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Abstract

The paper solves the enumeration of the set AP(n) of partitions of a positive integer
n in which the nondecreasing sequence of parts form an arithmetic progression. In
particular, we prove a formula for the number of arithmetic progressions of positive,
integers, nondecreasing with sum n. We also present an explicit method to calculate
all the partitions of AP(n).

1 Introduction

A partition of a positive integer n is a nondecreasing sequence of positive integers whose
sum is n. The summands are called parts of the partition. We consider the problem of
enumerating the set AP(n) of partitions of n in which the nondecreasing sequence of parts
form an arithmetic progression (AP), that is, the arithmetic progressions of positive, integers,
nondecreasing with sum n. See A049988.
Given a positive integer n, let τ(n) denote the number of positive divisors of n, |AP(n)|
denote the cardinality of the set AP(n), DE(n) denote the set of divisors of n and DO(n)
denote the set of divisors of 2n except the even divisors of n. We will prove the following
result:

|AP(n)| = τ(n) +
∑

d ∈ DE(n)
1 < d ≤

√
n

⌊
1

2
(

⌈
2n

d(d− 1)

⌉

− 1)

⌋

+
∑

d ∈ DO(n)

1 < d <
√
2n

⌊
1

2

⌈
2n

d(d− 1)

⌉⌋

(1)

We also present an explicit method to calculate all the partitions of AP(n).
These results are a consequence of Lemma 13 and Example 14 of [6]. In the following

section, we present a brief introduction to the methods used in [6].
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2 Arithmetic progressions and the usual arithmetic

The usual productm·n on Z can be viewed as the sum of n terms of an arithmetic progression,
(an), whose first term is a1 = m− n+ 1 and whose difference is d = 2.

Example 1.

5 · 3 = (5− 3 + 1)+
︸︷︷︸

+2

5+
︸︷︷︸

+2

7

3 · 5 = (3− 5 + 1)+
︸︷︷︸

+2

1+
︸︷︷︸

+2

3+
︸︷︷︸

+2

5+
︸︷︷︸

+2
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The previous example motivates the following definition.

Definition 2 (k-arithmetic product ⊙k). Given m, k ∈ Z, for all positive integers n, we
define the following expression

m⊙
k
n = (m− n+ 1) + (m− n + 1 + k) + . . .+ (m− n + 1 + k+ (n−1). . . +k)

as the k-arithmetic product.

This arithmetic progression can be added to obtain the following formula:

m⊙
k
n = (m− n + 1) · n +

n · (n− 1) · k
2

. (2)

We take (2) as Definition (2) and consider n ∈ Z.
In connection with the above result, for each k ∈ Z, the expression “given a k-arithmetic”
refers to the fact that we are going to work with integers, the sum, the new product and the
usual order. This means that we are going to work on

Zk = {Z,+,⊙
k
, <}.

Clearly, Z2, the 2− arithmetic, will be the usual arithmetic.

Definition 3 (k-arithmetic divisor). Given a k-arithmetic, an integer d > 0 is called a divisor
of a (arith k) if there exists some integer b such that a = b⊙

k
d. We can write:

d | a (artih k) ⇔ ∃b ∈ Z such that b⊙k d = a

In other words, d is the number of terms of the summation that represents the k-arithmetic
product (see the following example).

Example 4. Consider the following expression:

6
︸︷︷︸

where to begin

⊙3 5
︸︷︷︸

number of terms

= 2 + 5 + 8 + 11 + 14 = 40

The number of terms is 5; hence, we can say that 5 is a divisor of 40 in 3− arithmetic, that
is, 5 is a divisor of 40 (arith 3).
Notably, a divisor is always a positive number, and the number 6 indicates where we should
start the summation. However, we cannot be sure that 6 is a divisor of 40 (arith 3).
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To characterize the set of divisors, we define the k-arithmetic quotient:

Definition 5 (k-arithmetic quotient ⊘k). Given a k-arithmetic, an integer c is called a
quotient of a divided by b (arith k) if and only if c⊙

k
b = a. We write:

a⊘k b = c ⇔ c⊙
k
b = a

By means of the following proposition, we can use the usual quotient to study the new one.

Proposition 6. Given a k-arithmetic and a, b, k ∈ Z (b 6= 0),

a⊘k b =
a
b
+ (b− 1) · (1− k

2
).

Proof. a⊘k b = c ⇔ c⊙
k
b = a ⇔ (c− b+ 1)b+ 1

2b(b− 1)k = a ⇔ c = a
b + (b− 1) · (1− k

2 )

We must consider ⊘k in the following manner. If we want to write a as the sum of b terms
of an arithmetic progression, then the quotient will give us the place to start the summation
(see the following example).

Example 7. Express 81 as the sum of 6 terms of an arithmetic progression whose difference
is 3.

We can then obtain 81 ⊘3 6 = 81
6 + 5 · (1 − 3

2) = 11. Hence, 81 = 11 ⊙3 6. The first term is
11− 6 + 1 = 6, and the solution is 6 + 9 + 12 + 15 + 18 + 21 = 81.
Clearly, 6 is a divisor of 81 (arith 3).

Corollary 8. a⊘k b is an integer ⇔ b is a divisor of a (arith k).

Proof. a⊘k b = c ∈ Z
Def.(5)⇔ c⊙k b = a

Def.(3)⇔ b | a (arith k)

Consider the Example (4): 40 = 6⊙3 5 but 6 is not a divisor of 40 (arith 3) because 40⊘3 6 =
40
6 + 5 · (1− 3

2) =
25
6 /∈ Z.

For the upcoming Lemma and the rest of this paper, we use the following notation for
even and odd numbers.

Notation 9. We write the set of even and odd numbers as follows:

• E = {. . . ,−4,−2, 0, 2, 4, 6, . . .}.

• O = {. . . ,−3,−1, 1, 3, 5, 7, . . .}.

We now come to the lemma and the example mentioned in the introduction. (After the
references of this pre-print, we paste the proof of this lemma appear in [6]).

Lemma 10. Given a k-arithmetic and a ∈ Z, the divisors of a (arith k) are:

1. The usual divisors of a if k ∈ E.

2. The usual divisors of 2a except the even usual divisors of a if k ∈ O.

3



Example 11. Express the number 12 in all possible ways as a sum of an arithmetic pro-
gression whose difference is 3.

The divisors of 12 (arith 3) are the usual divisors of 24 except the even usual divisors of 12:
{1, ✁2, 3, ✁4, ✁6, 8, ✚✚12, 24}. We repeat Example (7) in each case.

• d = 1 ⇒ a = 12
1
+ (1− 1)(1− 3

2
) = 12 ⇒ 12 = 12⊙

3
1 ⇒ 12 = 12.

• d = 3 ⇒ a = 12
3
+ (3− 1)(1− 3

2
) = 3 ⇒ 12 = 3⊙

3
3 ⇒ 12 = 1 + 4 + 7.

• d = 8 ⇒ a = 12
8
+(8−1)(1− 3

2
) = −2 ⇒ 12 = −2⊙

3
8 ⇒ 12 = −9−6−3+0+3+6+9+12.

• d = 24 ⇒ a = 12
24+(24−1)(1− 3

2) = −11 ⇒ 12 = −11⊙
3
24 ⇒ 12 = −34−31−28−. . .+29+32+35.

Definition 12. Given a positive integer n and k ∈ Z, let Dk(n) denote the set of divisors of
n (arith k).

By Lemma (10) we have two options:

• If k ∈ E, Dk(n) is the set of the usual divisors of n. DE(n) denote this case.

• If k ∈ O, Dk(n) is the set of the usual divisors of 2n except the even usual divisors of
n. DO(n) denote this case.

We are now ready to prove the main results of this paper.

3 Main result

If we think about the previous example, we have a constructive method to solve the main
problem of this paper. For instance, if we want to calculate AP(6), we need to repeat
Example (11) varying k from 0 to 4.

Example 13. Calculate AP(6).

• k = 0 ⇒ D0(6) =
{ 1 2

6 3

}

. We calculate a such that a ⊙k d = n. Hence, a =

n
d
+ (d− 1)(1− k

2
). Now, if d ∈ D0(6), we have the following possibilities:

⋆ d = 1 ⇒ a = 6
1
+ (1− 1)(1− 0

2
) = 6 ⇒ 6⊙

0
1 = 6 ⇒ 6 = 6.

⋆ d = 2 ⇒ a = 4 ⇒ 4⊙
0
2 = 6 ⇒ 3 + 3 = 6.

⋆ d = 3 ⇒ a = 4 ⇒ 4⊙
0
3 = 6 ⇒ 2 + 2 + 2 = 6.

⋆ d = 6 ⇒ a = 6 ⇒ 6⊙
0
6 = 6 ⇒ 1 + 1 + 1 + 1 + 1 + 1 = 6.
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• k = 1 ⇒ D1(6) =
{ 1 ✁2 3

12 ✁6 4

}

.

⋆ d = 1 ⇒ a = 6
1
+ (1− 1)(1− 1

2
) = 6 ⇒ 6⊙

1
1 = 6 ⇒ 6 = 6.

⋆ d = 3 ⇒ a = 3 ⇒ 3⊙
1
3 = 6 ⇒ 1 + 2 + 3 = 6.

⋆ d = 4 ⇒ a = 3 ⇒ 3⊙
1
4 = 6 ⇒ 0 + 1 + 2 + 3 = 6.

⋆ d = 12 ⇒ a = 6 ⇒ 6⊙
1
12 = 6 ⇒ −5 − 4− 3− 2− 1− 0 + 1 + 2 + 3 + 4 + 5 + 6 = 6.

• k = 2 ⇒ D2(6) =
{ 1 2

6 3

}

.

⋆ d = 1 ⇒ a = 6
1
+ (1− 1)(1− 2

2
) = 6 ⇒ 6⊙

2
1 = 6 ⇒ 6 = 6.

⋆ d = 2 ⇒ a = 3 ⇒ 3⊙
2
2 = 6 ⇒ 2 + 4 = 6.

⋆ d = 3 ⇒ a = 2 ⇒ 2⊙
2
3 = 6 ⇒ 0 + 2 + 4 = 6.

⋆ d = 6 ⇒ a = 1 ⇒ 1⊙
2
6 = 6 ⇒ −4 +−2− 0 + 2 + 4 + 6 = 6.

• k = 3 ⇒ D3(6) =
{

1 3
12 4

}

.

⋆ d = 1 ⇒ a = 6
1
+ (1− 1)(1− 3

2
) = 6 ⇒ 6⊙

3
1 = 6 ⇒ 6 = 6.

⋆ d = 3 ⇒ a = 1 ⇒ 1⊙
3
3 = 6 ⇒ −1 + 2 + 5 = 6.

⋆ d = 4 ⇒ a = 0 ⇒ 0⊙
3
4 = 6 ⇒ −3 + 0 + 3 + 6 = 6.

⋆ d = 12 ⇒ a = −5 ⇒ −5⊙
3
12 = 6 ⇒ −16−13−10−7−4−1+2+5+8+11+14+17 = 6.

• k = 4 ⇒ D4(6) =
{

1 2
6 3

}

.

⋆ d = 1 ⇒ a = 6
1
+ (1− 1)(1− 4

2
) = 6 ⇒ 6⊙

4
1 = 6 ⇒ 6 = 6.

⋆ d = 2 ⇒ a = 2 ⇒ 2⊙
4
2 = 6 ⇒ 1 + 5 = 6.

⋆ d = 3 ⇒ a = 0 ⇒ 0⊙
4
3 = 6 ⇒ −2 + 2 + 6 = 6.

⋆ d = 6 ⇒ a = −4 ⇒ −4 ⊙
4
6 = 6 ⇒ −9− 5− 1 + 3 + 7 + 11 = 6.

We have now to observe the following remarks:
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1. The case k = 0, produces the trivial partitions. Now we can understand the beginning
of Formula (1).

2. k varies from 0 to 4. In the case k = 4, we have only the partition 1 + 5 = 6.

3. We are interested in the partitions whose first term is greater than 0. If d ∈ Dk(n),
the first term of the partition is given by the following expression:

n

d
+ (d− 1)(1− k

2
)− d+ 1. Hence,

n

d
+ (d− 1)(1− k

2
)− d+ 1 > 0 ⇔ k <

2n

d(d− 1)
.

(3)

4. The divisor d = 1, always produce the partition 6 = 6.

With the above, we are prepare to count the partitions of AP(6).

We consider k=1, 2, 3, 4. In the case k = 0, we have the 4 trivial partitions.

• k ∈ E ⇒ DE(6) =
{

1 2
6 3

}

.

⋆ d = 2 ⇒ k2 =
2·6

2(2−1)
= 6. The divisor d = 2 produces partitions of AP(6) in cases such

that k ∈ E, k ∈ {1, 2, 3, 4}, k < 6. Hence d = 2 produces 2 partitions. (k = 2, k = 4).

⋆ d = 3 ⇒ k3 =
2·6

3(3−1)
= 2. The divisor d = 3 produces partitions of AP(6) in cases such

that k ∈ E, k ∈ {1, 2, 3, 4}, k < 2. Hence d = 3 produces 0 partitions.

⋆ d = 6 ⇒ k6 =
2·6

6(6−1)
< 1. Hence d = 6 produces 0 partitions. As we will see later, this

case will not have to be made.

• k ∈ O ⇒ DO(6) =
{ 1 3

12 4

}

.

⋆ d = 3 ⇒ k3 =
2·6

3(3−1)
= 2. The divisor d = 3 produces partitions of AP(6) in cases such

that k ∈ O, k ∈ {1, 2, 3, 4}, k < 2. Hence d = 3 produces 1 partition. (k = 1).

⋆ d = 4 ⇒ k4 =
2·6

4(4−1)
= 1. The divisor d = 4 produces partitions of AP(6) in cases such

that k ∈ O, k ∈ {1, 2, 3, 4}, k < 1. Hence d = 4 produces 0 partitions. As we will see later,
this case will not have to be made.

⋆ d = 12 ⇒ k12 =
2·6

12(12−1)
< 1. Hence d = 12 produces 0 partitions. As we will see later,

this case will not have to be made.

Hence AP(6) = 4 + 2 + 1 = 7.
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Remark 14. If we want to calculate |AP(n)|, k varies from 0 to (n− 2).

Remark 15. If k ∈ E, k > 0, we have only to study the divisors d such that 1 < d ≤ √
n.

Proof. By (3), if k ∈ E, and 2n
d(d−1)

< 2, then there will be no partition with a positive first

term. Hence if d >
√
n, there will be no partition with a positive first term.

Remark 16. If k ∈ O, k > 0, we have only to study the divisors d such that 1 < d <
√
2n.

Proof. By (3), if k ∈ O, and 2n
d(d−1)

< 1, then there will be no partition with a positive first

term. Hence if d >
√
2n, there will be no partition with a positive first term.

If d =
√
2n, then

√
2n is even and

√
2n | n. Thus, by Lemma (10), we don’t have to consider

this case.

Now we have a clear method to calculate AP(n).

Example 17. Calculate |AP(100)|.

k varies from 0 to 98.
The case k = 0, produces the trivial partitions. We have τ(100) = 9 partitions in this case.

• k ∈ E.

DE(100) =
{ 1 2 4 5 10

100 50 25 20

}

.

⋆ d = 2 ⇒ k2 =
2·100
2·1 = 100. The divisor d = 2 produces partitions of AP(100) in cases such

that k ∈ E, k ∈ {1, 2, ..., 98}, k < 100. Hence d = 2 produces 49 partitions. (k = 2, k = 4,
. . . , k = 98).

⋆ d = 4 ⇒ k4 = 2·100
4·3 = 16.66 . . . . The divisor d = 4 produces partitions of AP(100) in

cases such that k ∈ E, k ∈ {1, 2, ..., 98}, k < 16.66 . . . . Hence d = 4 produces 8 partitions.
(k = 2, k = 4, . . . , k = 16).

⋆ d = 5 ⇒ k5 =
2·100
5·4 = 10. The divisor d = 5 produces partitions of AP(100) in cases such

that k ∈ E, k ∈ {1, 2, ..., 98}, k < 10. Hence d = 5 produces 4 partitions. (k = 2, k = 4,
k = 6, k = 8).

⋆ d = 10 ⇒ k10 = 2·100
10·9 = 2.22 . . . . The divisor d = 10 produces partitions of AP(100) in

cases such that k ∈ E, k ∈ {1, 2, ..., 98}, k < 2.22 . . . . Hence d = 10 produces 1 partition.
(k = 2).

• k ∈ O.

DO(100) =
{

1 ✁2 ✁4 5 8 ✚✚10
200 ✟✟100 ✚✚50 40 25 ✚✚20

}

.
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⋆ d = 5 ⇒ k5 =
2·100
5·4 = 10. The divisor d = 5 produces partitions of AP(100) in cases such

that k ∈ O, k ∈ {1, 2, ..., 98}, k < 10. Hence d = 5 produces 5 partitions. (k = 1, k = 3,
k = 5, k = 7, k = 9).

⋆ d = 8 ⇒ k8 =
2·100
8·7 = 3.57 . . . . The divisor d = 4 produces partitions of AP(100) in cases

such that k ∈ O, k ∈ {1, 2, ..., 98}, k < 3.57 . . . . Hence d = 8 produces 2 partitions. (k = 1,
k = 3).

Hence |AP(100)| = 9 + 49 + 8 + 4 + 1 + 5 + 2 = 78.

Remark 18. We can use “floor and ceil functions” to count the even and odd numbers in
each case.

With all of the above, we have proven the following theorem.

Theorem 19. Given a positive integer n,

|AP(n)| = τ(n) +
∑

d ∈ DE(n)
1 < d ≤

√
n

⌊
1

2
(

⌈
2n

d(d− 1)

⌉

− 1)

⌋

+
∑

d ∈ DO(n)

1 < d <
√
2n

⌊
1

2

⌈
2n

d(d− 1)

⌉⌋

.

4 Conclusion

The methods used in [6] have been fundamental to the development of this paper. Hence,
more work related to the topic of [6] is necessary.
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(Concerned with sequence A049988)

Notes for helping the referee.

With this program, you can check the main result of the paper. Please, copy and paste in
a Maple worksheet or download the maple document “A.P.partitions.mw” from the Google
site https://sites.google.com/site/extensionfurstenbergprimes/

> restart:

> with(numtheory):

> APpartitionformula := proc (n)
> local i, j, counter, A:
> global total:
> total:=0:
> counter:=tau(n):
> A:=divisors(n):
> for i to counter do
> if A[i]>1 and A[i]<=evalf(sqrt(n)) then
> total:=total + floor(((ceil(2*n/(A[i]*(A[i]-1))))-1)/2);
> fi:
> od:
> counter:=tau(2*n):
> A:=divisors(2*n):
> for j to counter do
> if A[j]>1 and A[j]<evalf(sqrt(2*n)) then
> if (A[j] mod 2) <>0 then
> total:=total + floor((ceil(2*n/(A[j]*(A[j]-1))))/2);
> else if (n mod A[j])<>0 then
> total:=total + floor((ceil(2*n/(A[j]*(A[j]-1))))/2);
> fi:
> fi:
> fi:
> od:
> total:=tau(n)+total:
> end:

https://oeis.org/A049988
https://sites.google.com/site/extensionfurstenbergprimes/


> APpartitionformula(100): total;

78

> A:=array(1..20):
> for i to 20 do
> APpartitionformula(i):
> A[i]:=total:
> od:

> print(A);
[
1 2 3 4 4 7 5 7 9 9 7 14 8 11 16 13 10 20 11 17

]

Number of nondecreasing arithmetic progressions of positive integers with sum n. See
A049988.

Lemma 10. Given a k-arithmetic and a ∈ Z, the divisors of a (arith k) are:

1. The usual divisors of a if k ∈ E.

2. The usual divisors of 2a except the even usual divisors of a if k ∈ O.

Proof. We use Proposition (6) and Corollary (8) in the following cases:

1) k ∈ E. d | a ⇔ d | a (arith k).

2a) k ∈ O. If d is odd: d | 2a ⇔ d | a (arith k).

2b) k ∈ O. If d is even: d | 2a and d ∤ a ⇔ d | a (arith k).

1. k ∈ E. Suppose d is a usual divisor of a:

a⊘k d =
a

d
︸︷︷︸

∈Z

+(d− 1)(1− k

2
︸︷︷︸

∈Z

) ∈ Z ⇒ d | a (arith k).

Hence, d is a divisor of a (arith k).

k ∈ E. Suppose d is a divisor of a (arith k):

d | a (arith k) ⇔ ∃b ∈ Z such that b⊙k d = a ⇔ (b− d+ 1) +
(d− 1)k

2
︸ ︷︷ ︸

∈Z

=
a

d
∈ Z.

Hence, a
d
∈ Z, and d is a usual divisor of a.

2. We consider two cases:
a) k ∈ O. Suppose d is an odd usual divisor of 2a:

If d | 2a ⇒ d | a because d is an odd number. Then, a⊘k d =
a

d
︸︷︷︸

∈Z

+(d− 1)
︸ ︷︷ ︸

even

(1− k

2
) ∈ Z.

https://oeis.org/A049988


Hence, a⊘kd ∈ Z, and d is a divisor of a (arith k).

k ∈ O. Suppose d is an odd divisor of a (arith k):

d | a (arith k) ⇔ ∃b ∈ Z such that b⊙k d = a ⇔ (b− d+ 1) + (d− 1)
︸ ︷︷ ︸

even

k

2
=

a

d
∈ Z.

Then, a
d
∈ Z, and d is a usual divisor of a. Hence, d is a usual divisor of 2a.

b) k ∈ O. Suppose d is an even usual divisor of 2a but d is not a divisor of a:

d | 2a ⇒ ∃h ∈ Z such that 2a = dh ⇒ a
d = h

2 . By hypothesis d ∤ a; hence, h
2 /∈ Z and h is odd.

Then, a⊘k d =
a

d
+ (d− 1)(1 − k

2
) =

h

2
+ (d− 1)(1 − k

2
) =

1

2
( h
︸︷︷︸

odd

− (d− 1)k
︸ ︷︷ ︸

odd
︸ ︷︷ ︸

even

) + d− 1 ∈ Z.

Hence, d is a divisor of a (arith k).

k ∈ O. Suppose d is an even number and d is a divisor of a (arith k):

d | a (arith k) ⇔ ∃b ∈ Z such that b⊙k d = a ⇔







(b− d+ 1) +
(d− 1)k

2
︸ ︷︷ ︸

/∈Z

= a
d /∈ Z.

2(b− d+ 1) + (d− 1)k = 2a
d ∈ Z.

Hence, d ∤ a and d | 2a in the usual sense.
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