arXiv:2004.09155v2 [math.NT] 6 May 2020

Two pairs of congruences concerning
sums of central binomial coefficients

Guo-Shuai Mao

!Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing
210044, People’s Republic of China

maogsmath@163.com

Roberto Tauraso

?Dipartimento di Matematica, Universita di Roma “Tor Vergata”, 00133 Roma, Italy
tauraso@mat.uniroma2.it

Abstract. In this paper, we prove the following two pairs of congruences:
if p=1 (mod 3) then

;:1 (2:)(—2)’“ =0 and \- _(kaz))k = (;) (mod p?)

and, if p=1 (mod 5) then

oy

]

]
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[S;

(Qkk)(—l)k =0 and Z (_(f()?)k =0 (mod p?

k=1

where p is a prime and <5) stands for the Legendre symbol.
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1. Introduction

In the past decades, many people studied congruences modulo a power of a prime p for
sums of binomial coefficients (see, for instance, [2,6][7,[10,13,14],16,24,25]). A certain
number concern the central binomial coefficients and have the form

g} (Qkk) o

where upper limit n is p—1 or p—gl. We would like to mention two of them, taken from [17]
and [23] respectively, that we will need later: for any prime p > 3, we have

i (2:) (—2)F=1-— L’qg@) (mod p*) (1.1)

k=0
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and
p—1

; «@w N (g) (1 ! p%ﬁ@) B p2q§(2)) (mod p%), (1.2)

= o

where ¢,(a) = (a?~' — 1)/p is the so-called Fermat quotient.
Much rarer are the examples where the upper limit of the sum is strictly between p%l
and p — 1. In 2014, Pan and Sun [21] proved that for any prime p =1 (mod 4),

<2:) —0 and (li? _ @) (mod p2).

where the first one has been conjectured in 2006 by Adamchuk [I].
The main purpose of this paper is to show more congruences of the same flavour.

k=1

Theorem 1.1. Let p be a prime. If p=1 (mod 3), then

j (3) 2 =0 moas? (13)

and

= (%) (mod p?). (1.4)

ol

Theorem 1.2. Let p be a prime. If p=1 (mod 5), then

(3) -0 =0 moas? (15)

and

=0 (mod p?). (1.6)

—

The first pair of congruences seems to have (so far) slipped the attention of the math-
ematical community whereas the second pair appeared as a conjecture in [23].

We will give a proof of Theorem [[.T]and Theorem [[.2]in Section 4. The key ingredients
are the following congruences which are interesting in their own right. We shall prove them
in Section 2 and 3 respectively.



Theorem 1.3. For any prime p =1 (mod 3), we have

3

|
-
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y LY = 2(5 )0 tmodn) (1.7

2 (T3 )4k g et
(£) —4,51(p31)j; (mod p). (1.8)
k=0 5

kAPt

where [, .= F p\/p 1s the Fibonacci quotient and F,, denotes the nth Fibonacci number.
P p (o)

2. Proof of Theorem 1.3

Define the hypergeometric series

Qy Q1 ... Qp = (ao)k(al)k"'(am)k 2
ma1Fm = C—, 2.1
“ [ Bi - fm Z] ; B Bode 21)
where «q, ..., n, B1,...,0Bm, 2z € C and

(o) = ala+1)---(a+k—1), ifk>1,
1, if k= 0.

For a prime p, let Z, denote the ring of all p-adic integers and let
7, :={a € Z,: ais prime to p}.

For each a € Z,, define the p-adic order v,(a) := max{n € N : p" | a} and the p-adic
norm |, := p~(®. Define the p-adic gamma function T',(-) by

Lyn)=(-1)" J[ & n=123..,
1<j<n
(k,p)=1
and
I(a)= lim TI,(n), a € ZLy.

|oe—n|p—0
neN

In particular, we set I',(0) = 1. Throughout the whole paper, we only need to use the
most basic properties of I',, and all of them can be found in [I8,20]. For example, we
know that
Fy(z+1) _ ) %f |z|, =1, (2.9)
Ly(x) -1, if |z, > L.
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We also know that for any o € Z,,

plo) _ T(0) + Hy(—ay,-1 (mod p), (2.3)

where H, = >p_, + is the nth classic harmonic number and (z), is the least nonnegative

residue of x modulo p.

Lemma 2.1. ( [§]). For any prime p > 3, we have the following congruences modulo p
3 3

Hyppa) = —2q,(2), Hypsz) = —gqp(3), Hipe) = —24,(2) — 5%(3)-

Proof of Theorem|[L.3. For any «, s € Z,, we have

() _ Gl

(). 1 )
e T e k= (modp)

For each 22 < k < we have
Gop,  EG-DuGrUie ) (B W
(% o %)k 5 (% o %)@-4)/3 (—’—5 + 1)k—?—;1 2 (%)(p—4)/3 (D23
1 e 1 3 Gl (mod p)
= —— 4 = — = b
2 (%)@—4)/3 k— pTl 2 (%)(:n—4)/3 3k +1
And
1 1
1 _1(5)e2 (p—4)/3! -
4(3) _p—1 (3)4 5 = L )5 (—1) /3 _ 1 (mod p)
(E) 3 (E)(p—4)/3 3 3 3

Hence for each 22 < k < -1,

7(3 — &), = L (mod p).




p—1 p—1 p—1
- ( 129 )8k = - (%)k (%)k(_8)k
k=0 3k+1 k=0 (1x (%)k
kAPt kAPt
p=1 p=1 3
I Nl WIS M
= 2
k=0 (D (% - ?p)k e PE2 (D (% - ?p)k
kA2t 3
p—1 p—1

(1;_p)k (3-8 k 3 < (3),G), i 1(:02;1)
8 =3 (=8)" =, | a(2)
Loma-m T, el
kAPSE =5
Set .
k=0 (1)k (% - %p)k
kAt
where
1-p 1 _p
B i e
373
and

—m bl | (D)m m c—b 1
e R e e PR
Settinga:%,b:%—g,c:%—%—p,z:—8,wehave
G-Des s iz
37 6/22L o1 =P 1211
”:@—%19“EV aéé]

(2.5)



In the light of [19 15.4.32], we have

9

1]:(3)“;(%)?(%—%)

Substituting a = % in this identity, we have

(53-8 0 T2
A= 1271F g(i)]_) (r6 13)2 . (2.6)
(3 3)1’7*1 (3 6) ( 6)
On the other hand, we have
=N e (5t w-7)/6 (5!
- (%)k (%)k(_g)k = - ( Izc )8k — (2) pz6 ( sz ) (mod p)
Nar=? (1) (%)k Nyt 3k+1 p) = (6k + 1)8*
3 3
It is easy to see that
(p—=7)/6 el (p=T7)/6 1-p 1+p
2 61<;(kl)8kE 1(6Z kl—g2%8k (mod 7).
£~ (6k+1) —~ (D (§+5),(=8)
Set
T A o P G PR {— L 1}
k=0 (x (% + g)k (=8)* . % +3 8]’
" () ()
& — 6 Jo-n/6\ 2 Jp-ne 27)
(D p-1)/6 (6 + g)(p—l)/6 (=8)®=1/6
Hence
%
(2)i B, oy 2
(—8)" = -2 (—) (D —&) (mod p).
A k() P

And then substituting a = 1_Tp,b =242 c=%+ 23—7’,2 =-1

1-p

1 4
__|__
©:2F1[6 % 2
615




. : 1- 4, 2
By using [19, 15.4.30] with a = 2,0 = 5 + 2, we have

o= [ 1HE 1 _pee2 TTQTGE)
cTE 8 F(1+2)T(2+2)
o TEHITG+T) 28)
FA+5TE+E) |
It follows that (24]) is equivalent to
2 1 /5
91—353(]—)) (’D—@)—§<é)qp(2) (mod p). (2.9)
3
By [2.0), (23), and [9, Lemma 17]
A = r-13% T, B GE-F) T (s 5T (E—5)
roLG-OLGE-0LE-§H (1§
and L .
_ 273 LGP @) (G~ §)
P LG-HLEHH)L G805
By (23) and by Lemma 2.1]
e D G) T () Do (Z6) T (B) (1 P
U=origty 22 PA3I Py &) PAG) (P 4t 2
’ ()L, (T, (0 (5 gl =)
» 1 1 1 Pep(2) | pap(3
=213 211“70 (5) I, <§) r, (6) (1— %( )+ Z( ) —2p) (mod p?)
and
r ()T, () by W
— op—1 r\3)1»\% Py Py
pS =2 3FP(%)FP(%)FP(%)FP(1) <1+pHp 1 3HTl 3HT1 2p)
p*lr

-1

Hence, since 3”2 = (=1)"z (1+ pq,,z(g)> when p=1 (mod 3), and 2°~! =1 (mod p) we
find

A-F=(-1)TT, (%) T, (%) T, (%) (q":(f) - 3q2(3)) (mod p).  (2.10)

Similarly, by (2.8) and (271), we have

/~

ol L LALEE)
p2pT L (%) Ly (% + %)
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and

@_2(_125; : FP(%+2§)FZ(%+§) :
PQPT Fp(§+§ Fp(g)rp(6+%)rp(6_%)

Hence

_ 11, (%) L'y (%) 2p p

PO = 2p§1 Pp (% 1 _Hpgl - nggl + 2p

_ (== 1 1 Pgp(2)  3pgy(3) )

= r, 3 I, 3 r, 5 1+ 3 4 +2p (mod p)
and

2= (3+8) 1 1 1 p 2p p
1
3

T () () (2 (12 ) ) e

Therefore

Moreover, since

and (%) =2" (mod p), it follows

3(2)@-0)- ;(:)q@)
= (-1, (%) T, (%) T, (%) (qu) - 3q2(3)> (mod p).  (2.11)

By comparing (Z.10) and (Z.I1)), we may conclude that the proof of (2.9) is complete. O

3. Proof of Theorem [1.4]

Lemma 3.1. For any prime p such that p =1 (mod 5) we have that
Hprl + Hp1 — Hsp-1y) = —5fp (mod p). (3.1)
5 10
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Proof. By [26], for any prime p > 5,

-1k 5
(=1) Eﬁ (mod p). (3.2)
k 2
k=1
Hence, if p=1 (mod 5), n %landm:p%lthenn—m:p—land by (32),
PR N
4(1’;” ( )k
—1
= -2 Z r = —5f, (mod p)
k=1
Proof of Theorem[I.4 Let p be a prime p =1 (mod 5), then
o (Dr _HDr & (D
k — k L k
Bkl g Bkl &y Bkt
kA2t 5
pely o pt 8-y p-1y
Ez(ﬁ)4k_ Oz: (7)4*
— Bk+1 £ 10k +3
P11 M5 -1 3(1-p) 3
— SZ (Tp)k(%_p)k(_4)k_g ] ( 10p )k (%—i_?p)k(_él)—k
= 6 6
k=0 (1), (g - Ep)k 3 k=0 (1) (% + Ep)k
2
—(@-§) - 2(D-6) (modp)
where
1-p 1 (P 1/ 1_
Q[_2F1{5 2 é; 4]7 3: 1(22 );n 1/5< 4)(p /s,
575 (5= %)
and
3(1—p) 1 3p 1 3(17 1)/10 l
D= F[ o 373l - z]a 6= ( ERETSIY (—4)=3-n/0,
10 + 5 ( ) 3(p—1)/10

In view of [19, 15.8.6], and by [4, Theorem 20] we have

e AN 1_ §_6_p —n —n—l—
= (3-0) G-F) 8 W

_5n<1 )(g 6p) 2100 (4/5)T(6/5)T'(3/2 + 4n)
B \5 5 /) 5T(3/2)T(4/5 4 2n)T(6/5 + 2n)

H




where n = p;sl. Moreover, by [19, 15.8.1], and by a variation of [4, Theorem 20] we have

-n L1422 17 5 —n —n+ i1
l===,F 2| Z
MRS R N
5 21T(7/5)T(8/5)T(5/2 + 4n)
4 50T (5/2)T(7/5 + 2n)T(8/5 + 2n)

©:2F1|i

3(p—1
where n = %

In a similar way as we did in the previous section, we find that

475 et
A-F = (;;31) <4H% — 4H3(p181)> (mod p),

and

9 4’%1 p—1
—(D-6)=-— ( 31) (Hp;l +5Hp1 _HS(pfl)) (mod p)
3 2 5 10

which together imply

L 2 --(@-6
5k +1 ( 5) 3 ( )
k=0
kAt
4% (2
= (E)(le+Hp1_H3(pl))
5 e
gt
=45 (é)fp (mod p).
5
where at the last step we applied (B.1]). O

4. Proofs of Theorem 1.1 and

We first collect a couple of lemmas which are needed to prove the main theorem.
Lemma 4.1. ( [I7, (41) with ¢t = —1/2]). For any prime p > 3,

p—1 2k _2)k;

= —4q,(2) +4pg,(2) (mod p*).

[y

Lemma 4.2. For any 1 < m <n, and for any z € C,

(Z + 1)n+1 m—1 Zk n <7’L> Zn—k om n ( ) —k
n k=0 \ k k=1 k k (m Z

10



s O o O

m

Proof. Both sides of (4.1]) are polynomials of degree n + m, so it suffices to compare the
coefficients of z¢ for each d such that 0 < d < n+ m:

S nid<<nﬁd>_(né)_d)> .

H, + H, — H, . if d = n,

which can be easily verified by induction with respect to m. As regards (4.1), just subtract

(A1) from (@I with m = n. O

Proof of ([L3]). It is easy to verify that

(2:) _ (Z) (—4)* (mod p) forallk=0,...,n

and in view of [22] Lemma 2.1], we have

L 2k (2(p = k) =-2p (modp®) forallk=n,...,p—1.
kJ\ p—k

If 1 <m <n then

k=p—m k=1 k=1 k
m P~k m -k
=2p — =—p — —
D [T DY vy e
m—1 Zk
=—p (n_l) (mod p*)
k=0 \ k

where z = —1/(4x). Hence, by (41]), the following congruence holds modulo p?,

p—1l—-m p—1 n o (2k\_k
2k npz" ( )x
( ) ( ) (z+ 1) (Z S Tt Ho = Hoo
1

k=1 k= k=1

_f_::'; : <Z) kz__':n . (4.3)

=0
m

11



Finally, let x = —2 and m = p%l. Then z = 1/8, and by (L)), Lemma 1.1 Lemma 2]
Theorem [1.3],

2k ipgy(2)  4p 3 ()8
—o)f = = —4g,(2) + 0 — E =0 d p?
(7)o = -2 T | gy 0= i S 585 | =0 (mod )
k=1 m/) k=0
k#m
O
Proof of (I4]). Similarly as before, for 1 <m <n and z = —1/(4z) we find
p—1—-m n—1 k
2k
Z (k: )a:k =-—p nZ_l (mod p?).
k=n+1 k:m( k )
Therefore, by (£2), the next congruence holds modulo p?,
p—1
p—1-m R n 2k
2k\ 4 2k\ 4 npz" %)
= — H,— H H,_
(o) =% () = <Zk<16x>” n ottt
k=0 k=0 k=1
() kJk—(m—-m)]|
m k=0
k#n—m

Finally, let z = —1/32 and m = 7%1. Then z = 8, and by (L2), Lemma [4.1] Lemma 2.1]
Theorem [L.3]

L%J (Qk _ n n k
k) _ (2 pgy(2) o8t _ 38 (k)8
2 325 = (p) (1 % ggert | (2 + 0= ; 3k 1 1
k#n—m

() (1))

Proofs of (IL4) and (L5]). This same approach can be applied also for Theorem In
[21] and [23] respectively, we find that

Z ()t = (2) -2 moa s

and

3 (—(}kg)’f = (5) (1 + %fp) |



Moreover in [I7], it is showed that

p—=1 (2k\/ 1\k
(’f)(Tl)E_5fp+5pf5 (mod p?).

k=1
_ _ p-1 _ 3(p=1)
Let p =1 (mod 5) and m = 2= then n —m = =5== and, by (3.1,
H,+H,—H, ,=-5f, (modp).

Then after letting z = —1, m = 2% in (@3) and z = —1/16, m = 3(11—61) in (£4), we get
that (L3]) and (.6 are established as soon as

p—1 p—1
DO
k = —4PT< El)fp (mod p)
e~ 5k + 1 pT
kAt
which have been shown in Section 3. O
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