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Abstract. In this paper, we partly prove a supercongruence conjectured by Z.-W. Sun
in 2013. Let p be an odd prime and let a ∈ Z

+. Then if p ≡ 1 (mod 3), we have

⌊ 5

6
pa⌋
∑

k=0

(

2k
k

)

16k
≡

(

3

pa

)

(mod p2),

where
(

·
·

)

is the Jacobi symbol.
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1. Introduction

In the past years, congruences for sums of binomial coefficients have attracted the atten-
tion of many researchers (see, for instance, [2, 4, 5, 10, 12, 16, 17, 19]). In 2011, Sun [17]
proved that for any odd prime p and a ∈ Z

+,

pa−1
∑

k=0

(

2k

k

)

≡

(

pa

3

)

(mod p2).

Liu and Petrov [7] showed some congruences on sums of q-binomial coefficients.
In 2006, Adamchuk [1] conjectured that for any prime p ≡ 1 (mod 3),

2

3
(p−1)
∑

k=1

(

2k

k

)

≡ 0 (mod p2).

Recently, Mao [9] confirmed this conjecture.
Pan and Sun [13] proved that for any prime p ≡ 1 (mod 4) or 1 < a ∈ Z

+,

⌊ 3

4
pa⌋
∑

k=0

(

2k
k

)

(−4)k
≡

(

2

pa

)

(mod p2).
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In 2017, Mao and Sun [11] showed that for any prime p ≡ 1 (mod 4) or 1 < a ∈ Z
+,

⌊ 3

4
pa⌋
∑

k=0

(

2k
k

)2

(16)k
≡

(

−1

pa

)

(mod p3).

Sun [15] proved that for any odd prime p and a ∈ Z
+, we have

(pa−1)/2
∑

k=0

(

2k
k

)

16k
≡

(

3

pa

)

(mod p2). (1.1)

In this paper, we partly prove Sun’s conjecture [15, Conjecture 1.2(i)].

Theorem 1.1. Let p be an odd prime and let a ∈ Z
+. If p ≡ 1 (mod 3), then

⌊ 5

6
pa⌋
∑

k=0

(

2k
k

)

16k
≡

(

3

pa

)

(mod p2).

We shall prove Theorem 1.1 in Section 2.

2. Proof of Theorem 1.1

Lemma 2.1. ( [6]). For any prime p > 3, we have the following congruences modulo p

H⌊p/2⌋ ≡ −2qp(2), H⌊p/3⌋ ≡ −
3

2
qp(3), H⌊p/6⌋ ≡ −2qp(2)−

3

2
qp(3).

Proof of Theorem 1.1. In view of (1.1), we just need to verify that

⌊ 5

6
pa⌋
∑

k=(pa+1)/2

(

2k
k

)

16k
≡ 0 (mod p2). (2.1)

Let k and l be positive integers with k+ l = pa and 0 < l < pa/2. In view of [13], we have

l

2

(

2l

l

)

=
(2l − 1)!

(l − 1)!2
6≡ 0 (mod pa) (2.2)

and
(

2k

k

)

≡ −pa
(l − 1)!2

(2l − 1)!
= −

2pa

l
(

2l
l

) (mod p2). (2.3)

So we have

⌊ 5

6
pa⌋
∑

k=(pa+1)/2

(

2k
k

)

16k
≡

⌊ 5

6
pa⌋
∑

k=(pa+1)/2

−2pa

(pa − k)
(

2pa−2k
pa−k

)

16k
=

−2pa

16pa

(pa−1)/2
∑

k=⌊ pa

6
⌋+1

16k

k
(

2k
k

) (mod p2).
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It is easy to see that for k = 1, 2, . . . , (pa − 1)/2,

(

(pa−1)/2
k

)

(

2k
k

)

/(−4)k
=

(

(pa−1)/2
k

)

(

1/2
k

) =
k−1
∏

j=0

(pa − 1)/2− j

−1/2− j
=

k−1
∏

j=0

(

1−
pa

2j + 1

)

≡ 1 (mod p). (2.4)

This, with Fermat little theorem yields that

⌊ 5

6
pa⌋
∑

k=(pa+1)/2

(

2k
k

)

16k
≡ −

pa

8

(pa−1)/2
∑

k=⌊ pa

6
⌋+1

(−4)k

k
(

(pa−1)/2
k

) ≡ −pa
(pa−3)/2
∑

k=⌊ pa

6
⌋

(−4)k
(

(pa−3)/2
k

) (mod p2).

Thus, by (2.1) we only need to show that

pa−1

(pa−3)/2
∑

k=⌊ pa

6
⌋

(−4)k
(

(pa−3)/2
k

) ≡ 0 (mod p). (2.5)

Now we set n = (pa − 1)/2, m = ⌊pa

6
⌋, λ = −4, then we only need to prove that

pa−1
n−1
∑

k=m

λk

(

n−1
k

) ≡ 0 (mod p). (2.6)

In view of [18], we have

n−1
∑

k=m

λk

(

n−1
k

) = n

n−1−m
∑

k=0

λm+k

(λ+ 1)k+1

n−1−m−k
∑

i=0

(−1)i
(

n−1−m−k
i

)

m+ i+ 1
+

nλn

(λ+ 1)n+1

n−1
∑

k=m

(λ+ 1)k+1

k + 1
.

It is easy to check that for each 0 ≤ k ≤ n− 1−m

n−1−m−k
∑

i=0

(

n− 1−m− k

i

)

(−1)i

m+ i+ 1
=

∫ 1

0

n−1−m−k
∑

i=0

(

n− 1−m− k

i

)

(−x)ixmdx

=

∫ 1

0

xm(1− x)n−1−m−kdx = B(m+ 1, n−m− k),

where B(P,Q) stands for the beta function. It is well known that the beta function relate
to gamma function:

B(P,Q) =
Γ(P )Γ(Q)

Γ(P +Q)
.

So

B(m+ 1, n−m− k) =
Γ(m+ 1)Γ(n−m− k)

Γ(n− k + 1)
=

m!(n−m− k − 1)!

(n− k)!
=

1

(m+ 1)
(

n−k
m+1

) .
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Therefore

n−1
∑

k=m

λk

(

n−1
k

) =
n

m+ 1

n−1−m
∑

k=0

λm+k

(λ+ 1)k+1
(

n−k
m+1

) +
nλn

(λ+ 1)n+1

n−1
∑

k=m

(λ+ 1)k+1

k + 1

=
n

m+ 1

n
∑

k=m+1

λm+n−k

(λ+ 1)n−k+1
(

k
m+1

) +
nλn

(λ+ 1)n+1

n
∑

k=m+1

(λ+ 1)k

k

=
nλn

(λ+ 1)n+1

(

λm

m+ 1

n
∑

k=m+1

(λ+ 1)k

λk
(

k
m+1

) +

n
∑

k=m+1

(λ+ 1)k

k

)

.

By (2.6), we just need to show that

pa−1 λm

m+ 1

n
∑

k=m+1

(λ+ 1)k

λk
(

k
m+1

) ≡ −pa−1
n
∑

k=m+1

(λ+ 1)k

k
(mod p). (2.7)

It is obvious that

n
∑

k=m+1

(λ+ 1)k

λk
(

k
m+1

) =

n
∑

k=m+1

1
(

k
m+1

)

(

3

4

)k

=

n
∑

k=m+1

1
(

k
m+1

)

k
∑

j=0

(

k
j

)

(−4)j
= B+ C,

where

B =

n
∑

j=m+1

1

(−4)j

n
∑

k=j

(

k
j

)

(

k
m+1

) , C =

m
∑

j=0

1

(−4)j

n
∑

k=m+1

(

k
j

)

(

k
m+1

) .

By the following transformation

(

k
j

)

(

k
m+1

) =
k!(m+ 1)!(k −m− 1)!

j!(k − j)!k!
=

(m+ 1)!(k −m− 1)!(j −m− 1)!

j!(k − j)!(j −m− 1)!
=

(

k−m−1
j−m−1

)

(

j
m+1

) .

We have

B =
n
∑

j=m+1

1

(−4)j

n
∑

k=j

(

k−m−1
j−m−1

)

(

j
m+1

) =
n
∑

j=m+1

1

(−4)j
(

j
m+1

)

n−j
∑

k=0

(

k + j −m− 1

j −m− 1

)

.

By [3, (1.48)], we have

B =

n
∑

j=m+1

1

(−4)j
(

j
m+1

)

(

n−m

j −m

)

.

It is easy to show that

(

n−m
j−m

)

(

j
m+1

) =
(n−m)!(m+ 1)!(j −m− 1)!

j!(n− j)!(j −m)!
=

n+ 1

j −m

(

n
j

)

(

n+1
m+1

) .
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Thus,

B =
n + 1
(

n+1
m+1

)

n
∑

j=m+1

(

n
j

)

(j −m)(−4)j
.

Now we calculate C. First we have the following transformation

(

k
j

)

(

k
m+1

) =
k!(m+ 1)!(k −m− 1)!

j!(k − j)!k!
=

(m+ 1)!(k −m− 1)!(m− j + 1)!

j!(k − j)!(m− j + 1)!
=

(

m+1
j

)

(

k−j
m−j+1

) .

Thus,

C =
m
∑

j=0

(

m+ 1

j

)

1

(−4)j

n
∑

k=m+1

1
(

k−j
m−j+1

) =
m
∑

j=0

(

m+ 1

j

)

1

(−4)j

n−m−1
∑

k=0

1
(

k+m+1−j
m−j+1

) .

By using package Sigma, we find the following identity,

N
∑

k=0

1
(

k+i
i

) =
i

i− 1
−

N + 1

(i− 1)
(

N+i
N

) .

Substituting N = n−m− 1, i = m+ 1− j into the above identity, we have

C =

m−1
∑

j=0

(

m+ 1

j

)

1

(−4)j

(

m+ 1− j

m− j
−

n−m

(m− j)
(

n−j
n−m−1

)

)

+ (m+ 1)

(

−
1

4

)m n−m
∑

k=1

1

k
.

It is easy to check that

(n−m)
(

m+1
j

)

(

n−j
n−m−1

) =
(m+ 1)!((n−m)!(m+ 1− j)!

j!(n− j)!(m+ 1− j)!
=

(m+ 1)!((n−m)!

j!(n− j)!
=

(n+ 1)
(

n
j

)

(

n+1
m+1

) .

Therefore

C = (m+ 1)

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
−

n+ 1
(

n+1
m+1

)

m−1
∑

j=0

(

n
j

)

(m− j)(−4)j
+ (m+ 1)

(

−
1

4

)m n−m
∑

k=1

1

k
.

Hence

B + C = (m+ 1)

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
+

n+ 1
(

n+1
m+1

)

n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
+ (m+ 1)

(

−
1

4

)m n−m
∑

k=1

1

k
.

That is

λm

m+ 1
(B+ C) = λm

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
+

λm

(

n
m

)

n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
+Hn−m. (2.8)

5



It is obvious that

n
∑

k=1

(−3)k

k
=

∫ 1

0

n
∑

k=1

(−3)kxk−1dx = −3

∫ 1

0

n−1
∑

k=0

(−3x)kdx = −3

∫ 1

0

1− (−3x)n

1 + 3x
dx

= 3

∫ 1

0

n
∑

k=1

(

n

k

)

(−1)k(1 + 3x)k−1dx =

∫ 4

1

n
∑

k=1

(−1)kyk−1dy =
n
∑

k=1

(

n

k

)

(−1)k
4k − 1

k

and
n
∑

k=1

(

n

k

)

(−1)k

k
=

∫ 1

0

n
∑

k=1

(

n

k

)

(−1)kxk−1dx =

∫ 1

0

(1− x)n − 1

x
dx =

∫ 1

0

yn − 1

1− y
dy

= −

∫ 1

0

n−1
∑

k=0

ykdy = −
n−1
∑

k=0

1

k + 1
= −

n
∑

k=1

1

k
.

This, with [16, (1.20)] yields that

n
∑

k=1

(λ+ 1)k

k
=

n
∑

k=1

(−3)k

k
=

n
∑

k=1

(

n

k

)

(−4)k

k
+Hn.

On the other hand, by [3, (1.48)] we have

m
∑

k=1

(λ+ 1)k − 1

k
=

m
∑

k=1

(−3)k − 1

k
=

m
∑

k=1

1

k

k
∑

j=1

(

k

j

)

(−4)j =

m
∑

j=1

(−4)j

j

m
∑

k=j

(

k − 1

j − 1

)

=

m
∑

j=1

(−4)j

j

(

m

j

)

= (−4)m
m−1
∑

j=0

1

(m− j)(−4)j

(

m

j

)

.

Hence
m
∑

k=1

(λ+ 1)k

k
= (−4)m

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
+Hm.

So

n
∑

k=m+1

(λ+ 1)k

k
=

n
∑

k=1

(

n

k

)

(−4)k

k
+Hn − λm

m−1
∑

j=0

(

m
j

)

(m− j)(−4)j
−Hm. (2.9)

In view of [16, (1.20)], and by (2.2), (2.3) and (2.4) we have

pa−1
n
∑

k=1

(

n

k

)

(−4)k

k
≡ pa−1

n
∑

k=1

(

2k
k

)

k
≡ pa−1

pa−1
∑

k=1

(

2k
k

)

k
≡ 0 (mod p). (2.10)

It is obvious that

pa−1Hn = pa−1
n
∑

k=1

1

k
≡ pa−1

(p−1)/2
∑

j=1

1

jpa−1
= H(p−1)/2 (mod p)

6



and pa−1Hm ≡ H⌊p/6⌋ (mod p), pa−1Hn−m ≡ H⌊p/3⌋ (mod p).
Now p ≡ 1 (mod 3), so by [8, Lemma 17(2)], we have

(

n
m

)

6≡ 0 (mod p). These, with
(2.7)-(2.10) yield that we only need to prove that

pa−1

n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
≡ 0 (mod p). (2.11)

Now n = (pa − 1)/2, m = (pa − 1)/6. So by Fermat little theorem we have

pa−1
n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
≡ −3(−1)(p

a−1)/2pa−1
n
∑

j=0
j 6=n−m

(

n
j

)

(−4)j

3j + 1
(mod p).

There are only the items 3j+1 = pa−1(3k+1) with k = 0, 1, . . . , (p−1)/2 and k 6= (p−1)/3,
so by [9, Theorem 1.2] we have

pa−1

n
∑

j=0
j 6=m

(

n
j

)

(j −m)(−4)j
≡ −3(−1)

p
a
−1

2

(p−1)/2
∑

k=0
k 6=(p−1)/3

( n

kpa−1+ pa−1
−1

3

)

(−4)kp
a−1+ p

a−1
−1

3

3k + 1

≡ −3(−1)
p
a
−1

2 (−4)
p
a−1

−1

3

(pa−1−1
2

pa−1−1
3

) (p−1)/2
∑

k=0
k 6=(p−1)/3

(

n
k

)

(−4)k

3k + 1
≡ 0 (mod p).

Therefore the proof of Theorem 1.1 is complete. ✷
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