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Abstract

All almost perfect nonlinear (APN) permutations that we know to date admit
a special kind of linear self-equivalence, i.e., there exists a permutation G in their
CCZ-class and two linear permutations A and B, such that Go A = Bo G. After
providing a survey on the known APN functions with a focus on the existence of self
equivalences, we explicitly search for APN permutations in dimension 6, 7, and 8
that admit such a linear self equivalence. In dimension six, we were able to conduct
an exhaustive search and obtain that there is only one such APN permutation up to
CCZ-equivalence. In dimensions 7 and 8, we exhaustively searched through parts of
the space and conclude that the linear self equivalences of such APN permutations
must be of a special form. As one interesting result in dimension 7, we obtain
that all APN permutation polynomials with coefficients in Fy must be (up to CCZ-
equivalence) monomial functions.

Keywords: APN permutations, differential cryptanalysis, self equivalence, au-
tomorphism, CCZ equivalence, exhaustive search

1 Introduction

Differential cryptanalysis [3] certainly belongs to the most important attack vectors to
consider when designing a new symmetric cryptographic primitive. The basic idea of
this attack is that the adversary chooses an input difference a in the plaintext space
and evaluates the encryption of pairs of values (x,z + a) for a plaintext = and tries to
predict the output difference of the two ciphertexts with a high probability. Vectorial
Boolean functions (aka. S-bozes) that offer the best resistance against differential attacks
are called almost perfect nonlinear (APN). Precisely, a function F': F§ — FJ" is called
APN if, for every b € F5" and non-zero a € Fy, the equation F(x) + F(x + a) = b has at
most two solutions. We know very few examples or constructions of APN functions and
much less is known if we require F' to be a permutation.
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For odd values of n, we know infinite families of APN permutations and in particular,
they exist for every odd value of n. For even values of n, we only know one sporadic
example up to CCZ-equivalence, i.e., for n = 6 (see [9]). Exhaustive search for APN
permutations is only possible as long as n is small because the search space heavily
increases. So far, an exhaustive search for APN permutations was only conducted up
ton =5 (see [§]). Since already for n = 6, the number of permutations in F% is orders
of magnitude higher (64! ~ 22?6 compared to 32! ~ 2!'77), the search space for finding
new APN permutations has to be restricted in a meaningful way. Our idea is to restrict
to the class of permutations that we conjecture to contain all possible cases. Namely,
we restrict to the class of permutations that admit a non-trivial linear self-equivalence,
i.e., those permutations I’ for which there exist non-trivial linear permutations A and
B such that Fo A= BoF.

1.1 Owur Contribution

In the first part of this work, we provide a survey on all APN functions known from the
literature and observe that they all admit a non-trivial automorphism. An automorphism
of a vectorial Boolean function F': [} — )" is an affine permutation in 4 x 3" that
leaves the set {(z, F(z)) | « € Fy} invariant. For all the known APN permutations
F: Ty — [y, we show that there exists an automorphism of a special kind, i.e., there
exists a permutation G which is CCZ-equivalent to F' that admits a non-trivial linear
self-equivalence. Since a linear self-equivalence is a special kind of automorphism, we also
call it LE-automorphism. We conjecture the existence of a CCZ-equivalent permutation
with a non-trivial LE-automorphism for any APN permutation (Conjecture [).

Based on this conjecture, our goal is to conduct an exhaustive search for all such
APN permutations in small dimension. To prepare, we first classify all possible LE-
automorphisms that need to be considered in such a search. The most important ob-
servation here is that the number of tuples (A, B) can be reduced by only considering
linear permutations up to similarity and identical cycle types for A and B. Surpris-
ingly, we only need to consider a very low number of tuples, i.e., 17 for n = 6, 27 for
n =7, and 32 for n = 8. We stress that this reduction is valid for any kind of search
within the permutations with non-trivial LE-automorphisms; it is not restricted to APN
permutations.

We then use the above classification of LE-automorphism to explicitly search for
APN permutations in dimension n € {6,7,8}. By using the APN property, we can ex-
clude some of the LE-automorphisms by theory (Propositions [l and [). For the others,
we implemented a recursive tree search algorithm (Algorithm [I]). For n = 6, we are able
to exhaustively search for the APN permutations with non-trivial LE-automorphisms
and conclude that only the CCZ-equivalence class of the only known APN permuta-
tion remains. In other words, if Conjecture [ is true, this is the only APN permuta-
tion in dimension 6 up to CCZ-equivalence. For n = 7, we found all the APN mono-
mial permutations, but no more CCZ classes. For n = 8, no APN permutations have
been found. Since for n € {7,8}, we exhaustively searched through parts of the search
space, we conclude that if new CCZ-classes of APN permutations with non-trivial LE-



automorphisms exist, those automorphisms have to be of special forms (Theorem
and [M). Our exhaustive search for n = 7 covers the special case of shift-invariant per-
mutations, which correspond to all permutation polynomials in Fy7 with coefficients in
Fy (there are 20,851,424,802,623,573,443,244,703,744,000 of those, see [23] and OEIS
sequence A326932 [36]). We obtain that the only shift-invariant APN permutations in
dimension 7 are monomial functions.

2 Preliminaries

Let Fo = {0,1} denote the field with two elements, let GL(n,F2) denote the group
of invertible n x n matrices over Fy and let AGL(n,F3) denote the group of affine
permutations on F%, i.e., the set of functions of the form x +— Lz + b for L € GL(n,Fq)
and b € F}. We denote by I, the identity matrix in GL(n,F2). We denote a block-
diagonal matrix consisting of blocks My, Mo, ..., My by My & Ms & - - - B My, where My
corresponds to the block in the upper left. For a matrix M € GL(n,F3), we denote
by ord(M) the multiplicative order of M, i.e., the smallest positive integer ¢ such that
M? = I,,. Similarly, for a vector x € F%, we denote by ordys(z) the smallest positive
integer i for which M*(z) = x. It is well known that ordys(z) | ord(M).

For a polynomial ¢ = X" + ¢, 1 X" ' + - + 1. X + qo € Fo[X] of degree n, the
companion matriz of ¢ is defined as the n x n matrix

0 9
1 0 q1
Comp(q) = | € GL(n,Fy).
1 0 qn—2
1 gn

Since this paper focuses on APN functions, we first recall the definition.

Definition 1. [33] A vectorial Boolean function F: Fy — F4 is called almost perfect
nonlinear (APN) if, for every a € F3 \ {0},b € Fy, the equation F(x)+ F(x +a) =b
has at most 2 solutions for x € Fy.

Let F,G: Fy — 5 be vectorial Boolean functions in dimension n. There are sev-
eral well-known equivalence relations on vectorial Boolean functions. G is called linear
equivalent to F' if there exist A, B € GL(n,F3) such that Fo A = Bo G. If A and
B are allowed to be in AGL(n,Fs), G and F' are called affine equivalent. Finally, we
consider the notion of CCZ-equivalence. Let I'p := {(x, F(2))" | 2 € F}} be the graph
of F. The functions F' and G are called CCZ-equivalent if there exist o € AGL(2n,F)
such that I'¢ = o(I'r). The above equivalence notions are ordered by strength with
CCZ-equivalence being the strongest. In other words, two linear equivalent functions
are also affine equivalent and two affine equivalent functions are also CCZ-equivalent.

The automorphism group of a function F': F§ — F3 is defined as

Aut(F) = {o € AGL(2n,F9) |T'r =0(l'r)} .



Analogously, we define the subgroups Autag and Aut g as follows:

A 0
0 B

A 0
0 B] forA,BGGL(n,Fg)}

Autag(F) = {a e Aut(F) | o = [ ] for A,B € AGL(n,IE‘g)}

Aut g(F) = {a eAut(F) | o= [

It is {id} C Aut g(F) C Autae(F) C Aut(F) € AGL(2n,F2). The automorphism
group of F, resp., the subgroups Autag(F') and Aut g(F') contain non-trivial elements
if and only if F' is self-equivalent with regard to the corresponding equivalence relation.
For instance,

A 0
0 B

] €Aut(F) & FoA=DBoF.

Self equivalences of vectorial Boolean functions in small dimension have already been
considered in the PhD thesis [24]. Note that if F' and G are CCZ-equivalent, resp., affine
equivalent, resp., linear equivalent, it is Aut(F') = Aut(G), resp., Autae(F') = Autae(G),
resp., Aut g(F') = Aut g(G). Therefore, it is enough to consider only one single represen-
tative in each equivalence class when determining the automorphism groups. Throughout
this paper, we are especially interested in APN permutations F’ with non trivial elements
in Aut g(F). If |Aut g(F)| > 1, we say that F' has a non-trivial LE-automorphism (or a
non-trivial linear self equivalence).

3 Automorphisms of Some (APN) Functions

It is well known (e.g., see [20, Section 5.1]) that the automorphism group of a function F’
can be computed by considering the associated linear code Cr for F' with parity-check
matrix

1 1 1
T T2 e Ton

and computing its automorphism group, e.g., with the algorithm presented in [29]. How-
ever, in this part of the paper we are only interested in determining whether or not a
non-trivial element in Aut(F'), resp., Aut g(F), exists, especially for the case of an APN
function F'. In the following, we study some interesting classes of functions and sporadic
APN functions.

3.1 Quadratic Functions

Lots of function families studied in the literature are CCZ-quadratic, i.e., they are CCZ-
equivalent to a function which coordinate functions only contain monomials of algebraic
degree at most 2. Alternatively, if those functions are represented as mappings from the
finite field Far to itself, its polynomial representation only contains monomials of the

form 22" or 2% 7? with non-zero coefficients. One reason that they are studied a lot in



the literature is because they are much easier to handle. For instance, every first-order
derivative is affine. The following is a well-known result (see, e.g., [7, Proposition 1]
or [28, Theorem 4]).

Proposition 1. Let F': F} — F% be a quadratic function. Then, |Aut(F)| > 2".

Proof. Let a € Fan \ {0}. Since F' is quadratic, F(x) + F(x + «) + F(«) is linear. Let
us denote this function by L. The function defined as

Oa: T 5 FY,  (2,9) = (24 0,y + La() + F(a) + La(a))

is included in Aut(F). Indeed, it is easy to see that o, is an affine permutation. Further,
it is

0a(l'r) = oaf(z, F(2))} = {(z + , F(z) + La(2) + F(a) + La(@))}
={(z, F(z + @) + La(2) + F(a)) = {(z, F(2))} = Tr .

This implies that Aut(F’) contains 2" — 1 non-trivial elements. Since id is trivially
contained in Aut(F"), this concludes the proof. O

Many of the known APN functions are quadratic up to CCZ-equivalence, for instance
the Gold functions x ~— x> *! for ged(i,n) = 1 (see [30, B2]), the two functions from
Fyi0 and Foi2 to itself defined in [27], and the classes defined in [5, [6 1], 12} 03] [14]
[15] 16l 18, 22 40]. Indeed, to the best of our knowledge, at the time of writing only a
single APN function is known which is not CCZ-equivalent to either a quadratic or a
monomial function (see [28] 8]). We refer to [2I, Sections 3.1.6-3.1.7] and Table 1.6 in
the PhD thesis [I] for a recent summary of the known infinite classes of APN functions.

We leave it as an open question whether for a (quadratic) function F' with a non-
trivial automorphism in Aut(F) there always exists a representative G in the CCZ-class
of F with a non-trivial automorphism in Aut g(G). However, we will see in the following
that in many cases, for APN functions, there exists such a representative of the CCZ-
class.

3.2 Shift-Invariant Functions

The shift-invariant functions F': Fy — F3 are exactly those for which

Comp(X™ +1) 0

0 Comp(X™ +1) € Autig(F) .

If I is represented as a function from Fon to Fon in the normal basis representation, this
automorphism corresponds to squaring, i.e., for all z € Fon, F(2?) = F(z)?. Therefore,
the shift-invariant functions correspond to the polynomials with coefficients in Fs.

A lot of the known APN function families belong to the class of shift-invariant func-
tions. Those include all the APN monomial functions = — 2% and also the functions
defined in [I0, [15, [17]. For the latter, this is because Tr,,(z%) = Tr,,(z)?, where

%—1 omi

Try,(z) => ", «* denotes the trace function from Fan to a subfield Fam.



3.3 APN Binomial (and some Multinomial) Functions

For monomial functions, a non-trivial LE-automorphism can easily be given in terms
of multiplication with finite field elements. In particular, if x € Fon, then, for any
a € Fan \ {0}, it is (az)? = adzd.

The binomial functions F': Fon — Fon are those which can be written as F(x) =
2% + wxb, where a,b € Z and w € Fon. For special choices of a and b, we can also easily
give an LE-automorphism as follows.

Proposition 2. Let F': Fon — Fon,xz + 2% 4+ wa® be a binomial function. Let o € Fon
be an element of order d, where d|(b — a). Then

a 0
[ 0 ol ] EAUtLE(F) .

Indeed, it is (ax)® + w(az)? = a®z® + walz? = a®(z® + wa’~%?P), and o~ =1
because ord(a)|(b—a). Therefore, if ged(b—a,2™ —1) # 1, we have a non-trivial element
in AutLE(F).

Ezample 1 (APN functionl] defined in Theorem 2 of [27]). Let u € 3, be an element
of order 3. The function F: Foio — Fow, 2z +— 23 + w30 is APN if and only if w €
{uF3:} U {u?Fs}.

Since ged (36 — 3,210 — 1) = 33, a non-trivial automorphism in Aut_g(F) can be given
by an element of order 33. U
Ezample 2 (APN functions defined in Theorem 1 of [I4]). Let s and k be positive integers
with ged(s,3k) = 1 and let t € {1,2},7 = 3—t. Let further a = 2°+1 and b = 2k 4-2tk+s
and let w = a2~ for a primitive element o € Flse. If ged(2% —1,(b—a)/(2F — 1)) #
ged(2F — 1, (b —a)/(2F — 1)), the function F': Fyse — Fose, z +— 2% + wab is APN.

If ged(2%% — 1, (b —a)/(2F — 1)) # 1, the conditions of Proposition 2l are fulfilled and
a non-trivial automorphism can be given by an element of order ged(23* — 1, (b — a)).
Otherwise, ged(28—1, (b—a)/(2¥ —1)) # 1 by assumption and, since (2F—1)(2F4+2% 1) =
23k —1, also ged(2%% — 1, (b—a)) # 1. Therefore, a non-trivial automorphism in Aut g (F)
always exists. O
Ezample 3 (APN functions defined in Theorem 2 of [14]). Let s and k be positive integers
such that s < 4k — 1, ged(k,2) = ged(s,2k) = 1, and @ = sk mod 4, t = 4 —i. Let
further @ = 25 +1 and b = 2% +-2tk+s and let w = o2~ for a primitive element o € F7,..
Then, the function F': Four — Fou,z > 2% 4+ wa’ is APN.

We will show that b —a mod 5 = 0. Then, since (2* — 1)|(2** — 1), a non-trivial
automorphism can be given. Indeed, the following equalities hold mod 5:

b —a= 2Zk + 2tk+8 _ 28 _ 1 — 2(4m+sk)k + 2tk+8 _ 28 _ 1
_ (2k2)s + 2tk+s _95 _ 1= 2tk+s -1 ’

recently classified into an infinite family, see [I8]



where the last equality is fulfilled because k is odd and thus, 2¥ =2 mod 5. It is left
to show that 2°2% = 1 mod 5. This can easily be obtained by considering the four
different cases of s € {1,3} mod 4, k € {1,3} mod 4. O

Extension to Multinomial Functions. Proposition 2] can easily be generalized to
multinomial functions as follows.

Proposition 3. Let F: Fon — Fon,z — Zf;ol wix®. Let a € Fon be an element of
order d, such that, for all i € {0,...,k— 1}, d|(a; — ap). Then,

a 0
[ 0 a° :| € Aut g(F) .

Ezample 4 (APN functions defined in Theorem 1 of [5]). Let k and s be odd integers with
ged(k, s) = 1. Let b € Fgor which is not a cube, ¢ € Foor \ For, and, fori € {1,..., k—1},
let 7; € For. Then, the function

k-1

s k k+s k k i+k i

F:Fose — Fone, x> b T 4% 2% T2 L ea? T 4 g riz? T2
1=1

is APN.
Recall that 22 —1 =0 mod 3. To show that F admits a non-trivial automorphism
according to Proposition B we see that

(i) 2k+s 428 — 25 1 =0 mod 3, and
(ii) Vi€ {0,1,...,k—1},21%F + 20 — 25 1 =0 mod 3. O

Ezample 5 (APN functions defined in Theorem 2.1 of [6]). Let & and s be positive
integers such that k+s =0 mod 3 and ged(s, 3k) = ged(3, k) = 1. Let further u € F,
be primitive and let v, w € Fqor with vw # 1. Then, the function

s k 2k k+s 2k k k+s s
F:Fosi — Fose, = uz® T4 u? g 7277 pop? T pqpe® T2 712

is APN.
Recall that 23* —1 =0 mod 7. To show that F' admits a non-trivial automorphism
according to Proposition B, we show that

1. 2%k 4 9k+s _ 925 _ 1 =0 mod 7, and
2.2 41 -2°-1=(2¢)2-2°=0 mod 7, and
3. 2kts 495 95 1 =92k _1=0 mod?7.

Case (i) holds because k + s = 0 mod 3 and thus, 2°¥% = 1 mod 7. Case (i) can
be deduced by considering the two cases of Kk =1 mod 3 and k = 2 mod 3 separately.
Case (i) immediately follows from (i7) and (). O



3.4 Generalized Butterflies

It was shown in [35] that the sporadic APN permutation in dimension six found in [J]
(aka., the “Dillon” permutation) can be decomposed into a special structure.

Definition 2 (Generalized Butterfly [19]). Let n € N be odd and let o, 5 € Fon, 5 # 0.
An open generalized butterfly is defined as a permutation

Hoz,B: IF2” X IF2” — FQ" X F2”’ (Cﬂ,y) = (R(ya R_l(x,y))?R_l(xay)) )
where R(z,y) = (x + ay)® + By3.

The APN permutation found in [J] is affine equivalent to H, g for n = 3,8 =1
and « € Fon with Tr(a) = 0. More generally, open generalized butterflies are APN for
n=3,a#0 with Tr(a) =0 and 3 € {® + o, (a® + 1)a"t}.

Let ¢ denote a non-zero element of the finite field Fon. For

=)

we have Hy,30 A = AoH,g for any o, 3 € Fan, 8 # 0. Thus, there always exists a
non-trivial element in Aut g(Hqa ).

For n = 3, it is easy to verify that all matrices A of the structure above for ¢ # 1
are similar to Comp(X® + X% + X4+ X3 + X2 + X +1).

3.5 Known APN Functions in Small Dimension

Up to dimension n = 5, all APN functions are CCZ-equivalent to monomial functions,
see [8].

In [28], for dimensions n € {6,7,8}, Edel and Pott constructed new APN functions
up to CCZ-equivalence from the APN functions known so far (see [25]) by the so-called
"switching construction”. In particular, they listed 14 CCZ-inequivalent APN functions
in dimension six, 19 in dimension seven, and 23 in dimension eight. All but one of them
(see [28, Theorem 11]) are either monomial functions or quadratic. For this special case,
the authors computed the order of the automorphism group, which is 8. Note that this
is the only known example of an APN function which is not CCZ-equivalent to either a
monomial function or a quadratic function. This function was discovered independently
by Brinkmann and Leander in [8]. Note that in the recent works [11} 12], the authors
have found a new class of quadratic APN permutations which lead to new APN functions
in dimension 8 and 9. In [I1], it was shown that some of the APN functions from [28]
can be classified into an infinite class.

In [39], the authors found more than 471 new CCZ-classes of APN functions in
dimension seven, and more than 2252 new CCZ-classes in dimension eight. All of them
contain a quadratic function, so they admit non-trivial automorphisms. In the PhD
thesis [37, Table 23|, five new quadratic CCZ-classes of APN functions in dimension 11
were found.

Those are the only known sporadic APN functions we are aware of.



3.6 APN Permutations

An interesting case to consider are APN functions that are at the same time permu-
tations. Note that the property of being a permutation is not invariant under CCZ-
equivalence. Actually, not many examples of APN permutations are known. To the
best of our knowledge, the known APN permutations fall in either of the following three
cases, where the first two cases define infinite families of functions, and the third one a
sporadic example which is not classified into an infinite family yetE

1. The APN monomial functions for n odd.

2. The quadratic functions F: Fosr — Fosr,z — 221 4+ w22 2" where s and
k are positive integers with k odd, ged(k,3) = ged(s,3k) = 1, i = sk mod 3,
t=3—1, and w € F3;, with order 22k 2% 4+ 1 (Corollary 1 of [14]).

3. The quadratic function F': Fys — Fos, z — 22 + ax®* + 2!, where « is primitive
in s (i.e., the CCZ-class of the ”Dillon permutation” [9])

The authors of [14] showed that the functions in Class 2 are CCZ-inequivalent to
Gold functions when k > 4. In [38], Yoshiara proved that if a quadratic APN function
is CCZ-equivalent to a monomial function, it must be EA-equivalent to a Gold function.
Therefore, the functions in Class 2 are CCZ-inequivalent to any monomial function when
k> 4.

For each of the different CCZ-classes coming from the above cases, one can give
a representative which is a permutation and admits a non-trivial LE-automorphism.
Indeed, the monomial functions are shift-invariant and an LE-automorphism can be
given as described in Section Class 2 defines a special case of Theorem 1 in [14],
which was covered in Example 2] above. Finally, Class 3 is covered by the generalized
butterfly structure, described in Section B.41

A Conjecture on the Automorphisms of APN Functions and Permutations.
For all of the APN functions covered in this section, the automorphism group is non-
trivial (remember that the only known non-quadratic function up to CCZ-equivalence
has an automorphism group of order 8). Moreover, if it is known that those APN
functions are CCZ-equivalent to a permutation, a CCZ-equivalent permutation G can
be given with |Aut g(G)| > 1. Therefore, we raise the following conjecture.

Conjecture 1. For an APN function F: FY — FY, it is |Aut(F)| > 1. Moreover, if F is
an APN permutation, there exists a CCZ-equivalent permutation G with |Aut g(G)| > 1.

In the GitHub repository [34], Perrin implements an algorithm that checks whether an APN function
is CCZ equivalent to a permutation. We tested all cases of APN functions that come from infinite classes
in dimension 7 and 9 (see the list in [37] and the new class from [I1] and [12]) and all the cases for
dimension 7 listed in [28]. Besides the monomial functions, none of them are CCZ-equivalent to a
permutation.



In the spirit of this conjecture, we are going to explicitly search for APN permutations
with non-trivial LE-automorphisms in small dimensions. In the remainder of this paper,
we describe our method for doing this search.

Remark 1. The size of the group of LE-automorphisms is invariant under linear equiv-
alence, but not under affine equivalence. In particular if |Aut g(F')| > 1 for a function
F: Fy — F3, then there might exist a constant ¢ € F4 such that Aut g(F + ¢) is trivial.
For example, this is the case for the 6-bit APN permutation found by Algorithm [ (see
Section [5.1]).

More precisely, if F'(0) = 0, one can show that Aut g(F +c¢) is a subgroup of Aut g(F)
given by

A 0

AutLE(F—l—c):{az [ 0 B

] | o € Aut g(F) and Be = c} .

Remark 2. One can further ask whether for any APN function, there exists a represen-
tative in its CCZ-class which admits a non-trivial LE-automorphism. We checked that
this is the case for any APN function in dimension n < 5.

4 Equivalences for Permutations with Non-Trivial LE-Auto-
morphisms

If we want to classify all n-bit permutations F' (up to CCZ-equivalence) with non-trivial
elements

A 0
0 B

:| S AUtLE(F) s
we can significantly reduce the number of tuples (B, A) to consider. The observations
in this section result in Corollary [Il which states that for n € {6,7,8}, we only need to
consider 17,27, and 32 tuples (B, A), respectively. Note that this classification holds for
any permutation with a non trivial LE-automorphism, not only for APN permutations.
Let in the following F'o A = Bo F for a function F': Fy — F4 and A, B € GL(n, Fa).
For a permutation P on F%, we define Ord(P,i) = {z € F} | Pi(x) = z}, which is a
subspace of 5.

Lemma 1. Let F': F§ — F5 and let A, B be permutations on Fy such that FoA = BoF.
Then, for all i € N,

z € Ord(A,i) = F(x)e€ Ord(B,1).
Moreover, if F' is a permutation, the converse of the above implication holds.

Proof. Observe that, for all i € N, Fo A’ = B'o F. If z € Ord(A,i), then F(z) =
Bi(F(x)), thus F(z) € Ord(B,i). Let on the other hand F(x) € Ord(B,i). Then,
F(x) = F(A'z). Thus, z = A’z if F is a permutation. O

We only need to consider A and B of prime order, as shown in the following.
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Lemma 2. Let F: Fy — 5 for which there exists a non-trivial automorphism in
Aut g(F). Then, Fo A= BoF with A, B € GL(n,F3) such that either

1. ord(A) = ord(B) = p for p prime, or
2. A= 1, and ord(B) = p for p prime,or
3. B =1, and ord(A) = p for p prime.
If F is a permutation, the first of the above conditions must hold.

Proof. Let g € Autg(F), g # I,. We consider the cyclic subgroup (g) C Aut g(F).
From the fundamental theorem of cyclic groups, it contains a cyclic subgroup of prime
order. Let this subgroup be generated by

A0
h= [ 0 B ] '
The result follows since ord(h) = lem(ord(A),ord(B)). If F' is a permutation, then
ord(A) = ord(B) because of Lemma [Il O

Two matrices M, M’ € GL(n,F3) are called similar, denoted M ~ M, if there exists
a matrix P € GL(n,Fy) such that M" = P~YMP. It is well known that similarity defines
an equivalence relation. Moreover, we can provide a representative of each equivalence
class as follows.

Lemma 3. (Rational Canonical Form)[26, Page 476] Every matric M € GL(n,Fa) is
similar to a unique matriz M’ € GL(n,Fy) of the form

Comp(g)
Comp(gr—1)

Comp(q1)

for polynomials q; such that q, | ¢.—1 | --- | ¢1. The matriz M' in the form above is
called the rational canonical form of M, denoted RCF(M).

If A ~ A and B’ ~ B, then there exists a function G which is linear equivalent to
F, for which G o A = B’ o G. Therefore, if we are only interested in F up to linear
equivalence, it is sufficient to consider A and B in rational canonical form.

We can reduce the search space further if we use the fact that all powers of automor-
phisms are also automorphisms. Based on this fact, we consider the following equivalence
classes for matrices of prime order.

Definition 3. Let A, B,C, D € GL(n,F3) be of order p for p prime. The tuple (A, B)
is said to be power similar to the tuple (C, D), denoted (A, B) ~, (C, D), if there exists
i € N such that A ~ C* and B ~ D'. The tuple (A, B) is said to be extended-power
similar to (C, D), denoted (A, B) ~g, (C, D), if one of the two following conditions hold:
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1. (A, B) ~, (C, D)
2. (A1, B~ ~, (D,C) .

Power similarity and extended power similarity defines an equivalence relation on
the tuples of matrices in GL(n,F%) of the same prime order. Therefore, we can deduce
the following lemma.

Lemma 4. Let F': Fy — [y with an automorphism
[ A0

0 B :| € AUtLE(F)

for A, B € GL(n,F3) being of prime order p. For every (E, Z) power similar to (B, A),
there is a function G linear equivalent to F' such that

RCF(A) 0

0 RCF(E) € AUtLE(G) . (1)

Moreover, if F' is a permutation, then for every tuple (E,g) extended-power similar
to (B, A), there is such a function G fulfilling Equation[dl and being linear equivalent to
either F or F~1.

Proof. Let A = P~'A'P and let B = Q_lgiQ. We have that
FoA=BoF & FoP'AP=Q 'BQoF
and, thus, for G:=Qo Fo P! itis Go A'=BioG. Let k=i"! mod p. We have
GoA*=B*cG « GoA=Bod.

Without loss of generality, A and B can be chosen up to similarity. If we chose them in
rational canonical form, we obtain the first part of the lemma.

The second part can be obtained by the same argument and using the fact that, for
a permutation F, we have F~lo B~ = F~lo A1 U

Thus, if we want to consider all permutations with a non-trivial linear self equivalence
up to CCZ-equivalence (since F is CCZ-equivalent to F~!), we can restrict to tuples
(B, A) up to extended-power similarity.

Therefore, combining all the lemmas established in this section, we can enumerate
the tuples we need to consider for n € {6,7,8} as follows. The code for generating all
those tuples can be found at https://github.com/cbe90/self_equivalent_apn.

Corollary 1. Let n € {6,7,8}. All linear-equivalence classes of permutations F: F} —
F2 or F~1 with a non-trivial automorphism

[ 13 g } € Aut g(F)

can be obtained by considering the following classes for tuples (B, A):
For n =6, we have the 17 classes
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12.
13.
1.
15.
16.

17.

B=Comp(X®+ X+ X4+ X3+ X+1) A= Comp(X®+ X3+ X2+1)

B =Comp(X®+X°+ X4+ X3+ X +1) A= Comp(XS+X5+X3+X%2+X+1)
B=Comp(X®+ X+ X4+ X3+ X +1) A= Comp(X®+X°+ X*+1)
B=A=Comp(X®+X°+ X4+ X34+ X +1)
B=A=Comp(X®+ X°+ X4+ X34+ X2+ X +1)

B=A=1; ®Comp(X°+1)

B=1,®Comp(X*+ X3+ X2+1) A=1I&®Comp(X*+ X2+ X+1)
B=A=1,®Comp(X*+ X3+ X2 +1)

B = A= Comp(X?+ 1)@ Comp(X?3 +1)

B = Comp(X3 4+ X2 + 1) @ Comp(X® + X2 +1) A = Comp(X®+ X5+ X* +

X3+ X2+ X +1)

. B = Comp(X? + X? +1) ® Comp(X® + X?+1) A= Comp(X3+ X +1)@®

Comp(X3 + X + 1)

B = A= Comp(X?+ X?+1) & Comp(X3 + X% +1)

B=A=13® Comp(X?+1)

B = A= Comp(X?+1)® Comp(X?+ 1) ® Comp(X?2 +1)
B=A=Comp(X?+ X +1)® Comp(X?+ X + 1) ® Comp(X? + X +1)
B=A=1,® Comp(X?+1)® Comp(X?+1)
B=A=1,®Comp(X?+1).

For n =7, we have the 27 classes

1.

e e

©

B=A=Comp(X"+1)
B=Comp(X"+ X6+ X5+ X4+ X3+ X2+1) A=Comp(X"+ X3?+1)
B =Comp(X"+ X6+ X+ X4+ X3+ X%24+1) A= Comp(X"+ X+ X3+ X+1)

B =Comp(X"+ X0+ X+ X*+ X34+ X2+1) A= Comp(X™+ X5+ X*+
X3+ X2+ X +1)

B=Comp(X"+ X0+ X5+ X*+ X3+ X?2+1) A= Comp(X™+ X6+1)
B = Comp(X"+ X+ X°+ X4+ X3+ X%2+1) A= Comp(X"+X+X*+X+1)

B = Comp(X"+ X+ X°+ X*+ X3+ X%2+1) A= Comp(X "+ X0+ X54+X241)
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10.

11.
12.

13.

1.
15.
16.
17.

18.

19.
20.
21.
22,
23,
2.
25.
26.
27,

B =Comp(X"+ X6 4+ X5+ X4+ X3+ X2+1) A= Comp(X"+ X6 4 X5 4
X3+ X2+ X +1)

B = Comp(X"+ X+ X°+ X4+ X3+ X%2+1) A= Comp(X "+ X0+ X5+ X441)

B =Comp(X"+ X6 4+ X5+ X* 4+ X3+ X2+1) A= Comp(X"+ X6 4 X5+
X'+ X2+ X +1)

B=A=Comp(X"+ X0+ X5+ X*+ X%+ X%241)
B=L®Comp(XS+ X5+ X4+ X34+ X +1) A=1&Comp(XS+X3+X2+1)

B=L®Comp(XS+ X5+ X4+ X3+ X+1) A=1I&Comp(X®+X°+ X3+
X2+ X +1)

B=L®Comp(XS+ X+ X4+ X34+ X +1) A=1 &Comp(X°+X°+X*+1)
B=A=1 ®Comp(X%+ X5+ X*+ X3+ X +1)

B=A=1,® Comp(X°+1)

B = Comp(X®+ X +1) @ Comp(X* + X3+ X2 +1) A= Comp(X"+1)

B = Comp(X?+ X +1)@® Comp(X*+ X3+ X%2+1) A=Comp(X3+X2+1)a
Comp(X* + X2+ X +1)

B=A=Comp(X?+ X +1)® Comp(X*+ X3+ X2 +1)
B=1I3®Comp(X*+ X3+ X24+1) A=1I33® Comp(X*+ X2+ X+1)
B=A=13® Comp(X*+ X3+ X2+4+1)

B=A=1I; ®Comp(X?+1)® Comp(X?3+1)
B=A=Comp(X?+ X +1)® Comp(X? + X + 1) ® Comp(X3 + 1)
B=A=1,®Comp(X3+1

B =A=13® Comp

)
)
)
B=A=1 & Comp(X?+1)® Comp(X?+ 1) ® Comp(X? + 1)
X2 4+ 1) ® Comp(X? +1)
)

(
(
(
(

B=A=1I5®Comp(X?+1).

For n =8, we have the 32 classes

1.

2.
3.

B =Comp(X®+ X"+ X0+ X4+ X2+ X+1) A= Comp(X®+ X5+ X*+X3+1)
B=A=Comp(X8+ X"+ X0+ X4+ X2+ X +1)

B =Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+1) A= Comp(X®+ X6+
X4+ X34+ X2 41)
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4.

10.

11.

12.
13.
1.
15.

16.
17.
18.
19.

20.

21.
22.
23.

2.

B =Comp(X8+ X"+ X0+ X5+ X* + X34+ X24+1) A= Comp(X®+ X6+
X5+ X4+ X241)

B =Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+1) A= Comp(X®+ X6+
X0+ X4+ X3+ X2+ X +1)

B =Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+1) A= Comp(X®+ X"+
X'+ X3+ X +1)

B =Comp(X8+ X"+ X0+ X5+ X4+ X34+ X24+1) A= Comp(X®+ X"+
X5+ X2+ X +1)

B =Comp(X8+ X"+ X0+ X5+ X* + X34+ X24+1) A= Comp(X®+ X"+
XP+ X4+ X +1)

B = Comp(X®+ X"+ X6+ X+ X4+ X34+ X2 +1) A= Comp(X®+X"+X6+1)

B =Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+1) A= Comp(X®+ X7+
X0+ X3+ X+1)

B =Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+1) A= Comp(X®+ X"+
X6 4+ X5 4+ X3 41)

B=A=Comp(X®+ X"+ X0+ X5+ X4+ X3+ X2+4+1)
B=A=1 @ Comp(X"+1)
B=1Lo®Comp(XS+ X5+ X4+ X34+ X +1) A=IL®Comp(XS+X3+X2+1)

B=IL®Comp(XS+ X5+ X4+ X3+ X+1) A=1I®Comp(X®+X°+ X3+
X2+ X +1)

B=Lo®Comp(XS+ X+ X4+ X3+ X +1) A=IL®Comp(X+X°+X*+1)
B=A=1®Comp(X%+ X5+ X'+ X3+ X +1)

B =A=1I3® Comp(X®+1)

B = Comp(X*+ X3+ X2+1)@Comp(X*+ X3+ X2+1) A= L®Comp(X"+1)

B = Comp(X*+ X3 + X2 +1) ® Comp(X* + X3+ X2+1) A= Comp(X*+
X2+ X +1)@® Comp(X*+ X2+ X +1)

B=A=Comp(X*+ X%+ X?2+1)® Comp(X*+ X3+ X% +1)
B=A=Comp(X*+ X3+ X2+ X +1)® Comp(X*+ X3+ X%+ X +1)
B=1,®Comp(X*+ X3+ X2+1) A=1I,&Comp(X*+ X2+ X+1)

B=A=1,® Comp(X*+ X3+ X2+4+1)
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25. B= A= Comp(X?+ X +1) & Comp(X? + 1) & Comp(X?> + 1)

26. B=A=1I,® Comp(X3 + 1) ® Comp(X? + 1)

27. B=A=I5® Comp(X? +1)

28. B=A = Comp(X?+1) ® Comp(X?+ 1) & Comp(X? + 1) ® Comp(X? + 1)

29. B=A = Comp(X?+ X + 1)@ Comp(X?+ X + 1)@ Comp(X2+ X +1) &
Comp(X?2+ X +1)

30. B=A=1,® Comp(X?+ 1) ® Comp(X? + 1) ® Comp(X? + 1)
81. B=A=1;® Comp(X?+1)® Comp(X? + 1)
32. B=A=1Is® Comp(X?+1).

Note that, when searching for permutations in one of the above classes, we can reduce
the search space further by filtering candidates up to affine equivalence as follows. For a
matrix M € GL(n,Fs), let Comm(M) denote the subgroup of GL(n,F2) of all matrices
that commute with M.

Lemma 5. Let F': F} — FJ and let A, B € GL(n,F3) such that F o A= Bo F. Then,
GoA=BoG forany G=CpoFoCy with Cy € Comm(A) and Cp € Comm(B).

This allows us to only consider one representative within the class of Comm(B)o F o

Comm(A).

5 Searching for APN Permutations with Non-Trivial LE-
Automorphisms

We now use the classification of tuples from Corollary [ to explicitly search for APN
permutations with non-trivial linear self-equivalences in dimensions n € {6,7,8}. First,
we observe that not all of the tuples (B, A) obtained in Corollary [lhave to be considered
in the search.

Definition 4. Let A, B € GL(n,F3). A tuple (B, A) is admissible if there exists an
APN permutation F: Fy — Fy with Fo A= BoF.

The following two propositions imply necessary conditions for a tuple to be admissi-

ble.

Proposition 4. Let F': Fy — F5 be a permutation that is APN. Let Ay, Ay C Fy be two
affine spaces such that F (A1) = As. Then, dim A; ¢ {2,4,n — 1}.

Proof. Let d = dim Ay = dim A,. Without loss of generality, we can choose A1 = Ay =
F4 x {0}"~? by considering an affine equivalent permutation F” of F. Because F” is APN,
the property F’(A;) = As implies the existence of an APN permutation in dimension d.
This cannot happen for d = 2 and d = 4, see [31]. The case of d =n — 1 was shown in
[31l Proposition 2.1]. O
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Therefore, if (B, A) € GL(n,F2) x GL(n,F3) is an admissible tuple, we have that
dim Ord(A,i) = dim Ord(B,i) ¢ {2,4,n — 1} for all i € N.

Proposition 5. Let (B, A) € GL(n,F2)xGL(n,F2) be an admissible tuple with ord(A) =
ord(B) = k for k prime. Then, there exists no 4-nomial in Fo[X]/(X* — 1) which is a
multiple of both the minimal polynomial of A and the minimal polynomial of B.

Proof. Suppose there is such a 4-nomial p = X® 4+ X° 4+ X¢ + 1. Then, both A% + A® =
A¢+1 and B+ B® = B+ 1 hold. Let g € F5 be an element with ord4(g) = k and let
F be a permutation that fulfills the self-equivalence for (B, A). We have

F(A%g) + F(A’g) = B°F(g) + B"F(g) = (B* + B")F(g)
= (B°+ 1)F(g) = F(A%) + F(g) ,

which implies that F' cannot be APN. ]
The following statement is a variant of the above proposition for monomial functions.

Proposition 6. Let F(z) = x? be a permutation over Fon. Then, F is APN if and only
if there exists no 4-nomial p € Fo[X]/(X?"~! +1) such that both p and p® are multiples
of the same primitive polynomial f € Folx]/(X?" 1 +1).

Depth-First Tree Search Algorithm. Using the above propositions, for some of
the tuples given in Corollary 1 we can directly say that they are not admissible. For
the other tuples, we can check their admissibility by the recursive depth-first tree search
described in Algorithm [ at the end of the paper.

It gets as input two matrices A, B € GL(n,F2) and constructs the look-up tables of
all n-bit APN permutations F' with F'o A = B o F' up to linear equivalence. To reduce
the search space according to Lemma [0 we provide a subset of C'4 C Comm(A) and
a subset Cp C Comm(B) as additional inputs. The idea is that the algorithm should
output only the smallest representative of an APN permutation up to conjugation with
elements in C'4, resp. Cp, where the term smallest refers to some lexicographic ordering
of the look-up tableﬁ

At the beginning of the search, the look-up table is initialized to L at each point,
where L indicates that the respective point is not yet defined. At the beginning of each
iteration of the recursive NEXTVAL procedure, it is checked whether the look-up table
is completely defined, i.e., whether it contains no more L. If it is completely defined,
the look-up table will be appended to the list of solutions and the procedure returns.
Otherwise, it chooses the next undefined point x in the look-up table (according to
some previously defined ordering) and sets it to the next value y (also according to
some previously defined ordering) which does not yet occur in the look-up table and
for which ords(x) = ordg(y). Besides fixing F'(z) := y, the algorithm further fixes

3The check for being the smallest representative is omitted if the depth exceeds some threshold t,
because at some depth it is faster to just traverse the remaining tree. Therefore, it might happen that
the algorithm outputs more representatives than just the smallest.
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all F(A'(x)) = B'(y) according to the self-equivalence. For each point that is fixed,
it will be checked whether the partially-defined function can still be APN (procedure
ISAPN). In case that there is already a contradiction with the property of being APN,
the corresponding branch is pruned and the point x is set to the next possible value y.
In case that the partially-defined function can still be APN, the algorithm iterates to
the next depth.

APN Check. The description of Alg. Il is a bit simplified. Instead of checking for
each new fixing of a point whether the partially-defined function can still be APN (for
example by constructing the difference distribution table (DDT) partially), we use a
global two-dimensional array of size 2™ x 2" that dynamically stores the partial DDT.
After each point of F' is fixed, we update the partial DDT according to the new set point
and check whether it contains values larger than 2 (in that case, ' cannot be APN). If
a point is reset to L (line 32), the DDT array has to be updated accordingly.

For a further speed-up, note that we do not have to consider the whole DDT for the
APN check. As it was shown in [2] Theorem 4], only those DDT entries corresponding
to input differences with even Hamming Weight have to be computed.

5.1 Results for n =6

By Propositions@and @ we directly obtain that 8 out of the 17 tuples given in Corollary[I]
are not admissible (see Table[ll). We ezhaustively searched the remaining 9 tuples using
Algorithm [l The case of

B = A= Comp(X?+1)® Comp(X? +1) ® Comp(X? + 1) (2)

(Class 14) was the most difficult one. A, resp., B is an involution and therefore only
consists of cycles of length 1 and 2, which causes Alg. [l to be less efficient. However,
since A, resp. B has 8 fixed points, we can w.l.o.g. set F' on the fixed points of A to the
only existing APN permutation on 3-bit up to affine equivalence. This trick allowed us
to finish this case within roughly 8 core hours on a standard CPU. Only for the case

B=A=Comp(X+ X5+ X'+ X3+ X2+ X +1) (3)

(Class 5), APN permutations exist and they are all CCZ-equivalent to Dillon’s permu-
tation. To conclude, we have shown the following.

Theorem 1. Up to CCZ-equivalence, there is only one APN permutation F in dimension
6 with |Aut|_E(F)| > 1.
5.2 Results for n =7

By Propositions [ and Bl we directly obtain that 13 out of the 27 tuples given in Corol-
lary [ are not admissible. We exhaustively searched through 11 of the remaining 14
tuples using Algorithm [I]
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Algorithm 1 APNSEARCH
Require: Matrices A, B € GL(n,Fs), C4 C Comm(A),Cp C Comm(B). Global array
sbox of size 2", initialized to sbox[i] = L, for all i € {0,...,2" — 1}
Ensure: All n-bit APN permutations F' s.t. FA = BF up to linear equivalence.
1. L+ {}, sbox[0]«+ 0
2: NEXTVAL(0)
3: return L

4: function NEXTVAL(depth)

5: if 1ISCOMPLETE(sbox) then
6: L <+ LU {sbox}

T return

8: end if

9:

x < NEXTFREEPOSITION()
10: for y € Iy do

11: if ISNOTTAKEN(y) and ord4(z) = ordp(y) then
12: xS+ x, zY +y

13: for i =0 to orda(z) — 2 do
14: sbox[zS] + yS

15: if not ISAPN(sbox) then
16: go to 31

17: end if

18: xS« A(zS), yS <+ B(yS)
19: end for

20: sbox[zS] « yS

21: if not ISAPN(sbox) then

22: go to 31l

23: end if

24: if depth <t then

25: if ISSMALLEST(sbox) then
26: NEXTVAL(depth + 1)
27: end if

28: else

29: NEXTVAL(depth + 1)

30: end if

31: repeat

32: sbox[zS] «+ L

33: xS+ A71(29)

34: until z5 = A~!(z)

35: end if

36: end for

37: end function
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Table 1: Analysis of the tuples (B, A) given in Corollary [l “No.” corresponds to the
number of the tuple in Corollary [ The column “admissible” indicates whether there
exists an n-bit APN permutation £’ for which F'o A = B o F. In case that it does, we
list all the solutions for the CCZ classes of such F'. The “7?” indicates that we were not
able to either exclude the tuple by Prop. d or [, or to finish the exhaustive search for F.

n==~06 n="7T n=2~8
No. admissible solutions No. admissible solutions | No. admissible
1 no (Alg. [ 1 yes T x° 1 no (Alg. [
z i 2?
z 20
Tz’
x>
z a8
2 no (Alg. [ 2 no (Prop. [ 2 no (Alg. [
3 no (Alg. [ 3 no (Prop. [ 3 no (Prop. [))
4 no (Prop. B) 4 yes r— 2% | 4 no (Alg. )
5 yes “Dillon” [9] | 5 yes z—a2? |5 no (Alg. )
6 no (Prop. M) 6 no (Prop. [ 6 no (Alg. [
7 no (Alg. ) 7 yes A no (Prop. [
8 no (Prop. [ 8 yes T2 |8 no (Alg. [
9 no (Prop. H) 9 yes a2 9 no (Alg. )
10 no (Alg.M) 10 yes 2% | 10 no (Alg.[)
11 no (Alg. ) 11 no (Prop.[) 11 no (Prop.[)
12 no (Prop. [l 12 no (Prop. H) 12 no (Prop. Bl
13 mno (Prop. H) 13 no (Prop. @) 13 no (Prop. @)
14 mno (Alg. ) 14 no (Prop. M) 14 no (Alg. [
15 mno (Alg.[) 15 no (Prop. H) 15 no (Alg.[)
16 no (Prop. H) 16 7 16 no (Alg.[)
17 no (Prop. H) 17 no (Alg. [ 17 no (Prop. B
18  mo (Alg. [ 18  no (Prop. H)
19  no (Prop. Bl 19  no (Prop. @)
20 mno (Prop.H) 20 no (Prop.[)
21 no (Prop. ) 21 no (Prop. )
22 ? 22 ?
23 7 23 no (Alg. )
24 mno (Alg.M) 24 no (Prop. )
25  mno (Prop.H) 25 no (Prop. )
26 mno (Alg.M) 26 no (Prop.[)
27 mno (Prop.H) 27 no (Alg. )
28  mno (Prop. M)
29  no (Alg. O
30  no (Alg. )
31 no (Alg. )
32 no (Prop.[)

Class 1 corresponds to the shift-invariant permutations, which obviously contains all
the monomial permutations. By letting Alg. Il run for several days on a cluster with 256
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cores, we were able to finish the search for APN permutations in this class. We obtained
that the APN monomial permutations are the only shift-invariant APN permutations.

Theorem 2. Up to CCZ-equivalence, a shift-invariant APN permutation in dimension
7 must be a monomial function.

The 6 APN monomial permutations in dimension 7 are also contained in Classes
4,5, 7,8, 9, and 10, respectively. Those classes correspond to tuples (B, A), where A
and B correspond to multiplications by elements in the finite field Fy7. No more APN
permutation have been found. This leads us to state the following theorem.

Theorem 3. Let F' be an APN permutation in dimension 7 with |Aut g(F)| > 1 and
which is not CCZ-equivalent to a monomial function. Then, F is CCZ-equivalent to a
permutation G for which Go A = B o G with

1. B=A=1,®Comp(X®+1) or
2. B=A=1 ®Comp(X3+1)® Comp(X3+1) or

3. B=A=Comp(X?+ X +1)® Comp(X?+ X + 1) ® Comp(X3 +1) .

5.3 Results for n =38

By Propositions @ and Bl we directly obtain that 15 out of the 32 tuples given in Corol-
lary [ are not admissible. We exhaustively searched through 16 of the remaining 17
tuples using Algorithm Il No APN permutation have been found. To complete the
search for Class 30, similarly to Class 14 in the 6-bit case, we set F' on the 32 fixed
points of A (resp. B) to an APN permutation on 5-bit. Since there are exactly five
5-bit APN permutations up to affine equivalence [8], this has to repeated 5 times. To
conclude, we state the following theorem.

Theorem 4. Let F' be an APN permutation in dimension 8 with |Aut g(F)| > 1. Then,
F is CCZ-equivalent to a permutation G for which Go A = B o G with

B=A=Comp(X*+ X3+ X?+ X +1)® Comp(X* + X3 + X>+ X +1).

Table [[l summarizes our results. The source code of our implementation of Alg. [l can
be found at https://github.com/cbe90/self_equivalent_apn. For checking whether
a found solution is CCZ-equivalent to an already known APN permutation, we used the
equivalent condition on code equivalence as explained in [9]. Practically, we used the
code equivalence algorithm of the computer algebra system Magma [4], which for n =7
takes a few seconds on a standard PC.

5.4 Randomized Search

In case that the search space for a tuple (B, A) is too large such that Alg. [lis not going
to terminate in reasonable time, we can randomly search for APN permutations F for
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which F'o A = BoF. Indeed, it is straightforward to implement a randomized version of
Algorithm 1. For that, before the initial call of NEXTVAL, we randomly shuffle the order
in which the values for y are iterated in line 10. We abort the search after a previously-
defined amount of time and repeat with a new initial shuffling. Further, since we are
not aiming for an erhaustive search, we omit the check for the smallest representative,
i.e., set t to —1.

We applied the randomized search for the 4 tuples for which we were not able to
finish the exhaustive search, i.e., Classes 16, 22, and 23 for n = 7, and Class 22 for
n = 8. No APN permutations have been found by letting the algorithm run for one
week on 32 cores for each of those cases.

6 Conclusion and Open Questions

We observed that all APN permutations known from the literature contain a permuta-
tion in their CCZ-class that admit a non-trivial linear self equivalence. We performed an
exhaustive search for 6-bit APN permutations with such non-trivial linear self equiva-
lences and a partial search in dimension 7 and 8. Although we did not find any new APN
permutations, we think that our work contributes to the knowledge of APN permutations
in small dimensions.

We expect that there are no more APN permutations with non-trivial linear self-
equivalences in dimension 7 and 8. As open problems, it would be interesting to settle
the cases described in Theorem Bl and [, i.e., to show that those cases contain no APN
permutations. Another (very ambitious) open problem is to prove or disprove Conjec-
ture [Il This would certainly be considered a major breakthrough in the theory of APN
functions.
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