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Sequences: Polynomial, C-finite, Holonomic, ...

Thotsaporn Aek Thanatipanonda, Yi Zhang

April 9, 2020

Abstract

Polynomial, C-finite, Holonomic are the most common ansatz to describe
the pattern of the sequences. We propose a new ansatz called X-recursive
that generalize those we mentioned. We also discuss its closure properties and
compare this ansatz to another new similar ansatz from another paper.

The programs accompanied this article are Xrec.txt and Guess.txt which can be
found from the first author’s website: thotsaporn.com.

1 Current Situation

Mathematics is an art of finding patterns. As combinatorialists, we deal with a lot of
sequences. The process of determining the pattern of a given sequence is essentially
important. The common ways to explain the sequences are by their recurrence rela-
tions or generating functions. Polynomial as sequences, C-finite sequences (constant
coefficient linear recurrences) and Holonomic sequences (polynomial coefficient lin-
ear recurrences) are the most common ansatzs as pattern searching of each sequence.
The readers are recommended to consult [5] to learn more about these ansatzs than
what we listed below. Here we are on the expedition for a new ansatz that can
explain a bigger class of patterns.

1.1 Polynomial as Sequences

The sequence {a(n)}∞n=0 can be expressed as an univariate polynomial in K[n], where
K is a field of characteristic of zero, and n is an indeterminate, i.e.:

a(n) = ckn
k + ck−1n

k−1 + ... + c1n+ c0.

We call a(n) a polynomial as sequence [5] of degree k.

http://arxiv.org/abs/2004.01370v2


Example 1: Let a(n) = 1 + 2 + · · ·+ n. Then a(n) =
1

2
n2 +

1

2
n.

Since a(n) is a univariate polynomial of degree k, we know that the degree of b(n) :=
a(n+1)− a(n) goes down by 1. Applying this process for k+1 times, we obtain the
zero sequence, i.e.,

(N − 1)k+1a(n) = 0, n ≥ 0,

where the shift operator N · a(n) = a(n+ 1).

Example 2: a(n) := n2 − 2n satisfies the following recurrence equation:

a(n+ 3)− 3a(n+ 2) + 3a(n+ 1)− a(n) = 0, n ≥ 0,

where a(0) = 0, a(1) = −1, a(2) = 0.

It follows that the generating function of a(n) of polynomial as sequence of degree
k is

∞
∑

n=0

a(n)xn =
q(x)

(1− x)k+1
,

where q(x) is some polynomial of degree at most k.

Some closure properties that are satisfied by polynomial sequences:
Let a(n) and b(n) be a polynomial as sequence of degree r and s. The the following
properties hold,

1. {a(n) + b(n)}∞n=0 is also a polynomial as sequence of degree at most max (r, s).

2. {a(n) · b(n)}∞n=0 is also a polynomial as sequence of degree at most r + s.

3. {
∑n

j=0 a(j)}
∞

n=0 is also a polynomial as sequence of degree at most r + 1.

1.2 C-finite Sequences

The linear recurrence relation with only constant coefficients ([5, 6]), i.e., the se-
quence {a(n)}∞n=0 where there are constants k, c1, . . . , ck−2, ck−1, ck such that

a(n) + c1a(n− 1) + · · ·+ ck−1a(n− k + 1) + cka(n− k) = 0, for all n ≥ k.

In this case, we say a(n) satisfies a linear recurrence of order k. The polynomial
sequence is a special case of C-finite sequences.

The generating function of C-finite sequence is

∞
∑

n=0

a(n)xn =
q(x)

1 + c1x+ c2x2 + · · ·+ ckxk
,
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where q(x) is some polynomial of degree at most k − 1.

Some examples are

1. Fibonacci sequence: a(n) = a(n− 1) + a(n− 2) , where a(0) = 0, a(1) = 1.

2. The sequence {a(n)}∞n=0,

2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, ...

satisfies the recurrence relation

a(n) = 3a(n− 1)− 2a(n− 2), n ≥ 2.

and its generating function can be written as

f(x) =
∞
∑

n=0

a(n)xn =
−(3x− 2)

(2x− 1)(x− 1)
=

−(3x− 2)

2x2 − 3x+ 1
.

3. Summation: a(n) =

n−1
∑

i=0

a(i), where a(0) = 1.

This is a C-finite sequence i.e. a(n) = 2a(n− 1), n ≥ 1.

Some closure properties that are satisfied by C-finite sequences:
Let a(n) and b(n) be C-finite sequences of order r and s. The the following properties
hold,

1. {a(n) + b(n)}∞n=0 is a C-finite sequence of order at most r + s,

2. {a(n) · b(n)}∞n=0 is a C-finite sequence of order at most rs,

3. {
∑n

j=1 a(j)}
∞

n=0 is a C-finite sequence of order at most r + 1,

4. {a(mn)}∞n=0, m ∈ Z
+ is a C-finite of order at most r.

This closures properties are very useful for proving identities. For example to prove
that

F2n = 2FnFn+1 − F 2
n , n ≥ 0,

we only define
a(n) := F2n − 2FnFn+1 + F 2

n , n ≥ 0

and calculate the upper bound d for the order of linear recurrences of a(n). (In
this case, the upper bound is 2+4+4=10.) Then we verify numerically that a(i) =
0, 0 ≤ i ≤ d to verify that a(n) is the zero sequence.
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1.3 Holonomic Sequences

The linear recurrence relation with polynomial coefficients ([5]), i.e., the sequence
{a(n)}∞n=0 where there are integer k and polynomials p0(n), p1(n), . . . , pk−1(n), pk(n)
(p0(n) 6= 0), each of which has degree at most d such that

p0(n)a(n) + p1(n)a(n− 1) + · · ·+ pk−1(n)a(n− k + 1) + pk(n)a(n− k) = 0,

for all n ≥ k.

We say that a(n) satisfies a linear recurrence of order k. It is clear that the C-finite
sequence is a special case of holonomic sequence.

Some examples are

1. Factorial: a(n) = n · a(n− 1) , where a(0) = 1.

2. Harmonic numbers: Hn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
satisfies the recurrence relation,

nHn − (2n− 1)Hn−1 + (n− 1)Hn−2 = 0, n ≥ 3.

The combinatorics community have applied this ansatz in their works for quite some
time. But it becomes very popular since the invention of computer algebra systems
like Macsyma (early 70s) or Maple (early 80s). (Although I wish Maple had this
command built-in.) It is the most commonly used ansatz. A lot of sequence of
combinatorial objects fall in this class.

A holonomic differential equation (aka holonomic function, D-finite function)

Let f(x) :=
∑

∞

n=0 a(n)x
n be the generating function of order k of the holonomic

sequence a(n). Then f(x) satisfies the differential relation

q0(x)f(x) + q1(x)f
′(x) + · · ·+ qk(x)f

(k)(x) = 0,

where qi(x) are some polynomials of degree at most d.

We note that the order and degree of the sequence version and generating function
version do not correspond. For example, for the holonomic sequence a(n) of order r
and degree d, the corresponding generating function has order at most d and degree
at most r + d.

Some closure properties that are satisfied by holonomic sequences:
Let a(n) and b(n) be holonomic sequences of order r and s. Then the following
properties hold,

1. {a(n) + b(n)}∞n=0 is holonomic of order at most r + s,
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2. Hadamard product {a(n) · b(n)}∞n=0 is holonomic of order at most rs,

3. {
∑n

i=0 a(i)}
∞

n=0 is holonomic of order at most r + 1,

4. Cauchy product {
∑n

i=0 a(i)b(n− i)}∞n=0 is holonomic of order at most rs,

5. {a(⌊un+ v⌋)}∞n=0 is holonomic for any non-negative rational number u and v.

1.4 Polynomial-Recursive Sequences

The sequence {a(n)}∞n=0 where there are a polynomial with r+1 variables such that

P (a(n), a(n− 1), . . . , a(n− r)) = 0 for all n ≥ r.

An example is Somos sequence, i.e. Somos-4

a(n) · a(n− 4)− a(n− 1) · a(n− 3)− a(n− 2)2 = 0, n ≥ 5,

where a(1) = a(2) = a(3) = a(4) = 1.

Michael Somos is well known for his sequences. To some surprise, the sequence
contains only integer values. Many mathematicians have studied and proved the
integer property of the Somos sequences. This sequence relates directly to the theory
of elliptic integral.

2 X-Recursive Sequences

We introduce the new ansatz which generalize the holonomic ansatz. We first show
a motivational example.

A hint to Somos-like sequence

Consider a sequence a(n) generated from the following nonlinear relation, given by
Michael Somos in 2014,

0 = a(n)a(n+ 1)a(n + 3)− a(n)a(n + 2)2 − a(n+ 2)a(n + 1)2, for all n ≥ 0,

where a(0) = 1, a(1) = 1 and a(2) = 2.

Some of the first few terms are

1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, ....
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This sequence is growing too fast to be C-finite or holonomic, but still simple enough
for human to detect the pattern. Can you guess?

Answer:
a(n) = Fn+1 · a(n− 1), a0 = 1,

where Fn is the Fibonacci sequence. This is the sequence A003266 in OEIS website.
This example suggests the following new type of ansatz that might as well prove the
integrality of Somos-like sequences.

X-Recursive Sequence

The X-recursive sequence {a(n)}∞n=0 is defined to be the sequence where the terms
satisfy a linear recurrence with the C-finite sequences coefficients, i.e.

C0,na(n) + C1,na(n− 1) + C2,na(n− 2) + · · ·+ Ck,na(n− k) = 0

where each of the sequences Ci,n, 0 ≤ i ≤ k are C-finite.

We say that a(n) satisfies a linear recurrence of order k.

We give more examples.

1. a(n) = a(n− 1) + 2na(n− 2), a0 = a1 = 1.

2. a(n) = Fn · a(n− 1) + Fn−1 · a(n− 2), a(0) = a(1) = 1.

This sequence is A089126 in OEIS.

3. Summation: a(n) =

n−1
∑

i=1

Fi · a(i), a1 = 1.

Some of the first few terms are

1, 1, 2, 6, 24, 144, 1296, 18144, 399168, 13970880.

From the definition,

a(n)− a(n− 1) = Fn−1a(n− 1), n ≥ 3.

Therefore
a(n) = (Fn−1 + 1) · a(n− 1) = Cn · a(n− 1),

where Cn = 2Cn−1 − Cn−3 with C3 = 2, C4 = 3 and C5 = 4.
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An X-recursive differential equation

Let f(x) :=
∑

∞

n=0 a(n)x
n be the generating function of order k of the X-recursive

sequence a(n). Then f(x) satisfies the new relation

f(x) =
T
∑

i=0

(

qi,0(x)f(αix) + qi,1(x)f
′(αix) + · · ·+ qi,k(x)f

(k)(αix)
)

,

where αi are the roots of Ci,n and qi,j(x) are some polynomials of degree at most d.

Again we note that the order and degree of the sequence version and generating
function version do not correspond directly.

We give some examples of this observation below.

Example 1: Let a(n) = Fn · a(n− 1). Then

f(x) =

∞
∑

n=0

a(n)xn =

∞
∑

n=0

Fn · a(n− 1)xn = x

∞
∑

n=0

(c1α
n
+ + c2α

n
−
) · a(n− 1)xn−1

= c′1x

∞
∑

n=0

αn
+ · a(n)xn + c′2x

∞
∑

n=0

αn
−
· a(n)xn, (we shift index n by 1)

= c′1xf(α+x) + c′2xf(α−x),

where α+ and α− are the roots of equation x2 − x− 1 = 0.

For the next example, Cn has a polynomial factor.

Example 2: Let a(n) = (n+ 1)2n · a(n− 1). Then

f(x) =

∞
∑

n=0

a(n)xn =

∞
∑

n=0

(n+ 1)2n · a(n− 1)xn = 2x

∞
∑

n=0

(n+ 2)2n · a(n)xn

= 2x2
∞
∑

n=0

n2n · a(n)xn−1 + 4x

∞
∑

n=0

2n · a(n)xn

= 2x2f ′(2x) + 4xf(2x).

Next, we present the closure properties of X-recursive sequences.

Let a(n) and b(n) be X-recursive sequences.

1. {a(n) + b(n)}∞n=0 is X-recursive,

2. Hadamard product {a(n) · b(n)}∞n=0 is X-recursive,

3. {
∑n

i=0 a(i)}
∞

n=0 is X-recursive,
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4. Cauchy product {
∑n

i=0 a(i)b(n− i)}∞n=0 is X-recursive.

Properties 1-3 can be done directly by the method of undermined coefficients They
have been implemented in the program Xrec.txt. Property 4 can be proved by
relating the sequence to its generating function’s relationship. The proof is the same
as the holonomic sequences case mentioned in [5, Page 142].

All of the sequences we are talking about is in the real number field. Things are not
going so smoothly for the field with zero divisor. This is a big deal from theoretical
point of view and we made a subsection devotes to a discussion of it.

The conflict from zero divisors on closure properties

LetK be a field of characteristic zero. Set KN to be the ring of all sequences {a(n)}∞n=0

whose terms belong to K. Assume that N is the shift operator on K
N. In order to

avoid sequences with only finitely many nonzero terms, we follow [7, Section 8.2]
to take the quotient ring S(K) := K

N/J , where J = ∪∞

k=0KerNk is the ideal of
eventually zero sequences. Let ϕ : KN → S(K) be the canonical epimorphism which
maps a sequence a ∈ K

N into its equivalence class a+ J ∈ S(K). Since KerϕN = J ,
there exist a unique automorphism E of S(K) such tat ϕN = Eϕ. The operator E
is called the shift operator on S(K). In the following arguments, we always work in
S(K) and regard its elements as sequences. For simplicity, we use a instead of the
equivalence class a+ J , and N instead of E.

Note that a sequence is a zero divisor in S(K) if and only if it contains infinitely
many zero terms and infinitely many nonzero terms. It implies that a sequence is
a unit in S(K) if and only if it is not a zero divisor. In order to avoid zero divisor
problems, we shall work in a difference subfield [2] of S(K) which contains K, such
as K(n). Then [4, Section 2] can be naturally generalized to the shift case. However,
to the best of my knowledge, there is no effective algorithm to test whether given
finitely many sequences belong to a difference field or not.

Next, we will present two examples to show that item 1 of the above closure properties
only holds for some special cases, but not in general.

Example 3: Assume that a(n) and b(n) are first-order X-recursive sequences, i.e.,

C1,na(n + 1) = C0,na(n), (1)

D1,nb(n + 1) = D0,nb(n), (2)

where C0,n, C1,n, D0,n, D1,n are C-finite. Let us try to construct an X-recursive equa-
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tion for a(n) + b(n). Using (1) and (2) , we have

a(n) + b(n) = a(n) + b(n), (3)

C1,nD1,n (a(n + 1) + b(n + 1)) = C0,nD1,na(n) + C1,nD0,nb(n), (4)

C1,n+1C1,nD1,n+1D1,n (a(n + 2) + b(n + 2)) = C0,nC0,n+1D1,n+1D1,na(n)+

C1,n+1C1,nD0,n+1D0,nb(n). (5)

Note that we multiple a(n+1)+ b(n+1) by C1,nD1,n because C-finite sequences are
not necessarily units in S(K). Next, let us make the following ansatz:

x2C1,n+1C1,nD1,n+1D1,n (a(n+ 2) + b(n + 2)) + x1C1,nD1,n (a(n+ 1) + b(n + 1))

+ x0 (a(n) + b(n)) = 0, (6)

where x0, x1, x2 are unknown sequences in S(K). Substituting (3), (4) and (5) into
the above equation, we get

[C0,nC0,n+1D1,nD1,n+1 · x2 + C0,nD1,n · x1 + x0] · a(n) + [C1,nC1,n+1D0,nD0,n+1 · x2

+ C1,nD0,n · x1 + x0] · b(n) = 0.

Setting the coefficients of a(n) and b(n) to be zeros, we get the following linear
equations:

AX = 0,

where

A =

[

1 C0,nD1,n C0,nC0,n+1D1,nD1,n+1

1 C1,nD0,n C1,nC1,n+1D0,nD0,n+1

]

, X =





x0

x1

x2



 .

Next, we do Gaussian elimination for A:

A
r2−r1−−−→

[

1 C0,nD1,n C0,nC0,n+1D1,nD1,n+1

0 C1,nD0,n − C0,nD1,n C1,nC1,n+1D0,nD0,n+1 − C0,nC0,n+1D1,nD1,n+1

]

:= B.

The second row of B corresponds to

(C1,nD0,n − C0,nD1,n) x1 + (C1,nC1,n+1D0,nD0,n+1 − C0,nC0,n+1D1,nD1,n+1) x2 = 0.
(7)

If C1,nD0,n − C0,nD1,n 6= 0, then

x1 = (C1,nC1,n+1D0,nD0,n+1 − C0,nC0,n+1D1,nD1,n+1) , x2 = − (C1,nD0,n − C0,nD1,n)

is a nonzero solution of (7). C1,nD0,n − C0,nD1,n = 0, then

x1 = 1, x2 = 0

is a nonzero solution of (7). Thus, equation (7) always has a nonzero solution. From
the first row of B, we can get the value x0. Therefore, equation (6) always has a
nonzero C-finite solution. It implies that a(n) + b(n) is also X-recursive.
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Example 3 shows that the sum of first-order X-recursive sequences is still X-recursive
because the corresponding matrix A has a special form. However, the next example
illustrates that this might not be true for higher-order X-recursive sequences.

Example 4: Assume that a(n) and b(n) are second-order X-recursive sequences, i.e.,

C2,na(n + 2) = C1,na(n + 1) + C0,na(n), (8)

D2,nb(n + 2) = D1,nb(n+ 1) +D0,nb(n), (9)

where Ci,n and Di,n are C-finite, i = 0, 1, 2. Let us try to construct an X-recursive
equation for a(n) + b(n). Using (8) and (9) , we get

a(n) + b(n) = a(n) + b(n), (10)

a(n+ 1) + b(n + 1) = a(n + 1) + b(n + 1), (11)

∗ · (a(n + 2) + b(n + 2)) = ∗ · a(n) + ∗ · a(n + 1) + ∗ · b(n) + ∗ · b(n+ 1), (12)

∗ · (a(n + 3) + b(n + 3)) = ∗ · a(n) + ∗ · a(n + 1) + ∗ · b(n) + ∗ · b(n+ 1), (13)

∗ · (a(n + 4) + b(n + 4)) = ∗ · a(n) + ∗ · a(n + 1) + ∗ · b(n) + ∗ · b(n+ 1), (14)

where ∗ represents a C-finite sequence. Next, let us make the following ansatz:

x4·∗·(a(n+ 4) + b(n + 4))+x3·∗·(a(n + 3) + b(n + 3))+x2 ·∗·(a(n + 2) + b(n+ 2))

+ x1 (a(n + 1) + b(n + 1)) + x0 (a(n) + b(n)) = 0, (15)

where xi’s are unknown sequences in S(K). Substituting equations (10)-(14) into
the above equation, we get

(∗ · x4 + ∗ · x3 + ∗ · x2 + x0) · a(n) + (∗ · x4 + ∗ · x3 + ∗ · x2 + x1) · a(n + 1)+

(∗ · x4 + ∗ · x3 + ∗ · x2 + x0) · b(n) + (∗ · x4 + ∗ · x3 + ∗ · x2 + x1) · b(n + 1) = 0.

Setting the coefficients of a(n), a(n+1), b(n), b(n+1) to be zeros, we get the following
linear equations:

AX = 0,

where

A =









1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗
1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗









, X =













x0

x1

x2

x3

x4













.

Next, we do fraction-free Gaussian elimination for A:

A
r3−r1−−−→
r4−r2









1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗









∗·r4−∗·r3−−−−−→









1 0 ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗









:= B
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The last row of B corresponds to

∗ ·x3 + ∗ · x4 = 0. (16)

Similar to the arguments in Example 3, we can always find a nonzero C-finite solution
for (16). If we substitute this nonzero solutions into the third row of B, then we
need to solve the following equation:

∗1 ·x2 = ∗2 (17)

In general, ∗1 might be a zero divisor in S(K), such as (−1)n − 1. In this case,
equation (17) might have no solution. It implies that AX = 0 might have no nonzero
solution in S(K). Besides, there is an algorithm [1] to test whether a given C-finite
sequence is a zero divisor in S(K) or not. Even in this situation, the linear algebra
approach will only be a heuristic method to test the closure properties of X-recursive
sequence.

Guessing is not easy

The biggest problem of this ansatz is the calculation. In practice, we must test
the ansatz with the given sequences. We demonstrate the calculation difficulties by
showing the example where a(n) satisfies linear recurrence of order 2

a(n) = C1,na(n− 1) + C2,na(n− 2), n ≥ 2,

and that C1,n and C2,n are C-finite of order 2. Here we must solve the system of
equations

a(n) = C1,na(n− 1) + C2,na(n− 2), 2 ≤ n ≤ N,

C1,n = c1C1,n−1 + c2C1,n−2, 4 ≤ n ≤ N,

C2,n = d1C2,n−1 + d2C2,n−2, 4 ≤ n ≤ N.

In total, there are (N−2)+(N−4)+(N−4) = 3N−10 equations and 2(N−2)+4 =
2N variables. Therefore we must choose N > 10 in order to make some sense of the
guessing. The readers may already notice that these are also the system of non-linear
equations. It seems like the computation takes too long even for this simple cases.

Final Remarks

At the end, we admit that we did not go very far with this new ansatz. The first
problem is the slowness causing by solving the system of non-linear equations which
makes guessing very difficult. The second problem is that the other well known non-
holonomic sequences like Bell numbers, Somos-4,5,6 do not seem to fall in this class.
So it is not as helpful as we might want it to be. Nonetheless it is useful to keep this
in mind, it could be helpful when we need it one day.
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3 DD-finite Functions

During my presentation on X-recursive sequences in 2017, I was informed by Christoph
Koutschan, my colleague from RICAM, Austria that the group of people at RISC
leading by Veronika Pillwein is working on a similar idea, [4]. Instead of general-
izing the sequence, they generalized the generating function of holonomic functions
aka D-finite functions. We will look at this idea and compare to our X-recursive
sequences.

DD-finite functions

Let f(x) :=
∑

∞

n=0 a(n)x
n. f(x) is called a DD-finite function of order k if f(x)

satisfies the relation

q0(x)f(x) + q1(x)f
′(x) + · · ·+ qk(x)f

(k)(x) = 0,

for some D-finite functions qi(x) of degree at most a constant d, 0 ≤ i ≤ k.

Some well known examples of these functions are

Example 1: exf(x) − f ′(x) = 0. Here f(x) = C · ee
x

. Then the coefficients a(n) of
f(x) satisfies the relation

(n+ 1)a(n+ 1) =
n

∑

j=0

a(j)

(n− j)!
.

We note that if C = e−1, f(x) will be the exponential generating function of the
famous Bell numbers, b(n).

By substituting a(n) =: b(n)/n!, we have the relation

b(n + 1) =

n
∑

j=0

(

n

j

)

b(j), b(0) = 1.

Example 2: f(x) − sin(x) cos(x)f ′(x) = 0. This time f(x) = C tan(x). From this
equation, the coefficients a(n) of f(x) satisfies the relation

(1− n)a(n) =
n−1
∑

j=1

jcn−j+1aj , a0 = 0, a1 = 1,

where cj =
−4

j(j − 1)
cj−2, c0 = 0, c1 = 1.

Example 3: ((x − 1)ex + 1)f(x) + x(ex − 1)f ′(x) = 0. Here f(x) =
x

ex − 1
which is

the exponential generating function of the Bernoulli numbers. From this equation,
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the coefficients a(n) of f(x) satisfies the relation

a(n) = −
n−1
∑

j=0

a(j)

(n+ 1− j)!
.

All of these three classical sequences satisfy the differential equations of order 1.

The closure properties of DD-finite functions was derived in [4, Section 4]. Let
f, g be DD-finite functions of orders r and s. Then

1. f + g is a DD-finite with order at most r + s.

2. fg is a DD-finite with order at most rs.

The sequence version that suggested by this ansatz is in the form

n
∑

j=0

cn,j,0a(j) +

n
∑

j=0

cn,j,1a(j + 1) + ... +

n
∑

j=0

cn,j,ka(j + k) = 0.

where, for each l, cn,j,l are 2-dimensional holonomic sequences in n and j. In practice
(as of 2020), however, it is already difficult to determine whether a giving sequence
is DD-finite of order 1, i.e.

a(n + 1) =
n

∑

j=0

cn,ja(j).

We run into the same problem of solving system of non-linear equations as in the
X-recursive case.
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