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On certain partition bijections related to Euler’s partition

problem.

Aritro Pathak

Abstract

We give short elementary expositions of combinatorial proofs of some variants of
Euler’s partitition identity that were first addressed analytically by George Andrews [1],
and later combinatorially by others [2, 3, 4]. Our methods, based on ideas from a previous
paper by the author [5], enable us to state and prove new generalizations of two of these
results.

1 Introduction and statement of results

There appeared a couple of conjectures [6],[7], on partition identities in the On-line Encyclo-
pedia of Integer sequences, which were slight generalizations of Euler’s famous partition result
that the number of partitions of any integer n into all distinct parts equals the number of
partitions where each part is odd. These results were first proven using generating functions
by George Andrews [1].

We state the two conjectures here:

Theorem 1. Let n be a positive integer, and let a(n) be the number of partitions of n that

contain exactly one even part, which may be repeated more than once. Then a(n) is also the

difference between the total number of parts in the odd partitions of n and the number of

parts in the distinct partitions of n.

Theorem 2. Let n be a positive integer, and let a1(n) be the number of partitions of n such

that there is exactly one part appearing three times and other parts appear exactly once.

Then a1(n) is also the difference between the number of parts in the distinct partitions of n

and the number of distinct parts in the odd partitions of n.

After Andrews’ analytical proof of these results, combinatorial proofs of the above con-
jectures were given in the papers of Yang [2], Fu and Tang [3], and Ballantine and Bielak [4].
Another direction in which we could study a variant of the statement of Theorem 1 is to see
if we can allow more than one even part. This is what Andrews asked at the end of his paper
[1]. Indeed, we have the following theorem, which is the k = 2 case of Theorem 1.4 of Fu and
Tang’s paper [3].

Theorem 3. Let n and k be positive integers. Let aj(n) be the number of partitions of

n where there are exactly k distinct even parts, each possibly repeated. Let bj(n) be the

number of partitions that have exactly k repeated parts. Then aj(n) = bj(n).
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There is a well known generalization of Euler’s partition identity, which was first proven
by Glaisher [8]. Glaisher originally used his technique to give the first known combinatorial
proof of Euler’s partition identity, and generalized it to the following:

Theorem 4. Given an integer d > 0, the number of partitions c(n) of an integer n such that

no part is divisible by d, is the same as the number of partitions e(n) of d where no part

appears more than d times.

Clearly the d = 2 case is Euler’s partition theorem. Recently the author [5] gave a
generalization of the original proof of Glaisher, by looking at the complementary problem:
showing that there is a bijective correspondence between the set of partitions of n where at
least one part appears d times and the set of partitions where at least one part is divisible
by d. This seems to have not appeared in the literature before.

By looking at matrices such as those constructed in [5], in this paper we give quick
elementary expositions of combinatorial proofs of Theorem 1, Theorem 2, and Theorem 3
but which essentially reduce to being variants of the proofs earlier given in [2, 3, 4]. We
then state and prove two new results, one of which extends Theorem 2 and the other extends
Theorem 3. We state them below:

Theorem 5. Given a fixed positive integer p ≥ 2, consider the set of partitions Ak(n) of any
given positive integer n, so that there are exactly k parts that are divisible by an exponent of

2 that is greater than or equal to p. Consider the set of partitions Bk(n) of n that are such

that exactly k parts appear at least 2p times. Then there is a family of bijections between

these two sets of partitions.

Theorem 6. For a positive integer n, let f(n) be the number of partitions of n such that

there is exactly one part appearing five times, and all other parts appear once. Also consider

the set G(n) of distinct partitions of n with the property that if α · 2i(i ≥ 0) appears in the

partition with α any odd integer, then α ·2i+1 does not appear in the partition. Also consider

the set H(n) of partitions of n with only odd parts such that in the base 2 expansion of the

number of times any odd number β appears, there are no two consecutive 1’s. Then f(n) is
exactly the difference of the number of distinct parts appearing in G(n) and the number of

distinct parts in H(n).

2 Combinatorial proofs of Theorems 3 and a generalization.

For a given partition λ ⊢ n, any odd integer x, for any t ≥ 0, call the number of times that
x · 2t appears in λ ⊢ n as nλ

(x,t).

For every odd integer x, construct the following matrix M
(x)
ij with i, j ∈ {0} ∪ N, where

the j′th column from the left contains the description of nλ
(x,j): the (i, j) th cell contains 0 if

in the base 2 expansion of nλ
(x,j), the coefficient of 2i is 0, and is 1 otherwise.

As in [5], consider for any integer k ≥ 0 the “diagonal” Dk = {(i, j) : i + j = k}. When
we permute within any such fixed diagonal of any specific matrix corresponding to some odd
number x, the contribution to the net sum remains the same, but we get new partitions of n.
We will call the row with indexed by some i ≥ 0 as rowi, and the column indexed by j ≥ 0
as columnj .
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We will begin with the proof of Theorem 3. By looking at the matrix construction from
[5], the proof will be immediate.

Proof of Theorem 3. Consider the set Aj(n) of partitions that have exactly k distinct even
parts. The binary description of the number of appearances of each of these distinct even
parts are distributed among k different columns in total, distributed among one or more of
the matrices constructed above. Thus we are only concerned with columns with indices j ≥ 1
whereas column0 (corresponding to j = 0) may have any number of entries that are 1.

For each of the filled columns, push each entry of the specific column diagonally one place
down and left (i.e (i, j) → (i + 1, j − 1)), and for each i ≥ 1, take the (i, 0) entry (entries
in the column0) to the (0, i) entry (entries in row0), and keep the (0, 0) entry constant. It is
clear that this is a bijection, taking an element of Ak(n) to an element of Bk(n), which is the
set of partitions where exactly k different parts are repeated as the set Bk(n) .

Building on the above argument, we give a broader family of bijections where the parti-
tions satisfy the more restrictive condition of Theorem 5.

Proof of Theorem 5. The argument here is a generalization of that of the previous proof.
Consider any partition in ak(n), and any arbitrary matrix corresponding to an arbitrary odd
number x.

Given any 1 ≤ t ≤ p, for j ≥ (p − 1), we transfer the element in the cell (i, j) to the cell
(i + t, j − t). In the t × t block in the top left hand corner, we can permute the elements
so that each element in any cell (a, b) only moves along the diagonal D(a+b) containing it,
similar to the case in the proof in [5]. It remains to permute the elements in the set of cells
{(i, j) : 0 ≤ j < t− 1, i ≥ t− 1} to the set of cells {(i, j) : j ≥ t− 1, 0 ≤ i < t− 1}. This can
be done in several different ways, as can be very easily verified. One option is to simply swap
the elements (i, j) → (j, i) between the two aforementioned sets. The more general family of
options is for each integer m ≥ 2 to take the blocks {(i, j) : mp ≤ i ≤ (m+ 1)p − 1, 0 ≤ j ≤
p− 1}, permute the elements within each “southwest-northeast” diagonal within this block,
and transplant it to the set {(i, j) : mp ≤ j ≤ (m + 1)p − 1, 0 ≤ i ≤ p − 1}. Just as in the
previous proof, the inverse maps are also obvious for each of this family of bijections, and we
have defined the family of bijections.

It should be clear in general that any of the general family of bijections for Theorem 5
stated above will not work for proving Theorem 3. Also, instead of considering powers of
2, we could easily deal with the powers of any arbitrary integer d and the statements of
the above theorems are suitably modified. This analogous generalization for Theorem 3 was
carried out in Fu and Tang’s paper [3], and the similar generalization of Theorem 5 can easily
be formulated, but we leave it for the interested reader.

3 Combinatorial proof of Theorem 2 and generalizations.

We first give a direct short proof of Theorem 2 using the same method of [5] as before. After
that we state and prove two different generalizations of this result.

Proof of Theorem 2. It is clear that the number that is the difference between the total
number of parts in the distinct partitions of n and the distinct parts in the odd partitions of
n, can be split up as a sum of smaller parts.
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Call the set of partitions of n with all distinct parts Dn, and the set of partitions of n with

all odd parts as On. Given any fixed odd number x, in Dn the matrix M
(x)
ij has a sequence

of 1’s in the first row, and the matrix M
(x)
(ij) is otherwise empty. Call this number of 1’s in

the first row as dx. In On, the entries of the previous matrix are essentially flipped to come
to the firrst column through the Euler bijection. Each distinct part in any partition in On

corresponds to this specific matrix. Thus, per fixed matrix corresponding to any given odd
integer x, we get a contribution (dx− 1), and when we sum over all the possible matrices, we
get the difference we need in the previous paragraph.

Hence, for a specific partition of n into distinct parts, and a specific odd part x and its

corresponding matrix M
(x)
ij , consider only the cells (0, j1), (0, j2), . . . , (0, jm) to have 1’s, for

some positive integer m, and between (0, ja) and (0, ja+1) let there be ta ≥ 0 empty cells,
where 1 ≤ a ≤ m− 1 are integers.

We show that corresponding to this matrix, we can get m− 1 many partitions in which
there is exactly one part that appears three times and all others appear once, and corre-
sponding to distinct matrices, we get all separate elements of this set of partitions with the
above property.

Indeed, in the above matrix, consider 1 ≤ n ≤ m − 1, and the partition where all the
filled and unfilled cells prior to the (0, jn) cell remain unchanged, and the cells (0, jn) and
the cell (1, jn) are filled with ones, and all the originally empty cells in between (0, jn) and
(0, jn+1) are filled with ones and the originally filled cell (0, jn+1) is made empty. It is easy
to check, of course, that the sum of this configuration is the same as the sum of the original
configuration, and this is the only way to keep the sum constant and to have a case where
there is one part appearing three times and all other parts appearing once.

Thus we have shown that corresponding to this matrix configuration, we can get (m− 1)
many partitions in which there’s exactly one part that appears three times and all others
appear once. Also it is clear that corresponding to distinct matrices, we get all separate
elements of this set of partitions with the above property. Thus the proof is complete.

Now we generalize the statement of Theorem 2 to give the proof of Theorem 6.

Proof of Theorem 6. The proof of this theorem essentially uses the same argument as the

previous proof. Again for a specific odd x, if there aremmany appearances in the matrixM
(x)
ij

corresponding to the distinct partitions in G(n), say in the cells (0, j1), (0, j1), (0, j3), .., (0, jm)
where now there is at least one empty cell between each of these filled cells, then in order
to get distinct elements in the set of partitions with only one part repeated five times, all
we do is choose a specific 1 ≤ a ≤ m − 1, put 1’s in the cells (0, ja) and (2, ja), keep the
cell (0, ja + 1) empty and put 1’s in all the cells from (0, ja + 2) to (0, ja+1 − 1) and make
(0, ja+1) empty. In that process, again clearly the sum remains invariant, and we are done,
as before.

In Yang’s paper [2], there is a generalization of Theorem 2 in the Glaisher like setting with
an arbitrary integer d, in Theorem 1.7 of that paper, where the set of partitions is considered
where exactly one part appears more than d times and less than 2d times whereas all other
parts appear less than d times. The proof of this would essentially follow our proof technique
of Theorem 2 above. Combining this with our Theorem 6 above, we can formulate other
interesting statements in the Glaisher setting.
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4 Combinatorial proof of Theorem 1.

In this last section, we give quick combinatorial arguments for Theorem 1.

First proof of Theorem 1. In this case, consider the number of times nα, that a particular
odd number α appears in one of the odd partitions of n, and write it in the base 2 expansion:
nα = γ0 +2 · γ1 +22 · γ2 + · · ·+2m · γm, with γm = 1, where each of the other γi are either 0
or 1. By an argument similar to that used in the previous proof, it should be clear that the
total difference under consideration, can be broken up into summands, per partition and per

matrix M
(x)
ij corresponding to the odd number x, into the sums (γ0 + 2 · γ1 + 22 · γ2 + · · ·+

2m · γm)− (γ0 + γ1 + γ2 + · · ·+ γm = (2− 1) · γ1 + (22 − 1) · γ2 + · · · + (2m − 1) · γm.

Now we show that per partition, and per matrixM
(x)
ij corresponding to x in that partition,

we will find (2− 1) · γ1 + (22 − 1) · γ2 + · · ·+ (2m − 1) · γm partitions that contain exactly one
even part, that may be repeated more than once. Consider the odd partitions of n where x

appears γ0 + 2 · γ1 + 22 · γ2 + · · ·+2m · γm number of times. The matrix thus has 1’s in only
the first column. We wish to introduce exactly one even part here; i.e. introduce some 1’s
into exactly one more column, while keeping the sum constant.

To do this, consider only the γi that equal one, and label them as γi1 , γi2 , γi3 , . . . . Consider
first γi1 . In the second column, you could potentially put any number of 1’s in the cells
(0, 1), (1, 1), . . . , (i1 − 2, 1) (remembering that the indexing of the cells begins at 0, and the
coefficient of 2i in the first column lies in the (i, 0) cell); then we will adjust the difference
until the 2ith coefficient in the first column, keeping the coefficient of 2i1 equal to 0 (i.e. the
cell (i1 − 1, 1) having the entry 0) and the coefficients of 2j in the first column for j ≥ i1 + 1
constant. Otherwise we could simply put a 1 in the (i1 − 1, 1) cell, with all other cells below
it empty. (i.e. the intersection of the i′th row with the 2nd column.). Either way, we have
(2i1−1 − 1) + 1 = 2i1−1 choices to fill up the second column, and keeping the coefficients of
2j for j ≥ i+ 1 unchanged in the first column.

Now consider k = 2 and the second column. In this case, for j ≥ i2 + 1 we keep the
coefficients of 2j constant in the first column. We count the cases where in the second
column we can put any number of 1’s in the first i1 − 1 cells from the top, while keeping the
coefficient of 2i1 equal to 1; ( i.e. the cell (i1 − 1, 1) having the entry 1), the coefficient of
2i2 equal to 0; (i.e. the cell (i2 − 1, 1) having the entry 0). Next we count the cases where
we have at least one entry being 1 among the cells of the second column with row numbers
greater than i1 − 1 and less than i2 − 1. Its obvious that we have thus 2i2−1 − 1 many new
cases here. Finally consider the case where you have everything below the i2− 1, 1 cell in the
second column having an entry 0 and just the i2 − 1, 1 cell having the entry 1. Thus in total
you have 2i2−1 cases.

It should be clear that for the second column, corresponding to each of the i′ks we would
have 2ik−1 cases to count.

Now if we wanted to fill them’th column instead, we would have for any given k, 2ik−(m−1)

choices corresponding to ik. Thus for each fixed ik, summing over all the columns, we get
2ik−1 +2ik−2 + · · ·+1 = 2ik − 1 choices. Thus finally we find the number (2− 1) · γ1 + (22 −
1) · γ2 + · · ·+ (2m − 1) · γm.

Below we give a quick outline of a slight variation of the argument of the above proof to
arrive at the same count.
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Second proof of Theorem 1. Consider again the number nα = γ0+2·γ1+22 ·γ2+ · · ·+2m ·γm,
from the previous proof, which is the number of times the odd number α appears in one of the
odd partitions of n. Assume that we want to break this up into two parts, with α appearing
some number of times, and 2j ·α (for any j ≥ 1) appearing some other number of times, and
these together summing up to give α · nα. Rewrite nα as nα = (γ0 + 2γ1 + · · ·+ γj−12

j−1) +
2j(γj+2 ·γj+1+ . . . ). It is clear that we have (γj+2γj+1+ · · ·+2m−jγm) many choices, which
is the number in the second bracket above. Thus by an easy double counting, for any fixed
coefficient γt, as we vary the j’s above, we have 1+2+22+ · · ·+2t−1 = 2t−1 appearances of
γt. Thus as before we have the total number (2−1) ·γ1+(22−1) ·γ2+ · · ·+(2m−1) ·γm.
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