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Abstract. In this paper, we partly prove a supercongruence conjectured by Z.-W. Sun
in 2013. Let p be an odd prime and let a € Z*. Then if p =1 (mod 3), we have
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where () is the Jacobi symbol.
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1. Introduction

In the past years, congruences for sums of binomial coefficients have attracted the atten-
tion of many researchers (see, for instance, [2,4[5,10,12,16/17,19]). In 2011, Sun [17]
proved that for any odd prime p and a € Z*,
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Liu and Petrov [7] showed some congruences on sums of g-binomial coefficients.
In 2006, Adamchuk [I] conjectured that for any prime p =1 (mod 3),
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Recently, Mao [9] confirmed this conjecture.
Pan and Sun [13] proved that for any prime p =1 (mod 4) or 1 < a € ZT,
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In 2017, Mao and Sun [I1] showed that for any prime p =1 (mod 4) or 1 < a € Z™,
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Sun [I5] proved that for any odd prime p and a € Z*, we have
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Z (1L6’2 = (—a) (mod p?).
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In this paper, we partly prove Sun’s conjecture [I5, Conjecture 1.2(i)].
Theorem 1.1. Let p be an odd prime and let a € Z. If p=1 (mod 3), then
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We shall prove Theorem [[.1]in Section 2.

2. Proof of Theorem 1.1

(1.1)

Lemma 2.1. ( [6]). For any prime p > 3, we have the following congruences modulo p
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Proof of Theorem[I1l In view of (ILT]), we just need to verify that
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Z 6k = 0 (mod p*).

k=(pe+1)/2

(2.1)

Let k and [ be positive integers with k+1 = p® and 0 < [ < p®/2. In view of [13], we have
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It is easy to see that for k =1,2,...,(p* — 1)/2,
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Thus, by (21]) we only need to show that
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Z =0 (mod p). (2.5)
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Now we set n = (p* —1)/2,m = L%aj , A= —4, then we only need to prove that
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In view of [18], we have
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It is easy to check that foreach 0 <k <n—1-—m

n—1-m—k ; 1n—1-m—k
—1-m—k\ (=1) —l-m—k
(n -m ) =) _ / (” o )(—x)’xmdx
; l m-+1i+1 0 1

=0 i=0

1
= / 2™(1 —z)" ke = B(m 4+ 1,n —m — k),
0

where B(P, Q) stands for the beta function. It is well known that the beta function relate
to gamma function:
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Therefore
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By the following transformation
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We have
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By [3, (1.48)], we have
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Thus,
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Now we calculate €. First we have the following transformation
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By using package Sigma, we find the following identity,
i i N+1
pe k—l—z i — (Z . 1) (N-H)

Substituting N =n —m — 1,2 = m + 1 — j into the above identity, we have
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It is easy to check that
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It is obvious that
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This, with [16], (1.20)] yields that
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On the other hand, by [3, (1.48)] we have
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and p*~'H,, = H\,/5 (mod p), p* 'H,_p, = H|}y3 (mod p).
Now p = 1 (mod 3), so by [8, Lemma 17(2)], we have (") # 0 (mod p). These, with
(220)-([2.10) yield that we only need to prove that
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Now n = (p* —1)/2,m = (p* — 1)/6. So by Fermat little theorem we have
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There are only the items 3j+1 = p®~*(3k+1) with k = 0,1,...,(p—1)/2and k # (p—1)/3,
so by [9, Theorem 1.2] we have
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Therefore the proof of Theorem [Tl is complete. O
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