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ABSTRACT. Inversion sequences are finite sequences of non-negative integers, where the value
of each entry is bounded from above by its position. Patterns in inversion sequences have been
studied by Corteel–Martinez–Savage–Weselcouch and Mansour–Shattuck in the classical case,
where patterns can occur in any positions, and by Auli–Elizalde in the consecutive case, where
only adjacent entries can form an occurrence of a pattern. These papers classify classical and
consecutive patterns of length 3 into Wilf equivalence classes according to the number of inversion
sequences avoiding them.

In this paper we consider vincular patterns in inversion sequences, which, in analogy to
Babson–Steingrı́msson patterns in permutations, require only certain entries of an occurrence to
be adjacent, and thus generalize both classical and consecutive patterns. Solving a conjecture of
Lin and Yan, we provide a complete classification of vincular patterns of length 3 in inversion
sequences into Wilf equivalence classes, and into more restrictive classes that consider the number
of occurrences of the pattern and the positions of such occurrences. We find the first known
instance of patterns in inversion sequences where these two more restrictive classes do not
coincide.

1. INTRODUCTION

Let Sn denote the set of permutations of [n] = {1,2, . . . ,n}. A permutation π ∈ Sn can
be encoded by the sequence e1e2 . . .en, where ei =

∣∣{ j : j < i and π j > πi}
∣∣ is the number of

inversions between the ith entry of π and entries to its left. This encoding provides a bijection
between Sn and the set of inversion sequences

In = {e1e2 . . .en : 0≤ ei < i for all i}.

This bijection prompted Corteel, Martinez, Savage, and Weselcouch [12], as well as Mansour
and Shattuck [18], to initiate the study of patterns in inversion sequences, with the goal of
informing the study of patterns in permutations. Their enumeration of inversion sequences
avoiding classical patterns of length 3 yielded interesting connections to well-known sequences,
including Bell numbers, Fibonacci numbers, and Schröder numbers. In addition, they classified
classical patterns of length 3 in inversion sequences according to the number of permutations of
each length that avoid them.

The work in [12, 18], together with the developing interest in consecutive patterns in permu-
tations [14, 15], motivated the authors to begin an analogous study of consecutive patterns in
inversion sequences [2]. Results in [2] include the enumeration of inversion sequences avoiding
consecutive patterns of length 3, as well as the classification of consecutive patterns of length 3
and 4 into equivalence classes according to the number of inversion sequences avoiding them,
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and more generally, the number of those containing them a specific number of times or in specific
positions.

In this paper we consider vincular patterns in inversion sequences, which provide a common
generalization of classical and consecutive patterns studied in [12, 18] and [2], respectively. To
introduce the notion of a vincular pattern, first define the reduction of a word w = w1w2 . . .wk

over the integers to be the word obtained by replacing all instances of the ith smallest entry of w
with i−1, for all i. For example, the reduction of 3253 is 1021.

Definition 1.1. A vincular pattern is a sequence p = p1 p2 . . . pr where some disjoint subse-
quences of two or more adjacent entries may be underlined, satisfying pi ∈ {0,1, . . . ,r−1} for
each i, where any value j > 0 can only appear in p only if j−1 appears as well.

An inversion sequence e contains the vincular pattern p if there is a subsequence ei1ei2 . . .eir

of e whose reduction is p, and such that is+1 = is +1 whenever pis and pis+1 are part of the same
underlined subsequence. In such case, the subsequence ei1ei2 . . .eir is called an occurrence of p
in positions {i1, i2, . . . , ir}. Denote by oc(p,e) the number of occurrences of p in e, and let

In(p,m) = {e ∈ In : oc(p,e) = m}.

If oc(p,e) = 0, then we say that e avoids p. We use the simpler notation In(p) for the set
In(p,0) of inversion sequences that avoid p.

In an occurrence of a vincular pattern, underlined subsequences are required to be in adjacent
positions. A vincular pattern p = p1 p2 . . . pr where no entries are underlined is a classical
pattern; whereas a vincular pattern of the form p = p1 p2 . . . pr is a consecutive pattern. In
analogy to vincular permutation patterns, introduced by Babson and Steingrı́msson [4, 21] (who
called them generalized patterns), vincular patterns in inversion sequences generalize both
classical and consecutive patterns.

Example 1.2. The inversion sequence e = 0013204 ∈ I7 avoids the classical pattern 201, the
consecutive pattern 000, and the vincular pattern 011, but it contains the classical pattern 010,
the consecutive pattern 021, and the vincular pattern 000. For example, e2e3e6 is an occurrence
of 010, e3e4e5 is an occurrence of 021, and e1e2e6 is an occurrence of 000. One can check that
oc(012,e) = 12, oc(012,e) = 4, oc(012,e) = 2, and oc(012,e) = 1.

Unlike patterns in permutations (see [8, Ch. 4] or [16, Ch. 1] for the basic definitions), patterns
in inversion sequences may have repeated entries. Henceforth, the word patterns will refer to
vincular patterns in inversion sequences, unless otherwise stated.

It will be convenient to draw inversion sequences e = e1e2 . . .en as underdiagonal lattice paths
on the plane, from the origin to the line x = n, consisting of unit vertical steps (0,1) and (0,−1),
and unit horizontal steps (1,0). Each entry ei is represented by a horizontal step between the
points (i− 1,ei) and (i,ei). The necessary vertical steps are then inserted to make the path
connected, see Figure 1 for an example.

Next we extend the notion of Wilf equivalence from [2, 12, 18] to vincular patterns. Two
patterns are in the same Wilf equivalence class if they are avoided by the same number of
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FIGURE 1. Visualization of e = 0013204 ∈ I7 as a lattice path.

inversion sequences of each length. We also introduce more restrictive equivalence relations that
also consider the number of occurrences of the patterns and the positions of such occurrences.

Definition 1.3. Let p and p′ be vincular patterns. We say that p and p′ are

• Wilf equivalent, denoted by p∼ p′, if |In (p)|= |In (p′)|, for all n;
• strongly Wilf equivalent, denoted by p s∼ p′, if |In (p,m)|= |In (p′,m)|, for all n and m.

Denote by
([n]

r

)
the set of r-element subsets of [n]. We use the subscript < on a set to indicate

that the elements of a set are listed in increasing order.
Given n≥ 0, a vincular pattern p of length r, and a set S⊆

([n]
r

)
, we define

(1) In(p,S) = {e ∈ In : ei1ei2 . . .eir is an occurrence of p if and only if {i1, i2, . . . , ir}< ∈ S} .

In other words, In(p,S) is the set of inversion sequences of length n whose occurrences of p are
indexed by elements of S. In particular, In(p,∅) = In(p).

Example 1.4. There are exactly 6 inversion sequences of length 6 whose occurrences of 101 are
in positions S = {{2,4,5},{3,4,5}}. Namely,

I6 (101,S) = {011010,011011,011012,011013,011014,011015} .

Definition 1.5. Let p and p′ be vincular patterns of length r. We say that p and p′ are super-
strongly Wilf equivalent, denoted by p ss∼ p′, if |In(p,S)|= |In(p′,S)|, for all n and all S⊆

([n]
r

)
.

We use the term generalized Wilf equivalence to refer to an equivalence of any one of the three
types from Definitions 1.3 and 1.5. These three notions of equivalence between vincular patterns
extend those defined by the authors for consecutive patterns [2]. As suggested by their names,
p ss∼ p′ implies p s∼ p′, which in turn implies p∼ p′.

2. SUMMARY OF RESULTS

The main goal of this paper is to describe all generalized Wilf equivalences between vincular
patterns of length 3. Equivalences between classical patterns were described in [12], whereas
equivalences between consecutive patterns appear in [2]. The next theorem gives a complete
list of generalized Wilf equivalences between vincular patterns that are neither classical nor
consecutive. Such patterns will be called hybrid vincular patterns.
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Theorem 2.1. A complete list of generalized Wilf equivalences between hybrid vincular patterns
of length 3 is as follows:

(i) 010∼ 011.

(ii) 100∼ 101.

(iii) 101 s∼ 110.

(iv) 201∼ 210.

An independent proof of Theorem 2.1(i) has recently been given by Lin and Yan [17]1. In
the same paper, they also conjecture the Wilf equivalence 201 ∼ 210, corresponding to our
Theorem 2.1(iv).

There are 26 hybrid vincular patterns of length 3, which fall into 22 Wilf equivalence classes
and 25 strong Wilf equivalence classes. This is in contrast with the case of hybrid vincular
permutation patterns of length 3, where the 12 patterns fall into 2 Wilf equivalence classes, as
shown by Claesson [11], and 5 strong Wilf equivalence classes (with all equivalences arising
from trivial symmetries).

Corteel et al. [12] prove that the only Wilf equivalences between classical patterns of length
3 are 201 ∼ 210 and 101 ∼ 110, whereas the authors [2] show that the only Wilf equivalent
consecutive patterns of length 3 are 100 ss∼ 110.

In addition to the above equivalences, there are also some Wilf equivalences between hybrid
vincular patterns and classical patterns that follow from known results. Corteel et al. [12] proved
that |In (001)| = 2n−1, |In (011)| = Bn (the nth Bell number), and |In (101)| = |In (110)| =
|Sn (1234)|, which denotes the number of permutations avoiding the vincular permutation pattern
1234. On the other hand, Lin and Yan [17] show that |In (001)| = 2n−1, |In (012)| = Bn, and
|In (120)|= |Sn (1234)|. Therefore, we have the Wilf equivalences

001∼ 001, 011∼ 012, 101∼ 110∼ 120.

The first equivalence generalizes, in fact, to the equality In (001) = In (001).
Brute force computations for small values of n show that there are no more generalized Wilf

equivalences between vincular patterns other that the ones mentioned above. Thus, Theorem 2.1
completes the classification of all vincular patterns of length 3 into generalized Wilf equivalence
classes of each type. We summarize all these equivalences in Table 1. In total, there are 52
vincular patterns of length 3: 13 consecutive, 13 classical, and 26 hybrid. These patterns fall
into 42 Wilf equivalence classes, 50 strong Wilf equivalent classes and 51 super-strong Wilf
equivalence classes.

A consequence of Theorem 2.1 and Table 1 is that 101 and 110 are the only nonconsecutive
vincular patterns of length 3 that are strongly Wilf equivalent. The existence of such a pair is
somewhat surprising, given the exacting requirement for nonconsecutive vincular patterns to be
strongly Wilf equivalent.

Even more striking is the fact that 101 and 110 are strongly Wilf equivalent but not super-
strongly Wilf equivalent, making these patterns the only known instance of vincular patterns
in inversion sequences with this property. Compare this to the fact, shown in [2], that for
consecutive patterns of length up to 4, strong Wilf equivalence and super-strong Wilf equivalence

1Lin and Yan’s work [17] appeared online while this paper was being written up.
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Pattern p |In(p)| counted by OEIS [19] |In(p)| for 1≤ n≤ 10

001∼ 001 2n−1 A000079 1,2,4,8,16,32,64,128,256,512

011∼ 012 Bell numbers A000110 1,2,5,15,52,203,877,4140,21147,115975

010∼ 011 Fishburn numbers A022493 1,2,5,15,53,217,1014,5335,31240,201608

101∼ 110∼ 120 |Sn (1234)| A113227 1,2,6,23,105,549,3207,20577,143239,1071704

100∼ 101 (see Proposition 3.12) New 1,2,6,23,106,567,3440,23286,173704,1414102

101 s∼ 110 ? New 1,2,6,23,107,584,3655,25790,202495,1750763

201∼ 210 reccurrence [12, Eq. (5)] A263777 1,2,6,24,118,674,4306,29990,223668,1763468

201∼ 210 ? New 1,2,6,24,118,680,4460,32634,262536,2296532

100 ss∼ 110 reccurrence [2, Prop. 3.4] A328441 1,2,6,23,109,618,4098,31173,267809,2565520
TABLE 1. Complete list of generalized Wilf equivalences between vincular
patterns of length 3. The patterns are listed from least avoided to most avoided in
inversion sequences of length 10.

classes coincide. In fact, it is shown in [3] that this coincidence extends to so-called consecutive
patterns of relations of length 3.

Our second result provides a generalization of Theorem 2.1(iv) to patterns of arbitrary length.

Theorem 2.2. Let p = p1 p2 . . . pr be a consecutive pattern and let d = maxi {pi}. Then the
vincular patterns (d+1)p1 p2 . . . pr and (d+1)pr pr−1 . . . p1 are Wilf equivalent.

Upcoming work of the first author [1] provides the enumeration of |In (p)| for some hybrid
vincular patterns p of length 3, proving that, in some cases, the sequence |In (p)| also counts
other well-known combinatorial structures. These results, summarized in Table 2, have been
obtained independently by Lin and Yan [17].

Pattern p |In(p)| counted by OEIS [19] |In (p)| for 1≤ n≤ 10

001 2n−1 A000079 1,2,4,8,16,32,64,128,256,512

012 Bell numbers A000110 1,2,5,15,52,203,877,4140,21147,115975

010∼ 011 Fishburn numbers A022493 1,2,5,15,53,217,1014,5335,31240,201608

021 certain Bell-like numbers A091768 1,2,6,22,92,426,2150,11708,68282,423948

021 |Sn (2413)| (semi-Baxter) A117106 1,2,6,23,104,530,2958,17734,112657,750726

120 |Sn (1234)| A113227 1,2,6,23,105,549,3207,20577,143239,1071704

011 recurrence an+1 = nan +an−1 A102038 1,2,5,17,73,382,2365,16937,137861,1257686

TABLE 2. Hybrid vincular patterns p of length 3 for which |In (p)| appears in the
OEIS [19]. The patterns are listed from least avoided to most avoided in inversion
sequences of length 10.

The rest of the paper is devoted to the proofs of Theorems 2.1 and 2.2. Our methods include
bijections, sieve methods, and the use of generating trees. In the process, we also derive a
functional equation satisfied by the generating function of the sequence |In (100)|.

3. PROOFS OF WILF EQUIVALENCES

3.1. The patterns 201 and 210. In this subsection we prove Theorem 2.1(iv), which was
conjectured by Lin and Yan [17]. Our proof is bijective, and it uses the following notion. We
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say that a position j is a weak left-to-right maximum of an inversion sequence e if ei ≤ e j for
all i < j. We denote the set of weak left-to-right maxima of e by W (e). Note that 1 ∈W (e) for
every nonempty inversion sequence e.

Example 3.1. The set of weak left-to-right maxima of e= 001210031012 is W (e) = {1,2,3,4,8},
see Figure 2(left).

Proposition 3.2. The patterns 201 and 210 are Wilf equivalent.

Proof. Define a map ϕ : In→ In as follows. Given e ∈ In with W (e) = {w1,w2, . . . ,wt}<, define
ϕ(e) = e′ as

(2) e′ = (ew1−1ew1−2 . . .e1)ew1(ew2−1ew2−2 . . .ew1+1)ew2 . . .ewt (enen−1 . . .ewt+1).

In other words, ϕ reverses the blocks between the elements of W (e), see Figure 2 for an example.

FIGURE 2. The inversion sequence e = 001200132101 and its image ϕ(e) =
001210031012. The weak left-to-right maxima W (e) =W (ϕ(e)) = {1,2,3,4,8}
are drawn in red.

It is clear by construction that ϕ preserves weak left-to-right maxima, that is, W (e) =W (e′).
It follows that e′i < i for all i, and so e′ ∈ In. In addition, ϕ is an involution, hence also a bijection.
It remains to show that e ∈ In (201) if and only if e′ ∈ In (201), or equivalently, that e /∈ In (201)
if and only if e′ /∈ In (210).

Suppose that e /∈ In (201), and let e jeiei+1 be an occurrence of 201. Then i and i+1 cannot
be weak left-to-right maxima, and so there exists l such that wl < i < i+ 1 < wl+1 (with the
convention wt+1 := n+1). Writing i = wl +u, we have

e′wl+1−u = ei and e′wl+1−u−1 = ei+1.

Since e′wl
= ewl , we deduce that e′wl

e′wl+1−u−1e′wl+1−u = ewl ei+1ei is an occurrence of 210 in e′,
and so e′ /∈ In (210).

A similar argument shows that if e′ /∈ In (210), then e /∈ In (201). �

It is important to note that the number of occurrences of 201 in e does not always coincide
with the number of occurrences of 210 in e′ = ϕ(e). For instance, e = 0123012242 contains
3 occurrences of 201 (namely, e3e5e6, e4e5e6, and e4e6e7) but e′ = 0123221042 contains 5
occurrences of 210 (namely, e′3e′7e′8, e′4e′6e′7, e′4e′7e′8, e′5e′7e′8, and e′6e′7e′8). In fact, there are
470 inversion sequences of length 7 containing exactly one occurrence of 210, but only 466
containing exactly one occurrence of 201. Hence, 201 and 210 are not strongly Wilf equivalent.

Next we generalize the proof of Proposition 3.2 to prove Theorem 2.2.
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Proof of Theorem 2.2. To prove that (d+1)p1 p2 . . . pr ∼ (d+1)pr pr−1 . . . p1, we show that e ∈
In contains (d+1)p1 p2 . . . pr if and only if e′ = ϕ(e), defined as in Equation (2), contains
(d+1)pr pr−1 . . . p1.

Suppose that e jeiei+1 . . .ei+r−1 is an occurrence of (d+1)p1 p2 . . . pr in e. Since e j is the
largest entry of this occurrence, we know that i, i+ 1, . . . , i+ r− 1 are not weak left-to-right
maxima of e. Write W (e) = {w1,w2, . . . ,wt}<, and let l be such that wl < i < i+ r−1 < wl+1

(again with the convention wt+1 := n+ 1). Writing i = wl + u, we have e′wl+1−u−s = ei+s, for
0≤ s≤ r−1. Thus,

e′wl
e′wl+1−u−r+1e′wl+1−u−r+2 . . .e

′
wl+1−u = ewl ei+r+1ei+r−2 . . .ei

is an occurrence of (d+1)pr pr−1 . . . p1 in e′, and so e′ /∈ In

(
(d+1)pr pr−1 . . . p1

)
.

A similar argument shows that if e′ /∈ In

(
(d+1)pr pr−1 . . . p1

)
, then e /∈ In

(
(d+1)p1 p2 . . . pr

)
.
�

3.2. The patterns 101 and 110. Next we prove Theorem 2.1(iii) using an inclusion-exclusion
argument. For e ∈ In and p ∈ {101,110}, define

Em(p,e) = {{t, i, i+1}< : eteiei+1 is an occurrence of p} .

Lemma 3.3. For every n and k, there exists a bijection

(3) φ : {(e,M) : e ∈ In, M ⊆ Em(101,e) , |M|= k}

→
{
(e′,M′) : e′ ∈ In, M′ ⊆ Em

(
110,e′

)
, |M′|= k

}
.

Proof. For p ∈ {101,110}, pairs (e,M) where M ⊆ Em(p,e) and |M|= k can be interpreted as
inversion sequences e with k marked occurrences of p, which are recorded by the set M.

Let (e,M) be a pair from the left-hand side of (3). We will describe its image φ((e,M)) =

(e′,M′). First, let

(4) S = proj(M) = {i : {t, i, i+1}< ∈M} ⊆ [n]

be the set of the middle positions of the marked occurrences of 101, disregarding multiplicities.
Write S uniquely as a disjoint union of consecutive blocks (i.e., maximal subsets whose entries
are consecutive), as S =

⊔m
j=1 B j, where B j =

{
i j, i j +1, . . . , i j + l j−1

}
, with l j ≥ 1 and i j+ l j <

i j+1, for all j.
We define e′ by setting e′i = eρS(i) for 1≤ i≤ n, where ρS is defined by

(5) ρS(i) =

{
2i j + l j− i, if i ∈ B j∪{i j + l j} for some j;
i, otherwise.

As illustrated in Figure 3, the transformation e 7→ e′ reverses the entries of e in positions
B j∪{i j + l j}, for each j, that is, e′i j

e′i j+1 . . .e
′
i j+l j

= ei j+l j . . .ei j+1ei j . Define

M′ = {{ρS(t),ρS(i+1),ρS(i)} : {t, i, i+1}< ∈M} .

Let us show that (e′,M′) belongs to the right-hand side of (3). For each block B j, since
i j + l j−1 ∈ S, there exists t < i j such that et = ei j+l j . Thus, if i ∈ B j∪{i j + l j}, then

e′i = e2i j+l j−i ≤ ei j+l j = et < t < i j ≤ i,
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FIGURE 3. Schematic diagram of the transformation e 7→ e′ defined in Equation (5).

and so e′ ∈ In. Now we argue that M′ ⊆ Em(110,e′). For every {t, i, i+1}< ∈M, if B j is the
block that i belongs to, then t < i j, and so e′

ρS(t)
e′

ρS(i+1)e
′
ρS(i)

= etei+1ei is an occurrence of 110
in e′. It is also clear by construction that |M′|= |M|= k.

Finally, the fact that proj(M′) = S allows us to describe the inverse of the map φ as follows.
Given a pair (e′,M′) from the right-hand side of (3), let S = proj(M′). Let φ ′((e′,M′)) be the
pair (e,M) obtained by setting ei = e′

ρS(i)
for 1≤ i≤ n and

M′ =
{
{ρS(t ′),ρS(i′+1),ρS(i′)} : {t ′, i′, i′+1}< ∈M′

}
.

The fact that ρS : [n]→ [n] is an involution implies that φ and φ ′ are inverses of each other. �

Proposition 3.4. The patterns 101 and 110 are strongly Wilf equivalent.

Proof. For p ∈ {101,110}, let

µn(p,k) = |{(e,M) : e ∈ In, M ⊆ Em(p,e) , |M|= k}|

be the number of inversion sequences in In with k marked occurrences of p.
An inversion sequence with k marked occurrences of p can be constructed by first choosing

an inversion sequence with exactly m occurrences of p, for some m ≥ k, and then marking k
occurrences, which can be done in

(m
k

)
ways. It follows that

(6) µn(p,k) = ∑
m≥k
|In(p,m)|

(
m
k

)
,

which can be inverted using the Principle of Inclusion-Exclusion to obtain an expression for
|In(p,m)| in terms of µn(p,k).

Specifically, multiplying Equation (6) by xk and summing over k ≥ 0, we can write it as an
equality of polynomials:

∑
k≥0

µn(p,k)xk = ∑
k≥0

∑
m≥k
|In(p,m)|

(
m
k

)
xk = ∑

m≥0
|In(p,m)|

m

∑
k=0

(
m
k

)
xk = ∑

m≥0
|In(p,m)|(1+x)m.

Setting x = y−1, we get

∑
m≥0
|In(p,m)|ym = ∑

k≥0
µn(p,k)(y−1)k = ∑

k≥0

k

∑
m=0

µn(p,k)
(

k
m

)
(−1)k−mym,
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and taking coefficients of ym on both sides,

|In(p,m)|= ∑
k≥m

µn(p,k)
(

k
m

)
(−1)k−m.

By Lemma 3.3, µn(101,k) = µn(110,k) for all n and k. We conclude that

|In(101,m)|= |In(110,m)|

for all n and m. �

Even though Proposition 3.4 states that the number of occurrences 101 is equidistributed with
the number of occurrences of 110 over e ∈ In, the joint distribution of the number of occurrences
of these two patterns is not symmetric, that is, there exist integers l,m,n such that

|In (101,m)∩ In (110, l)| 6= |In (101, l)∩ In (110,m)| .

For instance, I6 (101,3)∩ I6 (110,0) =∅, but I6 (101,0)∩ I6 (110,3) = {011110}.
It is also easy to check that the patterns 101 and 110 are not super-strongly Wilf equivalent.

Indeed, with the notation from Equation (1), the sets

I6 (101,{{2,5,6},{4,5,6}}) = {012101} and

I6 (110,{{2,5,6},{4,5,6}}) = {010110,012110}

have different cardinalities.
We end this section showing that, despite 101 and 110 not being super-strongly Wilf equivalent,

the sets of positions of the middle entries of occurrences of these patterns in inversion sequences
are equidistributed. This is stated as Proposition 3.6 below, and proved using an inclusion-
exclusion argument, similar to the one used to prove the equivalence 110 ss∼ 100 in [2, Prop. 3.11].

For e ∈ In and p ∈ {101,110}, and letting proj be defined as in Equation (4), define

Em∗(p,e) = proj(Em(p,e)) = {i : ∃ j < i such that e jeiei+1 is an occurrence of p}.

Lemma 3.5. For every S ⊆ [n], the map e 7→ e′ where e′i = eρS(i) for 1 ≤ i ≤ n, as defined in
Equation (5), is a bijection

{e ∈ In : Em∗ (101,e)⊇ S}→
{

e′ ∈ In : Em∗
(
110,e′

)
⊇ S
}
.

Proof. Given e ∈ In with Em∗ (101,e) ⊇ S, the same argument as in the proof of Lemma 3.3
shows that its image e′ satisfies that e′ ∈ In and Em∗ (110,e′)⊇ S. This map is a bijection because,
for any e′ ∈ In with Em∗ (110,e′)⊇ S, one can recover its preimage e by setting ei = e′

ρS(i)
for

1≤ i≤ n. �

Proposition 3.6. For every S⊆ [n],

|{e ∈ In : Em∗ (101,e) = S}|= |{e ∈ In : Em∗ (110,e) = S}| .

Proof. For p ∈ {101,110} and S⊆ [n], let

f p
=(S) = |{e ∈ In : Em∗(p,e) = S}| and f p

≥(S) = |{e ∈ In : Em∗(p,e)⊇ S}| .

It is clear that, for every S⊆ [n],

{e ∈ In : Em∗ (p,e)⊇ S}=
⊔

T⊇S

{e ∈ In : Em∗(p,e) = T} ,
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and so
f p
≥(S) = ∑

T⊇S
f p
=(T ).

The Principle of Inclusion-Exclusion [20, Thm. 2.1.1] implies that

f p
=(S) = ∑

T⊇S
(−1)|T\S| f p

≥(T ).

By Lemma 3.5, f 101
≥ (T ) = f 110

≥ (T ), for all T ⊆ [n]. Thus, it follows that f 101
= (S) = f 110

= (S), for
all S⊆ [n]. �

3.3. The patterns 100 and 101. In this subsection we prove Theorem 2.1(ii). Our approach
relies on constructing isomorphic generating trees for inversion sequences avoiding 100 and for
those avoiding 101. We determine such generating trees by succession rules that describe their
growth by insertions on the right, in the same manner that generating trees for certain subclasses
of pattern avoiding permutations have been constructed in [7, 10, 13]. First, we introduce some
terminology regarding generating trees and succession rules, following Bouvel et al. [10]. For a
more detailed presentation of these topics, see [5, 6, 9, 22].

Let G be a combinatorial class, with a finite number of objects of size n for each n≥ 0, and
suppose that G contains exactly one object of size 0. A generating tree for G is a (typically
infinite) rooted tree whose vertices are the objects of G , and such that objects of size n are at
level n in the tree, i.e., at distance n from the root.

FIGURE 4. Two representations of a generating tree for inversion sequences:
with objects for vertices (left) and with labels from the succession rule ΩI for
vertices (right).

The children of an object g∈ G are obtained by adding an atom —that is, a piece that increases
the size by 1— to g. These additions must follow certain prescribed rules, which are determined
by the structure of the objects of G . In particular, these rules ensure that each object appears
exactly once in the tree. We refer to the process of adding an atom to g ∈ G as the growth of g.

Given an inversion sequence e = e1e2 . . .en ∈ In, we grow e by inserting an entry h on the
right, chosen from the set of values {0,1, . . . ,n}, called sites, to obtain the inversion sequence

eh = e1e2 . . .enh ∈ In+1.

The generating tree obtained in this manner, depicted in Figure 4(left), is the one for the class of
all inversion sequences, which we denote by I =

⋃
n≥0 In. If instead we consider the subclass of
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inversion sequences satisfying a certain restriction, then not all the sites in {0,1, . . . ,n} are valid
choices for h, in the sense that eh may not belong to the subclass. Sites that are valid are called
the active sites of e. We denote the subclass of inversion sequences avoiding the pattern p by
I(p) =

⋃
n≥0 In(p). Whenever we speak of the growth or the active sites of e ∈ In(p), we think

of e as an object of the class I(p), as opposed to as an object of I.

Example 3.7. The active sites of e = 01032453 ∈ I8(100) are {1,4,5,6,7,8}, since these are the
values of h for which eh ∈ I9(100), see Figure 5.

FIGURE 5. Growth of e = 01032453 ∈ I8(100) by insertions on the right. Each
site h of e is represented by a circle at (9,h). The active sites are {1,4,5,6,7,8},
whereas inactive sites 0, 2, and 3 are crossed out.

Given e∈ In, we say that i is a descent of e if ei > ei+1, and let Des(e) = {i∈ [n−1] : ei > ei+1}
denote its descent set. Let us show that the active sites of an inversion sequence in I(100) or
I(101) are determined by its descents.

Lemma 3.8. The active sites of e ∈ In(100) are

{0,1, . . . ,n}\{ei+1 : i ∈ Des(e)}.

The active sites of e ∈ In(101) are

{0,1, . . . ,n}\{ei : i ∈ Des(e)}.

In particular, en is an active site of e ∈ In(101).

Proof. A value h ∈ {0,1, . . . ,n} is an active site of e ∈ In(100) if and only if inserting h on the
right of e does not create an occurrence of 100, that is, if there does not exist i < n such that
ei > ei+1 = h. Similarly, h ∈ {0,1, . . . ,n} is an active site of e ∈ In(101) if and only if inserting
h on the right of e does not create an occurrence of 101, that is, if there does not exist i < n such
that h = ei > ei+1.

Finally, suppose for the sake of contradiction that en is not an active site of e ∈ In (101). Then
there must exist i ∈ Des(e) such that ei = en. Since en = ei > ei+1, we must have i+1 < n, and
so eiei+1en would be an occurrence of 101. �

A succession rule describes a generating tree by identifying its vertices with labels. It provides
a label for the root, and an inductive rule to produce the labels of the children given the label
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of the parent. For example, assigning to each inversion sequence e the label (a), where a is the
number of active sites of e, yields the following succession rule for the generating tree for I:

ΩI =

{
(1),
(a) (a+1)a.

This rule means that the root, which is the empty inversion sequence, has label (1), and that
every object with label (a) has a children, each with label (a+1). Figure 4(right) shows these
labels on the generating tree for I.

If two generating trees have the same succession rule, then they have the same number of
vertices at level n, for each n. To prove that |In (100)|= |In (101)|, we will show that I(100) and
I(101) have generating trees with the same succession rule.

Proposition 3.9. The class I(100) has a generating tree described by the succession rule

ΩI(100) =


(1,0),
(a,b) (a+1,b),(a,b+1), . . . ,(2,b+a−1),

(a+b,0),(a+b−1,1), . . . ,(a+1,b−1).

Proof. We construct a generating tree by insertions on the right. To each e ∈ In (100), we assign
the label (a,b) = (|A≥(e)| , |B<(e)|), where

A≥(e) = {h : h is an active site of e and h≥ en} ,

B<(e) = {h : h is an active site of e and h < en} ,
(7)

with the convention e0 = 0. The root, which is the empty inversion sequence, has label (1,0).
Suppose that e ∈ In (100) has label (a,b), and that we grow e by inserting h on the right,

obtaining eh ∈ In+1 (100). Since h is an active site of e, it belongs to either A≥(e) or B<(e).
Suppose first that h ∈ A≥(e), and that h is the ith smallest element in A≥(e). Since n is not

a descent of eh, all the active sites of e are also active in eh, by Lemma 3.8, and there is an
additional active site n+1. Thus, eh has label

((a− i+1)+1,b+(i−1)) = (a+2− i,b−1+ i),

as illustrated in Figure 6(top). As i ranges from 1 to a, the resulting inversion sequences
eh ∈ In+1 (100) where h ∈ A≥(e) have labels

(a+1,b),(a,b+1), . . . ,(2,b+a−1).

Suppose now that h ∈ B<(e), and that h is the ith smallest element in B<(e). Then n is a
descent of eh, so Lemma 3.8 implies that h is not an active site of eh. With the additional active
site n+1, the inversion sequence eh has label

((b− i)+a+1, i−1) = (a+b+1− i, i−1),

as shown in Figure 6(bottom). As i ranges from 1 to b, the resulting inversion sequences
eh ∈ In+1 (100) where h ∈ B<(e) have labels

(a+b,0),(a+b−1,1), . . . ,(a+1,b−1). �

Next we find a generating tree for I(101) that is isomorphic to the one described in Proposi-
tion 3.9.
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FIGURE 6. Growth of e∈ In(100) when the ith smallest active site in A≥(e) (top)
or B<(e) (bottom) is chosen. The site en may be active (left) or not (right), but
this does not affect the label of eh.

Proposition 3.10. The class I(101) has a generating tree described by the succession rule

ΩI(101) =


(1,0),
(a,b) (a+1,b),(a,b+1), . . . ,(2,b+a−1),

(a+b,0),(a+b−1,1), . . . ,(a+1,b−1).

Proof. As in the proof of Proposition 3.9, we assign, to each e ∈ In (101), the label (a,b) =
(|A≥(e)| , |B<(e)|), where A≥(e) and B<(e) are as in Equation (7). With the convention e0 = 0,
the root again has label (1,0).

Suppose that e ∈ In (101) has label (a,b), and that we grow e by inserting h on the right. If the
chosen active site h is in A≥(e), then all the active sites of e are also active in eh, by Lemma 3.8,
and we deduce that the resulting inversion sequences in In+1 (101) have labels

(a+1,b),(a,b+1), . . . ,(2,b+a−1).

The visual representation corresponds again to Figure 6(top left), since en is an active site of e by
Lemma 3.8.

Suppose now that h ∈ B<(e), and that h is the ith smallest element in B<(e). Since n is a
descent of eh, Lemma 3.8 implies that en is not an active site of eh, and also that en was an active
site of e. In this case, eh has (a−1)+1+(b− i)+1 active sites h′ such that h≤ h′, namely the
a−1 sites such that en ≤ h′ ≤ n, the site n+1, and the (b− i)+1 sites such that h ≤ h′ < en.
Hence, eh has label (a+ b+ 1− i, i− 1), see Figure 7. As i ranges from 1 to b, the resulting
inversion sequences eh ∈ In+1 (101), where h ∈ B<(e), have labels

(a+b,0),(a+b−1,1), . . . ,(a+1,b−1). �
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FIGURE 7. Growth of e ∈ In(101) when the ith smallest active site in B<(e) is chosen.

Since the generating trees for I(100) and I(101) described in Propositions 3.9 and 3.10,
respectively, are isomorphic, the next result follows.

Corollary 3.11. The patterns 100 and 101 are Wilf equivalent.

We remark that these two patterns are not strongly Wilf equivalent. For instance, the are
134 inversion sequences of length 6 containing exactly one occurrence of 100, but only 132
containing exactly one occurrence of 101.

To end this subsection, we use the generating trees from Propositions 3.9 and 3.10 to provide
an expression for the generating function

A(z) = ∑
n≥0
|In (100)|zn = ∑

n≥0
|In (101)|zn.

Proposition 3.12. We have that A(z) = G(1,z), where G(u,z) is defined recursively by

(8) G(u,z) = u(1−u)+uG(u(1+ z−uz),z).

Proof. Let F(u,v,z) be the generating function where the coefficient of uavbzn is the number of
vertices with label (a,b) at level n of the generating tree with succession rule ΩI(100). Note that
A(z) = F(1,1,z). Each term uavb corresponding to a label (a,b) at level n of the tree generates a
contribution(

ua+1vb +uavb+1 + · · ·+u2vb+a−1
)
+
(

ua+b +ua+b−1v+ · · ·+ua+1vb−1
)

=
u

u− v

(
ua+1vb−uva+b +ua+b−uavb

)
at level n+1. This translates into a functional equation for F(u,v) := F(u,v,z), namely

F(u,v) = u+
uz

u− v
(uF(u,v)−uF(v,v)+F(u,u)−F(u,v)) .

Letting G(u) = F(u,u) and collecting all the terms with F(u,v) on the left hand side, we get

u− v− (u−1)uz
u

F(u,v) = u− v+ zG(u)−uzG(v).

The kernel of this equation is canceled by setting v = u(1+ z−uz), which gives

0 = u−u(1+ z−uz)+ zG(u)−uzG(u(1+ z−uz)),

or equivalently,
G(u) = u(1−u)+uG(u(1+ z−uz)). �
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Equation (8) can be used to compute the expansion of G(u,z) as a series in the variable u.
Defining V i :=V i(u,z) recursively by V 0(u,z) = u and V i(u,z) =V i−1(u(1+z−uz),z) for i≥ 1,
we obtain

G(u,z) = ∑
k≥0

V 0V 1 · · ·V k(1−V k) = u+ ∑
k≥0

V 0V 1 · · ·V k(V k+1−V k)

= u+ zu2 +(z+2)z2u3 +(z3 +5z2 +9z+5)z3u4

+(z6 +9z5 +35z4 +75z3 +92z2 +59z+14)z4u5 + · · ·

In fact, if follows from Lemma 3.8 that if a vertex at level n has k = a+ b active sites, then
k−1≤ n≤

(k
2

)
, and so any the exponents of any term ukzn with nonzero coefficient in G(u,z)

must satisfy this constraint. In particular, the first k terms of the expansion of G(u,z) as a series
in u contain the first k−1 terms of its expansion as a series in z:

G(u,z) = u+u2z+2u3z2 +(5u4 +u3)z3 +(14u5 +9u4)z4 + · · ·

3.4. The patterns 010 and 011. Next we prove Theorem 2.1(i). Using ideas similar to those in
the previous subsection, we will construct isomorphic generating trees for I(010) and I(011)
by insertions on the right. The following lemma is analogous to Lemma 3.8, with ascents
playing the role of descents. Given e ∈ In, we say that i is an ascent of e if ei < ei+1, and let
Asc(e) = {i ∈ [n−1] : ei < ei+1}.

Lemma 3.13. The active sites of e ∈ In(011) are

{0,1, . . . ,n}\{ei+1 : i ∈ Asc(e)}.

The active sites of e ∈ In(010) are

{0,1, . . . ,n}\{ei : i ∈ Asc(e)}.

In particular, en is an active site of e ∈ In(010).

Proof. A value h ∈ {0,1, . . . ,n} is an active site of e ∈ In(011) if and only if there does not exist
i < n such that ei < ei+1 = h, and it is an active site of e ∈ In(010) if and only if there does not
exist i < n such that h = ei < ei+1.

For the last statement, note that if en was not an active site of e ∈ In (010), there would
exist i ∈ Asc(e) such that ei = en, but then eiei+1en would be an occurrence of 010, which is a
contradiction. �

Proposition 3.14. The class I(011) has a generating tree described by the succession rule

ΩI(011) =


(0,1),
(a,b) (a,b),(a−1,b+1), . . . ,(1,b+a−1),

(a+b,1),(a+b−1,2), . . . ,(a+1,b).

Proof. We construct a generating tree by insertions on the right. To each e ∈ In (011), we assign
the label (a,b) = (|A>(e)| , |B≤(e)|), where

A>(e) = {h : h is an active site of e and h > en} ,

B≤(e) = {h : h is an active site of e and h≤ en} ,
(9)

with the convention e0 = 0. The root, which is the empty inversion sequence, has label (0,1).
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Suppose now that e ∈ In (011) has label (a,b), and that we grow e by inserting h on the right,
obtaining eh ∈ In+1 (011). The chosen active site h must be either in A>(e) or in B≤(e).

If h is the ith smallest element in B≤(e), then Lemma 3.13 implies that eh has label (a+b+
1− i, i), considering the new active site n+1 of eh. This case is illustrated in Figure 8(top). As i
ranges from 1 to b, the resulting inversion sequences eh ∈ In+1 (011) have labels

(a+b,1),(a+b−1,2), . . . ,(a+1,b).

FIGURE 8. Growth of e∈ In(011) when the ith smallest active site in B≤(e) (top)
or A>(e) (bottom) is chosen. The site en may be active (left) or not (right).

If h is the ith smallest element in A>(e), then n is an ascent of eh, so Lemma 3.13 implies that
h is not an active site of eh. Considering the new active site n+1, the inversion sequence eh has
label (a+1− i,b−1+ i), see Figure 8(bottom). As i ranges from 1 to a, the resulting inversion
sequences in In+1 (011) have labels

(a,b),(a−1,b+1), . . . ,(1,b+a−1). �

Proposition 3.15. The class I(010) has a generating tree described by the succession rule

ΩI(010) =


(0,1),
(a,b) (a,b),(a−1,b+1), . . . ,(1,b+a−1),

(a+b,1),(a+b−1,2), . . . ,(a+1,b).

Proof. We assign to each e ∈ In (010) the label (a,b) = (|A>(e)| , |B≤(e)|), where A>(e) and
B≤(e) are as in Equation (9). As in the proof of Proposition 3.14, the root has label (0,1).
Given e ∈ In (010) with label (a,b), we grow e by inserting an entry h on the right so that
eh ∈ In+1 (010).



WILF EQUIVALENCES BETWEEN VINCULAR PATTERNS IN INVERSION SEQUENCES 17

If h ∈ B≤(e), then all the active sites of e are also active sites of eh by Lemma 3.13, and so the
resulting inversion sequences eh for such h have labels

(a+b,1),(a+b−1,2), . . . ,(a+1,b).

This case corresponds also to Figure 8(top left), since en is an active site of e by Lemma 3.13.
The other possibility is that h ∈ A>(e). Suppose that h is the ith smallest element in A>(e).

Then n is an ascent of eh, and Lemma 3.13 implies that en is not an active site of eh, but en was
an active site of e. In this case, eh has i+(b−1) active sites h′ such that h′ ≤ h, namely the i sites
such that en < h′ ≤ h, and the b−1 sites such that h′ < en. In addition, eh has (a− i)+1 active
sites h′ such that h′ > h, once we include the site n+1. Hence, eh has label (a+1− i,b−1+ i),
see Figure 9. As i ranges from 1 to b, the resulting inversion sequences in eh ∈ In+1 (010) have
labels

(a,b),(a−1,b+1), . . . ,(1,b+a−1). �

FIGURE 9. Growth of e ∈ In(010) when the ith smallest active site in A>(e) is chosen.

The generating trees for I(011) and I(010) described in Propositions 3.14 and 3.15 are
isomorphic, and so the next result follows.

Corollary 3.16. The patterns 010 and 011 are Wilf equivalent.

It is easy to check that these two patterns are not strongly Wilf equivalent: the are 52 inversion
sequences of length 5 containing exactly one occurrence of 010, but only 50 containing exactly
one occurrence of 011.

Proof of Theorem 2.1. By Propositions 3.2 and 3.4, and Corollaries 3.11, and 3.16, we know

that the equivalences (i)–(iv) hold. We provided computational evidence showing that 010
s
6∼ 011,

100
s
6∼ 101, 201

s
6∼ 210, and 101

ss
6∼ 110, and a brute force computation for small values of n

shows that no two other hybrid vincular patterns are Wilf equivalent. �
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