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HAN YU

ABSTRACT. In this paper, we discuss a connection between geometric
measure theory and number theory. Among other results, we show that
a problem posed by Graham on prime factors of binomial coefficients can
be answered by considering a problem on projected images of fractal sets.
From this point of view, we revisit a result obtained by Erdős, Graham,
Ruzsa and Straus, also on prime factors of binomial coefficients.

1. PRIME FACTORS OF BINOMIAL COEFFICIENTS: GRAHAM’S QUESTION

In 1970s, Erdős, Graham, Ruzsa and Straus proved that there are infin-
itely many integers n such that

(
2n
n

)
is coprime with 3 × 5 = 15, see [4].

Motivated by this result, Graham asked the following question.

Question 1.1 (Graham’s binomial coefficients problem). Are there infinitely
many integers n ≥ 1 such that the binomial coefficient

(
2n
n

)
is coprime with 105 =

3× 5× 7?

Remark 1.2. According to [17], Graham offers 1000$ to the first person with a
solution.

This problem turns out to be related with digit expansions of numbers in
different bases. To be precise, let b1, . . . , bk ≥ 2 be k ≥ 2 different integers.
For each i ∈ {1, . . . , k}, let Bi ⊂ {0, . . . , bi − 1} be a subset of digits in base
bi. Let n, b ≥ 2 be integers, we write Db(n) for the set of digits used in
representing n in base b. We define the following set of integers:

NB1,...,Bk
b1,...,bk

= {n ∈ N : ∀i ∈ {1, . . . , k}, Dbi(n) ⊂ Bi}.

Thus NB1,...,Bk
b1,...,bk

contains integers with very special digit expansion simulta-
neously in many different bases. We will call such numbers to be with re-
sitrcted digits. The original motivation of this type of problems is to study
prime factors of

(
2n
n

)
. The connection between prime factors of

(
2n
n

)
and

digits expansions of n was established by Kummer in [12].

Theorem 1.3 (Kummer). Let p be a prime number. Then p 6 |
(

2n
n

)
if and only if

the p-ary expansion of n contains only digits ≤ (p− 1)/2.
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2 HAN YU

Due to Kummer’s theorem, we see that for Graham’s question one needs
to study the set NB3,B5,B7

3,5,7 where

B3 = {0, 1}, B5 = {0, 1, 2}, B7 = {0, 1, 2, 3}.
It is precisely the set of integers n with

(
2n
n

)
being coprime with 3, 5, 7. Gra-

ham’s question is widely open but there are some progresses. Following
the arguments in [3], it can be proved that

#NB3,B5,B7
3,5,7 ∩ [1, N ] ≤ N0.026

for all sufficiently large N. So we can say that there are not ‘too many’
integers n such that

(
2n
n

)
is coprime with 3, 5, 7. The results in [3] also lead

us to the following conjecture whose statement answers Graham’s question
in a strong way.

Conjecture 1.4. Let p1, . . . , pk be k ≥ 2 different prime numbers. For each i ∈
{1, . . . , k}, let

Bi = {0, . . . , (pi − 1)/2}.
Denote the following number

s =

k∑
i=1

log #Bi
log pi

=

k∑
i=1

log(pi + 1)− log 2

log pi
.

If s ∈ (k − 1, k), then for each ε > 0 there is a constant Cε > 1 such that

(*) C−1
ε N s−ε ≤ #NB1,...,Bk

p1,...,pk
∩ [1, N ] ≤ CεN s+ε

for all integers N ≥ 2. If s < k − 1 then NB1,...,Bk
p1,...,pk is finite.

Remark 1.5. The rightmost inequality of (∗) was proved in [3]. Thus the open
problem is the leftmost inequality of (∗) and the finiteness statement. This is closely
related to a Furstenberg’s problem, see [7], [20] and [18].

2. RESULTS IN THIS PAPER

In this paper, we provide a different approach to Graham’s question and
other problems related to digit expansions of number in different bases. We
will relate it to projections of fractal sets, a well studied topic in geometric
measure theory. We will provide a more detailed discussion on this topic
in Sections 3 and 4 including the notion of self-similar sets, the strong sep-
aration condition, the Hausdorff dimension as well as radial projections.
Here, we only need to know that Πx for x ∈ Rd stands for the map

y ∈ Rd \ {x} → Πx(y) =
x− y
|x− y|

∈ Sd−1.

Intuitively speaking, let A ⊂ Rd. Then Πx(A) is what an observer can see
of A at a certain position x ∈ Rd.

In what follows, we say that a list of numbers a1, . . . , ad are multiplica-
tively independent if they are not 0 nor 1 and 1, log a2/ log a1, . . . , log ad/ log a1

are linearly independent over the field of rational numbers.
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Conjecture 2.1. LetA ⊂ Rd, d ≥ 2 be a Cartesian product of self-similar sets in R
with strong separation condition and uniform contraction ratios. Suppose further
that the contraction ratios are multiplicatively independent. If dimHA > d − 1,
then Πx(A) contains non-empty interiors for all x ∈ Rd.

In Section 4, we will provide several supporting heuristics. In Section 6
we will discuss some special situations when the conclusion of the above
Conjecture can be checked to be true. Conjecture 2.1 turns out to be closely
related to Graham’s question.

Theorem 2.2. Assuming Conjecture 2.1, there are infinitely many integers n such
that

(
2n
n

)
is coprime with 3× 5× 7.

Currently, we are not able to prove Conjecture 2.1. Nonetheless, the strat-
egy for proving Theorem 2.2 can be adapted to prove many other (uncon-
ditional) results concerining numbers with restricted digits.

First, we shall prove the following quantitative version of a result in [4].
The number 15 = 3 has no special significance. In pact, any two different
odd primes will do.

Theorem 2.3. Let A = {n ∈ N : gcd(15,
(

2n
n

)
) = 1}. We have the following

lower estimate for all large enough integers N ,

A ∩ [1, N ] ≥ c logN

where c > 0 is a constant.

Next, we prove the following result concerning linear forms of numbers
with resitrcted digits.

Theorem 2.4. There are infinitely many integers triples (x, y, z) ∈ N
{0,1}
3 ×

N
{0,1}
4 ×N{0,1}5 with

x+ y = z.

Remark 2.5. Let N be an integer. It is natural to consider the number S(N) of
solutions with x, y, z are at most N and study this number as N →∞. Our proof
for this theorem actually shows that S(N) & logN.However, it might be true that
S(N) & N δ for a constant δ > 0.

Remark 2.6. This result says that there are infinitely many sums of powers of five
that can be written as sums of powers of three and four. We list a few examples:

5 = 4 + 1,

52 = 42 + 32,

53 + 52 = 34 + 43 + 4 + 1,

54 + 52 = 35 + 44 + 34 + 43 + 4 + 1 + 1.

Here, the choice of 3, 4, 5 is by no means the only possible one. In fact, from the
proof, the theorem holds for multiplicative independent integers b1, b2, b3 with

1

b1 − 1
+

1

b2 − 1
+

1

b3 − 1
≥ 1.(C)



4 HAN YU

In the statement of the theorem we chose b1 = 3, b2 = 4, b3 = 5 just for con-
creteness. On the other hand, we believe that Condition (C) is essential. For
example, we suspect that there are only finitely many integer triples (x, y, z) ∈
N
{0,1}
9 ×N{0,1}10 ×N{0,1}11 with x+ y = z.

To prove the above results, we need to use Newhouse’s gap lemma, see
Section 3.3. This is a powerful tool for checking whether two Cantor sets
intersect each other. We record here a simple but interesting observation
which can be considered as a Waring type result for the middle third Cantor
set

C3 = {x ∈ [0, 1] : the ternary expansion of x contains only digits 0, 2}.

Its proof can be found in Section 3.3.

Theorem 2.7. 1 For all x ∈ [0, 4], there exist x1, x2, x3, x4 ∈ C3 such that

x = x2
1 + x2

2 + x2
3 + x2

4.

More generally, for each integer k ≥ 2 there is a number n(k) such that all x ∈
[0, n(k)] can be written as

x =

n(k)∑
i=1

xki

where x1, . . . , xn(k) ∈ C3. Moreover, n(k) ≤ 2k.

3. SOME BASICS IN GEOMETRIC MEASURE THEORY

3.1. Hausdorff dimension of sets and measures. For all δ > 0 and s > 0,
define the δ-approximate s-dimensional Hausdorff measure of a set F ⊂ Rn
by

Hsδ(F ) = inf

{ ∞∑
i=1

|Ui|s :
⋃
i

Ui ⊃ F,diam(Ui) ≤ δ

}
,

and the s-dimensional Hausdorff measure of F by

Hs(F ) = lim
δ→0
Hsδ(F ).

We then define the Hausdorff dimension of F to be

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) =∞}.

Let µ ∈ P(Rn), the space of Borel Probability measures on Rn. The Haus-
dorff dimension of µ is defined to be

dimH µ = inf{dimHA : A ⊂ Rn, µ(A) > 0}.

For more details see [5].

1We were told by S. Chow that this result (for k = 2) was conjectured in [2, Conjecture
13] and answered in [11]. We thank him for providing the references.
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3.2. Self-similar sets, and the strong separation condition. LetF = {fi}i∈Λ

be a finite collection of linear maps on R. We can write down each linear
maps explicitly as fi(x) = rix+ ai. We assume that ri ∈ (0, 1) for all i ∈ Λ.
We call such a collection of linear maps to be a linear IFS. The parameters
ri, i ∈ Λ are called contraction ratios and ai, i ∈ Λ are called translations. In
case when all the contraction ratios are equal to r ∈ (0, 1), we call r to be
the uniform contraction ratio.

By [10], there is a unique compact set F such that

F =
⋃
i∈Λ

fi(F ).

We call such a set F to be a self-similar set.
Given a positive probability vector {pi}i∈Λ, i.e. for i ∈ Λ,pi > 0 and∑
i∈Λ pi = 1, then there is a uniquely defined measure µ such that

µ =
∑
i∈Λ

pifi(µ).

Here fi(µ) = µ ◦ f−1
i is the pushed forward measure of µ via the map

fi. It can be checked that µ is a probability measure supported on F, i.e.
µ(F ) = 1. We call such a measure µ to be a self-similar measure.

We say that F satisfies the strong separation condition if the unique com-
pact set F satisfies

fi(F ) ∩ fj(F ) = ∅

for all i, j ∈ Λ, i 6= j.

3.3. Thickness, intersection and sums of Cantor sets. Let A ⊂ R be a
compact, totally disconnect set. We shall call A a Cantor set. It is of no loss
of generality to assume that A ⊂ [0, 1] and the convex hall of A is [0, 1]. In
this case, we see that [0, 1]\A is a countable union of disjoint open intervals
{Ii}i≥1. We call those intervals to be the bounded gaps of A. Thus, A can
be constructed by iteratively chopping out open intervals from [0, 1]. We
assume that the two end points of each interval in {Ii}i≥1 are contained in
A.We can also add (−∞, 0) and (1,∞) into the set of intervals. Thus, the set
{Ii}i≥1 is uniquely determined. Let I = (a, b) be one of those bounded open
intervals. We find the interval I− ∈ {Ii}i≥0 and I− ⊂ (−∞, a) such that
|I−| ≥ |I| and there is no other such intervals between I− and I. Similarly,
we can find I+ ⊂ (b,∞) to the right of I. Suppose that I− = (c, d) and
I+ = (e, f). We see that

−∞ ≤ c < d < a < b < e < f ≤ ∞.

Let gL = a− d, gR = e− b and

C(I) = min{gL, gR}/|I|.
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We define C(A) = infI∈{Ii}i≥1,I bounded C(I). This number C(A) is called the
thickness of A. We also define the normalized thickness of A is

S(A) =
C(A)

C(A) + 1
.

Notice thatC(A), S(A) is unchanged if we replaceA by an affine copy aA+
b with a, b ∈ R. We have the following result due to Newhouse, see [14].

Theorem 3.1. [Newhouse’s gap lemma] Let A,B be two compact, totally discon-
nect sets. Suppose that A is not contained in any of the gaps of B and vice versa.
If S(A) + S(B) ≥ 1, then A ∩B 6= ∅.

The following generalization can be found in [1, Theorem 2.4].

Theorem 3.2. Let A1, . . . , Ak be k ≥ 2 Cantor sets. Suppose that their con-
vex halls are I1, I2, . . . , Ik and the size of their largest gaps are g1, . . . , gk re-
spectively. Suppose further that

∑k
i=1 S(Ai) ≥ 1 and min{|I1|, . . . , |Ik|} >

max{g1, . . . , gk}. Then A1 + · · ·+Ak is an interval.

For later use, we shall reformulate the above result in terms of inter-
sections. Let A1, A2, A3 be three Cantor sets satisfying the hypothesis of
the above theorem. Consider the Cartesian product A = A1 × A2 × A3.
Let v ∈ S2 be a direction vector of R3 and let Hv be the plane passing
through the origin and normal to v. The family of planes parallel to Hv

can be parametrized by R, more precisely, {Hv(a) = Hv + av}a∈R. Denote
Πv : R3 → Rv to be the corresponding orthogonal projection on direction
ν. The above theorem says that Π(1/

√
3,1/
√

3,1/
√

3)(A) is an interval. More-
over, since the normalized thickness is invariant under affine maps, there is
a neighbourhoodO of (1/

√
3, 1/
√

3, 1/
√

3) in S2 such that whenever v ∈ O,
the size of the minimum convex hall is larger than the size of the maximum
gap, thus Πv(A) is an interval.

Now if Πv(A) is an interval, we see that

{a ∈ R : Hv(a) ∩A 6= ∅}
is an interval. More precisely, if Hv(a) ∩ I1 × I2 × I3 6= ∅ then we have
Hv(a) ∩ A 6= ∅. We now conclude the above discussion into the following
corollary.

Corollary 3.3. Let A1, A2, A3 be 3 Cantor sets. Suppose that their convex halls
are I1, I2, I3 and the size of their largest gaps are g1, g2, g3 respectively. If

min{|I1|, |I2|, |I3|} > max{g1, g2, g3}
then there is an open set O ⊂ S2 such that whenever v ∈ O, we have

Hv(a) ∩ I1 × I2 × I3 6= ∅ =⇒ Hv(a) ∩A1 ×A2 ×A3 6= ∅.
We now compute the normalized thickness of some examples of Cantor

sets. First, let b > 2 be an integer and let B = {0, 1, . . . , l} where l < b − 1.
We consider the set

ABb = {x ∈ [0, 1] : b-ary expansion of x contains only digits in B}.
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Lemma 3.4. Let b, B,ABb be as above. The normalized thickness of ABb is

S(ABb ) =
l

b− 1
.

Proof. The convex hall of ABb is [0, a] where

a =
∞∑
i=1

l

bi
=

l

b− 1
.

The largest gaps of ABb are of size

b− 1− l
b(b− 1)

.

Those gaps are located in each of the following intervals

[0, 1/b], . . . , [(l − 2)/b, (l − 1)/b].

Let I be one of those gaps, then we see that

C(I) =
l

b− 1− l
.

Following this argument and the fact that ABb is self-similar, we see that
C(ABb ) = l/(b− 1− l) and S(ABb ) = l/(b− 1). �

Next, we consider the middle third Cantor setC3 = A
{0,2}
3 . Following the

above steps we see that C(C3) = 1, S(C3) = 1/2. Let k ≥ 2 be an integer.
We consider the image of C3 under the map x → xk. We write this image
as Ck3 .

Lemma 3.5. Let k,Ck3 be as above. Then

S(Ck3 ) =
1

2k
.

Proof. Suppose that I = (a, a+∆) is a bounded gap of C3. Then we see that
the next gap on the right of I which is not smaller than I has left end point
a + 2∆. Similarly, the next gap on the left of I which is not smaller than I
has right end point a − ∆. For the middle third Cantor set C3, we always
have a ≥ ∆.

After taking the k-th power map, we have points

(a−∆)k, ak, (a+ ∆)k, (a+ 2∆)k.

The gap I is now transformed into a gap of size

|ak − (a+ ∆)k|.
This length is increasing as a function of a as well as ∆. Thus we see that
the number gL in the definition of thickness is at least |(a −∆)k − ak|. We
need to take care of gR. By the above argument we see that gR is at most
(a+2∆)k−(a+∆)k.However, we need a lower bound for gR. The problem
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is that a gap inside [a+ ∆, a+ 2∆] might become larger than |ak− (a+ ∆)k|
after taking the k-th power. Let u ∈ [a+ ∆, a+ 2∆] such that

uk − (a+ ∆)k = −ak + (a+ ∆)k.

Then we see that [(a + ∆)k, uk] will not contain any gaps of Ck3 which is
larger than −ak + (a+ ∆)k. Thus gR is at least −ak + (a+ ∆)k.

We see that

(**) min{gL, gR}/|ak − (a+ ∆)k| ≥ ak − (a−∆)k

(a+ ∆)k − ak
≥ 1

2k − 1
.

As this holds for all bounded gaps of Ck3 we see that

C(Ck3 ) ≥ 1

2k − 1

and

S(Ck3 ) ≥ 1

2k
.

On the other hand, let n ≥ 1 be an integer. Then g = [3−n, 2 × 3−n] is a
bounded gap of C3. Now, in C3, the next gap on the left of g with length at
least |g| is an infinite gap, i.e. (−∞, 0]. Thus in Ck3 , the next gap on the left
of [3−kn, 2k3−kn] with at least the same length is again (−∞, 0]. This shows
that the inequality (**) is sharp and the proof concludes. �

From here we see that Theorem 2.7 follows.

Proof of Theorem 2.7. By Lemma 3.5 and Theorem 3.2, it is enough to check
the gap conditions stated in Theorem 3.2. As the convex call of Ck3 is [0, 1]
and the largest gap is strictly shorter than 1, the result follows. �

4. PROJECTIONS OF FRACTAL SETS: GENERAL OVERVIEW

Projections of fractal sets play an important role in geometric measure
theory, see [6]. Let d ≥ k ≥ 1 be integers. Let {Πλ}λ∈Λ be a family of contin-
uous functions Rd → Rk parametrized by an index set Λ.We call {Πλ}λ∈Λ a
family of projections. Here we will mention two types of projections which
were studied extensively.

4.1. Linear projections. The most intuitive notion of projection is the lin-
ear projection. Let d ≥ k ≥ 1 be integers. We want to parametrize the fam-
ily of linear maps Rd → Rk. The most convenient way is to use Gr(k,Rd),
the Grassmanian manifold consisting all k-dimensional linear subspaces of
Rd. For each γ ∈ Gr(k,Rd), we let Πγ be the linear projection from Rd to γ.
The family {Πγ}γ∈Gr(k,Rd) is called (d→ k) linear projections, or simply lin-
ear projections if the underlying spaces are clear from the context. We have
the following classical results by Marstrand and Mattila, see [6, Theorem
3.1]
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Theorem 4.1. Let d ≥ k ≥ 1 be integers. Let F ⊂ Rd be a Borel set with Haus-
dorff dimension s. With respect to the Lebesgue measure on Gr(k,Rd), almost all
γ ∈ Gr(k,Rd) we have dimH γ(F ) = min{s, k}. If s > k, then γ(F ) has positive
Lebesgue measure for almost all γ.

Intuitively speaking, if a set is large, then its projected images are in gen-
eral as large as possible. The above result is a prototype of all results of this
type.

4.2. Radial projections. Another very natural type of projection is radial
projection. Let d ≥ 2 be an integer. We recall the radial projection function
here. Let x ∈ Rd be a point and let Πx be defined as follows

Πx(y) =
y − x
|x− y|

∈ Sd−1

for y 6= x. We have the following analogue of Theorem 4.1, see [15].

Theorem 4.2. Let d ≥ 2 be an integer. Let F ⊂ Rd be a Borel set with dimH F =
s. Then dimH Πx(F ) = min{d − 1, s} for almost all x ∈ Rd. If s > d − 1, then
Πx(F ) has positive Lebesgue measure for almost all x ∈ Rd.

4.3. Projections for measures. It is also possible to talk about projections
of measures which can be defined as the pushing forward map of measures
derived from the corresponding projection map. Analogous projection re-
sults for measures can also be proved. We mention the following result.

Theorem 4.3. Let µ ∈ P(Rd) be a Cartesian product of self-similar measures
supported on self-similar sets with strong separation condition and uniform con-
traction ratios. Suppose further that the contraction ratios are multiplicatively
independent. Then for all x ∈ Rd, dimH Πx(µ) = min{dimH µ, d− 1}.

The above result is not directly proved as stated here. However, it can be
derived from [8, Theorems 1.4 and 1.12].

4.4. A remark on the radial projection conjecture. Theorem 4.3 implies
that the projected set in the statement of Conjecture 2.1 has full Haus-
dorff dimension. This is much weaker than having non-empty interiors.
One particular reason for posing Conjecture 2.1 is that radial projection
is non-linear. Non-linear images of self-similar sets/measures are often
‘smoother’, see [13]. Another supporting heuristics is closely related to
Palis’ conjecture. We remark that by following the argument in [19] one
can show that in the case when d = 2, and A = A1 × A2 be a Cartesian
product of two self-similar sets as in the statement of Conjecture 2.1. If
dimHA > 1 then for each x ∈ R2, it is possible that one can slightly modify
A1, A2 to A′1, A

′
2 as in [19] that Πx(A′1 ×A′2) contains non-empty interiors.
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5. PROOFS OF THEOREMS 2.2, 2.3 AND 2.4

Now we prove Theorem 2.2.

Proof of Theorem 2.2. Consider the set NB3
3 ×NB5

5 ×NB7
7 where

B3 = {0, 1}, B5 = {0, 1, 2}, B7 = {0, 1, 2, 3}.
Now we construct the following self-similar sets

A3 = {x ∈ [1, 3] : 3-ary expansion of x contains only digits in B3},
A5 = {x ∈ [1, 5] : 5-ary expansion of x contains only digits in B5},
A7 = {x ∈ [1, 7] : 7-ary expansion of x contains only digits in B7}.

Then we see that dimHA3×A5×A7 = log 2/ log 3+log 3/ log 5+log 4/ log 7 >
2. For each integer k ≥ 1, consider the line lk passing through the origin
with direction vector

(1, 5{k log 3/ log 5}, 7{k log 3/ log 7}).

If lk ∩ A3 × A5 × A7 6= ∅ then we take a point (x, y, z) ∈ lk ∩ A3 × A5 × A7.
Consider the point

(x′, y′, z′) = (3kx, 5[k log 3/ log 5]y, 7[k log 3/ log 7]z).

Since we know that y = 5{k log 3/ log 5}x, z = 7{k log 3/ log 7}x we see that

5[k log 3/ log 5]y = 5k log 3/ log 5x = 3kx, 7[k log 3/ log 7]z = 7k log 3/ log 7x = 3kx.

Thus we see that x′ = y′ = z′. It is straightforward to see that the 3-ary
expansion of x′ contains only digits inB3, the 5-ary expansion of y′ contains
only digits in B5 and the 7-ary expansion of z′ contains only digits in B7.
Taking the integer part we see that

[x′] = [y′] = [z′] ∈ NB3,B5,B7
3,5,7 .

If Π0(A3 × A5 × A7) contains non-empty interior, then we see that there
are infinitely many integers k ≥ 1 such that

lk ∩A3 ×A5 ×A7 6= ∅.
This proves the result if we assume Conjecture 2.1. �

Theorem 2.3 follows by using a similar argument.

Proof of Theorem 2.3. The proof is very similar to the previous one. Let p, q
be two odd primes. Consider the set NBp

p ×NBq
q where

Bp = {0, 1, . . . , (p− 1)/2}, Bq = {0, 1, . . . , (q − 1)/2}.
We also construct the sets

Ap = {x ∈ [1, p] : p-ary expansion of x contains only digits in Bp},
Aq = {x ∈ [1, q] : q-ary expansion of x contains only digits in Bq}.

Now by Lemma 3.4 we see that S(Ap) = S(Aq) = 1/2. By Theorem 3.1
and the argument above Corollary 3.3 (which can be easily modified to two
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dimensional situation), we see that Π0(A) contains non-empty interiors.
Following the same argument as in the previous proof we see that there
is an interval I ⊂ [0, 1] such that whenever {k log p/ log q} ∈ I , there is
a number n ∈ N

Bp,Bq
p,q ∩ [pk, pk+1]. Since {k log p/ log q} ∈ I happens for

k inside a subset of integers with positive density, we see that there is a
c > 0 and for all large enough integers N, there are least cN many intervals
within

[1, p), [p, p2), . . . , [pN−1, pN )

intersecting NBp,Bq
p,q . Thus the result follows by taking p = 3, q = 5. �

At this stage, Theorem 2.4 seems to be clear. For convenience, we provide
full details.

Proof of Theorem 2.4. Consider the set NB3
3 ×NB4

4 ×NB5
5 where

B3 = {0, 1}, B4 = {0, 1}, B5 = {0, 1}.

Now we construct the following self-similar sets

A3 = {x ∈ [1, 3] : 3-ary expansion of x contains only digits in B3},

A4 = {x ∈ [1, 4] : 4-ary expansion of x contains only digits in B4},
A5 = {x ∈ [1, 5] : 5-ary expansion of x contains only digits in B5}.

Now we see that S(A3) = 1/2, S(A4) = 1/3 and S(A5) = 1/4. Thus we see
that

(@) S(A3) + S(A4) + S(A5) =
13

12
> 1.

Let k ≥ 1 be an integer and let Hk be the plane

{x+ 4−{k log 3/ log 4}y − 5−{k log 3/ log 5} = 0}.

Suppose that Hk ∩ A3 × A4 × A5 6= ∅. We take a point (x, y, z) in this inter-
section. Consider the point

(x′, y′, z′) = (3kx, 4[k log 3/ log 4]y, 5[k log 3/ log 5]z).

Since we have

x+ 4−{k log 3/ log 4}y − 5−{k log 3/ log 5} = 0

we see that

3−kx′ + 4−{k log 3/ log 4}−[k log 3/ log 4]y′ − 5−{k log 3/ log 5}−[k log 3/ log 5]z′ = 0

Thus we have
x′ + y′ − z′ = 0.

From (@) and Corollary 3.3 we see that Hk intersects A3×A4×A5 for k in-
side a set of integers with positive density. In particular, there are infinitely
many such integers k. Now x′, y′, z′ contains only {0, 1} in their 3, 4, 5-ary
expansions respectively. However, they might not be integers. If we take
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the integer parts we see that [x′], [y′], [z′] contains only {0, 1} in their 3, 4, 5-
ary expansions respectively and

[x′] + [y′] = [z′] + {z′} − {x′} − {y′}.

The above equation tells us that

{z′} − {x′} − {y′}

is an integer. Observe that {x′}, {y′}, {z′} are positive numbers whose 3, 4, 5-
ary expansions (respectively) contains only digits 0 and 1. Thus we see that

{x′} ∈ (0, 1/2], {y′} ∈ (0, 1/3], {z′} ∈ (0, 1/4].

This implies that

−5

6
< {z′} − {x′} − {y′} ≤ 1

4
.

The only integer in this range is 0. Thus we see that

{z′} − {x′} − {y′} = 0

and
[x′] + [y′] = [z′].

From here the result follows. �

6. ADDITIONAL REMARK

Our approach to Theorem 2.3 suggests that we can look at intersections
of three Cantor sets to attack Question 1.1. Towards this direction, it is
natural to extend Newhouse’s gap lemma for three or more sets in the in-
tersections. Due to a result in [9], one can conclude that for two Cantor
sets A1, A2 with S(A1), S(A2) larger than 9/10, S(A1 ∩A2) is positive. Fur-
thermore, S(A1 ∩ A2) can be made arbitrarily close to one if S(A1), S(A2)
are both sufficiently close to one. Thus, suppose we have three Cantor sets
A1, A2, A3 with S(A1), S(A2), S(A3) sufficiently close to one, we can con-
clude that Πx(A1 × A2 × A3) contains non-trivial open sets for all x ∈ R3.
The above argument can be made iteratively to study intersections of k ≥ 3
Cantor sets. Using Lemma 3.4, we can construct missing digits sets with
normalised thickness arbitrarily close to one. Then arguments in the previ-
ous section help us to conclude the following result. We omit its proof.

Theorem 6.1. Let k ≥ 2 be an integer. Then there is an integer M ≥ 1 such that
for all k-tuples of multiplicative independent integers b1, . . . , bk that are at least
M , there are infinitely many integers whose base b1, . . . , bk expansions all omit
the digit zero.

Unfortunately, results in [9] is not enough to attack Question 1.1 as we
can see in the proof of Theorem 2.3 that all the Cantor sets in consideration
have normalised thickness equal to 1/2. Nonetheless, this approach sheds
some lights on Question 1.1.
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