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THE WORPITZKY IDENTITY FOR THE GROUPS OF

SIGNED AND EVEN-SIGNED PERMUTATIONS

ELI BAGNO, DAVID GARBER AND MORDECHAI NOVICK

Abstract. The well-known Worpitzky identity provides a con-
nection between two bases of Q[x]: The standard basis (x + 1)n

and the binomial basis
(
x+n−i

n

)
, where the Eulerian numbers for the

Coxeter group of type A (the symmetric group) serve as the entries
of the transformation matrix. Brenti has generalized this identity
to the Coxeter groups of types B and D (signed and even-signed
permutations groups, respectively) using generating function tech-
niques.

Motivated by Foata-Schützenberger and Rawlings’ proof for the
Worpitzky identity in the symmetric group, we provide combinato-
rial proofs of this identity and for their q−analogues in the Coxeter
groups of types B and D.

1. Introduction

The well-known Worpitzky identity involves the Eulerian numbers,
the original definition of which was given by Euler in an analytic con-
text [5, §13]. Later, these numbers began to appear in combinatorial
problems, and this is the context we choose to present them here.

Let Sn be the symmetric group on n elements. For any permutation
π ∈ Sn, we say that π has a descent at position i if π(i) > π(i+ 1), and
we denote by Des(π) the set of descents:

(1) Des(π) := {i ∈ [n− 1] | π(i) > π(i+ 1)}.

We denote the number of descents in π by des(π) := |Des(π)|.
The Eulerian number A(n, k) counts the number of permutations in

Sn having k descents:

An,k = |{π ∈ Sn : des(π) = k}|.

One of the celebrated identities involving Eulerian numbers is the
Worpitzky identity:

(2) (k + 1)n =

n−1∑

i=0

An,i

(
k + n− i

n

)

.
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An excellent overview of the Worpitzky identity and the Eulerian
numbers can be found in Petersen’s book [9, Chap. 1].

Worpitzky’s identity was generalized to the Coxeter groups of types
B and D in Borowiec and M lotkowski [2], though they used a different
set of Eulerian numbers.

Generalizations of the Worpitzky identity, using the algebraic defi-
nition of the descents in these groups, were introduced by Brenti [3,
Theorem 3.4(iii) for q = 1 and Corollary 4.11]:

(2x+ 1)n =
n∑

k=0

(
x + n− k

n

)

Bn,k (type B),

(2x+1)n−2n−1(Bn(x+1)−B(n)) =

n∑

k=0

(
x + n− k

n

)

Dn,k (type D),

where Bn,k and Dn,k are the Eulerian numbers of types B and D re-
spectively (these notations will be defined in the next section), B(n) is
the n-th Bernoulli number and Bn(x) is the n-th Bernoulli polynomial
(see [7] for the definitions of these concepts).

Combinatorial identities usually have more than one possible proof.
Some of them are analytic, some algebraic in nature, but the most
beautiful ones are combinatorial, meaning that both sides of the iden-
tity count the same set of elements in different ways.

In our context, Foata and Schützenberger [6, p. 40] have proved the
Worpitzky identity for the Coxeter group of type A in a combinatorial
way (see also Rawlings [10] and Petersen [9, p. 366]). On the other
hand, Brenti’s proofs for the generalizations of Worpitzky’s identities
are non-combinatorial, and use generating function techniques.

Our contribution in this paper is combinatorial proofs for the q-
analogues of the Worpitzky identity for types B and D:

(1 + (1 + q)m)n =
n∑

k=0

(
n+m− k

n

)

Bn,k(q) (type B)

(1 + 2m)((1 + q)m)n−1 − (1 + q)n−1(Bn(m + 1) − B(n)) =

=
n∑

k=0

(
n+m−k

n

)
Dn,k(q)

(type D)

These q-analogues appear in Brenti [3] (the identity for type B is
Theorem 3.4(iii) and the identity for type D is referred to implicitly
before Theorem 4.10).

Our combinatorial proofs are in the same spirit of the proof of Foata-
Schützenberger [6] for type A. In both types, we count vectors of length
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n over a certain set, and in the case of type D we encounter a problem
of missing vectors, which is corrected by adding a term of the form
of a Bernoulli polynomial. This phenomenon appears regarding other
statistics in Coxeter groups of type D, see e.g. [1].

The proof of the identity for type D integrates direct combinatorial
arguments together with formal manipulations of algebraic expressions,
sometimes referred to as “manipulatorics”, see [9, p. 10]. This ap-
proach is, in general and in our case as well, less satisfying, but is often
necessary to reformulate a complex bijective argument as an elegant
formula.

The paper is organized as follows. In Section 2 we give some prelim-
inaries, including the definitions of the Coxeter groups of types B and
D and the Eulerian numbers associated with them. Sections 3 and 4
present the combinatorial proofs of the identities for types B and D
respectively.

2. Preliminaries and definitions

In this section, we provide some background on the Coxeter groups
of types B and D, and on the sets of vectors which we will count in our
proofs of the Worpitzky identities for these groups. A general reference
is Chapter 8 of Bjorner-Brenti’s book [4].

2.1. The Coxeter group of type B. Define Bn as the group of
signed permutations on {1, . . . , n}, i.e., the set of permutations π on
{±1,±2, . . . ,±n} such that π(−i) = −π(i) for 1 ≤ i ≤ n. We consent
that π(0) = 0 and occasionally write πi instead of π(i). This is the
standard combinatorial realization of the Coxeter groups of type B.

We define some statistics on the group Bn. First, for a permutation
π ∈ Bn, define:

DesA(π) = {i : π(i) > π(i+ 1), 1 ≤ i ≤ n− 1},

and then denote: desA(π) = |DesA(π)|.

Now, for π ∈ Bn, we define:

DesB(π) =

{
DesA(π) ∪ {0} π(1) < 0

DesA(π) π(1) > 0

As before, we denote: desB(π) = |DesB(π)|.

Example 2.1. Let π = [1̄25̄43]. Then DesB(π) = {0, 2, 4}
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Let Bn,k = |{π ∈ Bn : desB(π) = k}|. The number Bn,k is called the
Eulerian number of type B. These numbers constitute the sequence
A060187 in OEIS [8].

We define also another statistic:

neg(π) = |{i : π(i) < 0, 1 ≤ i ≤ n}|,

and the q-analogue of Bn,k is:

Bn,k(q) =
∑

π ∈ Bn

desB(π) = k

qneg(π).

Example 2.2. Let π = [1̄25̄43]. Then neg(π) = 2.

2.2. The Coxeter group of type D. Denote by Dn the group of
signed permutations on {1, . . . , n} with an even number of negative
elements. This is the standard combinatorial realization of the Coxeter
group of type D.

Before presenting the Eulerian numbers forDn, we need the following
definitions: For π ∈ Dn, define:

DesD(π) =

{
DesA(π) ∪ {0} π(1) + π(2) < 0

DesA(π) π(1) + π(2) > 0

and denote: desD(π) = |DesD(π)|.

Example 2.3. Let π = [3̄265̄14]. Then: DesD(π) = {0, 3} and
desD(π) = 2.

Let Dn,k = |{π ∈ Dn : desD(π) = k}| be the Eulerian number of type
D (sequence A262226 in OEIS [8]). For the q−analogue, let

Dn,k(q) =
∑

π ∈ Dn

desD(π) = k

qneg2(π),

where

neg2(π) = |{i ∈ {2, . . . , n} | π(i) < 0}|.

In the last example, neg2(π) = 1.

2.3. Definitions for vectors. Define on the alphabet

Σ = {0,±1,±2, . . . ,±m},

the following linear order (which will henceforth be referred to simply
as the “defined order”):

0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ · · · ≺ −m ≺ m.
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In the context of the vectors, we define two different versions of the
parameter neg, which counts the number of negative elements, one for
type B and the other for type D.

Definition 2.4. The parameter neg(~v) is defined to be the number of
negative entries in ~v.

The parameter neg2(~v) is defined to be the number of negative en-
tries in ~v, excluding the smallest element of ~v with respect to the order
defined above (note the difference between this definition and the def-
inition of neg2 for a permutation).

3. The Worpitzky identity for type B

For the Coxeter group Bn, the following identity was proven by
Brenti [3, Theorem 3.4(iii)]:

Theorem 3.1.

(1 + (1 + q)m)n =
n∑

k=0

(
n+m− k

n

)

Bn,k(q).

The proof of this identity in [3] uses manipulations of generating
functions (see the proof of Theorem 3.4(ii)). Here, we present a com-
binatorial proof based on a direct counting argument.

We start by presenting an algorithm which associates with each vec-
tor a signed permutation.

Algorithm 3.2. Let ~v = (a1, a2, . . . , an) ∈ ({0,±1, . . . ,±m})n. First
write the entries of ~v in a row according to the defined order. This yields
a permutation π = [π1, . . . , πn] ∈ Sn satisfying aπ1 ≤ aπ2 ≤ · · · ≤ aπn

.
Moreover, if we have aπi

= aπi+1
, we construct the permutation π so

the following condition holds:

(3) If aπi
≥ 0, then πi < πi+1, and πi > πi+1 otherwise.

This means that π reads equal entries of ~v from left to right if they are
nonnegative, and from right to left otherwise.

For example, let m = 3, n = 6, and ~v = (1,−2, 0,−1, 3,−2). In the
defined order we have: a3 ≺ a4 ≺ a1 ≺ a2 = a6 ≺ a5, and hence (since
a2 = a6 < 0) we have π = [3, 4, 1, 6, 2, 5].

Finally, define σ ∈ Bn in the following way: For each i satisfying
aπi

≥ 0, define σi = πi and for each i satisfying aπi
< 0, define σi =

−πi. In the example above, we have σ = [3,−4, 1,−6,−2, 5].
Note that πi = |σi|.

Furthermore, if |aπj
| = |aπj+1

|, we have σj < σj+1. Indeed:



6 ELI BAGNO, DAVID GARBER AND MORDECHAI NOVICK

• If aπj
= aπj+1

> 0, by Condition (3) above, we have πj < πj+1.
• If aπj

= aπj+1
< 0, by Condition (3) we have πj > πj+1, and

thus σj = −πj < −πj+1 = σj+1.
• If aπj

= −aπj+1
, according to the defined order, we must have

aπj
< 0, aπj+1

> 0, and hence σj < 0 < σj+1.

Therefore, by the definition of the descents of type B and by the con-
struction of π, we conclude the following:

(4) If j ∈ DesB(σ), then |aπj
| < |aπj+1

|

(while assuming π0 = 0, aπ0 = a0 = 0 and recall that πi = |σi|).

Proof of Theorem 3.1. The left hand side counts the number of vectors
of the form

~v = (a1, a2, . . . , an) ∈ ({0,±1, . . . ,±m})n,

where each vector ~v contributes qneg(~v).
As we show below, the right hand side counts the same set of vectors,

where they are classified by signed permutations.

Denote by φn,m the mapping ~v 7→ σ defined in Algorithm 3.2 and
note that neg(~v) = neg(φn,m(~v)).

We show that the number of vectors associated by the algorithm to
a given permutation σ ∈ Bn is exactly

(
n+m−desB(σ)

n

)
, i.e.,

∣
∣φ−1n,m(σ)

∣
∣ =

(
n+m− desB(σ)

n

)

,

from which the theorem immediately follows.

We start with an example: let σ = [2,−1, 4,−5, 3] ∈ B5 and m = 3.
Note that DesB(σ) = {1, 3}.

We have to find the vectors

~v = (a1, a2, a3, a4, a5) ∈ ({0,±1,±2,±3})5

satisfying a1 < 0, a5 < 0 and a2 ≥ 0, a3 > 0, a4 > 0 (in the usual integer
order) and

(5) 0 ≤ |a2| < |a1| ≤ |a4| < |a5| ≤ |a3| ≤ 3,

and we have to show that there are
(
5+3−2

5

)
= 6 such vectors.

The sequence of inequalities (5) is equivalent in turn to

(6) 1 ≤ |a2| + 1
︸ ︷︷ ︸

=b1

< |a1| + 1
︸ ︷︷ ︸

=b2

< |a4| + 2
︸ ︷︷ ︸

=b3

< |a5| + 2
︸ ︷︷ ︸

=b4

< |a3| + 3
︸ ︷︷ ︸

=b5

≤ 6,

so we can conclude that the number of vectors satisfying the sequence
of inequalities (5) is

(
6
5

)
= 6 as claimed.
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Here is the argument in general: Let σ = [σ1, . . . , σn] ∈ Bn. We have
to find the number of vectors

~v = (a1, a2, . . . , an) ∈ ({0,±1, . . . ,±m})n

such that for each j ∈ {1, . . . , n} satisfying σj < 0, one has a|σj | < 0
and:

0 ≤ |a|σ1|| ≤ |a|σ2|| ≤ · · · ≤ |a|σn|| ≤ m,

with the property that the ith order sign in this sequence of inequalities
is strict if i ∈ DesB(σ), for 0 ≤ i ≤ n− 1.

By adding 1 to each term in this sequence of inequalities, we obtain:

1 ≤ |a|σ1|| + 1 ≤ |a|σ2|| + 1 ≤ · · · ≤ |a|σn|| + 1 ≤ m + 1.

Now, in order to convert to strict order signs, we add 1 to the right hand
side of each non-strict inequality (and to each inequality to the right
of it). Since the number of strict order signs in the original sequence
of inequalities is desB(σ), at the end of this process, we have:

1 ≤ b1 < b2 < · · · < bn ≤ m + n− desB(σ),

where bi =
∣
∣a|σi|

∣
∣+ |{j ∈ DesB(σ) | j < i}| + 1.

The number of integer solutions of this sequence of inequalities is:(
m + n− desB(σ)

n

)

. Note that for each i, after fixing the value of bi, the

value of a|σi| is uniquely determined. �

4. Worpitzky identity for Coxeter groups of type D

The following generalization of Worpitzky identity for type D is due
to Brenti [3, Coro. 4.11]:

Proposition 4.1. For n ≥ 2, we have:

(7) (1 + 2x)n − 2n−1(Bn(x+ 1) − B(n))) =

n∑

k=0

(
n+ x− k

n

)

Dn,k,

where Bn(·) is the nth Bernoulli polynomial and Bn is the nth Bernoulli
number.

By [7, Equation (5.12)], Equation (7) above can also be written as
follows:

(1 + 2m)n − 2n−1(n(1n−1 + · · · +mn−1)) =

n∑

k=0

(
n+m− k

n

)

Dn,k.

Brenti [3] also alludes to the following q-analogue:
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Theorem 4.2. For n ≥ 2, we have:

(8) (1 + 2m)((1 + q)m)n−1 − (1 + q)n−1(n(1n−1 + · · ·+mn−1)) =
n∑

k=0

(n+m− k

n

)

Dn,k(q).

Before proving Theorems 4.1 and 4.2 combinatorially, we describe
an algorithm which for a given vector ~v ∈ ({0,±1, . . . ,±m})n either
associates with it a Dn-permutation or decides not to associate it with
any Dn-permutation. When a Dn-permutation σ is associated to ~v,
it should satisfy the following condition, similar to the corresponding
Condition (4) above for Bn:

(9) If j ∈ DesD(σ), then |aσj
| < |aσj+1

|

(while assuming again σ0 = 0 and aσ0 = a0 = 0).

Algorithm 4.3. Let ~v = (a1, . . . , an) ∈ ([−m,m])n and let σ ∈ Bn be
the permutation associated to ~a by Algorithm 3.2 above.

We distinguish between two cases, depending on whether or not the
value 0 appears in ~v.

First case: The number 0 appears in ~v. Let i be the smallest index
satisfying ai = 0, and therefore σ1 = i. We consider two sub-cases:

(a) If the number of negative signs in ~v is even, then σ ∈ Dn.
• If 0 /∈ DesD(σ), i.e. σ1 + σ2 > 0, then we associate σ to ~v.
• Otherwise, if 0 ∈ DesD(σ), then we do not associate any
Dn-permutation to ~v, since by Condition (9), we have aσ1 >
aσ0 = 0, and so 0 cannot appear in ~v .

(b) If the number of negative signs in ~v is odd (and so σ /∈ Dn), then
we modify σ by inverting the sign of σ1 (and thus considering the
first appearance of 0 in ~v as negative) and denote the resulting
Dn-permutation by σ′.

• If 0 /∈ DesD(σ′), then associate σ′ to ~v.
• Otherwise, if 0 ∈ DesD(σ′), then we do not associate any
Dn-permutation to ~v, again, in order to prevent a contra-
diction with Condition (9).

Example 4.4. Given n = 3, m = 2 and ~v = (−2, 0, 0). Then
σ = [2, 3,−1] /∈ D3, and so we invert the sign of σ1 to obtain
σ′ = [−2, 3,−1] ∈ D3. The D3-permutation σ′ will be associ-
ated with ~v, since 0 /∈ DesD(σ′).

On the other hand, if we take ~v = (2, 0,−1), then we get
σ = [2,−3, 1] /∈ D3, so we must set σ′ = [−2,−3, 1] ∈ D3.
Since 0 ∈ DesD(σ′), we refrain from associating ~v with a D3-
permutation.
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Second case: The value 0 does not appear in ~v. In this case:

• If the number of negative signs in ~v is even, then we associate
σ ∈ Dn to ~v;

• Otherwise, we do not associate any Dn-permutation to ~v, since
the obtained permutation σ is not in Dn.

We summarize Algorithm 4.3 in the following flowchart:

0 appears in ~v?
Yes No

Is neg(v) even?
Yes No

Is 0 a descent of σ?
Yes No

~v → Φ

(3)

~v → σ

Replace σ by σ′

Is 0 a descent of σ′?
Yes No

~v → Φ

(2)

Is neg(~v) even?
Yes No

~v → Φ

(1)

~v → σ

~v → σ′

Figure 1. Flowchart of Algorithm 4.3

Denote by ψn,m the (partial) mapping that associates a vector ~v with
its permutation σ ∈ Dn according to Algorithm 4.3.

We point out that any vector ~v not associated to a Dn-permutation
by this algorithm must contain at most one zero, since if it contains
more than one zero, then Algorithm 3.2 (for Bn) yields a permutation
σ with σ2 > σ1 > 0 (since 0’s are read from left to right in that
algorithm). Hence even if the sign of σ1 is changed, we still have
0 /∈ DesD(σ) and so ~v will be associated to some permutation (σ or σ′)
in Dn.

The proof of Theorem 4.1 consists of the following two lemmas:

Lemma 4.5. For each σ ∈ Dn, we have |ψ−1n,m(σ)| =
(
n+m−desD(σ)

n

)
.

Lemma 4.6. The number of vectors not associated to anyDn-permutation
by Algorithm 4.3 (called ’missing’ vectors) is

2n−1n
m−1∑

j=0

(j + 1)n−1.

These two lemmas together clearly prove Theorem 4.1.

Proof of Lemma 4.5. As in the proof of Theorem 3.1 for type B, we
need to show that the number of vectors associated by ψn,m to each
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Dn-permutation σ is equal to
(

n+m− desD(σ)
n

)

. The proof is identical

to the parallel proof for type B, using the principle in Equation (9)
above, so that if 0 ∈ DesD(σ) then |aσ1 | > 0 (recall that 0 ∈ DesD(σ) if
σ1 +σ2 < 0). Note that 0 can be considered as a negative value for the
associated Dn-permutation, provided that 0 /∈ DesD(σ), as in sub-case
(b) of the first case in the algorithm. �

Example 4.7.

(a) Let σ = [2,−3, 1, 4,−5] ∈ D5 and assume that m = 4. Note that
DesD(σ) = {0, 1, 4}, hence, by Condition (9) we have
|aσ1 | > 0, so that the value 0 does not appear in any vector associ-
ated to σ.

We have to find the set of vectors

~v = (a1, a2, a3, a4, a5) ∈ ({0,±1,±2,±3,±4})5,

satisfying a3 < 0, a5 < 0 and a1 ≥ 0, a2 ≥ 0, a4 ≥ 0 (in the usual
integer order) and

(10) 0 < |a2| < |a3| ≤ |a1| ≤ |a4| < |a5| ≤ 4,

and one should find
(
5+4−3

5

)
= 6 such vectors.

The sequence of inequalities (10) is equivalent in turn to

(11) 1 ≤ |a2|
︸︷︷︸

=b1

< |a3|
︸︷︷︸

=b2

< |a1| + 1
︸ ︷︷ ︸

=b3

< |a4| + 2
︸ ︷︷ ︸

=b4

< |a5| + 2
︸ ︷︷ ︸

=b5

≤ 6,

so we can conclude that the number of vectors satisfying the sequence of
inequalities (10) is

(
6
5

)
= 6 as needed. One can check that these vectors

are: (2, 1,−2, 2,−3), (2, 1,−2, 2,−4), (2, 1,−2, 3,−4), (3, 1,−2, 3,−4),
(3, 1,−3, 3,−4) and (3, 2,−3, 3,−4).

(b) We present also an example in which 0 /∈ DesD(σ), so that σ may
be associated with vectors which contain the value 0. Let m = 2 and
let σ = [−1, 2,−3] ∈ D3. The requirements here are that a1 ≤ 0 and
a3 ≤ 0 and also that 0 ≤ |a1| ≤ |a2| < |a3| ≤ 2.
The vectors associated with [−1, 2,−3] are therefore (0, 0,−1), (0, 0,−2),
(0, 1,−2) and (−1, 1,−2). Note that the initial value 0 in the first three
vectors are considered as negative (these vectors undergo the modifi-
cation from [1, 2,−3] to [−1, 2,−3] in the first case of Algorithm 4.3).

Proof of Lemma 4.6. There are three types of ’missing’ vectors:

(1) Vectors which do not contain 0 and having an odd num-

ber of negative signs: In this case, no correction of the num-
ber of signs is possible due to the lack of 0 (the presence of which
could be used to add one to the number of negative signs), so
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this type of vectors is missing (Leaf (1) in the flowchart appear-
ing in Figure 1).

(2) Vectors which contain 0 (i.e. aσ1 = 0) and have an odd num-

ber of negative signs, such that after the modification (of σ
to σ′) we get 0 ∈ DesD(σ′) (Leaf (2) in the flowchart appearing
in Figure 1): In this case, we must have (after the modifica-
tion) σ′1 < 0, and the condition σ′1 + σ′2 < 0 implies one of the
following two possibilities:

(a) |σ1| > |σ2|, i.e., 0 is to the right of the element of ~v
which follows 0 in the defined order. In this sub-case,
the sign of σ2 is arbitrary.

(b) |σ1| < |σ2|, but σ2 < 0. In this sub-case, the element of

~v following 0 in the defined order must be negative

and must be located to the right of 0 in ~v.

(3) Vectors which contain 0 (again, recall that this means aσ1 = 0),
have an even number of negative signs, and their associ-
ated Dn-permutation σ satisfies 0 ∈ DesD(σ) (Leaf (3) in the
flowchart appearing in Figure 1): In this case, we have σ1 > 0,
and since the vector has an even number of negative signs, the
sign of σ1 has not been changed by the algorithm. Combining
with the fact that 0 ∈ DesD(σ), we conclude that σ2 < 0 and
|σ2| > σ1. These two requirements mean that the element of

~v following 0 in the defined order must be negative and

must be located to the right of 0.

Before counting the ’missing’ vectors, we show that none of them is
already counted in the pre-image of ψn,m in Lemma 4.5 for any Dn-
permutation. Indeed, if σ ∈ Dn satisfies that ~v ∈ ψ−1n,m(σ) and the
value 0 does not appear in ~v, then the number of negative elements in
σ equals the number of negative elements in ~v. On the other hand, if
the value 0 does appear in ~v, but 0 ∈ DesD(π), then by Condition (9)
|aσ1 | > 0 which contradicts the fact that 0 appears in ~v.

We proceed by counting the above ’missing’ vectors. We will have
occasion throughout to refer to the absolute value of the element of ~v
which is smallest in the defined order after 0, which we will call the
“second-smallest element” of ~v.

We start by counting the vectors appearing in the second case (2a),
where 0 is to the right of the second-smallest element and the
sign of σ2 is arbitrary.
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Note that an element having the same absolute value as the second-
smallest element but negative cannot appear to the right of 0. Indeed,
if σ2 > 0 this will contradict the fact that we read two elements with
the same absolute value but different signs starting with the negative
one. On the other hand, if σ2 < 0, this contradicts the fact that two
negative elements are read from the right to the left.

Our count has the form of a triple sum. We first choose the absolute
value of the second-smallest element j, which is located to the left of 0
(the outer sum), then we choose the location i of 0, counted from the
right (the middle sum, see Figure 2), and then we choose the number
of appearances k of the absolute value of the second-smallest element
appearing to the right of 0 (the inner sum). The multiplied terms in
the sum are as follows:

• The term [(m− j + 1)n−i − (m− j)n−i] is the number of ways
to fill the places to the left of the 0 such that the value j will
appear at least once among them.

• The term 2n−k−2 counts the number of ways to sign the n−k−1
elements, which are not 0 and are not among the k positive
appearances of the second-smallest element which are located
to the right of 0, with the additional requirement of Case (2)
that the total number of signs is odd.

• The term
(
i−1
k

)
is the number of ways to choose the k positions,

out of the first i− 1, which are to the right of 0, to be occupied
by the positive appearances of the second-smallest element.

• The term (m − j)i−1−k counts the number of ways to fill the
i − 1 − k remaining places to the right of 0 with elements of
larger absolute value than the second-smallest value.

0X

i− 1

Figure 2.

m∑

j=1

n−1∑

i=1

i−1∑

k=0

2n−k−2
[
(m− j + 1)n−i − (m− j)n−i

]
(
i− 1

k

)

(m−j)i−1−k =

(j←m−j)
=

m−1∑

j=0

n−1∑

i=1

i−1∑

k=0

2n−k−2
[
(j + 1)n−i − jn−i

]
(
i− 1

k

)

ji−1−k =
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(binom)
=

m−1∑

j=0

n−1∑

i=1

[
(j + 1)n−i − jn−i

]
· 2n−2

(

j +
1

2

)i−1

=

=
1

2

m−1∑

j=0

n−1∑

i=1

[
(2j + 2)n−i − (2j)n−i

]
(2j + 1)i−1 =

=
1

2

m−1∑

j=0

n−1∑

i=1

[
(2j + 2)n−i(2j + 1)i−1 − (2j)n−i(2j + 1)i−1

]
=

=
1

2

m−1∑

j=0




−

[
(2j + 1)n−1 − (2j + 1)n−1

]

︸ ︷︷ ︸

i=n

+
n∑

i=1

[
(2j + 2)n−i(2j + 1)i−1 − (2j)n−i(2j + 1)i−1

]




 =

=
1

2

m−1∑

j=0

(
n∑

i=1

(2j + 2)n−i(2j + 1)i−1 −

n∑

i=1

(2j)n−i(2j + 1)i−1

)

=

(∗)
=

1

2

m−1∑

j=0

(
(2j + 2)n − (2j + 1)n

(2j + 2) − (2j + 1)
−

(2j + 1)n − (2j)n

(2j + 1) − (2j)

)

=

=
1

2

m−1∑

j=0

((2j + 2)n − 2(2j + 1)n + (2j)n) = A,

where in (∗) we used the short multiplication formula: an−bn

a−b
=

n∑

i=1

an−ibi−1.

Next, we concentrate on Cases (2b) and (3) together: in both cases, 0
is to the left of the second-smallest element, which is negative.
Since in Case (2b) the total number of negative signs is odd, while in
Case (3) the total number of negative signs is even, in considering both
cases together we may assume that the total number of negative signs
is arbitrary.

As in the previous part, our count of these two cases has the form of
a triple sum. We first choose the second-smallest element j, which is
located to the right of 0 (the outer sum), then we choose the location i
of 0, counted from the left (the middle sum, see Figure 3), and then the
number of appearances k of the second-smallest element to the right of
0 (the inner sum), where its appearances to the left of 0 are counted in
the terms of the sum. The multiplied terms in the sum are as follows:

• The term
(
n−i
k

)
is the number of ways to choose the k places out

of the n − i places to the right of 0, occupied by the elements
having the same absolute value as the second-smallest element,
including itself.
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• The term 2k−1 counts the number of ways to sign the k elements
having the same absolute value as the second-smallest element
appearing to the right of 0, excluding the unique possibility
to sign all the elements as positive, since at least one of the
appearances of the second-smallest element to the right of 0

should be negative.
• The term (2m−2j)n−i−k is the number of ways to fill the places

to the right of 0 with elements of larger absolute value than the
second-smallest and with arbitrary signs.

• The term (2m−2j+2)i−1 counts the number of ways to fill the
i−1 remaining places to the left of 0 with elements of larger or
equal absolute value to the second-smallest, and with arbitrary
signs.

X0

i− 1 n− i

Figure 3.

m∑

j=1

n−1∑

i=1

n−i∑

k=1

(2k − 1)

(
n− i

k

)

(2m− 2j)n−i−k(2m− 2j + 2)i−1 =

(j←m−j)
=

m−1∑

j=0

n−1∑

i=1

n−i∑

k=1

(2k − 1)

(
n− i

k

)

(2j)n−i−k(2j + 2)i−1 =

=

m−1∑

j=0

n−1∑

i=1

(2j + 2)i−1
n−i∑

k=1

2k
(n− i

k

)

(2j)n−i−k −

m−1∑

j=0

n−1∑

i=1

(2j + 2)i−1
n−i∑

k=1

(n− i

k

)

(2j)n−i−k =

(binom)
=

m−1∑

j=0

n−1∑

i=1

(2j+2)i−1[(2j+2)n−i−(2j)n−i

︸ ︷︷ ︸

k=0

] −

m−1∑

j=0

n−1∑

i=1

(2j+2)i−1[(2j+1)n−i−(2j)n−i

︸ ︷︷ ︸

k=0

] =

=

m−1∑

j=0

n−1∑

i=1

(2j + 2)i−1
[
(2j + 2)n−i − (2j + 1)n−i

]
=

=
m−1∑

j=0

n−1∑

i=1

[
(2j + 2)n−1 − (2j + 2)i−1(2j + 1)n−i

]
=

=

m−1∑

j=0

(

(n− 1)(2j + 2)n−1 −

n−1∑

i=1

(2j + 2)i−1(2j + 1)n−i

)

=
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=
m−1∑

j=0



(n− 1)(2j + 2)n−1 −

(
n∑

i=1

(2j + 2)i−1(2j + 1)n−i

)

+ (2j + 2)n−1
︸ ︷︷ ︸

i=n



 =

(∗)
=

m−1∑

j=0

(

n(2j + 2)n−1 −
(2j + 2)n − (2j + 1)n

(2j + 2) − (2j + 1)

)

=

=

m−1∑

j=0

[
n(2j + 2)n−1 − (2j + 2)n + (2j + 1)n

]
= B,

where in (∗) we used the short multiplication formula: an−bn

a−b
=

n∑

i=1

an−ibi−1.

We now sum up together Cases (2) and (3) (counted by expressions
A and B):

1

2

m−1∑

j=0

(

(2j + 2)n − 2(2j + 1)n + (2j)n
)

︸ ︷︷ ︸

=A

+

m−1∑

j=0

[

n(2j + 2)n−1 − (2j + 2)n + (2j + 1)n
]

︸ ︷︷ ︸

=B

=

=
m−1∑

j=0

(
1

2
((2j + 2)n + (2j)n) + n(2j + 2)n−1 − (2j + 2)n

)

=

=

m−1∑

j=0

(

n(2j + 2)n−1 +
1

2
((2j)n − (2j + 2)n)

)

=

=

m−1∑

j=0

2n−1n(j + 1)n−1 +

m−1∑

j=0

1

2
((2j)n − (2j + 2)n)

telescopic
=

= 2n−1n
m−1∑

j=0

(j + 1)n−1 −
1

2
(2m)n = 2n−1n

m−1∑

j=0

(j + 1)n−1 − 2n−1mn

Adding the number of the vectors of Case (1), which is clearly 2n−1mn

(half the total number of vectors not containing 0), yields the total
number of vectors not associated to any Dn-permutation, namely:

2n−1n

m−1∑

j=0

(j + 1)n−1.

This completes the proof of Theorem 4.1 as well. �

The proof of Theorem 4.2 is based on Lemma 4.5 and on the following
lemma:
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Lemma 4.8. The weight contributed by the vectors not associated to
any Dn-permutation by Algorithm 4.3 is

(1 + q)n−1n

m−1∑

j=0

(j + 1)n−1.

Proof of Lemma 4.8. As in Lemma 4.6, there are three types of ’miss-
ing’ vectors. We now count their contribution with regard to the q-
analogue.

Case (1): We put q for each negative term in ~v except for the smallest
one and consider two cases:
(a) If the sign of the smallest element is positive, then we

have m options to choose its value and the other elements

contribute ((1+q)m)n−1

2
·m, since the number of negative el-

ements must be odd.
(b) If the sign of the smallest element is negative, then af-

ter choosing the smallest element, the number of negatives
among the remaining elements is even so we have again:
((1+q)m)n−1

2
·m.

In total we have (1 + q)n−1mn.

Case (2a): We have the following triple sum:

m∑

j=1

n−1∑

i=1

i−1∑

k=0

(1 + q)n−k−2
[
(m − j + 1)n−i − (m− j)n−i

] (i− 1

k

)

(m − j)i−1−k .

Cases (2b)+(3): We have the following triple sum:

m∑

j=1

n−1∑

i=1

n−i∑

k=1

((1 + q)k − 1)
(n− i

k

)

((1 + q)m− (1 + q)j)n−i−k((1 + q)m− (1 + q)j + (1 + q))i−1.

Applying manipulations similar to the ones we used in Lemma 4.6,
while replacing 2 by (1 + q), yields the required result. �
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