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ON THE VOLUME OF HYPERPLANE SECTIONS OF A d-CUBE

ISKANDER ALIEV

Mathematics Institute, Cardiff University, Cardiff, Wales, UK

Abstract. We obtain an optimal upper bound for the normalised volume of a hyper-
plane section of an origin-symmetric d-dimensional cube. This confirms a conjecture
posed by Imre Bárány and Péter Frankl.

1. Statement of the results

Let Cd = [−1/2, 1/2]d be the d-dimensional unit cube. Throughout this paper we assume
that d ≥ 2. For a nonzero vector v ∈ R

d we will denote by v⊥ the hyperplane orthogonal
to v and consider the section Cd ∩ v⊥ of the cube Cd. Let further ‖ · ‖1 and ‖ · ‖2 denote ℓ1
and ℓ2 norms, respectively. In this paper we will be interested in the quantity

Vd = max
v∈Rd

‖v‖1
‖v‖2

· vold−1(Cd ∩ v⊥) ,(1)

where vold−1(·) stands for the (d−1)-volume. Imre Bárány and Péter Frankl [3] conjectured
that the maximum in (1) is given by the vector v = 1d := (1, . . . , 1). Our main result
confirms this conjecture.

Theorem 1. We have

Vd =
√
d · vold−1(Cd ∩ 1⊥

d ) .(2)

It is known that

lim
d→∞

vold−1(Cd ∩ 1⊥
d ) =

√

6

π

(see [9], [11] and e. g. [5]). The expression (2) also allows finding the exact value of Vd in the
following way. Let s = (s1, . . . , sd) ∈ S

d−1 be a unit vector. Then

vold−1(Cd ∩ s⊥) =
2

π

∫ ∞

0

d
∏

i=1

sin sit

sit
dt(3)

(see e. g. [2]). Consider the sinc integral [4]

σd =
2

π

∫ ∞

0

(

sin t

t

)d

dt .
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2 I. ALIEV

In view of (2) and (3) we have

Vd =
2
√
d

π

∫ ∞

0

(

sin t√
d

t√
d

)d

dt = d σd .(4)

Further

σd =
d

2d−1

∑

0≤r<d/2, r∈Z

(−1)r(d− 2r)d−1

r!(d − r)!

(see e. g. [10]). The sequences of numerators and denominators of σd/2 can be found in [12].
Theorem 1 and (3) immediately imply the following lower bound for sinc integrals.

Corollary 2. For any unit vector s = (s1, . . . , sd) ∈ S
d−1

2||s||1
πd

∫ ∞

0

d
∏

i=1

sin sit

sit
dt ≤ σd .

It is known that 0 < σd+1/σd < 1 (see e. g. [1, Lemma 1]). Theorem 1 also implies the
following lower bound for the ratio of consecutive sinc integrals.

Corollary 3. We have

d

d+ 1
≤ σd+1

σd
.

2. Intersection body of Cd

We can associate with each star body L the distance function fL(x) = inf{λ > 0 : x ∈
λL} . The intersection body IL of a star body L ⊂ R

d (recall that we assume d ≥ 2) is
defined as the 0–symmetric star body with distance function

fIL(x) =
‖x‖2

vold−1(L ∩ x⊥)
.

The Busemann theorem (see e. g. [6], Chapter 8) states that if L is 0–symmetric and convex,
then IL is a convex set. For more details on intersection bodies we refer the reader to [7, 8].

For convenience, in what follows we will work with normalised cube

Qd =
1

vold−1(Cd ∩ 1⊥
d )

1/(d−1)
· Cd .

Then, in particular,

vold−1(Qd ∩ 1⊥
d ) = 1 .(5)

Lemma 4. The affine hyperplane

H = {x ∈ R
d : x1 + · · ·+ xd =

√
d}

is a supporting hyperplane of IQd.

Proof. Let f = fIQd denote the distance function of IQd, so that IQd = {x ∈ R
d : f(x) ≤

1} . By (5), for the point

h :=
1√
d
1d =

(

1√
d
, . . . ,

1√
d

)

(6)
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we have f(h) = 1. Therefore h is on the boundary of IQd.
Suppose, to derive a contradiction, that H is not a supporting hyperplane of IQd. Observe

that h ∈ H ∩ IQd. Hence for any ǫ > 0 there exists a point p = (p1, . . . , pd) in the interior
of IQd with

‖h− p‖2 < ǫ(7)

and p1 + · · ·+ pd >
√
d.

By (7) we may assume that p ∈ R
d
>0. Further, as the point p is in the interior of IQd

we may assume, for simplicity, that the entries of p are pairwise distinct: pi 6= pj for i 6= j.
Consider d points

p1 = (p1, . . . , pd−1, pd)
p2 = (p2, . . . , pd, p1)
...
pd = (pd, . . . , pd−2, pd−1) .

For each i, the section Qd ∩ p⊥
i is the image of the section Qd ∩ p⊥

1 under an orthogonal
transformation defined by a permutation matrix. Therefore pi ∈ IQd. Set

y =
1

d
(p1 + · · ·+ pd) =

∑d
i=1 pi√
d

h .

By construction, y is a convex combination of the points p1, . . . ,pd. Since IQd is convex,
y = (y1, . . . , yd) ∈ IQd. Further

y1 + · · ·+ yd =

d
∑

i=1

pi >
√
d .

Therefore the point h must be in the interior of IQd. The derived contradiction completes
the proof.

�

3. Proof of Theorem 1

It is sufficient to show that for any unit vector v ∈ S
d−1 the inequality

‖v‖1 · vold−1(Qd ∩ v⊥) ≤
√
d · vold−1(Qd ∩ 1⊥

d ) =
√
d(8)

holds.
In view of symmetry of Qd we may assume without loss of generality that v ∈ R

d
≥0.

Consider the plane P spanned by the vector h, defined by (6), and the vector v and let α
be the angle between these two vectors with cos(α) = h · v (Figure 1). It is not difficult to

see that cos(α) ≥ 1/
√
d and, consequently, α < π/2.

Notice that h is orthogonal to the line H ∩P . Let u denote the intersection point of the
line spanned by v and H∩P . Further, let w be the orthogonal projection of v onto the line
spanned by h.

Then we have

cos(α) = ‖w‖2 =
1

‖u‖2
.(9)
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Figure 1. Geometric argument on the plane P

Since h ∈ H, all points x on the line passing through the points v and w have x1+ · · ·+xd =√
d ‖w‖2. Therefore, we have ‖v‖1 =

√
d ‖w‖2. In was shown in Lemma 4 that H is a

supporting hyperplane of IQd. Hence we have

vold−1(Qd ∩ v⊥) ≤ ‖u‖2 .(10)

Finally, using (9) and (10), we have

‖v‖1 · vold−1(Qd ∩ v⊥) ≤
√
d ‖w‖2‖u‖2 =

√
d ,

that confirms (8).

4. Proof of Corollary 3

It was observed in [3] that the sequence {Vd}∞d=1 is increasing: Vd ≤ Vd+1 for all d ≥ 2. It
is now sufficient to note that, by Theorem 1 (see (4)), we can write Vd = dσd.
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