
THE FREE TANGENT LAW

WIKTOR EJSMONT AND FRANZ LEHNER

Abstract. Nevanlinna-Herglotz functions play a fundamental role for the study of infinitely
divisible distributions in free probability [11]. In the present paper we study the role of the
tangent function, which is a fundamental Herglotz-Nevanlinna function [28, 23, 52], and related
functions in free probability. To be specific, we show that the function

tan z

1´ x tan z

of Carlitz and Scoville [17, (1.6)] describes the limit distribution of sums of free commutators
and anticommutators and thus the free cumulants are given by the Euler zigzag numbers.

1. Introduction

Nevanlinna or Herglotz functions are functions analytic in the upper half plane having non-
negative imaginary part. This class has been thoroughly studied during the last century and
has proven very useful in many applications. One of the fundamental examples of Nevanlinna
functions is the tangent function, see [6, 28, 23, 52]. On the other hand it was shown by by
Bercovici and Voiculescu [11] that Nevanlinna functions characterize freely infinitely divisible
distributions. Such distributions naturally appear in free limit theorems and in the present
paper we show that the tangent function appears in a limit theorem for weighted sums of free
commutators and anticommutators. More precisely, the function

tan z

1´ x tan z

arises, which was studied by Carlitz and Scoville [17, (1.6)] in connection with the combinorics
of tangent numbers; in particular we recover the tangent function for x “ 0.
In recent years a number of papers have investigated limit theorems for the free convolution of
probability measures defined by Voiculescu [56, 57, 54]. The key concept of this definition is the
notion of noncommutative free independence, or freeness for short. As in classical probability
where the concept of independence gives rise to classical convolution, the concept of freeness
leads to another operation on the measures on the real line called free convolution. Many
classical results in the theory of addition of independent random variables have their counterpart
in this new theory. For example the free analogue of the central limit theorem asserts that the
distribution of

X1 ` ¨ ¨ ¨ `Xn?
n

,

for a given family of free identically distributed random variables converges in distribution to
the normal law semicircle law as n goes to infinity. More general central limit theorems were
proved by Speicher [49] and by combinatorial means and provide the starting point for the
present paper. We study limit theorems for sums with correlated entries, more precisely, for
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quadratic forms in free random variables. In particular, we can explicitly compute the limit
distribution µ of the quadratic form

ř

kăl apXkXl `XlXkq ` bipXkXl ´XlXkq
n

where a2 ` b2 “ 1 and b ‰ 0, and its R-transform turns out to be the elementary function

Rµpzq “ tanpbzq
b´ a tanpbzq .

This is the generating function of the higher order tangent numbers of Carlitz and Scoville
[17] which arose in connection with the enumeration of certain permutations. This will follow
from a general limit theorem for arbitrary quadratic forms. Using these we establish a limit for
of free commutators and mixed sums of commutators and anti-commutators. The respective
limit laws are infinitely divisible and we call them the free tangent law and the free zigzag
law according to the combinatorial interpretation of their cumulants. In addition we indicate
random matrix models for these limits. The classical version of this limit theorem features the
χ2-distribution since commutators trivially vanish in classical probability.

2. Preliminaries

2.1. Basic Notation and Terminology. A tracial noncommutative probability space is a
pair pA, τq where A is a von Neumann algebra, and τ : AÑ C is a normal, faithful, tracial state,
i.e., τ is linear and continuous in the weak* topology, τpXY q “ τpY Xq, τpIq “ 1, τpXX˚q ě 0
and τpXX˚q “ 0 implies X “ 0 for all X, Y P A. For example, the noncommutative analog of
a finite probability space is the algebra of complex N ˆN matrices MNpCq. The unique tracial
state is the normalized trace τNpAq “ 1

N
TrpAq “ 1

N

ř

Aii.
The elements X P A are called (noncommutative) random variables; in the present paper all
random variables are assumed to be self-adjoint. Given a noncommutative random variable
X P Asa, the spectral theorem provides a unique probability measure µX on R which encodes
the distribution of X in the state τ , i.e., τpfpXqq “ ş

R fpλq dµXpλq for any bounded Borel
function f on R.

2.2. Free Independence. A family of von Neumann subalgebras pAiqiPI of A is called free
if τpX1 . . . Xnq “ 0 whenever τpXjq “ 0 for all j “ 1, . . . , n and Xj P Aipjq for some indices
ip1q ‰ ip2q ‰ ¨ ¨ ¨ ‰ ipnq. Random variables X1, . . . , Xn are freely independent (free) if the
subalgebras they generate are free. Free random variables can be constructed using the reduced
free product of von Neumann algebras [55]. For more details about free convolutions and free
probability theory the reader can consult the standard references [54, 44, 43].

2.3. Free Convolution and the Cauchy-Stieltjes Transform. It can be shown that the
joint distribution of free random variables Xi is uniquely determined by the distributions of the
individual random variables Xi and therefore the operation of free convolution is well defined:
Let µ and ν be probability measures on R, and X, Y self-adjoint free random variables with
respective distributions µ and ν. The distribution of X`Y is called the free additive convolution
of µ and ν and is denoted by µ‘ ν. The analytic approach to free convolution is based on the
Cauchy transform

Gµpzq “
ż

R

1

z ´ y dµpyq(2.1)

of a probability measure µ. The Cauchy transform is analytic on the upper half plane C` “
tx ` iy|x, y P R, y ą 0u and takes values in the closed lower half plane C´ Y R. For measures
with compact support the Cauchy transform is analytic at infinity and related to the moment
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generating function MX as follows:

MXpzq “
8
ÿ

n“0
τpXnq zn “ 1

z
GXp1{zq.(2.2)

Moreover the Cauchy transform has an inverse in some neighbourhood of infinity which has the
form

G´1µ pzq “
1

z
`Rµpzq,

where Rµpzq is analytic in a neighbourhood of zero and is called R-transform. The coefficients
of its series expansion

RXpzq “
8
ÿ

n“0
Kn`1pXqzn(2.3)

are called free cumulants of the random variable X, see Section 2.11 below. for combinatorial
purposes it will be convenient to consider the shift CXpzq :“ zRXpzq, which is called the free
cumulant transform or free cumulant generating function. Using this the free convolution can
be computed via the identity

Rµ‘νpzq “ Rµpzq `Rνpzq,(2.4)

see [56].
In order to treat measures with noncompact support, it is conveniate to reformulate the iden-
tities in terms of the reciprocal Cauchy transform Fµpzq “ 1{Gµpzq [12]. This function has an
analytic right compositional inverse F´1µ in a region

Γη,M “ tz P C | |Re z| ă η Im z, Im z ąMu;
the Voiculescu transform is defined as the function

φµpzq “ F´1µ pzq ´ z
which turns out to be φµpzq “ Rµp1{zq.
2.4. Free infinite divisibility. In analogy with classical probability, a probability measure µ
on R is said to be freely infinitely divisible (or FID for short) if for each n P t1, 2, 3, . . . u there
exists a probability measure µn such that µ “ µn ‘ µn ‘ ¨ ¨ ¨‘ µn (n-fold free convolution).
Free infinite divisibility of a measure µ is characterized by the property that its Voiculescu
transform has a Nevanlinna-Pick representation [12]

(2.5) φµpzq “ γ `
ż

R

1` xz
z ´ x dρpxq “ γ `

ż

R

ˆ

1

z ´ x `
x

1` x2
˙

p1` x2q dρpxq
for some γ P R and some nonnegative finite measure ρ.
We recall a general method to compute Lévy measures from [5]. In terms of the free cumulant
transform the Lévy-Khintchine representation takes the form [9]

(2.6) Cµpzq “ cz ` az2 `
ż

R

ˆ

1

1´ xz ´ 1´ xz1t|x|ă1upxq
˙

dνpxq

for some c P R, a ě 0 and a nonnegative measure ν satisfying νpt0uq “ 0 and
ş

R mint1, x2udνpxq ă
8. The triplet pc, a, νq is called the free characteristic triplet, a is called the semicircular com-
ponent and ν is called the free Lévy measure of µ. The measure ρ can be calculated using the
Stieltjes inversion formula

ż v

u

p1` x2q dρpxq “ ´ 1

π
lim
εÑ0`

ż v

u

Imφµpx` iεq dx

for all points of continuity u, v of ρ. Considering the relation Rµpzq “ φp1
z
q and (2.6) we obtain

1`x2
x2

ρ|Rzt0u “ ν|Rzt0u and ρpt0uq “ a. In particular, if the function ´ 1
π
φµpx ` iεq converges

uniformly to a continuous function fµpxq as ε Ñ 0` on an interval ru, vs, then ρ is absolutely
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continuous in ru, vs with density fµpxq. Hence, ν is also absolutely continuous in ru, vs with

density 1`x2
x2

fµpxq. Regarding atoms, their mass is given by

(2.7) νptxuq “ 1

x2
lim
εÑ0`

iεφµpx` iεq.

2.5. Wigner semicircle law. The Wigner semicircle law has density

(2.8) dµpxq “ 1

2π

?
4´ x2 dx

on ´2 ď x ď 2. Its Cauchy-Stieltjes transform is given by the formula

(2.9) Gµpzq “ z ´?z2 ´ 4

2
,

where |z| is big enough and where the branch of the analytic square root is determined by the
condition that Impzq ą 0 ñ ImpGµpzqq ď 0 (see [45]).
A non-commutative random variable X distributed according to the semicircle law is called
semicircular or free gaussian random variable. The reason for the latter is the fact that its free
cumulants Kr “ 0 for r ą 2 and it appears in the free version of the central limit theorem.

2.6. Even elements. We call an element X P A even if all its odd moments vanish, i.e.,
τpX2i`1q “ 0 for all i ě 0. It is immediate that the vanishing of all odd moments is equivalent
to the vanishing of all odd cumulants, i.e., K2i`1pXq “ 0 and thus the even cumulants contain
the complete information about the distribution of an even element.

2.7. Convergence in distribution. In noncommutative probability we say that a sequence
Xn of random variables converges in distribution towards X as nÑ 8, denoted by

Xn
dÝÑ X

if we have for all m P N
lim
nÑ8 τpX

m
n q “ τpXmq or equivalently lim

nÑ8KmpXnq “ KmpXq.

2.8. Random matrices. The semicircle law arises also as the asymptotic spectral distribution
of certain random matrices.
An N ˆM complex Gaussian random matrix is a matrix X “ rxi,jsNˆMi,j“1 whose entries form

an i.i.d. complex Gaussian family with mean zero and variance Ep|xi,j|2q “ 1
N

, i.e., the real

parts Re xij and the imaginary parts Imxij together form an i.i.d. family of Np0, 1
2N
q random

variables.
An N ˆN GUE random matrix is a matrix YN “ ryijsNˆNi,j“1 of the form YN “ X`X˚?

2
where X

is an N ˆ N complex Gaussian random matrix, i.e., the family tyii | 1 ď i ď Nu Y tRe yij |
1 ď i ă j ď Nu Y tIm yij | 1 ď i ă j ď Nu is an independent family of real gaussian random
variables with variance Var yii “ 1{N and Var yij “ 1

2N
for i ă j. It is well known that the

moments spectral distribution converge to the moments of the standard Wigner semicircle law
(2.8)

lim
NÑ8 τNpY

m
N q “

1

2π

ż 2

´2
xm
?

4´ x2 dx “
#

1
n`1

`

2n
n

˘

if m “ 2n is even,

0 otherwise,

with respect to the normalized trace τN . In the language of section 2.7 this means that YN
converges in distribution to a semicircular element with respect to the expectation functional
τN .
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2.9. Convergence in eigenvalues. Recently the concept of convergence with respect to the
nonnormalized trace turned out to be useful for the study of the fine structure of random
matrices [18]. We say that a sequence of NˆN deterministic matrices AN has limit distribution
µ with respect to the nonnormalized trace if for every m P N the moments satisfy

lim
NÑ8TrpAmNq “

ż

tmdµptq.
Note that in this case µ is not necessarily a probability measure and that the limit with respect
to the normalized trace τN is zero. Moreover the limit distribution is discrete [18, Proposi-
tion 2.10] and under certain conditions the eigenvalues converge pointwise [18, Proposition 2.8].

2.10. Noncrossing Partitions. We recall some facts about noncrossing partitions. For details
and proofs see the lecture notes [44, Lecture 9]. Let S Ď N be a finite subset. A partition of S
is a set of mutually disjoint subsets (also called blocks) B1, B2, . . . , Bk Ď S whose union is S.
Any partition π defines an equivalence relation on S, denoted by „π, such that the equivalence
classes are the blocks π. That is, i „π j if i and j belong to the same block of π. A partition π
is called noncrossing if different blocks do not interlace, i.e., there is no quadruple of elements
i ă j ă k ă l such that i „π k and j „π l but i π j.
The set of non-crossing partitions of S is denoted by NC pSq, in the case where S “ rns :“
t1, . . . , nu we write NC pnq :“ NC prnsq. NC pnq is a lattice under refinement order, where we
say π ď ρ if every block of π is contained in a block of ρ. The subclass of noncrossing pair
partitions (i.e., noncrossing complete matchings) is denoted by NC 2pnq.
The maximal element of NC pnq under this order is the partition consisting of only one block
and it is denoted by 1̂n. On the other hand the minimal element 0̂n is the unique partition
where every block is a singleton. Sometimes it is convenient to visualize partitions as diagrams,
for example 1̂n “ ¨ ¨ ¨ and 0̂n “ ¨ ¨ ¨ .
We will apply the product formula (2.13) below only in the case of pairwise products of ran-
dom variables and in this case two specific pair partitions and their complements will play a
particularly important role, namely the standard matching 1̂n2 “ ¨ ¨ ¨ P NC p2nq and its
shift ν0n “ ¨ ¨ ¨ P NC p2nq.
2.11. Free Cumulants. Given a noncommutative probability space pA, τq the free cumulants
are multilinear functionals Kn : An Ñ C defined implicitly in terms of the mixed moments by
the relation

τpX1X2 . . . Xnq “
ÿ

πPNC pnq
KπpX1, X2, . . . , Xnq,(2.10)

where

KπpX1, X2, . . . , Xnq :“ ΠBPπK|B|pXi : i P Bq.(2.11)

Sometimes we will abbreviate univariate cumulants as KnpXq “ KnpX, . . . , Xq.
Free cumulants provide a powerful technical tool to investigate free random variables. This is
due to the basic property of vanishing of mixed cumulants. By this we mean the property that

KnpX1, X2, . . . , Xnq “ 0

for any family of random variables X1, X2, . . . , Xn which can be partitioned into two mutually
free nontrivial subsets. For free sequences this can be reformulated as follows. Let pXiqiPN be a
sequence of free random variables and h : rrs Ñ N a map. We denote by kerh the set partition
which is induced by the equivalence relation

i „kerh j ðñ hpiq “ hpjq.
In this notation, vanishing of mixed cumulants implies that

(2.12) KπpXhp1q, Xhp2q, . . . , Xhprqq “ 0 unless kerh ě π.
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Our main technical tool is the free version, due to Krawczyk and Speicher [37] (see also [44,
Theorem 11.12]), of the classical formula of James and Leonov/Shiryaev [35, 38] which expresses
cumulants of products in terms of individual cumulants.

Theorem 2.1. Let r, n P N and i1 ă i2 ă ¨ ¨ ¨ ă ir “ n be given and let

ρ “ tp1, 2, . . . , i1q, pi1 ` 1, i1 ` 2, . . . , i2q, . . . , pir´1 ` 1, ir´1 ` 2, . . . , irqu P NC pnq
be the induced interval partition. Consider now random variables X1, . . . , Xn P A. Then the
free cumulants of the products can be expanded as follows:

KrpX1 . . . Xi1 , . . . , Xir´1`1 . . . Xnq “
ÿ

πPNC pnq
π_ρ“1̂n

KπpX1, . . . , Xnq.(2.13)

Our main tool is the following result from [24] which expresses cumulants of quadratic forms in
even random variables in terms of the conditional expectations of the system matrix onto the
diagonal matrices.

Proposition 2.2 ([24, Proposition 4.5]). Let X1, X2, . . . , Xn P A be a free family of even ran-
dom variables, X “ rXiXjsni,j“1, A “ rai,jsni,j“1 P MnpCq a scalar matrix and Qn “

ř

ai,jXiXj

a quadratic form. The cumulants of Qn are given by

KrpQnq “
ÿ

i1,...,irPrns
TrpAEi1AEi2 . . . AEirq

ÿ

πPNCEp2rq
π_1̂r2“1̂2r

KπpXir , Xi1 , Xi1 , Xi2 , . . . , Xir´1 , Xirq.
(2.14)

where by Ei we denote the projection matrix onto the i-th unit vector.

Remark 2.3. In the case of a free standard semicircular family formula (2.14) has only one
contributing term and takes the particularly simple form

(2.15) KrpQnq “ TrpArnq;
thus the distributions of quadratic forms in semicircular variables are easy to calculate, see [25].

Notation 2.4. For scalars a, b, c P C we denote by r c ab c sn P MnpCq the matrix whose diagonal
elements are equal to c, whose upper-triangular entries are equal to a and whose lower-triangular
elements are equal to b, respectively.

2.12. Combinatorics of tangent numbers. The tangent numbers

(2.16) Tk “ p´1qk`14kp4k ´ 1qB2k

2k
for k P N are the Taylor coefficients of the tangent function

tan z “
8
ÿ

n“1
Tn
zn

n!
“ z ` 2

3!
z3 ` 16

5!
z5 ` 272

7!
z7 ` ¨ ¨ ¨ ,

see [29, Page 287]. The tangent numbers are complemented by the secant numbers. Together
they form the sequence of En of Euler zigzag numbers which are the Taylor coefficients of the
function

tanpzq ` secpzq “
8
ÿ

n“0

En
n!
zn.

These numbers are also called up-down numbers [16] or snake numbers [8, 32] and appear in
several different contexts, see for example [27, 7, 50, 51] or André’s theorem [2].
Similarly, following Comtet [19, p. 260] (see also [21]) we define the arctangent numbers by
their exponential generating function

(2.17)
parctan zqk

k!
“

8
ÿ

n“k

A
pkq
n

n!
zn;
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up to sign these are the same as the coefficients of the hyperbolic arctangent function

(2.18)
patanh zqk

k!
“

8
ÿ

n“k

Ã
pkq
n

n!
zn

the latter are nonnegative and

(2.19) Apkqn “ p´iqkinÃpkqn .

The higher order tangent numbers T
pkq
n were introduced by Carlitz and Scoville [17] as the

coefficients of the Taylor series

tank`1 z “
8
ÿ

n“k`1
T pk`1qn

zn

n!
.

The generating function of the tangent polynomials Tnpxq “
řn
k“1 T

pkq
n xk can be easily obtained

from the geometric series

(2.20)

T px, zq “ x tan z

1´ x tan z

“
8
ÿ

k“1
xk tank z

“
8
ÿ

n“0

n
ÿ

k“1

T
pkq
n

n!
xkzn

“
8
ÿ

n“0

Tnpxq
n!

zn

Note that our generating function slightly differs from Carlitz and Scoville’s [17, Equation

(1.6)], which is the expansion of the function tanpzq
1´x tanpzq .

On the other hand it is well known that all derivatives of tangent and cotangent can be expressed
as certain polynomials, see the side note [29, Page 287]) and the recent studies [31, 32, 15, 20].
To be specific, there is a sequence of polynomials Pnpxq of degree n` 1, n ě 0, such that

dn

dθn
tan θ “ Pnptan θq

dn

dθn
cot θ “ p´1qnPnpcot θq

The generating function is easily derived from the Taylor series

tanpθ ` zq “
8
ÿ

n“0

Pnptan θq
n!

zn “ tan θ ` tan z

1´ tan θ tan z

to be

P px, zq “
8
ÿ

n“0
Pnpxqz

n

n!
“ x` tan z

1´ x tan z
.

Comparing the generating functions we find that

xP px, zq “ p1` x2qT px, zq ` x2,
and from this we conclude that

xPnpxq “ p1` x2qTnpxq,
for n ě 1, see also [20]. Note that Pnpxq is divisible by p1 ` x2q because of the recurrence
relation

Pnpxq “ p1` x2qP 1n´1pxq, P0pxq “ x,

see [29, (6.95)].



8 WIKTOR EJSMONT AND FRANZ LEHNER

2.13. An elementary lemma. The moments and the spectral measures of the matrices of
the underlying quadratic forms can be computed explicitly and turn out to be connected to an
old problem in classical calculus. We first compute the eigenvalues of the matrix underlying
the quadratic form (4.1).

Lemma 2.5. Let a, b P R, b ‰ 0 and

An “

»

—

—

–

0 a` bi . . . a` bi
a´ bi 0 . . . a` bi
. . . . . . . . . . . . . . . . . . . . . . . . .
a´ ib a´ bi . . . 0

fi

ffi

ffi

fl

PMnpCq.

Then the eigenvalues of the matrix An are given by

λk “ b cot
α ` kπ
n

´ a, for 0 ď k ď n´ 1 and α “ arccotpa{bq.
Proof. The characteristic polynomial χnpλq “ detpλI ´ Anq satisfies the following recurrence
relation. Let w “ a` bi “ eiα, the we have

χnpλq “

∣∣∣∣∣∣∣∣∣∣∣

λ ´w ´w ´w . . . ´w
´ sw λ ´w ´w . . . ´w
´ sw ´ sw λ ´w . . . ´w
´ sw ´ sw ´ sw λ . . . ´w
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
´ sw ´ sw ´ sw ´ sw . . . λ

∣∣∣∣∣∣∣∣∣∣∣
we subtract the second row from the first row

“

∣∣∣∣∣∣∣∣∣∣∣

λ` sw ´λ´ w 0 0 . . . 0
´ sw λ ´w ´w . . . ´w
´ sw ´ sw λ ´w . . . ´w
´ sw ´ sw ´ sw λ . . . ´w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
´ sw ´ sw ´ sw ´ sw . . . λ

∣∣∣∣∣∣∣∣∣∣∣
and the second column from the first column

“

∣∣∣∣∣∣∣∣∣∣∣

2λ` w ` sw ´λ´ w 0 0 . . . 0
´λ´ sw λ ´w ´w . . . ´w

0 ´ sw λ ´w . . . ´w
0 ´ sw ´ sw λ . . . ´w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ´ sw ´ sw ´ sw . . . λ

∣∣∣∣∣∣∣∣∣∣∣
“ p2λ` w ` swqχn´1pλq ´ pλ` wqpλ` swqχn´2pλq

and the solution of this recurrence equation (with initial values χ0pλq “ 1 and χ1pλq “ λ) is

(2.21) χnpλq “ wpλ` swqn ´ swpλ` wqn
w ´ sw

.

To compute the eigenvalues we may assume |w| “ 1, i.e., w “ eiα and α “ arccotpa{bq (the
general case follows by rescaling the matrix) and we substitute z “ λ ` w. The matrix is
selfadjoint and therefore any eigenvalue λ is real, so sz “ λ` sw and we get

wszn ´ swzn “ 0,

i.e., Imp swznq “ 0. Let z “ reiθ, then this means

sinpnθ ´ αq “ 0
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and we conclude θ “ α`kπ
n

. We return to λ “ z ´ w “ reiθ ´ eiα. This is a real number and

thus the imaginary part vanishes, i.e., r sin θ “ sinα, thus r “ sinα
sin θ

and finally

λ “ sinα cot θ ´ cosα

and in the general case where w “ a` ib the solutions are

(2.22) λk “ b cot
α ` kπ
n

´ a, 0 ď k ď n´ 1.

�

2.14. Cotangent sums. The manipulations of the eigenvalues (2.22) will lead to the follow-
ing sums of cotangent powers which were explicitly evaluated in our companion paper [26,
Corollary 6.4].

n
ÿ

k“1
cot2m

p2k ` 1qπ
2n

“ p´1qmn` 1

p2m´ 1q!
m
ÿ

k“1
n2kA

p2kq
2m T2k´1(2.23)

n
ÿ

k“1
cotm

p4k ´ 1qπ
4n

“ p´1qm{2n1m even ` 1

2pm´ 1q!
m
ÿ

k“1
p´2nqkApkqm Ek´1

“ 1

2pm´ 1q!
m
ÿ

k“1
p´2nqmApmqm Em´1 `Opnm´1q.

(2.24)

3. Limit theorems and random matrix models for quadratic forms

3.1. A general Limit Theorem. In this section we consider limit theorems for sums of
commutators and other quadratic forms of the following type.

Theorem 3.1. Let An “ rapnqi,j s P MnpCq be a sequence of selfadjoint matrices such that

supi,j,n
∣∣apnqi,j ∣∣ ă 8 and such that the matrix 1

n
An has limit distribution µ with respect to the

nonnormalized trace. Let Xi be free copies of a centered random variable X of variance 1, then
the sequence of quadratic forms

Qn “ 1

n

n
ÿ

i,j“1
a
pnq
i,j XiXj

converges in distribution to Y , where

KrpY q “
ż

trdµptq.

Remark 3.2. From [18, Proposition 2.10], we conclude that the measure µ is discrete. The
limit measure in Theorem 3.1 does not depend on the specific distribution of Xi and therefore
in the examples computed below we can replace the sequence Xi by a free i.i.d. sequence of
standard semicircular variables, which has the advantage that formula (2.15) can be applied.

Proof. We use the product formula from Theorem 2.1:

KrpQnq “ 1

nr

ÿ

i1,i2,...,i2r

a
pnq
i1,i2

a
pnq
i3,i4

¨ ¨ ¨ apnqi2r´1,i2r
KrpXi1Xi2 , Xi3Xi4 , . . . , Xi2r´1Xi2rq

“ 1

nr

ÿ

i1,i2,...,i2r

a
pnq
i1,i2

a
pnq
i3,i4

¨ ¨ ¨ apnqi2r´1,i2r

ÿ

πPNC p2rq
π_ ¨ ¨ ¨ “1̂2r

KπpXi1 , Xi2 , Xi3 , Xi4 , . . . , Xi2r´1 , Xi2rq

“ 1

nr

ÿ

πPNC p2rq
π_ ¨ ¨ ¨ “1̂2r

ÿ

ker iěπ
a
pnq
i1,i2

a
pnq
i3,i4

¨ ¨ ¨ apnqi2r´1,i2r
KπpXq.
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By assumption X is centered and therefore only partitions without singletons contribute to this
sum. Every block of such a partition π has at least size 2 and therefore |π| ď r. This in turn
implies that there are only n|π| allowed choices of indices i and we have the following estimate∣∣∣∣∣ 1

nr

ÿ

ker iěπ
a
pnq
i1,i2

a
pnq
i3,i4

¨ ¨ ¨ apnqi2r´1,i2r
KπpXq

∣∣∣∣∣ ď n|π|´rCr |KπpXq|

where C “ ř

∣∣∣apnqij ∣∣∣. Now unless |π| “ r this converges to zero as n Ñ 8, on the other

hand, |π| “ r is only possible if π is a pair partition. The only pair partition satisfying
π _ ¨ ¨ ¨ “ 1̂2r is the partition π “ ν0r and finally we have

KrpQnq “ 1

nr
TrpArnqK2pXqr `Op1{nq ÝÝÝÑ

nÑ8

ż

trdµptq.
�

3.2. Random matrix models. In this subsection we construct random matrices whose limit
law coincides with the limit law from Theorem 3.1. In some sense it is a simultaneous limit
obtained from approximating the semicircle law on the one hand as in section 2.8 and the
free central limit law on the other hand. To this end we consider compressions with random
matrices. In [44, Proposition 12.18] the authors describe compound free Poisson distributions
as free compressions with semicircular operators. The next proposition provides a complex
version of this result, i.e., a description of compressions with circular operators. Recall that
a circular operator is an operator C of the form C “ pX ` iY q{?2 where X and Y are free
standard semicircular random variables.

Proposition 3.3. Let C1, C2, . . . , Cn P A be a free family of circular random variables, such
that K2pCi, Ci̊ q “ 1 which is free from Z P Asa, A “ rai,jsni,j“1 P MnpCq be a scalar selfadjoint
matrix and Tn “

řn
i,j ai,jCiZCj̊ . Then the cumulants of Tn are given by

KrpTnq “ TrbτprAb Zsrq,(3.1)

where Ab Z PMnpCq bA, with functional Trbτ .

Proof. From the definition of Tn we see that

KrpTnq “
ÿ

i1,i2,...,i2rPrns

ÿ

πPNCEp3rq
π_1̂r3“1̂3r

ai1,i2ai3,i4 ¨ ¨ ¨ ai2r´1,i2rKπpCi1ZC˚i2 , Ci3ZC˚i4 , . . . , Ci2r´1ZC
˚
i2r
q.

Since Z is free from the family Ci every partition with nonzero contribution can be writ-
ten as π “ ρ Y σ where ρ P NC 2pt1, 3, 4, 6, 7, . . . , 3r ´ 2, 3ruq is a pair partition and σ P
NC pt2, 5, . . . , 3r´1u is arbitrary. Now by the argument from the proof of [44, Proposition 12.18]
we conclude that the only pair partition satisfying the required condition is ρ “ ¨ ¨ ¨ ,
while σ is arbitrary. The result is

“
ÿ

i1,i2,...,irPrns
air,i1ai1,i2 ¨ ¨ ¨ air´1,ir

ÿ

σPNC prq
KσpZq

“ TrpArqτpZrq
which is the desired formula. �

Let us now introduce some random matrix models. For notation see section 2.8.

Proposition 3.4. Let XNˆNM be a complex Gaussian random matrix of size N ˆNM and let

DM “ rdpMqi,j s be a sequence of selfadjoint deterministic M ˆM matrices such that DN has limit
distribution µ with respect to the nonnormalized trace. Then for any sequence PN of N ˆ N
(selfadjoint) deterministic matrices which converges to Z with limit distribution ν we have

lim
MÑ8 lim

NÑ8XNˆNM rDM b PN sX˚
NˆNM “ Y,
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where

RY pzq “
8
ÿ

r“0

ż

R
xr`1dµpxqτpZr`1qzr

“
ż ż

xt

1´ xtz dµpxq dνptq.

Proof. Fix M and observe that we can represent random matrix as a quadratic form in M
variables by the formula

XNˆNM rDM b PN sX˚
NˆNM “

M
ÿ

i,j“1
di,jXi,NPNX

˚
j,N ,

where Xi,N is a complex Gaussian random matrices (non selfadjoint) of size N ˆ N . From
Voiculescu’s asymptotic freeness results [57] (see also [43, Chapter 4]) we infer that

M
ÿ

i,j“1
di,jXi,NPNX

˚
j,N ÝÝÝÑ

NÑ8

M
ÿ

i,j“1
di,jCiZC

˚
j ,

where Ci has circular distribution and Ci and Z are free. By Proposition 3.3, we have

Krp
M
ÿ

i,j“1
di,jCiZC

˚
j q “ TrpDr

MqτpZrq ÝÝÝÝÑ
MÑ8

ż

R
xrdµpxqτpZrq,

which finishes the proof.
�

The following corollary provides a random matrix model for the limit law from Theorem 3.1.

Corollary 3.5. Let XNˆNM be as in Proposition 3.4 and AM “ rapMqi,j s be a sequence of self-
adjoint M ˆM matrices as in Theorem 3.1. Let PN be a sequence of N ˆ N deterministic
matrices all of whose moments with respect to the normalized trace converge to 1, e.g., the iden-
tity matrices PN “ r 1 0

0 1 sN or any projection matrix of large rank like PN “ r 1 0
0 1 sN ´ 1

N
r 1 1
1 1 sN ,

then the spectral measures of

1

M
XNˆNM rAM b PN sX˚

NˆNM

converge in distribution to the limit law described in Theorem 3.1.

Next we provide a random matrix model for the limit law µ from Theorem 3.1.

Proposition 3.6. Let XN be standard random matrix from the GUE of size NˆN and let DN P
MNpCq be a sequence of selfadjoint deterministic matrices such that DN has limit distribution µ
with respect to the nonnormalized trace. Then the random matrix sequence XNDNXN converges
to the measure µ with respect to the nonnormalized trace.

Remark 3.7. First observe that the preceding result is a special case of [18, Theorem 5.1 (i),
k “ 1], but our proof is different. On the other hand, the spectral measures of XNDNXN

converge to zero with respect to the normalized trace. Indeed limNÑ8 TrpDm
N q{N “ 0 and a

sequence of standard GUE matrices is almost surely uniformly bounded. The point here is that
with respect to the nonnormalized trace Trp¨q we obtain interesting limits.

In order to prove Proposition 3.6 we will refer to a combinatorial result from random matrix
theory, which we rewrite in terms of the nonnormalized trace. To formulate this result we need
the following notation.

Notation 3.8. 1. We denote by P2pmq the set of pair partitions, i.e., partitions of t1, 2, . . . ,mu
into blocks of size 2; this set is empty unless m is even.
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2. Let π P P2pmq be a pair partition. To each block ti, ju P π we associate the transposition
pi jq and we identify the pair partition π with the permutation obtained as the product of
these transpositions. Since they are disjoint, this permutation is well defined.

3. Let σ P Sn be a permutation and σ “ γ1γ2 . . . γr be its cycle decomposition. Then for any
family of matrices A “ pA1, A2, . . . , Anq we denote by

TrσpA1, A2, . . . , Anq “ Trγ1pAqTrγ2pAq ¨ ¨ ¨TrγrpAq
where for a cycle γ “ pi1 i2 ¨ ¨ ¨ ikq the cyclic trace is

TrγpAq “ TrpAi1Ai2 ¨ ¨ ¨Aikq.
Proposition 3.9. [44, Proposition 22.32] Let XN be a standard N ˆ N GUE matrix as in
Proposition 3.6 and D be a constant N ˆN matrix.
Then we have for all m P N, and all q1, . . . , qm P N, that

TrbEpXND
q1 . . . XND

qmq “
ÿ

πPP2pmq
TrπγpDq1 , . . . , DqmqN´m{2,

where γ P Sm is the cyclic permutation with one cycle γ “ p1, 2, . . . ,mq, πγ is the composition
of this cycle with the permutation π associated to the pair partition according to Notation 3.8.

Proof. The m-th nonnormalized moment of XNDNXN is then given by

TrbErpXNDNXNqms “ TrbEpXNDNXNIN . . . XNDNXNIN
loooooooooooooooooomoooooooooooooooooon

m´times
q

where IN is the identity matrix of size N ˆN . Put D “ DN in Proposition 3.9, then D0 “ IN .
The advantage of this interpretation becomes apparent from the fact that in this language we
can rewrite our last equation as

“
ÿ

πPP2p2mq
TrπγpDN , IN , . . . , DN , INqN´m.

Now let us look at the asymptotic structure of this formula. We have to determine the cycles
of the permutation πγ which asymptotically contribute a non-zero factor. Recall that by
assumption limNÑ8 TrpDm

N q exists for all m P N. In this situation the factor N´m is cancelled if
and only if πγ contains exactly them singleton cycles p2q, . . . , p2mq and each of them contributes
the factor TrpINq “ N . This happens if and only if π “ ¨ ¨ ¨ . Indeed in order to generate
the singleton cycle p2q, the partition π must contain the pair t2, 3u. To generate the cycle p4q,
the pair t4, 5u must occur in π and so on. It follows that asymptotically the only non-zero
contribution comes from the pair partition π “ ¨ ¨ ¨ which produces the permutation
πγ “ p1, 3, . . . , 2m´ 1qp2qp4q . . . p2mq, and thus

lim
NÑ8TrbEppXNDNXNqmq “ lim

NÑ8Trp1,3,...,2m´1qp2qp4q...p2mqpDN , IN , . . . , DN , INqN´m

“ lim
NÑ8TrpDm

N q ˆNm ˆN´m “
ż

R
xmdµpxq.

�

Corollary 3.10. Let AN “ rapNqi,j s P MNpCq be as in Theorem 3.1, then the spectral measures

of 1
N
XNANXN converge with respect to the nonnormalized trace to the measure µ.

4. Limit Theorem of Sums of Commutators and Anticommutators

We will now illustrate the limit theorem 3.1 with some interesting computable cases and start
with sums of commutators and anticommutators, the most general expression being

(4.1)

ř

kăl apXkXl `XlXkq ` bipXkXl ´XlXkq
n

.
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4.1. A Limit Theorem for commutators and anticommutators. The main contribution
of this paper is the following limit theorem featuring the fundamental generating function of
Carlitz and Scoville [17, (1.6)].

Theorem 4.1 (Free generalized tangent law). Let X1, X2, . . . , Xn P Asa be free centered copies
of a random variable with finite non-zero variance 1, then for any a, b P R with a2 ` b2 “ 1
and b ‰ 0, the limit law

Qn “ 1

n

n
ÿ

k,j“1
kăj

`

apXkXj `XjXkq ` ibpXkXj ´XjXkq
˘ dÝÑ Y,

has R-transform

RY pzq “ tanpbzq
b´ a tanpbzq .

The free cumulants are given by

KrpY q “ br´1
Trpa{bq
r!

“ bra

r!
Prpa{bq “ p´1qr b

ra

r!
cotprqpαq.

where α “ arccotpa{bq and the polynomials Prpxq, Trpxq were defined in Section 2.12.

Proof. The system matrix is 1
n
An “ 1

n

“

0 a`ib
a´ib 0

‰

n
from Lemma 2.5 and its characteristic poly-

nomial is

χnpλq “ wpλ` sw
n
qn ´ swpλ` w

n
qn

w ´ sw
where w “ a` bi. The cumulant generating function

RQnpzq “
8
ÿ

k“1

TrpAknq
nk

zk´1,

can be obtained from the logarithmic derivative of the characteristic polynomial. Indeed if we
factorize the characteristic polynomial χnpλq “

śn
i“1pλ´ λiq then

χ1npλq
χnpλq “

n
ÿ

i“1

1

λ´ λi
and

1

z

χ1np1{zq
χnp1{zq “

8
ÿ

k“0

n
ÿ

i“1
λki z

k “ n` zRQnpzq.

In our case
χ1npλq
χnpλq “ n

wpλ` sw
n
qn´1 ´ swpλ` w

n
qn´1

wpλ` sw
n
qn ´ swpλ` w

n
qn

and

RQnpzq “
1

z

ˆ

1

z

χ1np1{zq
χnp1{zq ´ n

˙

“ n

z

ˆ

wp1` z sw
n
qn´1 ´ swp1` zw

n
qn´1

wp1` z sw
n
qn ´ swp1` zw

n
qn ´ 1

˙

“ ´ |w|2
p1` z sw

n
qn´1 ´ p1` zw

n
qn´1

wp1` z sw
n
qn ´ swp1` zw

n
qn ,

and the limit is

lim
nÑ8RQnpzq “ RY pzq “ ´ |w|2 ez sw ´ ezw

wez sw ´ swezw
,
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and finally substituting w “ a` ib (|w| “ 1), we get

“ ´ exppzpa´ ibqq ` exppzpa` ibqq
pa` ibq exppzpa´ ibqq ´ pa´ ibq exppzpa` ibqq

“ 2i sinpbzq
´2ipa sinpbzq ´ b cospbzqq “

tanpbzq
b´ a tanpbzq .

Thus the R-transform can be expressed in terms of the generating function of the higher order
tangent numbers (2.20) as Rpzq “ 1

a
T pa{b, bzq. The rest follows from simple manipulations

using the combinatorics of tangent numbers discussed in Section 2.12. �

Remark 4.2. There is another proof in terms of Newton’s identities, also known as the Newton-
Girard formulae, which provide a relation between two types of symmetric polynomials, namely
between power sums and elementary symmetric polynomials. Observe that

χnpλq “
n
ÿ

j“0
λj
ˆ

n

j

˙ˆpa` ibqpa´ ibqj ´ pa´ ibqpa` ibqj
2ib

˙

“:
n
ÿ

j“0
λjcj,

whose n zeros are the numbers λk “ b cot α`kπ
n
´ a, k P t0, . . . , n´ 1u. Let snr “ λr1 ` ¨ ¨ ¨ ` λrn.

By Newton’s formulas for roots of a polynomial, we have for r P N
snr ` snr´1c1 ` ¨ ¨ ¨ ` sn1ck´1 ` kck “ 0 for k P t1, . . . , n` 1u.

Dividing both sides of above equation by nr, and pass with n to infinity for every fixed k we
get

k´1
ÿ

j“0
s̃r´j

ˆpa` ibqpa´ ibqj ´ pa´ ibqpa` ibqj
2ibj!

˙

` k
ˆpa` ibqpa´ ibqk ´ pa´ ibqpa` ibqk

2ibk!

˙

“ 0,

where s̃r “ limnÑ8 snr {nr. Recall that RY pzq “
ř8
r“0 s̃r`1z

r and by using Cauchy product of
two infinite series, we see

RY pzq
ˆ

1` pa` ibq
2ib

pexppzpa´ ibqq ´ 1q ´ pa´ ibq
2ib

pexppzpa` ibqq ´ 1q
˙

“ ´pa` ibqpa´ ibq
2ib

exppzpa´ ibqq ` pa´ ibqpa` ibq
2ib

exppzpa` ibqq,
which after a simple computation can be written in the desired form.

Remark 4.3. From Proposition 3.6 and Theorem 4.1 for CN “ 1
N
XN

“

0 a`bi
a´ib 0

‰

N
XN we obtain

a random matrix approximation of the following moment generating function (with respect to
the non-normalized trace)

lim
NÑ8MCN pzq “ 1` z tanpbzq

b´ a tanpbzq .

4.2. The free tangent and zigzag laws. In this subsection we indicate yet another method
to prove the limit theorem 4.1 in some special cases, namely sums of commutators and anti-
commutators. These are interesting because up to rescaling the limit cumulants are equal to
the tangent numbers and Euler’s zigzag numbers. Secondly, these cumulants are reminiscent
of certain formulae for positive integer moments random variables related to the zeta function
[14, see last line of Table 1]. Thirdly, we incidentally solve a problem stated in [17]. According
to Theorem 3.1, in the above proofs we can restrict our sums to pair partitions and then the
sums are simply traces of powers of the matrix.
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Proposition 4.4 (Free tangent law). Let X1, X2, . . . , Xn P Asa be free copies of a random
variable with finite non-zero variance 1, then

Qn “ 1

n

n
ÿ

k,j“1
ipXkXj ´XjXkq dÝÑ Y,

where RY pzq “ tanpzq. We call the limit law µY the free tangent law.

Proof. First observe that by virtue of the cancellation phenomenon see [25, Theorem 4.4], we
may assume without loss of generality that Xi are even random variables and moreover by
Remark 3.2 that they are semicircular. Thus the cumulants can be computed using formula
(2.15) and evaluate to

Kr

`

i
n
ÿ

k,j“1
pXkXj ´XjXkq

˘ “ TrpArnq where An “ r 0 i´i 0 sn .

The eigenvalues of the matrix An were computed in Lemma 2.5 and they are λk “ cot
`

π
2n
` k

n
π
˘

for k P t0, . . . , n´1u (including repeated eigenvalues), hence the odd cumulants vanish and the
even cumulants evaluate to

K2m

`

n
ÿ

k,j“1
ipXkXj ´XjXkq

˘ “
n´1
ÿ

k“0
cot2m

ˆ

π

2n
` k

n
π

˙

“ p´1qmn` 1

p2m´ 1q!
m
ÿ

k“1
n2kA

p2kq
2m T2k´1

“ n2m T2m´1
p2m´ 1q! `Opn2m´2q

where we used formula (2.23), with A
p2mq
2m “ 1. Hence

lim
nÑ8K2mpQnq “ T2m´1

p2m´ 1q!
and we conclude that

lim
nÑ8RQnpzq “ tanpzq.

�

Proposition 4.5 (Free zigzag law). Let X1, X2, . . . , Xn P Asa be free copies of a centered
random variable with finite non-zero variance 1, then

Qn “ 1

2n

n
ÿ

k,l“1
kăl

`

XkXl `XlXk ` ipXkXl ´XlXkq
˘ dÝÑ Y,

where RY pzq “ 1
2
ptanpzq ` secpzq ´ 1q. The density of this law is shown in Fig. 3.

Proof. The matrix An “ 1
2

“

0 1´i
1`i 0

‰

n
corresponds to α “ arccotp´1q “ ´π

4
and Lemma 2.5

yields

λk “ ´1

2
cot

ˆ

´ π

4n
` k

n
π

˙

´ 1

2
, for k P t1, . . . , nu,

where range of the index variable k is shifted to t1, . . . , nu. By the binomial theorem applied
for r ě 2, we see that

n
ÿ

k“1

ˆ

´ cot

ˆ

´ π

4n
` k

n
π

˙

´ 1

˙r

“ p´1qr
r
ÿ

j“0

ˆ

r

j

˙

˜

n
ÿ

k“1
cotr´j

ˆ

´ π

4n
` k

n
π

˙

¸

“ Er´1
pr ´ 1q!2

r´1nr `Opnr´1q.
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by (2.24).
Finally for r ě 2, we get

K̃r “ lim
nÑ8KrpQnq

“ lim
nÑ8

1

nr

n
ÿ

k“1
λrk “ lim

nÑ8
1

p2nqr
n
ÿ

k“1

ˆ

´ cot

ˆ

´ π

4n
` k

n
π

˙

´ 1

˙r

“ Er´1
2pr ´ 1q! .

The first cumulant is K̃1 “ 1
2n

Tr
`“

0 1´i
1`i 0

‰

n

˘ “ 0 and hence the desired R-transform is

RY pzq “
8
ÿ

r“0
K̃r`1zr “ 1

2

8
ÿ

r“1

Er
r!
zr “ tanpzq ` secpzq ´ 1

2
.

�

Remark 4.6. The above results coincide with Theorem 4.1. Indeed, if we use use the scaling
appropriate for Theorem 4.1, i.e., 1?

2n
, then

R?2Y pzq “
tanp?2zq ` secp?2zq ´ 1?

2

by the identity tanpzq ` secpzq “ 1`tanpz{2q
1´tanpz{2q , we have

“ tanpz{?2q
1{?2´ tanpz{?2q{?2

.

It is interesting to compare the power series expansion of Theorem 4.1 for a “ b “ 1?
2

with
tanp?2zq`secp?2zq´1?

2
, because it shows the identity

n´1
ÿ

k“0
T pk`1qn “ 2n´1En.

This provides a new answer to a question of Carlitz and Scoville [17, equ. (2.19) on p. 418] who

assert that “the numbers
řn´1
k“0 T

pk`1q
n are not easily evaluated”; see [21, Prop. 6] for another

proof. This sequence is catalogued as A000828 in Sloane’s database [48] and the numbers are
half of the Euler numbers of type B, see [39].

5. Spectral radius, density, Lévy-Khinchin representation and Bercovici-Pata
bijection of the tangent laws

5.1. The spectral radius of the tangent law.

Proposition 5.1. The spectral radius of the tangent law (the limit law of Corollary 4.4) is
given by

ρ “ 1

W
p1`?1´W2q » 2.2644374158937358461

where W « 0.7390851332 is the iterated cosine constant, i.e., the unique fixed point of the
equation x “ cosx.

Proof. Since the moments are nonnegative, Pringsheim’s theorem (see [53, Sec. 7.21] or [40,
Sec. 3.6]) implies that the principal singularity of the Cauchy transform lies on the positive real
axis and the spectral radius can be computed as

ρ “ inf
tą0Kptq
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Figure 1. The spectral radius of the generalized free tangent laws

see [59, Ch. 9.C]. In order to compute the minimum of the function

Kptq “ 1

t
` tan t

we compute the roots of its derivative

K 1ptq “ ´ 1

t2
` 1

cos2 t
.

The unique root satisfies the equation cos2 t “ t2, i.e., t “ ˘W and thus

ρ “ 1

W
` sin W

cos W
“ 1

W

´

1`?1´W2
¯

�

Remark 5.2. The number W (Armenian letter “ayb”) comes up from time to time in the liter-
ature, starting at least back in the 19th century in the 4th edition of Bertrands Traité d’algèbre
[13], continuing with numerical efforts by T.H. Miller [42] and the dedicated investigation by
G.B. Arakelian [4]. This number is well known among generations of high school students who
saw it appear on their electronic calculators when they started to repeatedly press the “cos”
button during boring math classes, see [36, 46] for discussions.

5.2. The spectral radius of the generalized free tangent laws.

Proposition 5.3. The spectral radius of the generalized limit law from Theorem 4.1 for a`ib “
eiα, where 0 ă α ă π is given by

ρα “ 1

Wα

psinα ` sin Wαq
where Wα is the unique solution x of the equation

x “ sinpα ´ xq.
The dependency of the spectral radius on the parameter α is shown in Figure 1.
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Proof. We proceed as in the proof of Proposition 5.1, the objective function now being

Kptq “ 1

t
` tan bt

b´ a tan bt
“ 1

t
` sin bt

sinα cos bt´ cosα sin bt
“ 1

t
` sin bt

sinpα ´ btq .
Its derivative is

K 1ptq “ ´ 1

t2
` sin2 α

sin2pα ´ btq
and setting x “ bt the infimum is attained at the unique positive solution of the equation

x “ sinpα ´ xq.
�

5.3. The Lévy measure of the tangent law. The tangent function is a prominent positive
definite function, see [23], and it is a fundamental example of Nevanlinna functions. Thus
the free tangent law is ‘-infinitely divisible and its Lévy measure can be computed using the
method from Section 2.4. To this end we consider the Voiculescu transform φpzq “ tanp1

z
q.

The nontangential limit of its imaginary part is

lim
εÑ0`

Imφpx` iεq “ lim
εÑ0`

Im tan

ˆ

1

x` iε
˙

“ 0

and thus the Lévy measure has no absolutely continuous part. In order to determine the atoms
we compute the nontangential limits (2.7). Now

lim
εÑ0`

iε tan

ˆ

1

x` iε
˙

“ 0

whenever x is not a pole of tanp1{xq, i.e., x ‰ 1
π
2
`kπ , k P Z. On the other hand for x “ 1

π
2
`kπ

we get via de L’Hospital’s rule

lim
εÑ0`

iε tan

ˆ

1

x` iε
˙

“ lim
εÑ0`

iε

cot
`

1
x`iε

˘ “ lim
εÑ0`

i
´1

cos2p 1
x`iεq

´i
px`iεq2

“ x2.

Finally from (2.7) we infer that the Lévy measure is given by

νptxuq “
#

1 for x “ 2
nπ

with n P Z odd,

0 otherwise.

Alternatively, this result can be verified as follows. From the well-known identity
ř

nPN odd
1
n2 “

π2

8
we conclude that the tangent distribution has free characteristic triplet p0, 0, νq and we have

Cµpzq “
ż

R

ˆ

1

1´ xz ´ 1´ xz1t|x|ă1upxq
˙

dνpxq

“
ż

R

ˆ pxzq2
1´ xz

˙

dνpxq

“
ÿ

nPZ odd

1

1´ 2z
nπ

4z2

n2π2

“
ÿ

nPN odd

2

1´ 4z2

n2π2

4z2

n2π2

“
ÿ

nPN odd

8z2

n2π2 ´ 4z2
.

Now Euler’s well known partial fraction expansion of the contangent function [1, Ch. 25]

cot z “ 1

z
`

8
ÿ

k“1

2z

z2 ´ k2π2
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Figure 2. Density of the free tangent law

immediately yields a similar expansion for the tangent function

tan z “ cot z ´ 2 cot 2z “
8
ÿ

k“1

8z

p2k ´ 1q2π2 ´ 4z2

for z ‰ 0 and thus indeed 1
z
Cµpzq “ tanpzq.

5.4. The Lévy measure of the generalized tangent laws. The corresponding Lévy mea-
sure in the general case is supported on the points x “ b

arctanpb{aq`kπ for k P Z, with weight 1.

This follows from the fact that limεÑ0` iε
tanp b

x`iε
q

b´a tanp b
x`iε

q “ x2. We leave the formal proof to the

reader.

5.5. The density of the tangent law. The free characteristic triplet of the free tangent law
is a “ 0 and νpRq “ 1 and it follows from the criterion [30, Theorem 3.4 part (2)] that the free
tangent law is absolutely continuous with respect to Lebesgue measure. Moreover, Huang (see
[33, Theorem 3.10] or [34]) derived a formula for the absolutely continuous part µac by using
the transform F´1µ pzq “ z ` tanp1

z
q. Define a continuous map on R by

vµpxq : “ infty ą 0 | ImpF´1µ px` iyqq ą 0u

“ inf
!

y ą 0 | y ´ sinh 2y
x2`y2

cosh 2y
x2`y2 ` cos 2x

x2`y2
ą 0

)

.

Huang proved that we can define ψµpxq “ F´1µ px ` ivµpxqq, for x P R, which is a homeomor-
phism of R and then we have

dµac

dx
pψµpxqq “ vµpxq

πpx2 ` v2µpxqq
.

The densities of the free tangent law and the free zigzag laws are shown in Figures 2 and 3; the
densities of the generalized free tangent laws for 0 ă α ă π are shown in Figure 4.
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Figure 3. Density of the free zigzag law
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Figure 4. Densities of the generalized free tangent laws depending on α

5.6. Bercovici-Pata bijection. An important connection between free and classical infinite
divisibility was established by Bercovici and Pata [10] in the form of a bijection Λ from the
class of classical infinitely divisible laws to the class of free infinitely divisible laws. The easiest
way to define the B-P bijection is as follows. Let µ be a probability measure in IDp˚q having all
moments, and consider its sequence cn of classical cumulants. Then the map Λ can be defined
as the mapping that sends µ to the probability measure on R with free cumulants cn.
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The inverse image of the free tangent law under the Bercovici-Pata bijection has the following
characteristic function

logEpexppzXqq “
8
ÿ

n“1
p´1qn`122np22n ´ 1qB2n

p2nq!
z2n

p2nq!

and using Euler’s identity ζp2nq “ p´1qn`1p2πq2nB2n

2p2nq! this is

“ 2
8
ÿ

n“1

ζp2nq
p2nq!

ˆ

2z

π

˙2n

´ 2
8
ÿ

n“1

ζp2nq
p2nq!

´ z

π

¯2n

now using the expansion
8
ÿ

n“1

ζp2nq
p2nq! z

2n “
8
ÿ

n“1

ř8
k“1 1{k2n
p2nq! z2n “

8
ÿ

k“1

8
ÿ

n“1

1

p2nq!
´z

k

¯2n “
8
ÿ

k“1
pcoshpz{kq ´ 1q

we get further

“ 2
8
ÿ

n“1

ˆ

cosh

ˆ

2z

πn

˙

´ 1

˙

´ 2
8
ÿ

n“1

´

cosh
´ z

πn

¯

´ 1
¯

“ 2
ÿ

nPN odd

ˆ

cosh

ˆ

2z

πn

˙

´ 1

˙

.

Thus by using coshpitq “ cosptq, we obtain the characteristic function

EpexppitXqq “ exp

«

2
ÿ

nPN odd

ˆ

cos

ˆ

2t

πn

˙

´ 1

˙

ff

“
ź

nPN odd

exp

„

2

ˆ

cos

ˆ

2t

πn

˙

´ 1

˙

Note that expp2 cosptq ´ 2q is the characteristic function of Skellam distribution X, i.e.,

P pX “ kq “ P pX “ ´kq “ Ikp2q
expp2q for k P N,

where In is n-th modified Bessel function of the first kind see [47]. Hence exp
“

2
`

cos
`

2t
πn

˘´ 1
˘‰

is the characteristic function of the random variable 2
nπ
X and we conclude that the classical

distribution corresponding to the free tangent law under the B-P bijection is the law of the
random variable

ř

nPN odd X̃n, where X̃n are independent random variables such that X̃n has
the same distribution as 2

nπ
X, n P N odd.

6. Concluding Remarks

6.1. Sums of anticommutators. Instead of the sums of commutators one can also consider
sums of the anti-commutators 1

n

řn
iăjpXiXj `XjXiq for sequence of standard free semicircular

variables. Contrary to the case n “ 1, where the distribution of the anticommutator XY `Y X
coincides with the distribution of the commutator ipXY ´ Y Xq [44, Remark 19.8 (3)], this
leads to new distributions for n ě 3 and subsequently also in the limit as n tends to infinity.
Indeed the spectrum of the corresponding matrix An “ r 0 1

1 0 sn consists of the two eigenvalues
λ “ ´1 and λ “ n ´ 1 with respective multiplicities n ´ 1 and 1. Thus in the limit the rth
cumulant is equal to

lim
nÑ8

p´1qrpn´ 1q ` pn´ 1qr
nr

“
#

1 for r ‰ 1

0 for r “ 1.
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This corresponds to the Marchenko-Pastur (or free Poisson) distribution. Observe that we can
reconstruct the Marchenko-Pastur distribution from Theorem 4.1 by passing to the limit

lim
bÑ0

tanpbzq
b´˘?1´ b2 tanpbzq “ lim

bÑ0

sinpbzq
bz

cospbzq
z

´˘?1´ b2 sinpbzq
bz

“ z

1´˘z ,

which is the R-transform of the free Poisson distribution.
Such interpolations have attracted some attention in connection with random matrices. As an
application of Corollary 3.5 we present an interpolation on the unit circle w “ eiα, α P r0, 2πq
between the Marchenko-Pastur law [41] α “ 0, free tangent law α “ π

2
and free zigzag law

α “ π
4

in the context of random matrices

lim
MÑ8 lim

NÑ8
1

M
XNˆNM

”

r 0 w
w 0 sM b PN

ı

X˚
NˆNM “ Y

where RY pzq “ tanpz Imwq
Imw´Rew tanpz Imwq . Thus we are led to measures which might be called general-

ized Marchenko-Pastur laws.

6.2. The trace method for tangent numbers and the Riemann zeta function. Propo-
sitions 4.4 and 4.5 lead to another new fact about the tangent numbers Tn, the Euler zigzag
numbers En, the Riemann zeta function and the Bernoulli numbers for even values, namely

Tk “ lim
nÑ8

p2k ´ 1q! Tr
` r 0 i´i 0 s2kn

˘

n2k
, Ek “ lim

nÑ8
k! Tr

` “

0 1`i
1´i 0

‰k`1
n

˘

2knk`1
,

ζp2kq “ lim
nÑ8

π2k Tr
` r 0 i´i 0 s2kn

˘

2n2kp22k ´ 1q , B2k “ lim
nÑ8

p2kq! Tr
` r 0 i´i 0 s2kn

˘

p´1qk`122kp22k ´ 1qn2k
for k P N.

Approximation of the values of the Riemann zeta function for even integers is a popular theme,
see [58, 3, 22]. It would be particularly interesting to obtain approximations for odd integers
as well, but for this one would have to compute the singular values of the matrix An.
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