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2Dipartimento di Matematica, Università di Roma “Tor Vergata”, 00133 Roma, Italy

tauraso@mat.uniroma2.it

Abstract. In this paper, we prove the following two pairs of congruences:
if p ≡ 1 (mod 3) then

⌊ 2p
3
⌋

∑

k=1

(

2k

k

)

(−2)k ≡ 0 and

⌊ 5p
6
⌋

∑

k=0

(

2k
k

)

(−32)k
≡

(

2

p

)

(mod p2)

and, if p ≡ 1 (mod 5) then

⌊ 4p
5
⌋

∑

k=1

(

2k

k

)

(−1)k ≡ 0 and

⌊ 7p
10

⌋
∑

k=1

(

2k
k

)

(−16)k
≡ 0 (mod p2)

where p is a prime and
(

·
p

)

stands for the Legendre symbol.
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1. Introduction

In the past decades, many people studied congruences modulo a power of a prime p for
sums of binomial coefficients (see, for instance, [2, 6, 7, 10, 13, 14, 16, 24, 25]). A certain
number concern the central binomial coefficients and have the form

n
∑

k=0

(

2k

k

)

xk

where upper limit n is p−1 or p−1
2
. We would like to mention two of them, taken from [17]

and [23] respectively, that we will need later: for any prime p > 3, we have

p−1
∑

k=0

(

2k

k

)

(−2)k ≡ 1−
4pqp(2)

3
(mod p3) (1.1)
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and
p−1
2
∑

k=0

(

2k
k

)

(−32)k
≡

(

2

p

)(

1 +
pqp(2)

6
−

p2qp(2)

8

)

(mod p3), (1.2)

where qp(a) = (ap−1 − 1)/p is the so-called Fermat quotient.
Much rarer are the examples where the upper limit of the sum is strictly between p−1

2

and p− 1. In 2014, Pan and Sun [21] proved that for any prime p ≡ 1 (mod 4),

⌊ 3p
4
⌋

∑

k=0

(

2k
k

)

(−4)k
≡

(

2

p

)

(mod p2).

Recently Mao [11, 12] proved that for any prime p ≡ 1 (mod 3), we have

⌊ 2p
3
⌋

∑

k=1

(

2k

k

)

≡ 0 and

⌊ 5p
6
⌋

∑

k=0

(

2k
k

)

16k
≡

(

3

p

)

(mod p2).

where the first one has been conjectured in 2006 by Adamchuk [1].
The main purpose of this paper is to show more congruences of the same flavour.

Theorem 1.1. Let p be a prime. If p ≡ 1 (mod 3), then

⌊ 2p
3
⌋

∑

k=1

(

2k

k

)

(−2)k ≡ 0 (mod p2) (1.3)

and
⌊ 5p

6
⌋

∑

k=0

(

2k
k

)

(−32)k
≡

(

2

p

)

(mod p2). (1.4)

Theorem 1.2. Let p be a prime. If p ≡ 1 (mod 5), then

⌊ 4p
5
⌋

∑

k=1

(

2k

k

)

(−1)k ≡ 0 (mod p2) (1.5)

and
⌊ 7p
10

⌋
∑

k=1

(

2k
k

)

(−16)k
≡ 0 (mod p2). (1.6)

The first pair of congruences seems to have (so far) slipped the attention of the math-
ematical community whereas the second pair appeared as a conjecture in [23].

We will give a proof of Theorem 1.1 and Theorem 1.2 in Section 4. The key ingredients
are the following congruences which are interesting in their own right. We shall prove them
in Section 2 and 3 respectively.
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Theorem 1.3. For any prime p ≡ 1 (mod 3), we have

p−1
2
∑

k=0
k 6= p−1

3

(p−1
2
k

)

8k

3k + 1
≡ −

1

3

(p−1
2

p−1
3

)

qp(2) (mod p). (1.7)

Theorem 1.4. For any prime p ≡ 1 (mod 5), we have

p−1
2
∑

k=0
k 6= p−1

5

( p−1
2
k

)

4k

5k + 1
≡ −4

p−1
5

(p−1
2

p−1
5

)

fp (mod p). (1.8)

where fp := Fp−(p

5)
/p is the Fibonacci quotient and Fn denotes the nth Fibonacci number.

2. Proof of Theorem 1.3

Define the hypergeometric series

m+1Fm

[

α0 α1 . . . αm

β1 . . . βm

∣

∣

∣

∣

z

]

:=

∞
∑

k=0

(α0)k(α1)k · · · (αm)k
(β1)k · · · (βm)k

·
zk

k!
, (2.1)

where α0, . . . , αm, β1, . . . , βm, z ∈ C and

(α)k =

{

α(α + 1) · · · (α + k − 1), if k ≥ 1,

1, if k = 0.

For a prime p, let Zp denote the ring of all p-adic integers and let

Z
×
p := {a ∈ Zp : a is prime to p}.

For each α ∈ Zp, define the p-adic order νp(α) := max{n ∈ N : pn | α} and the p-adic
norm |α|p := p−νp(α). Define the p-adic gamma function Γp(·) by

Γp(n) = (−1)n
∏

1≤j<n
(k,p)=1

k, n = 1, 2, 3, . . . ,

and
Γp(α) = lim

|α−n|p→0
n∈N

Γp(n), α ∈ Zp.

In particular, we set Γp(0) = 1. Throughout the whole paper, we only need to use the
most basic properties of Γp, and all of them can be found in [18, 20]. For example, we
know that

Γp(x+ 1)

Γp(x)
=

{

−x, if |x|p = 1,

−1, if |x|p > 1.
(2.2)
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We also know that for any α ∈ Zp,

Γ′
p(α)

Γp(α)
≡ Γ′

p(0) +Hp−〈−α〉p−1 (mod p), (2.3)

where Hn =
∑n

k=1
1
k
is the nth classic harmonic number and 〈x〉p is the least nonnegative

residue of x modulo p.

Lemma 2.1. ( [8]). For any prime p > 3, we have the following congruences modulo p

H⌊p/2⌋ ≡ −2qp(2), H⌊p/3⌋ ≡ −
3

2
qp(3), H⌊p/6⌋ ≡ −2qp(2)−

3

2
qp(3).

Proof of Theorem 1.3. For any α, s ∈ Zp, we have

(

2k
k

)

4k
=

(

1
2

)

k

(1)k
,

(

1
3

)

k
(

4
3

)

k

=
1

3k + 1
and (α + sp)k ≡ (α)k (mod p).

For each p+2
3

≤ k ≤ p−1
2
, we have

(

1
3
− p

6

)

k
(

4
3
− 2p

3

)

k

=

p
6

(

1
3
− p

6

)

p−1
3

(

p
6
+ 1
)

k− p+2
3

−p
3

(

4
3
− 2p

3

)

(p−4)/3

(

−p
3
+ 1
)

k− p−1
3

≡ −
1

2

(

1
3

)

p−1
3

(1)k− p+2
3

(

4
3

)

(p−4)/3
(1)k− p−1

3

= −
1

2

(

1
3

)

p−1
3

(

4
3

)

(p−4)/3

1

k − p−1
3

≡ −
3

2

(

1
3

)

p−1
3

(

4
3

)

(p−4)/3

1

3k + 1
(mod p).

And
(

1
3

)

p−1
3

(

4
3

)

(p−4)/3

=
p− 1

3

(

1
3

)

p−1
3

(p− 4)/3!
(

4
3

)

(p−4)/3
p−1
3
!

≡ −
1

3
(−1)

p−1
3 (−1)(p−4)/3 =

1

3
(mod p).

Hence for each p+2
3

≤ k ≤ p−1
2
,

(

1
3
− p

6

)

k
(

4
3
− 2p

3

)

k

≡ −
1

2

1

3k + 1
(mod p).

That means that

p−1
2
∑

k= p+2
3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k ≡ −
1

2

p−1
2
∑

k= p+2
3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k (mod p).
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Hence

p−1
2
∑

k=0
k 6= p−1

3

( p−1
2
k

)

8k

3k + 1
≡

p−1
2
∑

k=0
k 6= p−1

3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k

≡

p−1
2
∑

k=0
k 6= p−1

3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k − 3

p−1
2
∑

k= p+2
3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k

≡

p−1
2
∑

k=0
k 6= p−1

3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k +
3

2

p−1
2
∑

k= p+2
3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k (mod p).

Thus, (1.7) is equivalent to

p−1
2
∑

k=0
k 6= p−1

3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k ≡ −
3

2

p−1
2
∑

k= p+2
3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k −
1

3

( p−1
2

p−1
3

)

qp(2) (mod p).

(2.4)

Set
p−1
2
∑

k=0
k 6= p−1

3

(

1−p
2

)

k

(

1
3
− p

6

)

k

(1)k
(

4
3
− 2p

3

)

k

(−8)k = A− F,

where

A = 2F1

[

1−p
2

1
3
− p

6
4
3
− 2p

3

∣

∣

∣

∣

− 8

]

and

F =

(

1−p
2

)

p−1
3

(

1
3
− p

6

)

p−1
3

(1) p−1
3

(

4
3
− 2p

3

)

p−1
3

8
p−1
3 . (2.5)

In view of [19, 15.8.6], we have

2F1

[

−m b
c

∣

∣

∣

∣

z

]

=
(b)m
(c)m

(1− z)m2F1

[

−m c− b
1− b−m

∣

∣

∣

∣

1

1− z

]

.

Setting a = 1−p
2
, b = 1

3
− p

6
, c = 4

3
− 2p

3
, z = −8, we have

A =

(

1
3
− p

6

)

p−1
2

(

4
3
− 2p

3

)

p−1
2

9
p−1
2 2F1

[

1−p
2

1− p
2

7
6
− p

3

∣

∣

∣

∣

1

9

]

.
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In the light of [19, 15.4.32], we have

2F1

[

a 1
2
+ a

5
6
+ 2

3
a

∣

∣

∣

∣

1

9

]

=

(

3

4

)a Γ
(

1
2

)

Γ
(

7
6
− p

3

)

Γ
(

2
3
− p

6

)

Γ
(

1− p
6

) .

Substituting a = 1−p
2

in this identity, we have

A =

(

1
3
− p

6

)

p−1
2

(

4
3
− 2p

3

)

p−1
2

12
p−1
2

Γ
(

1
2

)

Γ
(

7
6
− p

3

)

Γ
(

2
3
− p

6

)

Γ
(

1− p
6

) . (2.6)

On the other hand, we have

p−1
2
∑

k= p+2
3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k ≡

p−1
2
∑

k= p+2
3

( p−1
2
k

)

8k

3k + 1
= −2

(

2

p

) (p−7)/6
∑

k=0

( p−1
2
k

)

(6k + 1)8k
(mod p).

It is easy to see that

(p−7)/6
∑

k=0

(p−1
2
k

)

(6k + 1)8k
≡

(p−7)/6
∑

k=0

(

1−p
6

)

k

(

1+p
2

)

k

(1)k
(

7
6
+ p

3

)

k
(−8)k

(mod p).

Set

D =

(p−1)/6
∑

k=0

(

1−p
6

)

k

(

1+p
2

)

k

(1)k
(

7
6
+ p

3

)

k
(−8)k

= 2F1

[

1−p
6

1+p
2

7
6
+ p

3

∣

∣

∣

∣

−
1

8

]

,

and

G =

(

1−p
6

)

(p−1)/6

(

1+p
2

)

(p−1)/6

(1)(p−1)/6

(

7
6
+ p

3

)

(p−1)/6
(−8)(p−1)/6

. (2.7)

Hence
p−1
2
∑

k= p+2
3

(

1
2

)

k

(

1
3

)

k

(1)k
(

4
3

)

k

(−8)k ≡ −2

(

2

p

)

(D−G) (mod p).

Substituting a = 1−p
3
, b = 2

3
+ p

3
, z = −1 into [19, 15.8.14], we have

D = 2F1

[

1−p
6

1
2
+ p

2
7
6
+ p

3

∣

∣

∣

∣

−
1

8

]

= 2(1−p)/6
2F1

[

1−p
3

2
3
+ p

3
4
3
+ 2p

3

∣

∣

∣

∣

− 1

]

.

And then substituting a = 1−p
3
, b = 2

3
+ p

3
, c = 4

3
+ 2p

3
, z = −1 into [19, 15.8.1], we have

D = 2F1

[

1−p
6

1
2
+ p

2
7
6
+ p

3

∣

∣

∣

∣

−
1

8

]

= 2(p−1)/6
2F1

[

1−p
3

2
3
+ p

3
4
3
+ 2p

3

∣

∣

∣

∣

1

2

]

.
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By using [19, 15.4.30] with a = 1−p
3
, b = 4

3
+ 2p

3
, we have

D = 2F1

[

1−p
6

1
2
+ p

2
7
6
+ p

3

∣

∣

∣

∣

−
1

8

]

= 2(p−1)/6 2
− 2p+1

3 Γ
(

1
2

)

Γ
(

4
3
+ 2p

3

)

Γ
(

1 + p
2

)

Γ
(

5
6
+ p

6

)

= 2−
p+1
2

Γ
(

1
2

)

Γ
(

4
3
+ 2p

3

)

Γ
(

1 + p
2

)

Γ
(

5
6
+ p

6

) . (2.8)

It follows that (2.4) is equivalent to

A− F ≡ 3

(

2

p

)

(D−G)−
1

3

(p−1
2

p−1
3

)

qp(2) (mod p). (2.9)

By (2.6), (2.5), and [9, Lemma 17]

A =
2p−13

p+1
2

p

Γp

(

1
2

)

Γp

(

4
3
− 2p

3

)

Γp

(

−1
6
+ p

3

)

Γp

(

7
6
− p

3

)

Γp

(

1
3
− p

6

)

Γp

(

2
3
− p

6

)

Γp

(

5
6
− p

6

)

Γp

(

1− p
6

)

and

F =
2p−1 3

p

Γp

(

4
3
− 2p

3

)

Γp

(

p
6

)

Γp

(

1
6
− p

6

)

Γp

(

1
2
− p

2

)

Γp

(

2
3
+ p

3

)

Γp

(

1
3
− p

6

)

Γp

(

1− p
3

) .

By (2.3) and by Lemma 2.1,

pA ≡ 2p−13
p+1
2

Γp

(

1
2

)

Γp

(

4
3

)

Γp

(

−1
6

)

Γp

(

7
6

)

Γp

(

1
3

)

Γp

(

2
3

)

Γp

(

5
6

)

Γp (1)

(

1−
p

3
H p−1

3
+

p

6
H p−1

6
− 2p

)

≡ 2p−13
p−1
2 Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

1−
pqp(2)

3
+

pqp(3)

4
− 2p

)

(mod p2)

and

pF ≡ 2p−1 3
Γp

(

4
3

)

Γp

(

1
6

)

Γp

(

1
2

)

Γp

(

2
3

)

Γp

(

1
3

)

Γp (1)

(

1 + pH p−1
2

−
p

3
H p−1

3
−

2p

3
H p−1

6
− 2p

)

≡ 2p−1 (−1)
p−1
2 Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

1−
2pqp(2)

3
+

3pqp(3)

2
− 2p

)

(mod p2).

Hence, since 3
p−1
2 = (−1)

p−1
2

(

1 + pqp(3)

2

)

when p ≡ 1 (mod 3), and 2p−1 ≡ 1 (mod p) we

find

A− F ≡ (−1)
p−1
2 Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

qp(2)

3
−

3qp(3)

4

)

(mod p). (2.10)

Similarly, by (2.8) and (2.7), we have

D = −
1

p2
p−1
2

Γp

(

1
2

)

Γp

(

4
3
+ 2p

3

)

Γp

(

p
2

)

Γp

(

5
6
+ p

6

)

7



and

G =
2 (−1)

p−1
6

p2
p−1
2

Γp

(

1
3
+ 2p

3

)

Γp

(

7
6
+ p

3

)

Γp

(

1
2
+ p

2

)

Γp

(

p
2

)

Γp

(

5
6
+ p

6

)

Γp

(

1
6
− p

6

) .

Hence

pD ≡ −
1

2
p−1
2

Γp

(

1
2

)

Γp

(

4
3

)

Γp

(

5
6

)

(

1 +
2p

3
H p−1

3
−

p

6
H p−1

6
+ 2p

)

≡ −
(−1)

p−1
2

3 2
p−1
2

Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

1 +
pqp(2)

3
−

3pqp(3)

4
+ 2p

)

(mod p2)

and

pG ≡ −
2 (−1)

p−1
2

(

1
6
+ p

3

)

2
p−1
2

Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

1−
p

2
H p−1

2
+

2p

3
H p−1

3
+

p

3
H p−1

6

)

≡ −
(−1)

p−1
2

3 2
p−1
2

Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

1 +
pqp(2)

3
−

3pqp(3)

2
+ 2p

)

(mod p2).

Therefore

D−G = −
(−1)

p−1
2

4 2
p−1
2

Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)

qp(3) (mod p).

Moreover, since

(p−1
2

p−1
3

)

=
(1) p−1

2

(1) p−1
3
(1) p−1

6

= −
Γp

(

1
2
+ p

2

)

Γp

(

2
3
+ p

3

)

Γp

(

5
6
+ p

6

)

≡ −(−1)
p−1
2 Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)

(mod p)

and
(

2
p

)

≡ 2
p−1
2 (mod p), it follows

3

(

2

p

)

(D−G)−
1

3

( p−1
2

p−1
3

)

qp(2)

≡ (−1)
p−1
2 Γp

(

1

2

)

Γp

(

1

3

)

Γp

(

1

6

)(

qp(2)

3
−

3qp(3)

4

)

(mod p). (2.11)

By comparing (2.10) and (2.11), we may conclude that the proof of (2.9) is complete. ✷

3. Proof of Theorem 1.4

Lemma 3.1. For any prime p such that p ≡ 1 (mod 5) we have that

H p−1
2

+H p−1
5

−H 3(p−1)
10

≡ −5fp (mod p). (3.1)
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Proof. By [26], for any prime p > 5,

⌊ 4p
5
⌋

∑

k=1

(−1)k

k
≡

5fp
2

(mod p). (3.2)

Hence, if p ≡ 1 (mod 5), n = p−1
2

and m = p−1
5

then n−m = 3(p−1)
10

and, by (3.2),

Hn +Hm −Hn−m ≡ Hn − 2
m
∑

k=1

1

p− k
−Hm + 2

n−m
∑

k=1

1

p− 2k

= −2

4(p−1)
5
∑

k=1

(−1)k

k
≡ −5fp (mod p).

✷

Proof of Theorem 1.4. Let p be a prime p ≡ 1 (mod 5), then

p−1
2
∑

k=0
k 6= p−1

5

( p−1
2
k

)

4k

5k + 1
≡

p−1
5

−1
∑

k=0

(p−1
2
k

)

4k

5k + 1
+

p−1
2
∑

k= p−1
5

+1

(p−1
2
k

)

4k

5k + 1

≡

p−1
5

−1
∑

k=0

(p−1
2
k

)

4k

5k + 1
− 2

3(p−1)
10

−1
∑

k=0

(p−1
2
k

)

4−k

10k + 3

≡

p−1
5

−1
∑

k=0

(

1−p
5

)

k

(

1
2
− p
)

k

(1)k
(

6
5
− 6p

5

)

k

(−4)k −
2

3

3(p−1)
10

−1
∑

k=0

(3(1−p)
10

)

k

(

1
2
+ 3p

2

)

k

(1)k
(

13
10

+ 6p
5

)

k

(−4)−k

≡ (A− F)−
2

3
(D−G) (mod p)

where

A = 2F1

[

1−p
5

1
2
− p

6
5
− 6p

5

∣

∣

∣

∣

− 4

]

, F =
(−1)(p−1)/5

(

1
2
− p
)

(p−1)/5
(

6
5
− 6p

5

)

(p−1)/5

(−4)(p−1)/5,

and

D = 2F1

[

3(1−p)
10

1
2
+ 3p

2
13
10

+ 6p
5

∣

∣

∣

∣

−
1

4

]

, G =
(−1)3(p−1)/10

(

1
2
+ 3p

2

)

3(p−1)/10
(

13
10

+ 6p
5

)

3(p−1)/10

(−4)−3(p−1)/10.

In view of [19, 15.8.6], and by [4, Theorem 20] we have

A = 2F1

[

−n 1
2
− p

6
5
− 6p

5

∣

∣

∣

∣

− 4

]

= 5n
(

1

2
− p

)

n

(

6

5
−

6p

5

)

n

2F1

[

−n −n + 1
2

4n+ 3
2

∣

∣

∣

∣

1

5

]

= 5n
(

1

2
− p

)

n

(

6

5
−

6p

5

)

n

210nΓ(4/5)Γ(6/5)Γ(3/2 + 4n)

56nΓ(3/2)Γ(4/5 + 2n)Γ(6/5 + 2n)

9



where n = p−1
5
. Moreover, by [19, 15.8.1], and by a variation of [4, Theorem 20] we have

D = 2F1

[

−n 1
2
+ 3p

2
13
10

+ 6p
5

∣

∣

∣

∣

−
1

4

]

=
5n

4n
2F1

[

−n −n + 1
2

4n+ 5
2

∣

∣

∣

∣

1

5

]

=
5n

4n
210nΓ(7/5)Γ(8/5)Γ(5/2 + 4n)

56nΓ(5/2)Γ(7/5 + 2n)Γ(8/5 + 2n)

where n = 3(p−1)
10

.
In a similar way as we did in the previous section, we find that

A− F ≡
4

p−1
5

25

(p−1
2

p−1
5

)

(

4H p−1
2

− 4H 3(p−1)
10

)

(mod p),

and
2

3
(D−G) ≡ −

4
p−1
5

25

(p−1
2

p−1
5

)

(

H p−1
2

+ 5H p−1
5

−H 3(p−1)
10

)

(mod p)

which together imply

p−1
2
∑

k=0
k 6= p−1

5

(p−1
2
k

)

4k

5k + 1
≡ (A− F)−

2

3
(D−G)

≡
4

p−1
5

5

(p−1
2

p−1
5

)

(

H p−1
2

+H p−1
5

−H 3(p−1)
10

)

≡ −4
p−1
5

(p−1
2

p−1
5

)

fp (mod p).

where at the last step we applied (3.1). ✷

4. Proofs of Theorem 1.1 and 1.2

We first collect a couple of lemmas which are needed to prove the main theorem.

Lemma 4.1. ( [17, (41) with t = −1/2]). For any prime p > 3,

p−1
∑

k=1

(

2k
k

)

(−2)k

k
≡ −4qp(2) + 4pqp(2) (mod p2).

Lemma 4.2. For any 1 ≤ m ≤ n, and for any z ∈ C,

(z + 1)n+1

n

m−1
∑

k=0

zk
(

n−1
k

) =

n
∑

k=1

(

n

k

)

zn−k

k
+(Hn+Hm−Hn−m)z

n−
zm
(

n
m

)

n
∑

k=0
k 6=m

(

n

k

)

zn−k

k −m
(4.1)
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and

(z + 1)n+1

n

n−1
∑

k=m

zk
(

n−1
k

) =

n
∑

k=1

(

n

k

)

zn+k

k
+(Hn−Hm+Hn−m)z

n+
zm
(

n
m

)

n
∑

k=0
k 6=m

(

n

k

)

zn−k

k −m
(4.2)

Proof. Both sides of (4.1) are polynomials of degree n +m, so it suffices to compare the
coefficients of zd for each d such that 0 ≤ d ≤ n+m:

1

n

m−1
∑

k=0

(

n+1
d−k

)

(

n−1
k

) =























1

n− d

(

(

n

n− d

)

−

(

n
n+m−d

)

(

n
m

)

)

if d 6= n,

Hn +Hm −Hn−m if d = n,

which can be easily verified by induction with respect tom. As regards (4.1), just subtract
(4.1) from (4.1) with m = n. ✷

Proof of (1.3). It is easy to verify that
(

2k

k

)

≡

(

n

k

)

(−4)k (mod p) for all k = 0, . . . , n,

and in view of [22, Lemma 2.1], we have

k

(

2k

k

)(

2(p− k)

p− k

)

≡ −2p (mod p2) for all k = n, . . . , p− 1.

If 1 ≤ m ≤ n then

p−1
∑

k=p−m

(

2k

k

)

xk =
m
∑

k=1

(

2(p− k)

p− k

)

xp−k ≡ −2p
m
∑

k=1

xp−k

(p− k)
(

2k
k

)

≡ 2p
m
∑

k=1

xp−k

k
(

n
k

)

(−4)k
≡ −p

m
∑

k=1

x1−k

(

n−1
k−1

)

(−4)k−1

≡ −p
m−1
∑

k=0

zk
(

n−1
k

) (mod p2)

where z = −1/(4x). Hence, by (4.1), the following congruence holds modulo p2,

p−1−m
∑

k=1

(

2k

k

)

xk ≡

p−1
∑

k=1

(

2k

k

)

xk +
npzn

(z + 1)n+1

(

n
∑

k=1

(

2k
k

)

xk

k
+Hn +Hm −Hn−m

−
zm
(

n
m

)

n
∑

k=0
k 6=m

(

n

k

)

z−k

k −m






. (4.3)
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Finally, let x = −2 and m = p−1
3
. Then z = 1/8, and by (1.1), Lemma 4.1, Lemma 2.1,

Theorem 1.3,

⌊ 2p
3
⌋

∑

k=1

(

2k

k

)

(−2)k ≡ −
4pqp(2)

3
−

4p

9n+1






−4qp(2) + 0−

3

8m
(

n
m

)

n
∑

k=0
k 6=m

(

n
k

)

8k

3k + 1






≡ 0 (mod p2)

✷

Proof of (1.4). Similarly as before, for 1 ≤ m ≤ n and z = −1/(4x) we find

p−1−m
∑

k=n+1

(

2k

k

)

xk ≡ −p

n−1
∑

k=m

zk
(

n−1
k

) (mod p2).

Therefore, by (4.2), the next congruence holds modulo p2,

p−1−m
∑

k=0

(

2k

k

)

xk ≡

p−1
2
∑

k=0

(

2k

k

)

xk −
npzn

(z + 1)n+1

(

n
∑

k=1

(

2k
k

)

k(16x)k
+Hn −Hm +Hn−m

−
zm−n

(

n
m

)

n
∑

k=0
k 6=n−m

(

n

k

)

zk

k − (n−m)






. (4.4)

Finally, let x = −1/32 and m = p−1
6
. Then z = 8, and by (1.2), Lemma 4.1, Lemma 2.1,

Theorem 1.3,

⌊ 5p
6
⌋

∑

k=0

(

2k
k

)

(−32)k
≡

(

2

p

)(

1 +
pqp(2)

6

)

−
p8n

2 9n+1






−4qp(2) + 0−

3 8m−n

(

n
m

)

n
∑

k=0
k 6=n−m

(

n
k

)

8k

3k + 1







≡

(

2

p

)(

1 +
pqp(2)

6

)

−
p8nqp(2)

6
≡

(

2

p

)

(mod p2)

✷

Proofs of (1.4) and (1.5). This same approach can be applied also for Theorem 1.2. In
[21] and [23] respectively, we find that

p−1
∑

k=0

(

2k

k

)

(−1)k ≡
(p

5

)

(1− 2pfp) (mod p3)

and
p−1
2
∑

k=0

(

2k
k

)

(−16)k
≡
(p

5

)

(

1 +
pfp
2

)

.
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Moreover in [17], it is showed that

p−1
∑

k=1

(

2k
k

)

(−1)k

k
≡ −5fp + 5pf 2

p (mod p2).

Let p ≡ 1 (mod 5) and m = p−1
5

then n−m = 3(p−1)
10

and, by (3.1),

Hn +Hm −Hn−m ≡ −5fp (mod p).

Then after letting x = −1, m = p−1
5

in (4.3) and x = −1/16, m = 3(p−1)
10

in (4.4), we get
that (1.5) and (1.6) are established as soon as

p−1
2
∑

k=0
k 6= p−1

5

( p−1
2
k

)

4k

5k + 1
≡ −4

p−1
5

(p−1
2

p−1
5

)

fp (mod p)

which have been shown in Section 3. ✷

Acknowledgments. The first author is funded by the Startup Foundation for Introduc-
ing Talent of Nanjing University of Information Science and Technology (2019r062).

References

[1] A. Adamchuk, Comments on OEIS A066796 in 2006, The On-Line Encyclopedia of Integer
Sequences, http://oeis.org/A066796.

[2] M. Apagodu and D. Zeilberger, Using the “freshman’s dream” to prove combinatorial con-
gruences, Amer. Math. Monthly 124 (2017), 597–608.

[3] A. Ebisu, Special values of the hypergeometric series, Mem. Am. Math. Soc. 1177, Provi-
dence, 2017.

[4] S. B. Ekhad, Forty “strange” computer-discovered [and computer-proved(of course)]
hypergeometric series evaluations, The Personal Journal of Ekhad and Zeilberger,
http://www.math.rutgers.edu/∼zeilberg/mamarim/mamarimhtml/strange.html,
(2004).

[5] H. W. Gould, Combinatorial identities, Morgantown Printing and Binding Co., 1972.

[6] V.J.W. Guo, Proof of a supercongruence conjectured by Z.-H. Sun, Integral Transforms
Spac. Funct. 25 (2014), 1009–1015.

[7] V.J.W. Guo and J.-C. Liu, Some congruences related to a congruence of Van Hamme, Int.
Tran. Spec. Func. 31 (2020), 221–231.

[8] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and
Wilson, Ann. Math. 39 (1938), 350–360.

[9] L. Long and R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric
series, Adv. Math. 290 (2016), 773–808.

13

http://oeis.org/A066796
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/strange.html


[10] G.-S. Mao, Proof of two conjectural supercongruences involving Catalan-Larcombe-French
numbers, J. Number Theory 179 (2017), 88–96.

[11] G.-S. Mao, Proof of a conjecture of Adamchuk, preprint, arXiv:2003.09810v4.

[12] G.-S. Mao, On a supercongruence conjecture of Z.-W. Sun, preprint, arXiv:2003.14221v2.

[13] G.-S. Mao and Z.-J. Cao, On two congruence conjectures, C. R. Acad. Sci. Paris, Ser. I,
357 (2019), 815–822.

[14] G.-S. Mao and H. Pan, Supercongruences on some binomial sums involving Lucas sequences,
J. Math. Anal. Appl. 448 (2017), 1061–1078.

[15] G.-S. Mao and H. Pan, p-adic analogues of hypergeometric identities, preprint,
arXiv:1703.01215v4.

[16] G.-S. Mao and J. Wang, On some congruences involving Domb numbers and harmonic
numbers, 15 (2019), 2179–2200.

[17] S. Mattarei and R. Tauraso, Congruences for central binomial sums and finite polyloga-
rithms, J. Number Theory 133 (2013), 131–157.

[18] M. R. Murty, Introduction to p-adic analytic number theory, AMS/IP Studies in Advanced
Mathematics, 27, American Mathematical Society, Providence, RI; International Press,
Somerville, MA, 2002.

[19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathe-
matical Functions, Cambridge University Press, 2010.

[20] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, 198. Springer-
Verlag, New York, 2000.

[21] H. Pan and Z. W. Sun, Proof of three conjectures of congruences, Sci. China Math. 57
(2014), no. 10, 2091–2102.

[22] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), 2509–2535.

[23] Z.-W. Sun, Fibonacci numbers modulo cubes of primes, Taiwanese J. Math. 17 (2013), no.
5, 1523–1543.

[24] Z.-W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. Appl.
Math. 45 (2010), 125–148.

[25] Z.-W. Sun and R. Tauraso, On some new congruences for binomial coefficients, Int. J.
Number Theory 7 (2011), 645–662.

[26] H. C. Williams, A note on the Fibonacci quotient Fp−ε/p, Canad. Math. Bull. 25 (1982),
366-370.

14

http://arxiv.org/abs/2003.09810
http://arxiv.org/abs/2003.14221
http://arxiv.org/abs/1703.01215

	1 Introduction
	2 Proof of Theorem ??
	3 Proof of Theorem ??
	4 Proofs of Theorem ?? and ??

