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Abstract

We investigate the permutation sorting problem with two restricted stacks in series by applying a
right greedy process. Instead of σ-machine introduced recently by Cerbai et al., we focus our study
on (σ, τ)-machine where the first stack avoids two patterns of length three, σ and τ , and the second
stack avoids the pattern 21. For (σ, τ) = (123, 132), we prove that sortable permutations are those
avoiding some generalized patterns, which provides a new set enumerated by the Catalan numbers.
When (σ, τ) = (132, 231), we prove that sortable permutations are counted by the Schröder numbers.
Finally, we suspect that other pairs of length three patterns lead to sets enumerated by the Catalan
numbers and leave them as open problems.

1 Introduction

For several decades, the problem of permutation sorting was widely studied in the literature. It consists
in rearranging an arbitrary permutation into the identity one using a sequence of specific transformations.
One of the most relevant references is probably Sorting and Searching [13], the third volume of Knuth’s
seminal monograph TAOCP, where the author studies the complexity of several sorting algorithms. In
this paper we consider stack sorting problems which have been initiated in [12], the first volume of
TAOCP. From an input permutation π = π1π2 . . . πn, the process consists in reading π from left to right,
and for each entry πi either push it onto the stack, or pop the top of the stack into the output. Knuth [12]
proved that a permutation π is sortable (i.e. there is a sequence of push and pop operations such that
the output is the identity permutation) if and only if there do not exist i < j < k such that πk < πi < πj ,
or equivalently π avoids the pattern 231; and sortable permutations are counted by Catalan numbers.
This result is the birth of the theory of pattern containment, and it already led to many other variations
of the stack sorting problem, see [6] for an early survey and the references therein. For instance, some
studies consider relaxed rules for push and pop operations [1], whereas others deal with several stacks in
series [3, 14, 17] or parallel [2, 19]. Today, the characterization of sortable permutations using two stacks
in series remains an open problem. However, Pierrot and Rossin [15] give a polynomial time algorithm to
decide whether a permutation is sortable with two stacks in series. West [20] studies the restricted case
where permutations are sorted by two passes through a stack and provides a characterization of sortable
permutations in terms of generalized patterns.
Recently, motivated by a better understanding of permutations sortable using two stacks in series, Cerbai
et al. [8] investigate the sorting σ-machine where at each step of the process it performs the rightmost
possible operation with respect to the following two conditions: (a) the first stack avoids the pattern
σ; (b) the second stack avoids the pattern 21 (which is a necessary condition for the machine to sort
permutations). The avoidance of a pattern in a stack means that the stack read from top to bottom
avoids the pattern. Let Sort(σ) be the set of sortable permutations by the σ-machine. The authors of
[8] prove that Sort(12) is equal to the set Av(213) of permutations avoiding the pattern 213. Also, they
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characterize and enumerate length n permutations in Sort(k(k− 1) · · · 21) and Sort(123), and they leave
open the characterisation for the remaining length three patterns. Some of these results were generalised
by Cerbai in [9], where permutations and patterns with repeated elements are allowed.
In this paper, we consider the (σ, τ)-machine as described above where condition (a) is replaced by:
the first stack avoids σ and τ . See Figure 1 for a description of the (σ, τ)-machine. For (σ, τ) =
(123, 132), we prove that sortable permutations are those avoiding some generalized patterns, which
provides still another set enumerated by Catalan numbers. When (σ, τ) = (132, 231), we prove that
sortable permutations are counted by Schröder numbers. See Table 1 for an overview of these results.
Finally, some conjectures and open questions are presented and discussed.

Output Input

2
1

σ, τ

O1O2O3

P2 P1

Figure 1: The (σ, τ)-machine consists of two stacks in series where the first stack P1 avoids (from top to
bottom) σ and τ while the second P2 avoids the pattern 21. At each step of the process, we perform the
rightmost possible operation among O1, O2, O3, where O1 pushes in P1 the current entry of the input
permutation, O2 pops the top of P1 and pushes it in P2, and O3 pops the top of P2 and pushes it in
the output permutation. For instance, if σ = 123, τ = 132 then π = 35124 is sortable by applying the
following operations: O1, O1, O2, O1, O1, O1, O2, O2, O2, O3, O3, O2, O3, O3, O3.

σ, τ OEIS Sequence |Sortn(σ, τ)| Avoided patterns

123,132 A000108 1, 2, 5, 14, 42, 132, 429, . . . (Catalan numbers) 3214, 2314, 4213, [241̄3

132,231 A006318 1, 2, 6, 22, 90, 394, 1806, . . . (Schröder numbers) 1324, 2314

Table 1: Enumeration and characterization of sortable permutations with the (σ, τ)-machine.

To end this section, we present classical definitions about pattern avoidance in permutations (see [11] for
instance). For two permutations σ and π, we say that π avoids the pattern σ whenever there does not
exist a subsequence of π order isomorphic to σ. Whenever the occurrence of the pattern σ is constrained
to start with the first entry of π we denote the vincular pattern by placing [ in front the pattern; for
instance an occurrence of [12 in π corresponds to π1πi for some i > 1 with πi > π1. A barred pattern
σ is a one where some entries are barred. Let σ̂ be the pattern obtained from σ by removing all barred
entries and rescaling the rest to a permutation. A permutation π avoids σ if each occurrence of σ̂ in π
can be extended in an occurrence of σ (considered without bars). For instance, a permutation π avoids
the pattern [241̄3 if any subsequence π1πiπj , 1 < i < j, π1 < πj < πi, can be extended into an occurrence
of the pattern 2413.

2 The (123, 132)-machine

In this section we characterize and enumerate length n sortable permutations with the (123, 132)-machine.
We begin by stating general facts about the (σ, τ)-machine, which are direct consequences of the charac-
terization of sortable permutations with an unrestricted stack obtained by Knuth [12].
Fact 1: During the sorting process by the (σ, τ)-machine,
– if u is in the stack P2, and v above w in P1 with w < u < v, i.e. uvw yields the pattern 231, then the
permutation is not sortable;
– if u is above v which is in turn is above w in P1 with w < u < v, then the permutation is not sortable.
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Theorem 1. A permutation π belongs to Sort(123, 132) if and only if π avoids 3214, 2314, 4213 and
[241̄3.

Proof. First, let us prove that a sortable permutation π cannot contain an occurrence of one of the
patterns 3214, 2314 and 4213. For a contradiction, let us assume that π contains such a pattern, and for
an occurrence θ of it we pick a particular one: θ = πiπjπkπ`, 1 ≤ i < j < k < ` ≤ n, where ` is chosen
minimal, and k, j, and i are chosen maximal, in this order.
– θ is an occurrence of 3214. Due to the choice of i, j, k, ` above, a simple observation shows that
πi > πu > πj for k < u < `; and πu < πu+1 for k ≤ u ≤ ` − 1. Whenever the entry πk is pushed in
P1, since P1 avoids 123 it follows that at least one of the two entries πi and πj does not belong to P1.
Since πk+1 > πk, the next step pushes πk+1 in P1. (i) Assume that πi and πj are both in P2. Then
πk is just below πk+1 in P1 and πk < πj < πk+1. Fact 1 implies that π is not sortable, which is a
contradiction. (ii) Assume that πj is in P2 and πi in P1. Fact 1 implies that π is not sortable because
πjπk+1πk is an occurrence of 231, which is a contradiction. (iii) Assume that πi is in P2 and πj in P1.
Since πu < πu+1 for k ≤ u ≤ `−1, the next steps of the sorting process push successively in P1 all entries
πk+1, . . . , π`. Fact 1 implies that π is not sortable because πiπ`πk is an occurrence of 231, which again is
a contradiction. So, π cannot contain the pattern 3214.
– If θ is an occurrence of 2314 or of 4231, the proof is similar, mutatis mutandis, to that when θ is an
occurrence of 3214.
Now let us assume that π contains the pattern [241̄3. This means that π contains a subsequence θ =
π1πiπj , 1 < i < j, with π1 < πj < πi and such that there is not a k in the interval (i, j) with πk < π1. We
choose i and j by taking j minimal and i maximal, in this order. Due to this choice, a simple observation
shows that j = i+ 1. (i) Assume that πi and πj are both in P1. In this case, P1 contains the pattern 231
with π1πjπi, and Fact 1 implies that π is not sortable, which is a contradiction. (ii) Assume that πi is in
P2 and πj in P1. Since j = i+ 1 > i, the sorting process must push πi from P1 to P2 before πj is pushed
into P1. Thus, pushing πj in P1 creates necessarily the pattern 123 or 132, which means that there are
u < v ≤ i, such that either πj < πu < πv or πj < πv < πu, and πu and πv are in P1. If πu is greater
than πi, then the process has created a pattern 231 with πiπuπ1 and Fact 1 contradicts the sortability.
If there is πu such that πi > πu > πj , then the process has created a pattern 231 with πjπuπ1 which also
is a contradiction. (iii) Assume that πi is in P1 and πj in P2. At the step where πj is pushed in P1, the
pattern 231 is created in P1 with πjπiπ1 and by Fact 1 we have again a contradiction.
Conversely, we assume that π is not sortable, and we will prove that π contains the pattern 3214, 2314,
4213 or [241̄3. Let us consider the moment where the process is stuck. Let πk (resp. π`) the top of the
stack P2 (resp. P1), then we necessarily have π` > πk. We distinguish two cases: (i) k < ` and (ii)
otherwise. In the case (i), there necessarily exists a previous step where there are i and j, i < k < j < `,
such that πi and πk are in P1 and πj is the first entry of the input permutation, and such that θ = πiπkπj
is an occurrence of 321 or of 231 (otherwise we cannot push πk in P2). If θ is an occurrence of 321 then,
using π` > πk, πiπkπjπ` is an occurrence of 3214 or of 4213. If θ is an occurrence of 231 then, using
π` > πk, πiπkπjπ` is an occurrence of 2314. In the case (ii), we have k > `. In order to push πk in P2,
we need to push firstly πk in P1 by keeping π` in P1. A necessarily condition is that π1π`πk does not
form the pattern 231 nor 321, which implies that πk > min{π1, π`}. Since π` > πk, this implies that
πk > π1. So π1π`πk is an occurrence of 132. With the same reasoning, all values between π` and πk must
be greater than π1. Thus, there is a 132-pattern π1π`πk that cannot be extended into 241̄3 which implies
that π does not avoid [241̄3. 2

Corollary 1. Permutations of length n in Sort(123, 132) are enumerated by the Catalan numbers (see
A000108 in [18]).

Proof. Let An(k) be the set of length n permutations starting with k in Sort(123, 132), and let A1
n(k)

be the subset of An(k) consisting of permutations π = π1π2 . . . πn where any occurrence π1πkπ`, with
1 < k < ` and π` = π1 − 1, πk > π1, can be extended into an occurrence π1πkπjπ`, with k < j < ` and
πj < π`. We set A2

n(k) = An(k)\A1
n(k).

First we prove that there is a one-to-one correspondence α between A1
n(k) and An(k − 1). Let α be the

map from A1
n(k) to An(k − 1) where π′ = α(π) is obtained from π by swapping the two entries π1 and

π1− 1 in π. For instance, α(45123) = 35124. Since π ∈ A1
n(k), it is easy to see that π′ avoids the pattern

[241̄3. In addition, swapping π1 and π1−1 does not affect the avoidance of the three patterns 3214, 2314,
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4213, which implies (see Theorem 1) that α(π) ∈ An(k− 1). Conversely, any element in An(k− 1) is the
image by α of a unique element in A1

n(k). Thus, α is a bijection.
Now, we prove that there is a one-to-one correspondence between A2

n(k) and An−1(k). Let β be the map
from A2

n(k) to An−1(k) where π′ = β(π) is obtained from π by deleting the entry ` just before k − 1,
and by decreasing by one all entries of π greater than `. For instance, β(41532) = 4132. It is easy to
see that β(π) belongs to An−1(k). Conversely, we will prove that any π ∈ An−1(k) is the image by β
of a permutation in A2

n(k). To do this, we insert just before πi = k − 1 an entry ` > π1 = k such that,
after increasing by one all entries πj ≥ `, the obtained permutation belongs to A2

n(k). The choice of ` is
always possible in a unique way. Indeed, it suffices to take ` as follows: (i) if there is no entry πu > π1 for
1 < u < i, such that there is a πv < π1 with u < v < i, then we set ` = n; (ii) otherwise, ` is the minimal
entry πu > π1, 1 < u < i, such that there is a πv < πi with u < v < i. For the two cases, inserting n just
before k − 1 does not create a pattern 3214, 2314, 4213. For the case (i), if we do not choose n then we
create a pattern [132 that cannot be extended to a [2413 which is banned. For the case (ii), if we do not
choose πu minimal then a pattern 2314 is created, which is banned. Therefore, ` is unique which implies
that β is a bijection.
Finally, if we set akn = |An(k)|, then due to the bijections α and β we have akn = ak−1n + akn−1 for
2 ≤ k ≤ n. Since An(1) = {123 · · ·n} and An(n) is the set of length n permutations avoiding 213 and
starting with n, the initial conditions are given by a1n = 1 and ann = cn−1 where cn is the nth Catalan
number cn = 1

n+1

(
2n
n

)
. Therefore, akn generates the well known Catalan’s triangle (see Table 2 and

[7, 10, 16]), which implies that an =
∑n

k=1 a
k
n corresponds to the nth Catalan number cn (see A000108

and A009766 in [18]). 2

It is worth to mention that the classical (one) stack sorting, the 12-machine [8] and the (123, 132)-machine
have same potency, in the sense that, for any n they sort different but equinumerous sets of length n
permutations.

k\n 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 2 3 4 5 6 7

3 2 5 9 14 20 27

4 5 14 28 48 75

5 14 42 90 165

6 42 132 297

. . . . . . . . .∑
1 2 5 14 42 132 429 1430

Table 2: Catalan’s triangle obtained with akn = |An(k)| for 1 ≤ n ≤ 8 and 1 ≤ k ≤ 6. The five sortable
permutations of length four and starting with 3 are 3124, 3241, 3412, 3142, 3421. The image by α of the
first three permutations are respectively 2134, 2341, 2413. The image by β of the last two permutations
are 312 and 321.

3 The anti-unimodal machine

In this section we characterize and enumerate all sortable permutations using the (132, 231)-machine. In
this sorting model, at each step of the process, if the stack P1 is not empty, then it contains an anti-
unimodal sequence, i.e. a sequence a1a2 . . . aiai+1 . . . aj such that a1 > a2 > · · · > ai < ai+1 < · · · < aj ,
for some i, 1 ≤ i ≤ j.

Theorem 2. A permutation π belongs to Sort(132, 231) if and only if π avoids 1324 and 2314.
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Proof. First, let us prove that a sortable permutation π contains neither the pattern 1324 nor 2314. For
a contradiction, let us assume that π contains one of these patterns, and for an occurrence θ of it we pick
a particular one: θ = πiπjπkπ`, 1 ≤ i < j < k < ` ≤ n, where ` is chosen minimal, k maximal and j, i
minimal, in this order.
– If θ is an occurrence of 1324, then due to the choice of i, j, k, ` above, a simple observation shows that
πu > πj for any u < i. Whenever the entry πk is pushed in P1 and since P1 avoids 132 and 231, at least
one of the two entries πi and πj does not belong to P1. (i) Assume that πi does not belong to P1. In this
case, there is a previous step of the sorting process where πi is the top of P1, and the next step pushes
πi in P2 because pushing the current entry of the input permutation creates a pattern 132 or 231. This
necessarily implies that there is a u < i, such that πu < πi and πu ∈ P1, which gives a contradiction
with the above observation. (ii) Assume that πj is in P2 and πi in P1 (πk has been pushed on the top of
P1). Since π` > πj , π` cannot be pushed in P1 by keeping πi in P1 (otherwise this would create a non
sortable configuration 231 with πjπ`πi, and Fact 1 gives a contradiction). Then, we need to push πi in
P2 before pushing π` in P1, which necessarily implies that there is a u, k < u ≤ `, such that πu < πi.
Then, πiπjπuπ` is an occurrence of pattern 2314 which is a contradiction with the maximality of k.
– If θ is an occurrence of 2314, then the proof is similar, mutatis mutandis, to that of the previous case.
Conversely, let assume that π is not sortable and let us prove that π contains an occurrence of the pattern
1324 or 2314. Let us consider the step where the process is stuck. Let πk (resp. π`) be the top of the
stack P2 (resp. P1), then we necessarily have π` > πk. We distinguish two cases: (i) k < ` and (ii)
otherwise.
In the case (i), there necessarily exists a previous step where there are i and j, i < k < j < ` such that
πi and πk are in P1 and πj is the first entry of the input permutation, and such that θ = πiπkπj is an
occurrence of 132 or of 231 (otherwise we cannot push πk in P2). If θ is an occurrence of 132 then, since
π` > πk, the pattern of πiπkπjπ` is 1324. If θ is an occurrence of 231 then, since π` > πk, the pattern of
πiπkπjπ` is 2314.
In the case (ii), we have k > `. In order to push πk in P2, there is a previous step where we push firstly
πk in P1 by keeping π` in P1 which implies that at this step all values below π` in P1 are greater than
π`, and all values above π` and below πk are lower than π`. Then, in order to push πk into P2, we need
to have u and v, ` < u < k < v, such that πuπkπv is an occurrence of 132 or of 231, and πu ∈ P1 and πv
is the first entry of the input. Therefore, each time we push in P2 the top x of the stack P1, we need to
have a value y above π` and below x in P1. This means that π` cannot be the top of the stack P1, which
is a contradiction. 2

Corollary 2. Permutations of length n in Sort(132, 231) are enumerated by the large Schröder numbers
(see A006318 in [18]).

Proof. The enumeration of length n permutations avoiding 1324 and 2314 (or a symmetry of these
patterns) can be found in [5, 21] for instance. Note that in [4], the authors provide a constructive
bijection between these permutations and Schröder paths. 2

4 Going further

In Section 2, we have characterized and enumerated length n sortable permutations with the (123, 132)-
machine, which provides a new set of permutations counted by Catalan numbers. The number of such
permutations starting with k generates the well known Catalan’s triangle, which in turn corresponds to
the number of Dyck paths of semilength n and having the first peak at height n − k + 1. As a future
work, it would be interesting to exhibit a constructive bijection between these sets.
Also, experimental results suggest that three other (σ, τ)-machines sort permutations counted by the
Catalan numbers. We leave them as open problems.

Problem 1. A permutation π belongs to Sort(123, 213) if and only if π avoids [241̄3, [4231, [31425,
[4213̄5, and any occurrence of [2413 in π is contained in a occurrence of [31524 or [32514. Moreover,
permutations of length n in Sort(123, 213) are enumerated by the Catalan numbers.

Problem 2. Permutations of length n in Sort(132, 312) and in Sort(231, 321) are both enumerated by
the Catalan numbers.
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For the last problem, we do not succeed to predict if sortable permutations can be characterized in terms
of (generalized) forbidden patterns.
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