i) and 1.30, the number $n_{2,1} n_{1}$, which is labeling of the edge $v_{2} v_{1}$ relative to our labeling, is 3-layered. After labeling the vertices v_{1} and v_{2}, for labeling the vertex v_{3}, if we want both edges of $\left\{v_{3} v_{2}, v_{3} v_{1}\right\}$ to be non-3-layered, then we label v_{3} with $n_{3,0}=2 \ell^{t_{3}} p_{1,2}$ because by 1.3 the number $2^{2} \ell^{t_{1}+t_{3}}$ is a non-3-layered number and by (iii), for number $n_{3,0} n_{1}=2^{2} \ell^{t_{1}+t_{3}} p_{1,2}$, we have:

$$
\sigma\left(2^{2} \ell^{t_{1}+t_{3}}\right)<p_{2,1}
$$

Thus, by 1.7, the number $n_{3,0} n_{1}$, which is labeling of the edge $v_{3} v_{1}$ relative to our labeling, is non-3-layered. In addition, we know the vertex v_{2} was labeled with number $2^{t_{2}} q$ such that $q \in\left\{p_{1,1}, p_{2,1}\right\}$ and by (ii), we have :

$$
\sigma\left(2^{2} \ell^{t_{2}+t_{3}}\right)<\sigma\left(2^{2} \ell^{2 t_{2}}\right)<q, \sigma\left(2^{2} \ell^{t_{2}+t_{3}}\right)<\sigma\left(2^{2} \ell^{2 t_{2}} p_{1,1}\right)<p_{1,2}
$$

Thus, by 1.7 the number $2^{2} \ell^{t_{2}+t_{3}} p_{1,2}$ and $2^{2} \ell^{t_{2}+t_{3}} q$ are non-3-layered. Moreover, by (iii) and (iv), we have:

$$
\sigma\left(2^{2} \ell^{t_{2}+t_{3}} p_{1,2}\right)<q, \text { or } \sigma\left(2^{2} \ell^{t_{2}+t_{3}} q\right)<p_{1,2}
$$

Therefore, by $1.3 n_{3,0} n_{1}$, which is labeling of the edge $v_{3} v_{2}$ relative to our labeling, is non-3-layered. Also, for labeling v_{3}, if we want one edge of $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ to be 3 -layered relative to our labeling, then we label v_{3} with number $n_{3,1}=2^{t_{3}} p_{2,2}$ because by (iii), for number $n_{3,1} n_{1}=2^{2} \ell^{t_{2}+t_{3}} p_{2,2}$, we have:

$$
p_{2,2}<\frac{\sigma\left(\ell^{t_{1}}\right)-4}{2}<\frac{\sigma\left(\ell^{t_{1}+t_{3}}\right)-4}{2}
$$

Therefore, by (i) and 1.30 the number $n_{3,1} n_{1}$, which is labeling of $v_{3} v_{1}$ relative to our labeling, is 3 -layered. In addition, once again by (iii), (iv), and 1.7 the edge $v_{3} v_{2}$ is non-3-layered relative to our labeling. At last, if we want both edges $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ to be 3-layered relative to our labeling, then we label v_{3} with $2 \ell^{t_{3}}$. (By (i), (iii) and 1.30 it is clear.). Now, Let $j>3$ be an integer, and by this method, we labeled the $j-1$ vertices of a complete graph. Now, we want to label the vertex v_{j}. Suppose that l be an integer such that $0 \leq l<j \leq m$. If we want to have exactly l 3-layered edges of $\left\{v_{j} v_{1}, v_{j} v_{2}, \ldots v_{j} v_{j-1}\right\}$ relative to our labeling we label v_{j} with
$2 \ell^{t_{j}} p_{l+1, j}$ because first of all, by (i), (iii), and 1.30 for every positive integer i such that $1<i<l, v_{j} v_{i}$ is a 3-layered edge relative to our labeling. Moreover, for every positive integer s such that $l<s<j$, the edge $v_{j} v_{i}$ is non-3-layered because we know the vertex v_{s} was labeled with $2 \ell^{t_{s}} q^{\prime}$ in which $q^{\prime} \in\left\{p_{i, s-1}: 1 \leq i \leq s\right\}$. By (i) and (ii), for number $2^{2} \ell^{t_{s}+t_{j}}$, we have:

$$
\sigma\left(2^{2} \ell^{t_{s}+t_{j}}\right)<\sigma\left(2^{2} \ell^{2 t_{s}}\right)<q^{\prime}, p
$$

Thus, by 1.7. $2^{2} \ell^{t_{s}+t_{j}} q^{\prime}$ and $2^{2} \ell^{t_{s}+t_{j}} p_{\ell+1, j}$ are non-3-layered. Also, according to (iii) and (iv), we have:

$$
\sigma\left(2^{2} \ell^{t_{s}+t_{j}} q^{\prime}\right)<\sigma\left(2^{2} \ell^{2 t} q^{\prime}\right)<p, \text { or } \sigma\left(2^{2} \ell^{t_{s}+t_{j}} p\right)<\sigma\left(2^{2} \ell^{2 t_{s}} p\right)<q^{\prime}
$$

Thus, by 1.7 the edge $v_{j} v_{s}$ is non-3-layered relative to our labeling.

4.3. some labeling related to 4 -layered numbers. .

Now, we once again state a theorem like 4.5 for 4-layered numbers.
Theorem 4.9. Let K_{n} denotes a complete graph on n vertices with vertex set V and edge set E. For every positive integer $k \leq \frac{n(n-1)}{2}$, We can find an f-labeling for V such that $e_{f}^{*}(1)=k .\left(e_{f}^{*}(1)\right.$ computes 4 -layered edges relative to our labeling.).

Proof. It is easy to check that the statement holds for K_{1}, K_{2} and K_{3}. Let $m>3$ be a positive integer. Now, we want to prove that the statement holds for the complete graph K_{m}. Let $\ell=2 \times 3 \times 5 \times 7$. We choose the even number t_{0} large enough that there exists a chain of even numbers, $3<t_{m}<\cdots<t_{2}<t_{1}<t_{0}$ which for every positive integer $1 \leq r \leq m$, we can find distinct primes $p_{r, 1}, p_{r, 2}, \ldots, p_{r, 2 m-2}$ such that for every positive integers, $1 \leq i \leq m$ and $2 \leq j \leq 2 m-2$ we have:
(i) $\sigma\left(\ell^{2 t_{i}}\right)<p_{i, 1}<\sigma\left(2^{t_{i-1}}\right)$
(ii) $\sigma\left(\ell^{2 t_{i}} p_{i, j-1}^{3}\right)<p_{i, j}<\sigma\left(2^{t_{i-1}}\right)$
(iii) If $i \neq m$, then $\sigma\left(\ell^{2 t_{i}} p_{i, 2 m-2}^{3}\right)<p_{i+1,1}$.

Suppose that $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be the vertex set of K_{m}. We label v_{1} with positive integer $n_{1}=\ell_{1}^{t}$. Now, If we want the edge $v_{2} v_{1}$ to be non-4-layered relative to our labeling, then we label v_{2} with $n_{2,0}=\ell^{t_{2}} p_{1,1}$ because by 1.3, the number $\ell^{t_{1}+t_{2}}$ is non-Zumekeller and by (i), for number $n_{2,0} n_{1}$, we have:

$$
\sigma\left(\ell^{t_{1}+t_{2}}\right)<\sigma\left(\ell^{2 t_{1}}\right)<p_{1,1}
$$

Thus, according to 1.6 , the number $n_{1} n_{2,0}$, which is the label of the edge $v_{2} v_{1}$ relative to our labeling, is non-4-layered. Also, if we want the edge $v_{2} v_{1}$ to be

4-layered we label v_{2} with $n_{2,1}=\ell^{t_{2}} p_{2,1} p_{2,2}$ because by (i), for number $\ell^{t_{1}+t_{2}} p_{2,1}$, we have:

$$
p_{2,1}, p_{2,2}<\sigma\left(2^{t_{1}}\right)<\sigma\left(\ell^{t_{1}+t_{2}}\right)
$$

Thus, by 1.34 the number $n_{2,1} n_{1}$, which is label of $v_{2} v_{1}$ relative to our labeling, is 4-layered. After labeling the vertices v_{1} and v_{2}, for labeling the vertex v_{3}, if we want both edges of $\left\{v_{3} v_{1}, v_{3} v_{2}\right\}$ to be non-4-layered, then we label v_{3} with $n_{3,0} \ell^{t_{3}} p_{1,2}$ because first of all, by 1.3 , we know the number $\ell^{t_{1}+t_{3}}$ is a non-4-layered number. In addition, by (i) and (ii), we have:

$$
\sigma\left(\ell^{t_{1}+t_{3}}\right)<\sigma\left(\ell^{2 t_{1}}\right)<p_{1,1}<p_{1,2}
$$

Thus, by 1.6. the number $n_{3,0} n_{1}$, which is label of the edge $v_{3} v_{1}$ relative to our labeling, is non-4-layered. Moreover, we know the vertex v_{2} is labeled with number $\ell^{t_{2}} q$ such that either $q \in\left\{p_{1,1}, p_{2,1} p_{2,2}\right\}$ and $f=\ell^{t_{2}+t_{3}} q$ is non-4-layered number because first of all, we know the number $\ell^{t_{2}+t_{3}}$ is non-Zumkeller. In addition, if $q=p_{1,1}$, then by (i), we have:

$$
\sigma\left(\ell^{t_{2}+t_{3}}\right)<\sigma\left(\ell^{2 t_{2}}\right)<p_{1,1}
$$

Thus, by 1.6, f is non-4-layered. Also, if $q=p_{2,1} p_{2,2}$, then by (ii), we have:

$$
\sigma\left(\ell^{t_{2}+t_{3}}\right)<p_{2,1}, \sigma\left(\ell^{t_{2}+t_{3}} p_{2,1}\right)<p_{2,2}
$$

Thus, once again, by 1.6 we conclude that f is non-4-layered. At last, by (i) and (ii), we have:

$$
\sigma\left(\ell^{t_{2}+t_{3}} q\right)<\sigma\left(\ell^{t_{2}+t_{3}} p_{1,1}^{3}\right)<p_{1,2}
$$

Thus, once again, by 1.6 the number $n_{3,0} n_{1}$, which is label of the edge $v_{3} v_{1}$ relative to our labeling is non-4-layered. Now, if we want one edge of $\left\{v_{3} v_{2}, v_{3} v_{1}\right\}$ to be 4-layered, then we label v_{3} with $n_{3,1}=\ell^{t_{3}} p_{2,3} p_{2,4}$ because in this situation, by (ii) , for number $n_{1} n_{3,1}=\ell^{t_{1}+t_{3}} p_{2,3} p_{2,4}$ we have :

$$
p_{2,3}, p_{2,4}<\sigma\left(2^{t_{1}}\right)<\sigma\left(2^{t_{1}+t_{3}}\right)
$$

Therefore, by $1.34 n_{3,1} n_{1}$, which is label of edge $v_{3} v_{1}$ relative to our labeling, is 4 -layered number. Also, as we said the vertex v_{2} is labeled with number $\ell^{t_{2}} q$ such that the number $\ell^{t_{2}+t_{3}} q$ is a non-4-layered and according to (i) and (ii), once again by 1.6 the number $n_{3,1} n_{1}$, which is label of edge $v_{3} v_{2}$ relative to our labeling, is
non-4-layered. At last, if we want both edges of $\left\{v_{3} v_{2}, v_{3} v_{1}\right\}$ to be 4-layered, then by 1.6, it is sufficient that we label v_{3} with number $n_{3,2}=\ell^{t_{3}} p_{3,1} p_{3,2}$ (Note that it is easy to check that $p_{3,1}, p_{3,2}<\sigma\left(2^{t_{1}+t_{3}}\right), \sigma\left(2^{t_{1}+t_{2}}\right)$.).
Let $j>3$ be an integer and by this method, we labeled $j-1$ vertices of a complete graph K_{m}. Now, we want to label the vertex v_{j}. Suppose that h be an integer such that $0 \leq h<j \leq m$. Now, let we want to have exactly h 4-layered edges of edges $\left\{v_{j} v_{1}, v_{j} v_{2}, \ldots, v_{j} v_{j-1}\right\}$ relative to our labeling. If $h=0$, then by (i) and 1.6 it is sufficient that we label v_{j} with number $\ell^{t_{j}} p_{j-1}$. Also, if $h \neq 0$, then we label v_{j} with $\ell^{t_{j}} p_{2 h+1} p_{2 h+2}$ because first of all, by (ii) and 1.34, for every integer i which $1<i<h, v_{j} v_{i}$ is 4-layered edge relative to our labeling. In addition, once again, it is easy to check that for every positive integer s such that $h<s<j$, the edge $v_{j} v_{s}$ is non-4-layered.

Remark 4.10. It is easy to check that we can state something like 4.6 and 4.7 for 4-layered graphs.

References

[1] A. Bitman, Multiperfetti (numeri), https:// bitman.name/math/article/70/.
[2] A.K. Srinivasan, Practical numbers, Current Sci. 17 (1948) 179180, MR0027799
[3] A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs, International Symposium (Ed-s: N.B. Gordan and Dunad), Paris (1966), 349359.
[4] B.J. Balamurugan, K. Thirusangu, D.G. Thomas, k-Zumkeller labeling algorithms for complete bipartite graphs and wheel graphs. Advances in Intelligent Systems and Computing, Springer 324, 2015, 405-413.
[5] B.J. Balamurugan, K. Thirusangu, D.G. Thomas, Zumkeller labeling of some cycle related graphs, Proceedings of International Conference on Mathematical Sciences (ICMS - 2014), Elsevier (2014), 549-553.
[6] B.J. Murali, K. Thirusangu, B.J. Balamurugan, Zumekeller cordial labeling of cycle related graphs, International journal of Pure and Applied Mathematics, 2017, 617-627.
[7] B.J. Murali, K. Thirusangu, R. Madura Meenakshi, Zumkeller cordial labeling of graphs,Advances in Intelligent Systems and Computing, Springer, 412 (2015), 533-541.
[8] B.M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954) 779785
[9] B. Bollobs . Paul Erds: Life and Work, in: P. Erds, R.L. Graham, J. Nesetril (Eds.), The Mathematics of Paul Erds I, in: Algorithms Combin., vol. 13, Springer, Berlin, 1997, pp. 142.
[10] Y.Peng, K. P. S. Bhaskara Rao, On Zumkeller numbers, Journal of Number Theory 133, No. 4 (2013) 1135-1155
[11] N.J.A. Sloane, The online Encyclopedia of Integer Sequences, https://oeis.org/A083207/.
[12] S. Clark, J. Dalzell, J. Holliday, D. Leach, M. Liatti, M. Walsh, Zumkeller numbers, presented in the Mathematical Abundance Conference at Illinois State University on April 18th, 2008.
[13] T. D. Noe, D. Kilminster, table of first 8436 superabundant number, https://oeis.org/A004394/b004394.txt
[14] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg, 1976.

Faculty of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
E-mail address: jokar.farid@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11R04.
 Key words and phrases. Zumkeller numbers, k-layered numbers, graph labeling.

