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Abstract

A Lambert series generating function is a special series summed over an arithmetic function f defined by

Lf (q) :=
∑

n≥1

f(n)qn

1− qn
=
∑

m≥1

(f ∗ 1)(m)qm.

Because of the way the left-hand-side terms of this type of generating function generate divisor sums of f convolved
by Dirichlet convolution with one, these expansions are natural ways to enumerate the ordinary generating
functions of many multiplicative special functions in number theory. We present an overview of key properties of
Lambert series generating function expansions, their more combinatorial generalizations, and include a compendia
of tables illustrating known formulas for special cases of these series. In this sense, we focus more on the formal
properties of the sequences that are enumerated by the Lambert series, and do not spend significant time treating
these series as analytic objects subject to rigorous convergence constraints.

The first question one might ask before reading this document is: Why has is catalog of interesting Lambert

series identities compiled? As with the indispensible reference by H. W. Gould and T. Shonhiwa, A catalog of

interesting Dirichlet series, for Dirichlet series (DGF) identities, there are many situations in which one needs
a summary reference on Lambert series and their properties. New work has been done recently tying Lambert
series expansions to partition functions by expansions of their generating functions. In addition to these new
expansions and providing an introduction to Lambert series, we have listings of classically relevant and “odds and
ends” examples for Lambert series summations that are occasionally useful in applications. If you see any topics
or identities the author has missed, please contact us over email to append to this reference.

Keywords and Phrases: Lambert series; Lambert series generating function; divisor sum; Anderson-Apostol

sum; Dirichlet convolution; Dirichlet inverse; summatory function; generating function transformation; series

identity; arithmetic function.

Primary Math Subject Classifications (2010): 05A15; 11Y70; 11A25; and 11-00.
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1 Notation

Symbol Definition

Bn(x), Bn The Bernoulli polynomials and Bernoulli numbers Bn = Bn(0). These polynomi-
als can be used via Faulhaber’s formula, among others, to generate the integral
kth power sums

∑
d|n φk(d)(n/d)

k = 1k + 2k + · · ·+ nk.
(n
k

)
The binomial coefficients,

(n
k

)
= n!

k!(n−k)! .

⌈x⌉ The ceiling function ⌈x⌉ := x+1−{x} where 0 ≤ {x} < 1 denotes the fractional
part of x ∈ R.

[qn]F (q) The coefficient of qn in the power series expansion of F (q) about zero.

cq(n) Ramanujan’s sum, cq(n) :=
∑

d|(q,n)

dµ(q/d).

D
(j)
z The higher-order jth derivative operator with respect to z.

dk(n) The generalized k-fold divisor function dk(n) = 1∗k(n) whose DGF is ζ(s)k. Note
that the divisor function d(n) ≡ d1(n).

d(n) The ordinary divisor function, d(n) :=
∑

d|n 1.

ε(n) The multiplicative identity with respect to Dirichlet convolution, ε(n) = δn,1.

∗; f ∗ g The Dirichlet convolution of f and g, f ∗ g(n) :=
∑
d|n

f(d)g(n/d), for n ≥ 1. This

symbol for the discrete convolution of two arithmetic functions is the only notion
of convolution of functions we employ within the article.

f−1(n) The Dirichlet inverse of f with respect to convolution defined recursively by
f−1(n) = − 1

f(1)

∑
d|n
d>1

f(d)f−1(n/d) provided that f(1) 6= 0.

⌊x⌋ The floor function ⌊x⌋ := x− {x} where 0 ≤ {x} < 1 denotes the fractional part
of x ∈ R.

f∗j Sequence of nested j-convolutions of an arithmetic function f with itself for in-
tegers j ≥ 1. We define f∗0(n) = δn,1, the multiplicative identity with respect to
Dirichlet convolution.

γ(n) The squarefree kernel of n, γ(n) :=
∏

p|n p.

gcd(m,n), (m,n) The greatest common divisor of m and n. Both notations for the GCD are used
interchangably within the article.

Gj Denotes the interleaved (or generalized) sequence of pentagonal numbers defined

explictly by the formula Gj :=
1
2

⌈
j
2

⌉ ⌈
3j+1
2

⌉
. The sequence begins as {Gj}j≥0 =

{0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, . . .}.

Idk(n) The power-scaled identity function, Idk(n) := nk for n ≥ 1. The Dirichlet inverse
of this function is given by Id−1

k (n) := nk · µ(n).

1S, χcond(x) We use the notation 1,χ : N → {0, 1} to denote indicator, or characteristic
functions. In paticular, 1S(n) = 1 if and only if n ∈ S, and χcond(n) = 1 if and
only if n satisfies the condition cond.

[n = k]δ Synonym for δn,k which is one if and only if n = k, and zero otherwise.

[cond]δ For a boolean-valued cond, [cond]δ evaluates to one precisely when cond is true,
and zero otherwise.

ϑi(z, q), ϑi(q) For i = 1, 2, 3, 4, these are the classical Jacobi theta functions where ϑi(q) ≡
ϑi(0, q).
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Symbol Definition

Jt(n) The Jordan totient function Jt(n) = nk
∏

p|n(1− p−t) also satisfies
∑

d|n Jt(d) =

nt.

Λ(n) The von Mangoldt lambda function Λ(n) =
∑

d|n log(d)µ(n/d).

λ(n) The Liouville lambda function λ(n) = (−1)Ω(n).

λk(n) The arithmetic function defined by λk(n) =
∑

d|n d
kλ(d).

Lf (q) The lambert series generating function of an arithmetic function f , defined by

Lf (q) :=
∑

n≥1

f(n)qn

1− qn
, |q| < 1.

lcm(m,n), [m,n] The least common multiple of m and n.

log The natural logarithm function, log(n) ≡ ln(n).

lsb(n) The least significant bit of n in the base-2 expansion of n.

µ(n) The Möbius function, defined for n ≥ 1 with n = pα1

1 · · · pαk

k its factorization into
distinct prime powers with αi ≥ 1 for all 1 ≤ i ≤ k by

µ(n) =





1, if n = 1;

(−1)k, if αi = 1, ∀1 ≤ i ≤ k;

0, otherwise.

OGF Ordinary generating function. Given a sequence {fn}n≥0, its OGF (or sometimes
called ordinary power series, OPS) enumerates the sequence by powers of a typ-
ically formal variable z: F (z) :=

∑
n≥0 fnz

n. For z ∈ C within some radius or
abcissa of convergence for the series, asymptotic properties can be extracted from
the closed-form representation of F , and/or the original sequence terms can be
recovered by performing an inverse Z-transform on the OGF.

ωa A primitive ath root of unity ωa = exp(2πı/a) for integers a ≥ 1.

ω(n), Ω(n) If n = pα1

1 · · · pαr
r is the prime factorization of n into distinct prime powers, then

ω(n) = r and Ω(n) = α1 + · · ·+ αr.

φk(n) Generalized totient function, φk(n) :=
∑

1≤d≤n
(d,n)=1

dk.

φ(n) Euler’s classical totient function, φ(n) :=
∑

1≤d≤n
(d,n)=1

1.

Φn(z) The nth cyclotomic polynomial in z defined by Φn(z) :=
∏

1≤k≤n
(k,n)=1

(z − e2πık/n).

p(n) The partition function generated by p(n) = [qn]
∏
n≥1

(1− qn)−1.

π(x) The prime counting function denotes the number of primes p ≤ x.
∑

p,
∑

p≤x Unless otherwise specified by context, we use the index variable p to denote
that the summation is to be taken only over prime values within the summation
bounds.

Ψk(n) The kth Dedekind totient function, Ψk(n) := nk
∏

p|n(1 + p−k).

ψk(n) The arithmetic function defined by ψk(n) :=
∑

d|n d
kµ2(n/d).
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Symbol Definition

(a; q)n, (q)n The q-Pochhammer symbol defined as the product (a; q)∞ :=
∏
n≥1

(1−aqn−1). We

adopt the notation that (q)n ≡ (q; q)n and that (a; q)∞ denotes the limiting case
for |q| < 1 as n→ ∞.

(a1, . . . , ar; q)n We use the common shorthand that (a1, . . . , ar; q)n =
∏r

i=1(ai; q)n.

rk(n) The sum of k squares function denotes the number of integer solutions to n =
x21 + · · ·+ x2k. A generating function is given by rk(n) = [qn]ϑ3(q)

k.

σα(n) The generalized sum-of-divisors function, σα(n) :=
∑
d|n

dα, for any n ≥ 1 and

α ∈ C. Note that the divisor function is also denoted by d(n) ≡ σ0(n).[n
k

]
,
{n
k

}
The Stirling numbers of the first and second kinds, respectively. Alternate nota-
tion for these triangles is given by s(n, k) = (−1)n−k

[n
k

]
and S(n, k) =

{n
k

}
.

τ(n) The function defined by τ(n) := [xn−1]
∏

m≥1(1− xm)24.

ζ(s) The Riemann zeta function, defined by ζ(s) :=
∑

n≥1 n
−s when ℜ(s) > 1, and by

analytic continuation to the entire complex plane with the exception of a simple
pole at s = 1.
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2 Background and identities for Lambert series generating functions

2.1 Introduction

In the most general setting, we define the generalized Lambert series expansion for integers 0 ≤ β < α and any fixed
arithmetic function as

Lf (α, β; q) :=
∑

n≥1

f(n)qαn−β

1− qαn−β
; |q| < 1,

where the series coefficients of the Lambert series generating function are given by the divisor sums

[qn]Lf (α, β; q) =
∑

αd−β|n

f(d).

If we set (α, β) := (1, 0), the we recover the classical form of the Lambert series construction, which we will denote
by the function Lf (q) ≡ Lf (1, 0; q).

There is a natural correspondence between a sequence’s ordinary generating function (OGF), and its Lambert series
generating function. Namely, if F̃ (q) :=

∑
m≥1 f(m)qm is the OGF of f , then

Lf (α, β; q) =
∑

n≥1

F̃ (qαn−β).

We also have a so-called Lambert transform defined by [1, §2]

Fa(x) :=

∫ ∞

0

ta(t)

ext − 1
dt.

This transform satisfies an inversion relation of the form

τa(τ) = lim
k→∞

(−1)k+1

k!

(
k

τ

)k+1∑

n≥1

µ(n)nkF (k)
a

(
nk

τ

)
.

The interpretation of this invertible transform as a so-called Lambert transformation considers taking the mappings
ta(t) ↔ an and e−x ↔ q.

2.2 Higher-order derivatives of Lambert series

Ramanujan discovered the following remarkable identities [1, §2]:

∑

n≥1

(−1)n−1qn

1− qn
=
∑

n≥1

qn

1 + qn
(2.1a)

∑

n≥1

nqn

1− qn
=
∑

n≥1

qn

(1− qn)2
(2.1b)

∑

n≥1

(−1)n−1nqn

1− qn
=
∑

n≥1

qn

(1 + qn)2
(2.1c)

∑

n≥1

qn

n(1− qn)
=
∑

n≥1

qn

1 + qn
(2.1d)

∑

n≥1

(−1)n−1qn

n(1− qn)
=
∑

n≥1

log

(
1

1− qn

)
(2.1e)

∑

n≥1

αnqn

1− qn
=
∑

n≥1

log (1 + qn) (2.1f)
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∑

n≥1

n2qn

1− qn
=
∑

n≥1

qn

(1− qn)2

n∑

k=1

1

1− qk
. (2.1g)

It follows that we can relate the partition function generating functions (q;±q)∞ to the exponential of the two
logarithmically termed series above (cf. the remarks in Section 7.5).

More generally, higher-order jth derivatives for integers j ≥ 1 can be obtained by differentiating the Lambert series
expansions termwise in the forms of1

qj ·D(j)
q

[
qn

1− qn

]
=

j∑

m=0

m∑

k=0

[
j

m

]{
m

k

}
(−1)j−kk!im

(1− qi)k+1
, (2.2a)

=

j∑

r=0

[
j∑

m=0

m∑

k=0

[
j

m

]{
m

k

}(
j − k

r

)
(−1)j−k−rk!im

(1− qi)k+1

]
q(r+1)i. (2.2b)

By the binomial generating functions given by [zn](1 − z)m+1 =
(n+m

m

)
, we find that

[qn]


∑

n≥t

f(n)qmn

(1− qn)k+1


 =

∑

d|n

t≤d≤⌊ n
m⌋

(n
d −m+ k

k

)
f(d),

for positive integers m, t ≥ 1 and k ≥ 0.

2.3 Relation of the coefficients of the classical Lambert series to Ramanujan sums

We define the functions Φ̃n(q) as the change of variable into the logarithmic derivatives of the cyclotomic polynomials

as

Φ̃n(q) =
Φ′
n(1/q)

q · Φn(1/q)
=

1

q

d

dw


∑

d|n

µ(n/d) log(wd − 1)



∣∣∣∣∣
w=1/q

=
∑

d|n

dµ(n/d)

1− qd
.

As derived in [13], we can express the component series terms for n ≥ 1 in the form of

1

1− qn
=

1

n

∑

d|n

Φ̃d(q).

Then we can express the Lambert series coefficients, (f ∗ 1)(n), for each positive natural number x ≥ 1 as

[qx]
∑

n≤x

f(n)

1− qn
=

x∑

d=1

cd(x)

⌊ x
d⌋∑

n=1

f(nd)

nd
=
∑

n≤x

f(n)

n

∑

d|n

cd(x).

1 Here, since we can express the coefficients for all finite n ≥ 1 as

[qn]Lf (q) = [qn]
∑

m≤n

f(m)qm

1− qm
,

by partial sums of the generating functions, we need not worry about uniform convergence of the Lambert series generating function in

q.
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2.4 Factorization theorems

2.4.1 Classical series cases

The first form of the factorization theorems considered in [14, 9] expands two variants of Lf (q) as

∑

n≥1

f(n)qn

1± qn
=

1

(∓q; q)∞

∑

n≥1

(so(n, k)± se(n, k)) f(k)q
n,

where so(n, k)± se(n, k) = [qn](∓q; q)∞
qk

1±qk
is defined as the sum (difference) of the functions so(n, k) and se(n, k),

which respectively denote the number of k’s in all partitions of n into and odd (even) number of distinct parts. If we
define sn,k = so(n, k) − se(n, k), then this sequence is lower triangular and invertible. Its inverse matrix is defined
by [15, A133732]

s−1
n,k =

∑

d|n

p(d− k)µ
(n
d

)
.

We can define the form of another factorization of Lf (q) where |C(q)| <∞ for all |q| < 1 is such that C(0) 6= 0 as

∑

n≥1

f(n)qn

1− qn
=

1

C(q)

∑

n≥1

(
n∑

k=1

sn,k(γ)f̃(k)(γ)

)
qn,

for any prescribed non-zero arithmetic function γ(n) with

f̃(k)(γ) =
∑

d|k

∑

r| k
d

f(d)γ(r).

In this case, we have that

s−1
n,k(γ) =

∑

d|n

[qd−k]
1

C(q)
γ
(n
d

)
.

This notion of factorization can be generalized to expanding the generalized Lambert series Lf (α, β; q) from the
first subsection [10].

In either case, the coefficients generated by Lf (q) as [qn]Lf (q) = (f ∗ 1)(n) and their summatory functions,

Σf (x) :=
∑

n≤x

(f ∗ 1)(n) =
∑

d≤x

f(d)
⌊x
d

⌋
,

inherit partition-function-like recurrence relations from the structure of the factorizations we have constructed. In
particular, for n, x ≥ 1 we have that [14]

(f ∗ 1)(n + 1) =
∑

b=±1

⌊√
24n+1−b

6

⌋

∑

k=1

(−1)k+1(f ∗ 1)

(
n+ 1−

k(3k + b)

2

)
+

n+1∑

k=1

sn+1,kf(k),

Σf (x+ 1) =
∑

b=±1

⌊√
24x+1−b

6

⌋

∑

k=1

(−1)k+1Σf

(
n+ 1−

k(3k + b)

2

)
+

x∑

n=0

n+1∑

k=1

sn+1,kf(k).

2.4.2 Generalized Lambert series expansions

Most generally in [10], we define the generalized Lambert series factorizations by the series expansions

Lf (α, β; q) :=
∑

n≥1

f(n)qαn−β

1− qαn−β
=

1

C(q)

∑

n≥1

(
n∑

k=1

s̄n,k(α, β)f̄ (k)

)
qn; |q| < 1, (2.3)

7
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for integers 0 ≤ β < α, C(q) any convergent OGF for |q| < 1 such that C(0) 6= 0, and f̄ some function of the f(n)’s.

For |q| < 1, 0 ≤ β < α,

∞∑

n=1

an
qαn−β

1− qαn−β
=

1

(qα−β ; qα)∞

∞∑

n=1

(
n∑

k=1

(so(n, k)− se(n, k))ak

)
qn,

where so(n, k) and se(n, k) denote the number of (αk − β)’s in all partitions of n into an odd (respectively even)
number of distinct parts of the form αk − β. Similarly, for |q| < 1, 0 ≤ β < α,

∞∑

n=1

an
qαn−β

1− qαn−β
= (qα−β ; qα)∞

∞∑

n=1

(
n∑

k=1

s(n, k)ak

)
qn,

where s(n, k) denotes the number of (αk − β)’s in all partitions of n into parts of the form αk − β.

If we define the factorization pair (C(q), s̄n,k) in (2.3)

s−1
n,k :=

∑

d|n

[qd−k]
1

C(q)
· γ(n/d),

for some fixed arithmetic functions γ(n) and γ̃(n) :=
∑

d|n γ(d), then we have that the sequence of ān is given by
the following formula for all n ≥ 1:

ān =
∑

d|n
d≡β mod α

a d−β
α

γ̃(n/d).
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3 Ordinary Lambert series identities

3.1 Listings of identities for arithmetic functions

We have the following well-known “classical” examples of Lambert series identities [12, §27.7] [8, §17.10] [3, §11]:

∑

n≥1

µ(n)qn

1− qn
= q, (3.1a)

∑

n≥1

φ(n)qn

1− qn
=

q

(1− q)2
, (3.1b)

∑

n≥1

nαqn

1− qn
=
∑

m≥1

σα(n)q
n, (3.1c)

∑

n≥1

λ(n)qn

1− qn
=
∑

m≥1

qm
2

, (3.1d)

∑

n≥1

Λ(n)qn

1− qn
=
∑

m≥1

log(m)qm, (3.1e)

∑

n≥1

|µ(n)|qn

1− qn
=
∑

m≥1

2ω(m)qm, (3.1f)

∑

n≥1

Jt(n)q
n

1− qn
=
∑

m≥1

mtqm, (3.1g)

∑

n≥1

µ(αn)qn

1− qn
= −

∑

n≥0

qα
n

, α ∈ P (3.1h)

∑

n≥1

qn

1− qn
=
ψq(1) + log(1− q)

log(q)
, (3.1i)

∑

n≥1

lsb(n)qn

1− qn
=
ψq2(1/2) + log(1− q2)

2 log(q)
. (3.1j)

3.2 Other identities

For any arithmetic function f and integers k ≥ 1, we have that

∑

n≥1

f(n)qn
k

1− qn
k
=
∑

m≥1


∑

dk |n

f(d)


 qm. (3.2)

For example, we have that

∑

n≥1

λk(n)q
n

1− qn
=
∑

m≥1

qm
k

(3.3a)

∑

n≥1

|µk(n)|q
n = qk+1 (3.3b)

∑

n≥1

µ(n)qn
2

1− qn2 =
∑

m≥1

|µ(m)|qm. (3.3c)
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4 Modified Lambert series identities

4.1 Definitions

For |q| < 1 and f any arithmetic function, let

L̂f (q) :=
∑

n≥1

f(n)qn

1 + qn
.

We can write L̂f (q) ≡ Lh(q), e.g., as an ordinary Lambert series expansion, where

h(n) =

{
h(n), if n is odd;

h(n)− 2h(n/2), if n is even.

Thus we have that
L̂f (q) = Lf (q)− 2Lf (q

2). (4.1)

4.2 Examples

The two primary Lambert series expansions from the previous section that admit “nice”, algebraic closed-form
expressions are translated below:

∑

n≥1

µ(n)qn

1 + qn
= q − 2q2 (4.2a)

∑

n≥1

φ(n)qn

1 + qn
=
q(q + q2)

(1− q2)2
. (4.2b)

Note that Section 6.2 also provides a pair of related series in the context of GCD sums of an arithmetic function.

5 Generalized Lambert series identities

Listings of identities

From [8, §17.10], we obtain that

∑

n≥1

4 · (−1)n+1q2n+1

1− q2n+1
=
∑

m≥1

r2(m)qm, |q| < 1. (5.1)

We also have a number of classical theta function related series of the following forms [12, §20]:

∑

n≥1

qn

1 + q2n
=

1

4

[
ϑ23(q)− 1

]
(5.2a)

∑

n≥1

q2n+1

1 + q4n+2
=

1

4

[
ϑ23(q)− ϑ22(q)

]
=
ϑ22(q

2)

4
(5.2b)

∑

n≥1

qn

1− q2n
= L1(q)− L1(q

2) (5.2c)

∑

n≥1

q2n+1

1− q4n+2
= L1(q)− 2L1(q

2) + L1(q
4) (5.2d)

∑

n≥1

4 sin(2nz)q2n

1− q2n
=
ϑ′1(z, q)

ϑ1(z, q)
(5.2e)

10



∑

n≥1

4(−1)n sin(2nz)q2n

1− q2n
=
ϑ′2(z, q)

ϑ2(z, q)
(5.2f)

∑

n≥1

4(−1)n sin(2nz)qn

1− q2n
=
ϑ′3(z, q)

ϑ3(z, q)
(5.2g)

∑

n≥1

4 sin(2nz)qn

1− q2n
=
ϑ′4(z, q)

ϑ4(z, q)
(5.2h)

∞∑

n=−∞

(−1)ne2ınzqn
2

q−ne−ız + qneız
=
ϑ2(0, q)ϑ3(z, q)ϑ4(z, q)

ϑ2(z, q)
. (5.2i)

There are a number of Lambert, and Lambert-like series, for mock theta functions of order 6 given in [1, §8]. These
series expansions are cited as follows where Ja,m := (qa, qm−a, qm; qm)∞:

φmock(q) =
∑

n≥0

(−1)nqn
2

(q; q2)n
(−q)2n

=
2

J1,3

∞∑

r=−∞

qr(3r+1)/2

1 + q3r
(5.3a)

Ψmock(q) =
∑

n≥0

(−1)nq(n+1)2(q; q2)n
(−q)2n+1

=
2

J1,3

∞∑

r=−∞

qr(3r+1)/2

1 + q3r+1
(5.3b)

ρmock(q) =
∑

n≥0

qn(n+1)/2(−q)n
(q; q2)n+1

=
1

J1,6

∞∑

r=−∞

(−1)rqr(3r+4)

1− q6r+1
(5.3c)

σmock(q) =
∑

n≥0

qn(n+2)/2(−q)n
(q; q2)n+1

=
1

J1,6

∞∑

r=−∞

(−1)rq(r+1)(3r+1)

1− q6r+3
(5.3d)

γmock(q) =
∑

n≥0

qn
2

(q)n
(q3; q3)n

=
1

(q; q)∞

∞∑

r=−∞

(−1)rqr(3r+1)/2

1 + qr + q2r
. (5.3e)

6 Lambert series over Dirichlet convolutions and Apostol divisor sums

6.1 Dirchlet convolutions

6.1.1 Definitions

Given two prescribed arithmetic functions f and g we define their Dirichlet convolution, denoted by h = f ∗ g, to
be the function

(f ∗ g)(n) :=
∑

d|n

f(d)g(n/d),

for all natural numbers n ≥ 1 [3, §2.6]. The usual Möbius inversion result is stated in terms of convolutions as
follows, where µ is the Möbius function: h = f ∗1 if and only if f = h∗µ. There is a natural connection between the
coefficients of the Lambert series of an arithmetic function an and its corresponding Dirichlet generating function,
DGF(an; s) :=

∑
n≥1 an/n

s. Namely, we have that for any s ∈ C such that ℜ(s) > 1

bn = [qn]
∑

n≥1

anq
n

1− qn
if and only if DGF(bn; s) = DGF(an; s)ζ(s),

where ζ(s) is the Riemann zeta function. Moreover, we can further connect the coefficients of the Lambert series
over a convolution of arithmetic functions to its associated Dirichlet series by noting that DGF(f ∗g; s) = DGF(f ; s)·
DGF(g; s).
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Notation 6.1 (Expanding Dirichlet inverse functions). The Dirichlet inverse function of f(n), denoted f−1(n), is
an arithmetic function such that (f ∗ f−1)(n) = δn,1 for all n ≥ 1. The function f−1 exists and is unique if and
only if f(1) 6= 0. In these cases, we can expand the inverse function in terms of weighted terms in f recursively
according to the formula

f−1(n) =





1
f(1) , n = 1;

− 1
f(1)

∑
d|n
d>1

f(d)f−1
(
n
d

)
, n ≥ 2.

We have that [11]

f−1(n) =

Ω(n)∑

j=1

(−1)j · (f − f(1)ε)∗j (n)

f(1)j+1
.

Note that Section 7 contains a formula enumerating the Dirichlet inverse of any Dirichlet invertible arithmetic
function f .

6.1.2 General identities

We can see that the Lambert series over the convolution (f ∗ g)(n) is given by the double sum

Lf∗g(q) =
∑

n≥1

f(n)Lg(q
n), |q| < 1.

Similarly,

L̂f∗g(q) =
∑

n≥1

f(n)
[
Lg(q

n)− 2Lg(q
2n)
]
.

Clearly we have by Möbius inversion that the ordinary generating function (OGF) of f is given by

Lf∗µ(q) =
∑

n≥1

f(n)qn.

If F (x) :=
∑

n≤x f(n) is the summatory function of f , then we have that

∑

n≥1

F (n)qn =
∑

n≥1

µ(n)
Lf (q

n)

1− q
.

Proof. The last identity follows by writing

[qn]
Lf (q)

1− q
=
∑

k≤n

(f ∗ 1)(k)

=

n∑

k=1

F (k)

⌊n
k ⌋∑

⌊ n
k+1⌋+1

1

=⇒ [qn]Lf (q) =
∑

m|n

n

m
(F (m)− F (m− 1)).

Thus it follows that since Id−1
k (n) = µ(n) Idk(n) = µ(n)nk as in [3, cf. §2], we get that

Lf∗Id−1
1
(q)

1− q
=
∑

n≥1

µ(n)
Lf (q

n)

1− q
=
∑

n≥1

F (n)qn.
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6.1.3 Listing of particular identities

We have the following convolution identities for Lambert series expansions of special functions [7, §7.4] [12, §24.4(iii)]:

∑

n≥1

ψk(n)q
n

1− qn
=

k∑

j=0

{
k

j

}
j!×

∑

m≥1

2ω(m) qmj

(1− qm)j+1
(6.1a)

=
k∑

j=0

{
k

j

}
j!×

∑

n≥1

∑

d|
⌊

n
j

⌋

2ω(d)
(⌊n

j

⌋
1
d + j

j

)
· qn;m ∈ N,

∑

n≥1

(σk ∗ µ)(n)q
n

1− qn
=

k∑

j=0

{
k

j

}
j!qj

(1− q)j+1
;m ∈ N;σk ∗ µ = Idk, (6.1b)

∑

n≥1

σ1(n)q
n

1− qn
=
∑

n≥1

d(n)qn

(1− qn)2
;σ1 = φ ∗ σ0, (6.1c)

∑

n≥1

(φk ∗ Idk)(n)q
n

1− qn
=
∑

m≥1

1

k + 1
(Bk+1(m+ 1)−Bk+1(0)) q

m. (6.1d)

We also have some unique generating function expressions for common summatory functions, including the following
identity:

∑

n≥1

µ(n)
Lµ∗ω(q

n)

1− q
=
∑

x≥1

π(x)qx. (6.2a)

6.1.4 Characteristic functions

The argument used to arrive at the last identity shows that if A ⊆ Z
+ and its indicator function is denoted by

χA(n), then we have that ∑

n≥1

µ(n)LχA
(qn) =

∑

a∈A

qa. (6.3a)

For example, if Nsqfree denotes the set of positive squarefree integers, then

∑

n≥1

µ(n)Lµ2(qn) =
∑

k∈Nsqfree

qk. (6.3b)

Moroever, if χA(n) = (µ ∗ gA)(n), then

∑

n≥1

gA(n)f(n)q
n

1− qn
=
∑

a∈A

Lf (q
a). (6.3c)

For example, in (7.3) we prove a prime summation identity for the Lambert series over the pointwise products of
ω(n)f(n) and λ(n)f(n) for any arithmetic f .

6.1.5 Expressions for series generating Dirichlet inverse functions

We denote by f∗j(n) the j-fold convolution of f with itself, i.e., the sequence defined recursively by

f∗j(n) =

{
δn,1, if j = 0;∑

d|n f(d)f∗j−1
(n/d), if j ≥ 1.

Then as in [11], we have that

f−1(n) =

Ω(n)∑

j=1

(
Ω(n)

j

)
(−1)j

f(1)j+1
f∗j(n).

13



Hence, we have that

∑

n≥1

f−1(n)qn

1− qn
=
∑

n≥1

(
1−

f(n)

f(1)

)Ω(n) Lf (q
n)

f(1)f(n)
−
∑

n≥1

Lf (q
n)

f(1)f(n)
. (6.4)

6.2 GCD transform sums

6.2.1 General identities

We have that

∑

n≥1



∑

1≤d≤n
(d,n)=1

f(d)




qn

1− qn
=
∑

k≥1


∑

d|k

µ(d)

1− qd


 f(k)qk (6.5a)

∑

n≥1




∑

1≤d≤n
(d,k)=m

f(d)




qn

1− qn
=
∑

k≥1


∑

d|k

µ(d)

1− qmd


 f(k)qk (6.5b)

∑

n≥1

(
n∑

d=1

f(gcd(d, n))

)
qn

1− qn
=
∑

n≥1

(f ∗ φ)(n)qn

1− qn
(6.5c)

=
∑

n≥1

f(n)
qn

(1− qn)2

=
∑

n≥1

n∑

k=1

(f ∗ 1)(gcd(k, n))qn.

6.2.2 Known particular cases

In [16], formulas for the discrete Fourier transform of a function evaluated at a gcd argument are derived. The
reference also connects Lambert series expansions of Lioville for the divisor sum functions φa(n) (non-standard
notation) that generalize the classical Euler totient function as

∑

n≥1


 ∑

d|(a,n)

d · φ(n/d)


 qn

1− qn
=

2a∑
k=1

(a− |k − a|)d(gcd(a− |k − a|, a))qk

(1− qa)2
(6.6a)

∑

n≥1


 ∑

d|(a,n)

d · φ(n/d)


 qn

1 + qn
=

p[a](q)

(1− q2a)2
, (6.6b)

where

p[a](q) :=

4a∑

k=1

[(2a− |k − 2a|)d(gcd(2a− |k − 2a|, a)) − [k even]δ (a− |k/2− a|) d(gcd(a− |k/2− a|, a))] qk.

There are related LCM Dirichlet series, or DGF, identities that we can cite to find a Lambert series expansion for
these functions from [6]:

∑

n≥1

(
n∑

k=1

[k, n]

)
qn

1− qn
=
∑

m≥1

1

2


σ1(m) +

∑

d|m

∑

r|m
d

dσ2(d)µ
(m
dr

)(m
dr

)2

 qm, (6.7a)
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∑

n≥1

(
n∑

k=1

[k, n]m

)
qn

1− qn
=
∑

n≥1

(
σm(n) +

m+1∑

i=1

(
m+ 1

i

)
Bm+1−i

m+ 1

(
1 ∗ Idm ∗ Idm+i ∗ Id

−1
2m

)
(n)

)
qm. (6.7b)

In particular, we learn from [6, D-19; D-71] that the first Lambert series above is generated as Lf1(q) when f1 =
1
2

(
Id1 ∗ Id

−1
2 ·(Id2+Id3)

)
, and the second (LCM powers sum) series is generated as Lf2(q) with

f2 = Idm+
m+1∑

i=1

(
m+ 1

i

)
Bm+1−i

m+ 1

(
Idm ∗ Idm+i ∗ Id

−1
2m

)
.

6.3 Anderson-Apostol divisor sums

We consider the Lambert series generating functions, denoted L̃1,m(f, g; q), over the sums

S1,m(f, g;n) :=
∑

d|(m,n)

f(d)g
(m
d

)
.

We have that ∑

n≥1

S1,m(f, g;n)qn

1− qn
=
∑

n≥1

(f ∗ g ∗ 1)(gcd(m,n))qn. (6.8)

Proof of (6.8). We prove the following for integers n ≥ 1:

∑

d|n

∑

r|(m,d)

f(r)g(m/r) =
∑

s|m
s|d|n

∑

r|s

f(r)g(s/r)

=
∑

s|(m,n)

(f ∗ g)(s).

The key transition step in the above equations is in noting that (d,m) is a divisor of both d and m for any integers
d,m ≥ 1.

The primary special case of interest with these types of sums is the Ramanujan sum, cq(x) ≡ S1,x(Id1, µ; q). However,
these sums are periodic modulo m ≥ 1 and have a finite Fourier series expansion with known coefficients. Let

ak(f, g;m) =
∑

d|(m,k)

g(d)f(k/d) ·
d

k
.

Then we have that [12, §27.10]

S1,m(f, g;n) =

m∑

k=1

am(f, g;m) · e2πı·kn/m.

6.4 Another summation variant

We next consider the Lambert series generating functions, denoted by L̃2,m(f, g; q), over the sums

S2,m(f, g;n) :=
∑

d|(m,n)

f(d)g
(mn
d2

)
.

As an example, we have that the Ramanujan tau function, τ(n), satisfies

τ(m)τ(n) =
∑

d|(m,n)

d11τ
(mn
d2

)
.
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Also, for any α ∈ C and m,n ≥ 1,

σα(m)σα(n) =
∑

d|(m,n)

dασα

(mn
d2

)
.

We have that
∑

n≥1

S2,a(f, g;n)q
n

1− qn
=
∑

m≥1


 ∑

d|(a,m)

∑

r|m
d

f(d)g(ar)


 qm. (6.9)

Proof of (6.9). We prove the following for integers n,m ≥ 1 by interchanging the order of divisor sum summation
indices:

∑

d|n

∑

r|(d,m)

f(r)g
(mn
r2

)
=

∑

r|(n,m)

∑

d|n
r

f(r)g
(mn
rd

)

=
∑

r|(n,m)

∑

d|n
r

f(r)g(md).

Then since [qn]Lf (q) = (f ∗ 1)(n) for n ≥ 1, we are done.

Note that if g is completely multiplicative, then [3, §2, Ex. 31]

f(m)f(n) =
∑

d|(m,n)

g(d)f
(mn
d2

)
.

7 Other special identities

7.1 Pointwise products of convolutions with arithmetic functions (not necessarily multiplica-
tive)

For any arithmetic functions f, g, h, we have that

∑

n≥1

h(n)f(n)qn

1− qn
=
∑

d≥1

(h ∗ µ)(d)

d

d−1∑

m=0

Lf (ω
m
d q), (7.1a)

∑

n≥1

h(n)(f ∗ g)(n)qn

1− qn
=
∑

d≥1

∑

k≥1

f(d)h(dk)g(k)qdk

1− qdk
. (7.1b)

As another example, let 1 ≤ b ≤ a be integers and f, g be any arithmetic functions. We define

ha,b(f, g;n) :=
∑

da|n

f
( n
da

)
g
( n
db

)
.

For integers a ≥ 1, let

L̂f,a(q) :=
∑

n≥1

f(n)qn
a

1− qna =
∑

m≥1



∑

da|m

f(d)


 qm.

Then we have that Lha,b;f,g
(q) satisfies

∑

n≥1

ha,b(f, g;n)q
n

1− qn
=
∑

d≥1


∑

r|d

g(ra−b)µ(d/r)




d−1∑

m=0

L̂f,a(ω
m
d q)

d
, (7.2a)
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and by Möbius inversion, we obtain the OGF
∑

n≥1

ha,b(f, g;n)q
n =

∑

n≥1

µ(n)Lha,b;f,g
(qn). (7.2b)

For example, the k-fold Möbius function satisfies the recurrence relation

µk(n) =
∑

dk|n

µk−1

( n
dk

)
µk−1

(n
d

)
.

7.2 Hadamard products with special arithmetic functions

We have by Mobius inversion and our previous identities on Dirichlet convolutions that:

∑

n≥1

ω(n)f(n)qn

1− qn
=

∑

p prime

Lf (q
p) (7.3a)

∑

n≥1

λ(n)f(n)qn

1− qn
=
∑

d≥1

∑

n≥1

µ(n)f(nd2)qnd
2

1− qnd2
. (7.3b)

Proof. These two equations follow from (6.3) by noting that the characteristic function of the primes is given by
χP = ω ∗ µ and that the characteristic function of the squares is given by χsq = λ ∗ µ.

7.3 Results on divisor sums involving products of ω(n) and µ(n)

Suppose that f is multiplicative such that f(p) 6= +1,−1, respectively, for all primes p. Then we have that [17]

∑

d|n

µ(d)ω(d)f(d) =
∏

p|n

(1− f(p))×
∑

p|n

f(p)

f(p)− 1
(7.4a)

∑

d|n

|µ(d)|ω(d)f(d) =
∏

p|n

(1 + f(p))×
∑

p|n

f(p)

1 + f(p)
(7.4b)

Under the same respective conditions, suppose that f is indeed completely multiplicative. Then similarly, we obtain
that

∑

d|n

µ(d)ω(d)f(d) =
∑

d|n

µ(d)f(d)×
∑

p|n

f(p)

f(p)− 1
(7.5a)

∑

d|n

|µ(d)|ω(d)f(d) =
∑

d|n

|µ(d)|f(d)×
∑

p|n

f(p)

1 + f(p)
(7.5b)

7.4 Divisor sum convolution identities involving other prime-related arithmetic functions

We have the following prime sum related divisor sum identities in the form of f ∗ 1 generated by a Lambert series
generating function over a multiplicative f [5]:

∑

d|n

µ(d) log d

d
=
φ(n)

n

∑

p|n

log p

1− p
, (7.6a)

∑

d|n

|µ(d)| log d

dk
=

Ψk(n)

nk

∑

p|n

log p

pk + 1
, (7.6b)

∑

d|n

|µ(d)| log d

φ(d)
=

n

φ(n)

∑

p|n

log p

p
, (7.6c)
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∑

d|n

µ(d) log d

σ0(d)
= −2ω(n) log γ(n), (7.6d)

∑

d|n

µ(d)edk(d) log d = (1 + (−1)ek)ω(n) ×
k log γ(n)

k + (−1)e
; e ∈ {1, 2}, k ≥ 2, (7.6e)

∑

d|n

µ(d)σ1(d) log d = (−1)ω(n)γ(n)


log γ(n) +

∑

p|n

log p

p


 , (7.6f)

∑

d|n

µ(d)ef(d) log d =
∏

p|n

(1 + (−1)ef(p))×
∑

p|n

f(p) log p

f(p) + (−1)e
; e ∈ {1, 2}, (7.6g)

∑

d|n

|µ(d)|kω(d) = (k + 1)ω(n). (7.6h)

7.5 Relations of generalized Lambert series to q-series expansions

We do not focus on connections of other forms of generalized Lambert series expansions to q-series and partition
generating functions, nor consider their representations in the context of modular forms. In this sense, we note that
one can consider a class of generalized Lambert series defined by

L(α; t, q) :=
∑

n≥1

tn

1− xqn
,

and then connect variants of this function to q-series (see, for example, the identities given in (5.3)). For an overview
of that vast material, we refer the reader to a subset of relevant references in [4, 2, 1].
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